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Abstract 
 

I propose a modification of the Jolly-Seber model, the two-source Jolly-Seber (TSJS) 

model, to estimate population size by combining two sources of capture-recapture data of the 

same population where there might be an unknown overlap between two independent 

datasets. This is the case with recent surveys of whales and dolphins where researchers use 

individual identification records from both photo-identification and DNA profiling of skin 

biopsy samples. This sampling configuration results in two datasets that might contain the 

same individuals. This new approach enables the estimation of the overlap and the calculation 

the population size using capture-recapture information arising from both sampling methods. 

Monte Carlo simulations are used to assess the properties of the present estimator. When all 

the assumptions are met, the estimator seems to be unbiased as long as the occasion-specific  

simultaneous sampling probability is above 0.2. Simulation analyses also indicate that the 

proposed method performs better than existing closed-population estimators when there is 

little heterogeneity among individuals in capture probabilities and when the average capture 

probability is high. Alternatives have been explored and a two-source version of model M0 

has also been developed and compared to the TSJS estimator. Traditional closed-population 

estimators have been compared to the new approaches (TSJS and two-source M0 models) 

when the population is open and the assumption of homogeneous capture probability is 

violated. Both procedures are finally applied to real data on the humpback whale Megaptera 

novaeangliae, on the wintering grounds of New Caledonia (South Pacific), where individuals 

have been sampled independently by skin sampling biopsy and photo-identification or 

simultaneously by both methods on a same capture occasion. The proposed methods hold 

great promise in monitoring by providing researchers and managers with a method allowing a 

diversity of sampling protocols. It could be more efficient in estimating population size, in 

terms of both precision and bias, than models based only on one type of data. And as it is 

important to control variation in a sampling design, this methodology could also provide a 

useful way to reduce variation by increasing the sample size and, hence, to enhance the 

estimator precision. 
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 1 

 

INTRODUCTION 

 

Animal population size is typically a variable of importance in decision analysis to 

develop optimal management strategies for wildlife populations under uncertainty. Reliable 

estimates are essential for conservation purposes, especially to adequately monitor 

endangered populations and prevent extinction. The necessary and difficult challenge of 

sustainable harvest management also requires good estimates in the fishery and sport hunting 

industries where the management of commercially-interesting species is vital for the targeted 

species, the whole ecosystem balance and also for the industry itself. Investigating population 

size can also provide a measure of success in pest control management programs and it 

ultimately leads to a better understanding of ecology in general.  

 

Historical background 

The methodology behind modern population size estimation goes back to Graunt in 

England in 1662 with his work on ratios on the mortality due to the Black Plague, Süssmilch 

in the first part of the 17th century with his work on the probability of mortality and later 

Laplace in the second part of the 17th century and his work on the French population census 

(Hald, 1990; Horváth, 1991; Laplace, 1783). The impossibility for census to give a correct 

count, the cost of such surveys and a rather undeveloped administration at that time, led to the 

replacement of exhaustive knowledge by an extrapolation based on surveys of parts of the 

population. The goal was to find a multiplier that would give an estimated total size for the 

population, once applied to a count based only on a part of the population. Laplace in his 

mémoires “Sur les naissances, les mariages et les morts” (1783) gives the prelude of the 

importance and use of population size investigation in modern ecological studies: 

1“Il est donc intéressant, à tous égards, de connaître la 

population de France, d’en suivre les progrès et d’avoir la loi 

suivant laquelle les hommes sont répandus sur la surface de ce 

grand royaume.”  
                                                 

1 “It is therefore interesting in every regard to know the population of France, to follow the 

progress of it, & to have a law according to which the population has spread over this large realm.” 

 



 2 

Overview of abundance estimation 

In studying population dynamics in ecology it is indeed desirable to have an estimate 

of the population size to start with. Different methodologies have thus been developed to 

estimate such a parameter. There are three main approaches: census methods i.e. the complete 

count of the population, surveys based on samples i.e. sampling space, and methods based on 

the capture or removal of animals from the population i.e. sampling animals. The first one 

being limited to confined populations, a great majority of ecological studies deal with sample 

surveys or mark-recapture methods when trying to estimate abundance.  

The main distinction between sample survey and capture methods is the framework of 

the survey protocol: while population size can be directly obtained from one survey occasion 

with sample surveys, capture methods typically require several occasions to produce an 

estimate.  

Methods based on the capture or removal of animals from the population are mostly 

used for elusive organisms for which counts on one occasion would not provide reliable 

abundance estimates. Because of habitat characteristics, behavior, size or other aspects of the 

biology, for some species, animals are not easily observable in the wild and abundance 

estimation can only be accomplished by capturing individuals (e.g. by traps). Capture 

methods fall into two categories:  

(1) removal methods in which the captured individuals are not returned to the 

population, 

(2) capture-recapture methods in which individuals are released back into the 

population after capture.  

In the latter, captured animals are usually marked and returned to the population hence 

the name: capture-mark-recapture (CMR) experiments. Repeated sampling occasions provide 

capture histories for the individuals, a consequence of which is the possibility to use 

probabilistic models to estimate population size. Those models can be divided in two 

categories (1) closed-population CMR models; and (2) open-population models. 
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Closed population models 

In ecology an animal population that can be considered not subject to any death, birth, 

immigration or emigration processes over the study period is said to be closed. The closure 

assumption for those models thus implies no gain or loss of individuals (i.e. no turnover) 

during the entire duration of the experiment. Consequently, closed-population models rely on 

the following assumptions: 

1. animals do not die or leave the population by permanent emigration during the 

sampling period, 

2. animals do not enter the population by birth or permanent immigration during the 

sampling period. 

Each model may in addition require other assumptions that will be specified as 

appropriate. 

 

Two sampling occasions 

Derived from the method used by Laplace (1783), the Lincoln-Peterson estimator is 

based on a two-sampling occasion capture-recapture experiment and is at the basis of the 

understanding of all CMR models (Begon, 1979; Pollock et al., 1990; Schwarz and Seber, 

1999; Seber, 2002; Williams et al., 2002). In addition to the closure assumption, equal capture 

probability and no loss of mark are assumed. As a result of the assumption of equal capture 

probability, the proportion of marked animals recaptured in the second sample should be the 

same on average as the proportion of animals captured at the first occasion in the population. 

The Petersen estimate is therefore: 

2

21ˆ
m

nn
N =  where N̂  is the estimated population size, 1n  the number of individuals captured 

on the first sampling occasion, 2n  the number of individuals captured on the second occasion 

and 2m  the number of marked individuals on the first occasion that are recaptured on the 

second. 
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However, a modification of this estimator, the Chapman’s modification of the 

Lincoln-Petersen is known to perform better, with less bias and a finite variance estimate 

(Begon, 1979; Pollock et al., 1990; Seber, 2002): 
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Multiple sampling occasions 

If there are more than two sampling occasions, animals are captured, marked, released 

back and potentially recaptured on subsequent occasions. On each occasion the number of 

marked and unmarked animals captured in the sample is recorded. The type of marking used 

helps to distinguish between features of two methods to estimate abundance:(1) with only one 

type of marking there is no way of distinguishing between marked individuals; and (2) with a 

specific mark for each individual captured, all marked animals are uniquely recognizable.  

The first marking option leads to a direct extension of the Lincoln-Petersen estimator: 

the Schnabel method (Seber, 2002). The probability of what was seen is written as a function 

of the number of captured individuals at the tth time (nt) and the unknown parameter (N). This 

can be expressed as the product of the probability of obtaining mt marked animals out of nt 

and the conditional probability of the number of marked animals seen at the tth time given mt, 

which depends only on the total  (Mt) of marked animals in the population just before the tth 

sample is taken: 

( ) { } { }ttttt MmffPNnmPMNL ;...,;, 21=  

 
As the probability of sighting a marked animal is Mt/N at each sighting, the probability 

of having mt marked animals among nt sightings (given the assumption that animals are 

sighted independently and with equal and constant probability) is given by the binomial 

distribution: 
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As tM  is known, the likelihood of N given tn  and M is just { }NnmP tt ;  and tm  is 

sufficient for N. In this case the maximum likelihood for N is defined by the equation also 

known as the Schnabel census estimator: 
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The marking option where all captured individuals are uniquely marked is used in 

multinomial models that are likelihood-based. Additional assumptions include: 

1. Animals do not lose their mark/tag, 

2. Tags/marks are correctly recognized (no misreading) and reported. 

The simplest model, denoted M0 (no variation in capture probability), also assumes 

that the capture probability p is constant over the capture occasions and equal among 

individuals (Amstrup et al., 2005; Borchers et al., 2002; Chao, 2001; Otis et al., 1978; 

Schwarz and Seber, 1999; Seber, 2002; Williams et al., 2002): 
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where T denotes the number of capture occasions, p the capture probability, ah the frequency 

for observable capture history h, Tnnnn +++= ...21  the total number of captures, MT+1 the 

number of unmarked animals caught during the study. 

In this model there are only two parameters, N and p, and the statistics that are 

necessary to obtain them are MT+1 and n. The maximum likelihood estimator of N and p are 

then obtained using numerical methods that maximize the previous equation. 

However, this simple model M0 is often inappropriate when applied to real, 

heterogeneous populations (i.e. individuals vary in their availability for capture), and other 

models have been developed to relax the assumption of equal probability. They allow capture 

probabilities to vary with time, and/or among animals. Some of these models are described 

below (Amstrup et al., 2005; Borchers et al., 2002; Chao, 2001; Otis et al., 1978; Schwarz and 

Seber, 1999; Seber, 2002; Williams et al., 2002): 

M t: capture probabilities can vary from one occasion to the next 
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Mh: capture probabilities can vary among animals but are constant across time for each 

individual 

M th: capture probabilities can vary among animals and across time  

Mb: a behavioral response to being captured affects the capture probability on 

subsequent occasions. 

As closed population models might have very little relevance for some populations 

where significant turnover can be expected, for example over long monitoring periods and 

many biological cycles, open-population models are used to better represent the population 

and thus get more reliable estimates.  

 

Open population models 

When the population closure assumption is relaxed, models including potential gains, 

by birth and immigration, and losses, by deaths and emigration, for populations can be used to 

study the changing nature of those open populations. Open-population models allow 

estimation of a wide variety of biological parameters, including birth rate and survival rate 

(Lebreton et al., 1992; Lebreton and Pradel, unpublished; Lindberg et al., 2001; Nichols et al., 

2004; Schwarz, 2001; Schwarz and Arnason, 1996; Seber, 1986). 

 At present, the only open-population model that estimates the population size is the 

Jolly-Seber (JS) model. This model relies on the following assumptions (Schwarz, 2001; 

Schwarz and Seber, 1999; Seber, 1986): 

1. all animals present (marked or unmarked) in the population at the time of the t-th 

sample (t = 1, 2, …, T) have an equal probability of being caught, 

2.  all marked animals present in the population immediately after the tth sample have 

an equal survival probability (tφ ) until the (t+1)th sampling time (t = 1, 2, …, T-1), 

3.  animals do not lose their marks or tags, 

4. immigration and emigration cannot be separated from birth and death without 

additional information, 

5.  all emigration from the sampling population is permanent. 

The major criticism leveled at the JS model for the estimation of abundance and the 

probable reason why closed population models might sometimes be preferred is the fact that 
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heterogeneity is not permitted in capture probability in the partial likelihood used in the JS 

model to estimate population size. Methods to overcome this issue and reduce the bias in the 

JS estimates have been developed but have seen little application (Hwang and Chao, 1995; 

Pledger and Efford, 1998). 

The Cormack-Jolly-Seber (CJS) model is a widely used open-population model and is 

a partial likelihood of the JS model disregarding the terms for captures of unmarked animals 

and losses on capture. It relies on the following assumptions usually referred as the “iii (triple-

I) assumptions” (Lebreton et al., 1992): 

Identity of individuals (matching system is reliable, tags are not ambiguous and not 

lost), 

Independence of individuals, 

Independence of successive capture events. 

 

However, it does not directly give an estimate of the population size as N does not 

appear in the likelihood. Therefore, McDonald and Amstrup (2001) have developed a 

Horvitz-Thompson estimator of population size that uses the capture probabilities obtained 

with the CJS model and relies on the assumption that marked and unmarked individuals have 

the same capture probability, an assumption not required in the CJS model.  

 

Consequences of violating model assumptions   

All abundance estimation methods are based on a set of assumptions under which the 

method is hopefully robust and reliable. However, it often arises that one or more assumptions 

cannot be met, even with the estimation method that seems the most appropriate. Studies 

based on simulations have been carried out to evaluate the characteristics of bias (expected 

range and direction) that occurs in the case of assumption violations (Chao, 1989; Devineau et 

al., 2006; McDonald et al., 2003; Wittes, 1972). It has been especially shown that estimators 

assuming equal catchability are usually negatively biased by heterogeneity in capture 

probabilities and that some estimators like the closed-population jackknife estimators for 

model Mh generally underestimate population size when the data are sparse while others, like 

Darroch’s model (Darroch, 1958), produce overestimations in such case (Carothers, 1973; 

Chao, 1987, 1989; Chao et al., 2000; Gilbert, 1973; Otis et al., 1978). 
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Marking methodology 

Investigating abundance estimation of wild animal population using CMR experiments 

has been of growing interest in ecology and a large number of marking methods have been 

developed. For mammals, the most common are tagging and photo-identification when the 

individuals can be distinguished by some natural and stable-over-time body patterns such as 

pigmentation and shape (Adams and Hutchings, 2003; Blackwell et al., 2004; Calambokidis 

and Barlow, 2004; Derocher and Stirling, 1995; Forcada and Robinson, 2006; Karanth and 

Nichols, 1998).  

The recent development of molecular ecology has led to the emergence of innovative 

techniques of genetic tagging or DNA fingerprinting that could be used as traditional marking 

methods in CMR models to estimate population size (Jones and Ardren, 2003; Manel et al., 

2005; Palsbøll, 1999; Palsbøll et al., 1997). The use of non-invasive genetic methods by 

genotyping hair, feather, faeces, or sloughed skin represents an alternative to traditional 

marking methods and is becoming increasingly popular in conjunction with mark-recapture 

methods to estimate population size (Bellemain et al., 2005; Boulanger and Hamilton, 

unpublished; Boulanger et al., 2004a; Boulanger et al., 2004b; Creel et al., 2003; Eggert et al., 

2003; Keller et al., 2005; Lukacs and Burnham, 2005; Mowat and Paetkau, 2002; Prugh et al., 

2005; Wilson et al., 2003). Cost and intensity of sampling can be reduced and trap-response 

does not often arise as can be the case in traditional marking techniques (Brown et al., 1994; 

Clapham and Mattila, 1993; McKelvey and Schwartz, 2004; Mills et al., 2000; Taberlet et al., 

1999; Weinrich et al., 1992; Weinrich et al., 1991). However, even if the advances in this 

field offer great promise, noninvasive genetic sampling still requires improvement in the 

methodology to be used reliably in CMR studies (Lukacs and Burnham, 2005; McKelvey and 

Schwartz, 2004; Mills et al., 2000; Palsbøll, 1999; Roon et al., 2005; Schwartz et al., 1999; 

Taberlet et al., 1999; Waits et al., 2001). And, despite ethical issues and because DNA is 

usually collected in greater quantities and of better quality, invasive sampling methodology 

could be more easily and reliably used with CMR models for some species when non-invasive 

sampling might be impossible (Garrigue et al., 2004; Keller et al., 2005; Palsbøll et al., 1997; 

Valsecchi et al., 1998). 
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Objectives 

With the development of molecular ecology, multiple sources of data can be obtained 

for some species and combining them to obtain population size estimates would provide more 

information about abundance than each survey could provide alone. A good example is the 

humpback whale population in the South Pacific where improvement of whale population size 

estimates is required for conservation purposes and to address recent political issues. In the 

Southern hemisphere, humpbacks migrate from their feeding ground in Antarctica to warmer 

waters to breed in winter. New Caledonia is one of the breeding grounds for this species and 

whales are usually present from July to September. During this period, two sources of 

information are opportunistically collected during systematic boat surveys: photo-

identification and genetic identity from skin biopsy. Individual whales are frequently 

photographed and genotyped on the same capture occasion. However, on a capture occasion, 

some whales may not fluke so cannot be photographed and some others cannot be approached 

closely enough to be genotyped. Researchers, thus, typically end up with two datasets that are 

analyzed separately for abundance purposes. Therefore, the problem of using both datasets 

together extends to a two-list approach with an unknown overlap between the lists that 

requires a formulation for this “matching dilemma”. The problem of estimating the size of a 

population by using multiple sources is often referred to as the multiple-recapture estimation 

problem (Darroch, 1958). Several approaches have been developed to model multiple-list 

census data for estimating the size of a closed population: Rasch-type models (Bartolucci and 

Forcina, 2001; Lindsay et al., 1991), log-linear models (Darroch et al., 1993; Fienberg, 1972a, 

b), Bayesian methods (Fienberg et al., 1999; Madigan and York, 1997; Smith, 1988). El-

Khorazaty et al. (1977) reviewed the early literature on methods for multiple-system 

estimation. 

My interest here was motivated by the situation often faced with marine mammal 

surveys for which researchers usually end up with two overlapping datasets. If both sets of 

data indeed lead to valid estimates, using the two datasets separately or using a mean of the 

estimates is unefficient since that implies missing some recapture information, i.e. when the 

animals are captured by one method and then recaptured by the other. The objective was thus 

to create an analytical framework that would allow a worker to combine two sources of data 

available in an open-population model to increase the sample size and provide a more robust 

monitoring estimator.  
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My first objective is the creation of an analytical framework that will allow the 

combination of two sources of data available in an open-population model. Therefore, I will 

present an ad hoc re-formulation of the JS model. I will investigate the ability of this 

extension of the JS method (Amstrup et al., 2005; Jolly, 1965; Seber, 1965, 2002) to use two 

sources of data by estimating the possible overlap of these data. However, I will also stress 

alternative models and approaches to this two-list latent variable problem in an effort to 

consider a wider range of sampling situations. 

My second objective is to develop simulations to check the performance and 

robustness of the model when all assumptions are met, and when one or more fail. I especially 

focus on the violation of the assumption of homogeneous capture probability among 

individuals of the population. In the final stage, the simulations will aim at reproducing as 

closely as possible a long-lived open population, such as a humpback whale population, and 

the sampling protocol used to survey such a population, in order to check the error in the 

abundance estimate in this situation. Existing models currently used in this field for 

population assessment with only one list will be compared to this new approach. 

As this new open-population model was motivated by the need to estimate the size of 

humpback whale populations, I will investigate the population size of this species in the South 

Pacific and the new estimation methods will be applied to data from New Caledonia and 

compared to estimates resulting from other abundance estimation methods already available. 
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1. Chapter One 
 

An extension of Jolly-Seber model: the two-source Jolly-
Seber model 
 
 

1.1. Abstract 
 

The Jolly-Seber (JS) model has been used in open population abundance estimation 

for many years, for organisms ranging from whales to bears, squirrels to alligators. In 

particular, it has been used for humpback whale populations on a number of occasions where 

there sometimes are two datasets resulting from two different sampling methods. I propose a 

modification of the Jolly-Seber model, the two-source Jolly-Seber (TSJS) model, to estimate 

population size by combining two sources of capture-recapture data where there might be an 

unknown overlap between the two datasets. This is the case with recent surveys of whales and 

dolphins where researchers use individual identification records from both photo-

identification and DNA profiling of skin biopsy samples. This sampling configuration results 

in two datasets that might contain the same individuals. For those individuals captured by 

both sampling methods, some have been captured by both methods on the same capture 

occasion and it is consequently possible to merge the records for those individuals, the two 

capture histories in each dataset, into one in the combined dataset. However, an unknown 

overlap sometimes occurs, in the combined dataset, when individuals have been captured by 

both sampling methods separately but never simultaneously by both, a consequence of which 

is the risk of over-estimating the population size if the data are inappropriately combined. 

Using the simultaneous double capture in the data, it is possible to estimate the “non-double 

identity” rate of each individual, namely the probability of having one and only one capture 

history in the combined dataset. This new approach enables researchers to avoid the over-

estimation of the population size when using the combined dataset by estimating the 

probability of non-double identity which is then used in the Jolly-Seber framework to 

estimate the population size. I also investigate other approaches to answer the general issue of 

two overlapping datasets for the estimation of abundance in an effort to consider a wider 

range of sampling designs with closed-form likelihoods: an extension of model M0 with two 
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overlapping sources of data referred to as the two-source M0 model and latent multinomial 

models based on models M0 and Mt, using a latent capture history approach. I finally discuss 

the limitation of an extension of these likelihood-based closed-population methodologies to 

open populations. 

 

1.2. Introduction 

 

Population size estimates are important for managing species for conservation 

purposes, sustainable development aims, pest control objectives and in many other situations. 

Investigating abundance estimation of wild animal population has been of growing interest in 

ecology and a large number of methods have been developed (Amstrup et al., 2005; Williams 

et al., 2002). The use of capture-mark-recapture (CMR) methods, such as photo-identification 

and genetic sampling, to estimate animal population size is especially increasing (Bellemain 

et al., 2005; Boulanger et al., 2004a; Calambokidis and Barlow, 2004; Calambokidis et al., 

1990; Derocher and Stirling, 1995; Durban et al., 2005; Forcada and Robinson, 2006; 

Garrigue et al., 2004; Katona and Beard, 1990; Keller et al., 2005; Kohn et al., 1999; Larsen 

and Hammond, 2004; Lindeman, 1990; Lukacs and Burnham, 2005; Mowat and Paetkau, 

2002; Palsbøll, 1999; Palsbøll et al., 1997; Parra et al., 2005; Pearse et al., 2001; Smith et al., 

1999; Urbán et al., 1999). Photo-identification and genetic fingerprinting from skin sampling 

are widely used to survey marine mammals, as it enables researchers to sample more 

individuals and gives more information about the population. Doing so, researchers typically 

end up with two datasets that are usually analyzed separately for abundance purposes. The 

objective here is to develop a model for abundance estimation that uses the combined dataset 

arising from the binding of those two datasets and hence to use all the data available. At 

present most models used to get population size estimates are closed-population based 

(Amstrup et al., 2005; Borchers et al., 2002; Seber, 1986), even when the population is open 

(Garrigue et al., 2004; Larsen and Hammond, 2004; Urbán et al., 1999). Open-population 

models have been developed to overcome the violation of assumptions when using closed-

population models for data collected over an extended period (Amstrup et al., 2005; Seber, 

1986). In terms of population size estimation, they can also provide useful information on 

abundance trend. Nevertheless, open-population models, like the Cormack-Jolly-Seber (CJS) 

model, are mostly used to estimate parameters such as survival rate and capture probability 
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(Cormack, 1964). Even though one possibility to estimate abundance with the CJS model is to 

use a Horvitz-Thompson-like estimator after estimating the capture probabilities, currently 

only the Jolly-Seber (JS) model leads to a direct estimate of population size (Amstrup et al., 

2005; Jolly, 1965; Lebreton et al., 1992; McDonald and Amstrup, 2001; Seber, 1965; Seber, 

1986). The JS model has been used for organisms ranging from whales to bears, squirrels to 

alligators (for examples see (Amstrup et al., 2005; Calambokidis and Barlow, 2004; Derocher 

and Stirling, 1995; Pollock et al., 1990; Williams et al., 2002)). Joint modeling of several 

sources of recapture data (mark-recapture, tag-resighting, tag-recovery) has been previously 

investigated by Burnham (1993), Barker (1997), Barker and White (2001) and Barker et al. 

(2004): likelihoods and a framework to make full use of these sources of reobservation data 

were developed, leading to parameter estimators equivalent to Jolly’s (1965) under random 

emigration, i.e. non permanent emigration. However, those sources of recapture data 

contribute to observations of marked individuals and there is no unknown overlap between 

the different types of data. Moreover, it is not possible to estimate population size under 

random (short-term relative to the monitoring period) migration without restrictive 

assumptions about the movement of recruits or without additional information (Barker, 1997). 

So here I propose an extension of the formulation developed by Jolly (1965) and Seber (1965) 

to obtain population size estimates by combining two different sources of live capture-mark-

recapture data where there might be an unknown overlap between the datasets. The focus here 

is on aspects of study design that are especially relevant to open populations. However, I also 

consider closed form likelihoods and discuss a possible extension to open populations in order 

to extend the methodology to a broader range of sampling situations. 

This chapter first describes the original JS model and related existing models before 

presenting the two-source Jolly-Seber (TSJS) model which uses two independent sources of 

mark-recapture information. This method enables researchers to have bigger sample size for 

the purpose of population size estimation, in the case where all individuals of a population are 

not necessarily available by a single sampling method. A likelihood based approach is 

introduced using latent multinomial models, based on model M0 and a latent multinomial 

capture history approach (Link and Barker, 2010), based on models M0 and Mt. Finally, 

extension of these likelihood approaches to open populations is discussed as a future direction 

for research when the computing power (or a suitable algorithm) becomes available to make it 

feasible.  
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1.3. The classic Jolly-Seber model 

 

The JS model (Jolly, 1965; Seber, 1965, 2002) is, at present, the most popular capture-

recapture open-population model used to estimate population size. The data required to use 

such a model are similar to the data for capture-recapture closed-population models: animals 

are captured, marked and released to be recaptured at subsequent discrete sampling periods. 

At each capture occasion, marked and unmarked animals have to be recorded, leading to 

capture histories being available for each caught individual. From those capture histories, 

population size can be calculated at most sampling times as well as survival, recruitment rate 

and capture probability. 

 

1.3.1. Model components 

 

Originally Jolly (1965) and Seber (1965) developed different likelihood approaches 

which led to the same estimator for the parameters. I detail here the approach of Brownie et 

al. (1986) based on Jolly’s (1982) work. This likelihood for a T-sampling-occasion study can 

be decomposed into 3 components: 

1. The component L1 models the captures of unmarked individuals in terms of 

conditionally independent binomial terms. Each binomial probability gives the likelihood of 

capturing tu  unmarked individuals on occasion t given there are tU  unmarked animals in the 

population each of whom has a probability tp   of being captured on that occasion:  
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where tu  is the number of unmarked individuals captured at occasion t, with t=1, 2,…, T, tU  

the available population of unmarked individuals and tp  the capture probability. 
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2. The component L2, concerning loss on capture, i.e. captured animals not released 

back into the population: 
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where tm  is the number of marked animals captured at time t, with t=1, 2,…, T,  ', tt dd  the 

number of tm  and tu  respectively not released back into the population and ', tt ηη  the 

probability of release into the population for marked and unmarked animals tm  and tu . 

The component L2 is a product, in two parts, of binomial likelihoods. The first part is a 

product of likelihoods dealing with the unmarked individuals: each gives the probability on 

occasion t of releasing into the population '
tt du −  individuals, i.e. the number of the unmarked 

animals tu  that were captured on occasion t and did not die on capture, each of whom has a 

probability '
tη  of being released into the population on that occasion. The second part of 

component L2 is a product of likelihoods dealing with the marked individuals: each binomial 

probability gives the probability on occasion t of releasing into the population tt dm −  

individuals, i.e. the number of the marked animals tm  that were captured on occasion t and 

did not die on capture, each of whom has a probability tη  of being released into the 

population on that occasion. 

 

3. The component L3, originally derived by Cormack (1964) and usually referred to as 

the Cormack-Jolly-Seber (CJS) model, containing the recapture data tjm  (number of animals 

seen at time t and seen again at time j) conditional on the numbers of newly and previously 

marked animals released at each occasion: 
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where tR  denote the number of releases at time t, tr  the number of tR  captured again later, 

tφ  the apparent survival at time t and tχ  the probability that an animal alive and in the study 

population at time t is not caught or observed again at any time after capture occasion t. 

The component L3 of the JS model is a product of T-1 conditionally independent 

multinomial distributions that specify a probability for each possible capture history given the 

number of animals exhibiting each capture history. Under the CJS model, all parameters are 

based on the time index only and there are 2T-3 identifiable parameters: 1φ ,… , 2−tφ  and 2p ,.. 

, 1−tp . The initial capture probability 1p  cannot be estimated and the final survival and 

capture probability cannot be estimated separately but only as a product tt p1−φ . It is also 

important to note that the parameter tφ  is a product of two biologically interpretable 

parameters: ttt FS=φ . tS  is the probability of surviving between capture occasion t and t+1, 

also referred as “true survival” (as opposite to “apparent survival”) and tF  is the probability 

of an animal being in the study area at that time, given it is alive at occasion t+1, also referred 

as “fidelity”. 

 

1.3.2. Abundance estimation 

 

In the JS model, population size does not appear directly in the likelihood but can be 

derived from component L1 with the estimation of the size of the unmarked population being: 
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ˆ =  and tM̂  is the estimated number of marked 

animals. 

However, the difficulty here lies in the estimation of tM , the total number of marked 

individuals in the population immediately before time t,  as it is an open-population model 

and thus death and emigration can happen. This is done by estimating the size of two different 

groups of animals in the population: 

1. the group )( tt mM − of marked animals not seen at time t, 
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2. the group tR  of animals seen at time t, marked and released for subsequent 

recaptures. 

Taking tz  and tr  as members of, respectively )( tt mM −  and tR , which are seen at 

least once again after time t, this leads, under the assumption of equal catchability, to the 

ratios of 
tt

t

mM

z

−
 and 

t

t

R

r
 being approximately equal: 

t

t

tt

t

R

r

mM

z
≈

−
 

Consequently an estimator of tM  is given by: 
t

tt
tt r

zR
mM +=ˆ  

This estimator is defined for t= 1,…, T-1 with 01 =M , as animals are required to have 

been seen before and after each time t. Moreover if no loss happens on capture, tR  is 

equivalent to tn , the total of animals captured at occasion t. However, the estimators tN̂  and 

tM̂  are biased and Seber (2002) recommended that tm  and tr  be greater than 10 for the 

following approximately unbiased estimators: 

1
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ˆ

ˆ
ˆ 1φ  where tφ̂  is the natural survival rate at time t 

tttt NNB ˆˆˆˆ
1 φ−= +  where tB̂  is the estimator of the recruitment between time t and t+1 
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The asymptotic variance for tN̂  is given by: 

[ ]








×
−+








−×+−×−=

)(
1

)(
1)(

)()ˆ(
tt

tt

ttt

ttt
ttttt mEN

MN

RrEM
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nENNNNVar  (Pollock et al., 

1990) 

This variance needs to be distinguished from the variance used by Seber (2002) which 

includes both sampling variability and non-sampling variability associated with the 

stochasticity of the birth and death processes. This above formulation for the asymptotic 
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variance was chosen over Seber’s formulation because researchers are usually interested in 

the variance associated with their estimation, i.e. )ˆ( tt NNVar  , and because the other term 

present in Seber’s formulation, )ˆ( tNVar , which represents an approximation for:  

∑
−

=

−=
1

0

2)]([
)()ˆ(

t

h h

t
tt B

hNE
NENVar  where ht > , hh BhN =+ )(1  and the expectations are 

conditioned on the { }tB  (the number of animals that enter the population between occasion t 

and t+1) is usually much smaller than )ˆ( tt NNVar  and can therefore be ignored in most cases 

(except maybe when tp  is large) (Jolly, 1965; Seber, 2002).  

The variances of tM̂ , tφ̂ , tB̂  and tp̂  are given in Appendix 1. 

 

1.3.3. Assumptions 

 

The standard JS model relies on the following assumptions: 

i. Within each capture method, the capture probabilities can vary over time but not 

among individuals, 

ii.  All animals have the same probability of survival between occasion t and occasion t+1 

for all values of t, 

iii.  Marked animals do not lose their marks and marks are not overlooked, 

iv. Sampling periods are short enough to avoid death during a sampling period, 

v. Emigration is permanent, 

vi. Capture events are independent of each other. 

 

1.3.4. Derived models 

 

From the original JS model described above, other models have been developed to 

target specific biological considerations that the original JS model did not permit (Schwarz, 

2001). However, under those models, total population size estimation is not always possible. 
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Partially open models 

These models involve a sampling situation that varies from the original JS model in a 

way that restricts partially the openness of the population. In the death-only model developed 

by Darroch (1959), the population is not subject to immigration and to recruitment over the 

course of the study period. Thus, under this model, true survival can be estimated along with 

capture probability and population size with the following estimator: 

t

tt
tt r

zR
nN

'

ˆ +=  

where '
tz  is the number of animals not caught at time t known to be alive because seen alive 

later. 

Birth only models have also been considered by Darroch (1959) for situations where 

there is no death or emigration but where recruitment can happen in the population. Under 

this model, the estimator for the population size is identical to the one of the JS model: 

t

tt
t m

nM
N

ˆ
ˆ =  

However, here, the estimation of the marked population is straightforward as there is 

no death or emigration. 

 

The Cormack-Jolly-Seber model 

The CJS model is based on the component L3 of the likelihood of the JS model and 

provides a flexible framework for conditional open-population modeling. This model permits 

the modeling of apparent survival and capture probability and the multistate models, 

especially the Conditional-Arnason-Schwarz (CAS) and Jolly Movement (JMV) models, 

derived from it allow the modeling and estimation of capture probability, apparent or true 

survival, and probability of transition between states (Arnason, 1972, 1973; Brownie et al., 

1993; Hestbeck et al., 1991; Lebreton et al., 1992; Schwarz et al., 1993). Estimation of 

capture probability and of probability of transition between states is illustrated in an 

application on real data in chapter five. 
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To estimate population size, a Horvitz-Thompson estimator of population size has 

been proposed by McDonald and Amstrup (2001) for use with open models such as the CJS 

model and where individual covariates of capture are available: 

∑∑
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==
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t pp
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11 ˆ
1

ˆ
ˆ  

where tN̂  is the estimated size of the population at time t, 

           tn  is the number of animals captured at time t, 

           itI  is an indicator variable that takes the value 1 if animal i is captured at time t and 0 if 

not, 

           itp̂  is the estimated capture probability for animal i at time t. 

However, this appears to be an inefficient estimator (R. Barker, pers. Comm.) so I do 

not consider it any further in the present thesis. 

 

Age-dependent models 

In the JS model, all individuals belong to a single-age group. However, in many 

animal populations, survival and capture probability may depend on the age of the 

individuals. Thus, Pollock (1981) developed a model derived from the JS model allowing age 

specificity: age-specific capture probability )(υ
tp  are estimated for periods t=2,…,T-1 and 

ages υ =1,…,l .  The likelihood for this model can be written as a product-multinomial 

likelihood that specifies a probability for each capture history and maximum likelihood allows 

the estimation of the capture probability )(υ
tp   and the survival rate )(υφt  for each age-class. 

The sampling design for such a model requires that timing of sampling and age transition 

coincide and that every captured animal is correctly assigned to an age-class. Then it is 

possible to estimate age-specific abundance:  
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ˆ
ˆ
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t

t
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N =  

Total abundance for all ages can be obtained by summing the abundance of all age 

classes. However, the age-specific capture probabilities are based on marked individuals and 
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in order to estimate total population size using the previous equation, these capture 

probabilities need to be applicable to unmarked animals.  

The assumptions are similar to those of the JS model with the additional requirements 

that capture probability and survival are equal within an age-class. Moreover, under this 

sampling design, any new unmarked individual is assumed to be correctly assigned to an age-

class. In many situations, it is only possible to distinguish young individuals from adults and 

another approach is available where the age of an animal is only known if it has been captured 

at age 0 (Amstrup et al., 2005).  In such models, it is possible to estimate the number of 

marked animals alive in each class using the actual number of caught individuals at the 

corresponding sampling occasion and their capture probability and survival. However, 

abundance estimation is usually not possible because unmarked individuals caught cannot be 

assigned to a specific age unless they were caught at age 0. Thus, the unmarked individuals 

caught at time t are a mixture of animals from different age classes and only the information 

provided by the known-age animals can be regarded but do not lead to an estimate of the total 

population size (Williams et al., 2002). 

Another alternative to the general age-dependent model is the age-specific breeding 

model, related to the CJS model (Clobert et al., 1994), that permits the abundance estimation 

of the breeding part of the population. In this model, caught animals are either young (age 0) 

or adults breeders (age k+), all adults assumed to be breeders. Capture probabilities are 

assumed to be the same for marked and unmarked breeders leading to the following 

abundance for breeders: 
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where )( +k
tn  is the number of breeding-age animals caught at time t and equal to the sum of 

the marked and unmarked breeders )()()( +++ += k
t

k
t

k
t umn .  

However, under this model, neither the abundance of the animals of age 0 nor that of 

the non-breeders of age υ >0 can be estimated. 
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Reduced-parameter models 

In these models survival and/or capture probability are assumed constant over time 

and the approach to calculate the abundance differs from the one used in the JS model. Jolly 

(1982) and Brownie et al. (1986) proposed the following population estimation method for 

reduced-parameter models: 

as in the JS model: ttt MUN ˆˆˆ +=  

and to estimate tM̂  and tÛ , they used: 

)1()( tttttt qMMzmE χ−=+  and pUUuE ttt =)(  

leading to: 
)ˆˆ1(

ˆ
χq

zm
M tt

t −
+

=  and 
p

u
U t

t ˆ
ˆ =  

where q̂=1- p̂  and tχ  is the probability that an animal alive and in the population at sampling 

time t is not caught or observed again at any sampling time after time t. 

Another difference from the JS model is that, with reduced-parameter models, it is 

possible to estimate the population size at time 1 and T as the capture probability is assumed 

to be constant over time. 

 

1.4. The two-source Jolly-Seber model 

 

The standard sampling experiment for the TSJS model is that of a JS experiment with 

two sampling methods and no loss on capture. In the following, individuals of a population 

can be sampled, on any capture occasion, by a method “1” or by a method “2” or by both 

simultaneously on the same occasion, designated as “3”. As usual in Jolly-Seber models, 

“birth” refers to any mechanism by which new individuals enter the population: reproduction 

or immigration. Similarly “death” refers to any mechanism by which individuals leave the 

population: death or emigration. 
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1.4.1. Assumptions 

 

Assumptions are similar to those of the JS model, with three additional assumptions 

which are specific to the TSJS model: 

vii.  There is no loss on capture, i.e. animals are returned to the population following a 

capture, 

viii.   Having a capture by one method in the capture history does not depend on whether 

there has, or has not, been a capture by the other method, 

ix. The same individual cannot be caught by the two separate sampling methods on an 

occasion without knowing it is the same individual, i.e. no unknown overlap occurs on 

each capture occasion, i.e. being caught by method 1, by method 2 or by both 

simultaneously are mutually exclusive events on each capture occasion. 

 

The consequences of the violation of those assumptions will be discussed in chapters 

three and four. 

1.4.2. Notation 

ktp , = probability of capture at time t by method k (“1”, “2” or “3”) 

tφ = probability that an animal survives between time t and time t+1 given it was alive at time 

t, t=1, …, T-1 

tB = net birth, number of animals that enter and remain in the population between occasion t 

and t+1,  

t=1, …, T-1. 0B  represents the number of animals alive just prior the first sampling occasion 

nt= total number of animals, marked and unmarked, captured at occasion t 

*
,ktR = number of unmarked animals captured for the first time at occasion t by method k 

tu = total number of unmarked animals captured at occasion t 

r t,1= number of marked animals recaptured at occasion t by method 1 given that they were 

never captured simultaneously 

r t,2= number of marked animals recaptured at occasion t by method 2 given that they were 

never captured simultaneously  
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r t,3= number of marked animals recaptured at occasion t by method k given that they have at 

least one simultaneous “3” capture in their record 

r't,1= number of animals captured at occasion t by method 1, given they were never captured 

simultaneously, that are captured again by method 1 

r' t,2= number of animals captured at occasion t by method 2, given they were never captured 

simultaneously, that are captured again by method 2  

r' t,3= number of animals captured at occasion t by method k given that they have at least one 

simultaneous “3” capture in their record, that are captured again by method k 

*
tM = total number of marked animals captured by either method before occasion t 

m't= total number of marked animals captured at time t 

zt= number of animals captured before t, not captured at t and captured again later 

 z't,1= number of animals captured by method 1 before t, not captured at t and captured by 

method 1 again later 

 z't,2= number of animals captured by method 2 before t, not captured at t and captured by 

method 2 again later 

z't,3=number of animals captured before t, not captured at t and captured again later,  

that have at least one simultaneous “3” capture in their record 

I id= probability of an individual having a single entry in the combined data set, i.e. it either 

only appears in the dataset for one capture method, or, if it does appear in both, it has, at 

least once, been captured by both on the same occasion.  

 

1.4.3. Data structure 

The two sampling methods are used opportunistically and can also be used 

simultaneously on any capture occasion (which can be considered a third sampling method). 

At the end of the study, there is a capture-recapture dataset for method 1 (dataset 1) and a 

capture-recapture dataset for method 2 (dataset 2). A dataset is defined as a set of capture 

histories. The purpose of the model is to use the combined dataset arising from the binding of 

those two datasets. The starting point is a two-dataset approach with some unknown overlap 

between the datasets and this requires the use of the information resulting from simultaneous 

captures (when an animal is simultaneously sampled by method 1 and method 2 on the same 

occasion). Simultaneous captures enable the model to make the link between dataset 1 and 
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dataset 2. Therefore, individuals with at least one simultaneous capture on one occasion and 

separate captures by method 1 and by method 2 on at least two other occasions, thus 

belonging to dataset 1 and dataset 2, will be identified as one individual and will have only 

one capture history in the final dataset when dataset 1 and dataset 2 are compiled together. 

This will therefore increase the number of effective recaptures and consequently the precision 

of the estimation. The problem comes from the individuals that have never been sampled 

simultaneously by method 1 and 2 but have been captured separately by method 1 and 2 on 

different occasions. Those individuals will have a capture history (also called entry) in dataset 

1 and another in dataset 2. However, when the two datasets are compiled together, those 

individuals will appear twice in this combined dataset as it will not be possible to make the 

link between the capture history with method 1 and the one with method 2, in other words to 

know that they are the same individuals.  

In this sampling situation, the observed data can be arranged in a 2x2 contingency 

table: 

 In the method 2 dataset 
 Present Absent 
Present 

12n  1.n  

 
In the method 1 dataset 

Absent  
.2n  _ 

 

where 12n  is the observed number of individuals in both dataset 1 and dataset 2, 1.n  is the 

observed number of individuals in dataset 1 only and .2n  is the number of individuals in 

dataset 2 only. However, given the misclassification issue, the assignment to the correct 

dataset for each individual is unknown. Hence, the true numbers underlying 12n , 1.n  and .2n  

are unknown, biased by the number nu (the number of animals in datasets 1 and 2 but never 

caught simultaneously by both 1 and 2 at the same time). Thus, n1. and  n.2 are too large by nu, 

while n12 is too small by the same amount.   

 

The approach here aims at estimating the probability that an individual has a single 

entry (or capture history) in the combined dataset in order to extend the the Jolly-Seber model 

to an ad hoc two-overlapping-list model to estimate abundance. The first step is to estimate 

this probability I id. 
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1.4.4. Estimation of the probability of single identity Iid  

 

The possible histories of captured animals can be seen more clearly in Fig. 1-1, the set 

of all possible histories of captured animals for a T=6 study. Thus, the number of animals 

actually caught by method 1 is the number of animals in B∪ G∪ E∪ F, by method 2 the 

number of animals in C∪ D ∪ E∪ F, and by both simultaneously, method 3, the number of 

animals in A∪ B ∪ C∪ E. However, when lists 1 and 2 are combined, the resulting list will 

be loo large by the number in E∪ F. Those animals in E will be easily identified and 

corrected thanks to the information provided by the simultaneous capture, but those in F will 

not. 

1
2

3

D e.g. 020020

C e.g. 030020

A e.g. 030030

B e.g. 010003

G    e.g. 10000

F e.g. 010022

E e.g. 120320

 
Fig. 1-1- A Venn diagram showing the possible types of capture histories (with examples) for captured animals 
for a T=6 study. 
 
 
N.B.: in what follows, “Pr” means “probability”. 
 
 

I define the following events: 
 

=1l {animal i belongs to list 1}= B∪ G∪ E∪ F 
 

=2l {animal i belongs to list 2}= C∪ D ∪ E∪ F 
 

=3l {animal i belongs to list 3}= A∪ B ∪ C∪ E 
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It is assumed that: 

1. membership of the lists is independent: the probability of an individual being included 

in the first list does not depend on whether it was included in the other lists, 

2. there is homogeneity in the probability of inclusion on a list that does not vary from 

individual to individual. 

 

The first assumption is only justified asymptotically as the number of periods goes to 

infinity, since the incidence of a capture by one method reduces the number of trials available 

for another method (in the present sampling protocol, there is only one capture type possible 

at each capture occasion). But, provided that an animal is captured (or not) by any of the 

methods on occasion t is independent of that on t+1, the simulation (Appendix 2) shows that 

the approximation is good, though always an underestimate, even at low number of occasions 

(T=5), provided the proportion of capture histories that include one or more simultaneous 

captures (list 3) does not get too large. As expected, the approximation improves as the 

number of sampling occasions increases (see Appendix 3 for details). 

 

The second assumption is equivalent to assuming that the probabilities of capture by 

the three methods does not vary among individuals also assumed by the original JS method.  

 

In all that follows, I reason conditionally on detection with )Pr( 11 l=P , )Pr( 22 l=P  

and )Pr( 33 l=P . 

 
Given events 1l  and 2l  are independent, events 1l  and 2l , i.e. ( 21 ll ∩ ) is equivalent 

to  (E∪ F) in Fig. 1-1 and: 2121 )Pr( PP=∩ ll . 

 

The probability of belonging to list 1 and list 2 given the animal was sampled on some 

occasions can be written as the sum of two probabilities:  

 

1) the probability of belonging to list 1 and list 2 separately and being 

acknowledged to belong to both list 1 and list 2, P(E), 

 

2) and the probability of belonging to list 1 and list 2 separately and not being 

acknowledged as belonging to both list 1 and list 2, P(F), 
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such that: ))Pr(()Pr( 32121 lllll ∩∩=∩ ))Pr(( 321 lll ∩∩+  

          

Therefore: )1()Pr( 32132121 PPPPPP −+=∩ ll  

 

And the probability of the unknown overlap between list 1 and list 2, i.e. the 

probability that an individual has an entry in list 1 and an entry in list 2 but is not 

acknowledged as being in both lists, i.e. P(F), is )1())Pr(( 321321 PPP −=∩∩ lll . 

 

  It follows that the probability that an individual has a single entry in the combined list 

is  )1(1))Pr(( -1 321321 PPPI id −−=∩∩= lll . 

 

 

In a real dataset, the probabilities P1, P2, P3 can be estimated as being: 

1

number of individuals with a capture by method 1 on at least one occasionˆ
total number of individuals in the combined dataset

P = = )r(P̂ 1l   

 

2

number of individuals with a capture by method 2 on at least one occasionˆ
total number of individuals in the combined dataset

P = = )r(P̂ 2l   

dataset combined in the sindividual ofnumber  total

occasion  oneleast at on  methodsboth by  capture a with sindividual ofnumber 
3̂ =P = )r(P̂ 3l  

 

The overlap rate as estimated above might be biased by the way probabilities P1, P2, P3 

are estimated. Indeed the total number of individuals used to estimate those probabilities is 

likely to be overestimated due to the unknown number of individuals appearing twice in the 

combined dataset. As the total number of individuals includes some individuals twice (nw, the 

number in set F), the estimates of probabilities P1, P2, P3 using the total number of individuals 

as a denominator will be negatively biased. 

Two somewhat ad hoc approaches have been investigated to try to solve this probable 

source of bias in the approximation of the probability of single identity, hence in the 

population size estimation. I first tried an iterative approach to get an unbiased estimate of I id. 

 

An iterative approach 
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The idea was to use an iterative method to correct the value of I id with the previous 

value calculated. At the start of the iteration, no correction is made to the idÎ  parameter and 

the formula is the following: 

)ˆ1(ˆˆ1ˆ
321 PPPI id −−=  

However, as mentioned earlier, the estimates of P1, P2, P3 and of parameter I id, 

respectively 1̂P , 2P̂ , 3̂P  and idÎ  might be biased by the total number of individuals used as the 

denominator in the estimation of P1, P2, P3. The total number of individuals is likely to be 

overestimated due to the presence of individuals appearing in list 1 and in list 2 but not 

acknowledged as the same individuals (those that have been captured by method 1 and 2 

separately but never simultaneously, i.e. the number of individuals in F (Fig. 1-1)).  

The primary purpose of using I id is to correct the population size estimate for 

duplicated, “phantom”, individuals when using two datasets, so it seems legitimate to use it as 

well to correct the total number of individuals. To correct for the potential overestimation of 

the total number of individuals, the total number of individuals in the calculation of 1̂P , 2P̂ , 

3̂P  is multiplied by the previous value of the parameter. In the second step of the iteration, the 

idÎ  parameter becomes then: 



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−−= 3213212
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ˆ
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ˆ
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PP
I

I
idid

id  

The iteration should continue substituting the previous value of idÎ  calculated to get 

the next one until convergence. However, the present iteration method results in unstable 

estimates where the iteration does not converge as shown in Fig.1-2: 
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Fig.1-2- Value of the parameter idÎ over 100 steps of the iteration. 

 

The reason for non-convergence is that if the idÎ  estimate overshoots the true value 

and goes too small then because of the reciprocal of high powers of idÎ , the estimate gets 

massively inflated and the process starts again. 

Then I tried to modify the influence of the previous values, and to reduce the degree of 

“overshoot” by using the mean of the two previous values: 
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Unfortunately this did not work.  

Similarly, weighted means (with a variety of weighting schemes) have also been tried 

to fix the instability and produce convergence, but with no success. 

Thus, an alternative approach was developed.            
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The function approach 

Following the work on the iteration, an algebraic function of I id can be written (Ross 

Ihaka, pers. Comm.): 














−−= ab

I
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I
If

idid

id 32 ˆ
1

ˆ
1

1)ˆ(                     

where 21
ˆˆ PPa =  and 12P̂b =  

The idea here is to find the root(s) of )ˆ( idIf . The root(s) I of a function of idÎ  can be 

found at IIf id =)ˆ( , which is equivalent to 0)ˆ( =− IIf id  for a continuous monotonic 

function. 

The parameter I id belongs to [0,1] and )ˆ( idIf  is not necessarily monotonic on [0,1]: 

the behavior of )ˆ( idIf  on [0,1] depends on the values of the probabilities a  and b . It appears 

that there are 4 possible scenarios denoted as A, B, C, D for the behavior of )ˆ( idIf  on [0,1] 

that result in )ˆ( idIf  having either a single root (scenarios B, C, D and some cases of A) or 

three roots (in some cases of scenario A). The different scenarios A, B, C and D are illustrated 

in Fig.1-3. 
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Fig.1-3- Root of the function )ˆ( idIf in scenario A, B, C and D. 

 

For scenarios B, C, D and some cases of scenario A, the corrected value of idÎ  

corresponds to the root of )ˆ( idIf  in [0, 1]. For scenario B and C, the first and second 

derivatives are used to obtain the root of )ˆ( idIf . Here the first derivative )ˆ( idIf  is: 
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and the second derivative of )ˆ( idIf  corresponds to: 

54 ˆ
12

ˆ
6

)ˆ('
idid

id
I

ab

I

a
If +−=  



1. An extension of the Jolly-Seber model: the two-source Jolly-Seber model 
 

 33 

If )ˆ( idIf  is monotonic on [0, 1] (scenario D), then the corrected value for idÎ  

corresponds to the root of )ˆ( idIf  in [0, 1]. 

If )ˆ( idIf  has an inflection point in [0, 1] and does not display any optimum in [0, root 

of the second derivative] (scenario C), then the corrected value for idÎ  corresponds to the root 

of )ˆ(' idIf  in [0, 1]. 

If )ˆ( idIf  has an inflection point in [0, 1], has a local minimum in [0, 1] and 

( )IIf id −)ˆ(  is strictly positive (scenario B and in some cases of scenario A), then the 

corrected value for idÎ  corresponds to the root of )ˆ(' idIf  in [0, 1]. 

If )ˆ( idIf  has an inflection point in [0, 1], has a local maximum and a local minimum 

in [0,1] and ( )IIf id −)ˆ(  is strictly negative (scenario A), then there are three possible roots. 

The largest root seems to be the most appropriate as the estimator produces a smaller bias 

than with the other two roots. 

 

Using the estimation of the probability of single identity, it is then possible to correct 

the Jolly-Seber estimator to obtain an estimation of population size, survival and recruitment 

based on two overlapping datasets. 

 

1.4.5. Estimating population size 

The traditional mark-recapture formula 
t

t

t

t

N
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m
ˆ
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=  is used which leads to: 
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tt
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where    idtidttt IrIrrm ˆˆ' 2,1,3, ++=  

              ttt umn += '   

              idtidttt IRIRRu ˆˆ *
2,

*
1,

*
3, ++=  

The estimator for the probability of single identity idÎ  has to be used for tm'  and tu  to 

avoid counting twice individuals present in list 1 and list 2 but not acknowledged to be the 

same individuals. 
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As in the JS model, an estimator for *tM  is then needed because the total number of 

marked animals in the population is not known as this is an open model. Following the 

method in JS model to estimatetM̂ : 

t
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with idtidttt IzIzzz ˆ'ˆ'' 2,1,3, ++=  

This leads to the following estimator for *tM : 

t
t
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'
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However, the estimators tN̂  and *ˆ
tM  are biased and Seber (2002) recommended the 

following approximately unbiased estimators: 
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The variance for tN̂  is of the form of the formula of Pollock et al. (1990): 
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Confidence intervals for tN̂  displayed in the results are classical approximate 95% 

confidence intervals of the form:  tN̂ ±1.96×se. As confidence intervals constructed by 

assuming that tN̂  is lognormally distributed sometimes perform better than those constructed 

by assuming than tN̂  is normally distributed, a log-transformation approximation is also used 
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in comparison to get improved 95% confidence intervals such that )ˆ;/ˆ( CNCN tt ×  where 
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C  (Buckland et al., 1993). 

 

Note that corrected estimates for survival tφ̂  and recruitment tB̂  and their variances at 

time t of the form of the formula of Pollock et al. (1990) can also be obtained with the TSJS 

model: 
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1.5. Alternative models 

In the present thesis, other modeling approaches are considered as alternatives to the 

above extension of the JS estimator (the TSJS model), in order to estimate population size 

with two overlapping datasets.  

 

1.5.1. The variance-weighted mean of the JS estimators 
 

The first obvious approach to answer the issue of two overlapping datasets would be to 

obtain an average of the estimates given by each dataset separately. If both sampling methods 

lead to a valid estimate for the population size and if these sampling methods are independent, 

then one simple solution would be a weighted mean between the values ix  of the Jolly-Seber 

estimator provided by each source of data. The variances 2
iσ  of the estimates ix  can be used 

as weight such that: 
2

1

i
iw

σ
=  (Seber, 2002). In other words, the smaller the variance is, the 

bigger the weight is and the more influential the value ix  is in the weighted mean. 

The weighted mean x  is in this case: 
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and the variance of the weighted mean is given by: 
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The assumptions are those of the JS model for each separate estimate and for the 

variance-weighted mean to hold, as mentioned earlier, both sampling methods need to be 

independent and to sample the same population. However, such a solution is unlikely to be as 

efficient as the TJSJ as the total number of captures will be smaller and the number of 

recorded recaptures, which is an important contributor to the precision of the final estimate, 

will usually be less in this method as an animal caught first by method 1 and subsequently by 

method 2 will not have this recapture used by the estimator. This solution will be compared to 
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the TSJS estimator in various simulation experiments in chapter four and on real data in 

chapter five. 

 

1.5.2. A closed form likelihood approach 
 
 

The closed population approaches developed here involve some number T >1 of 

discrete sampling occasions at which any animal i, i=1, 2, …, N, belonging to a closed 

population of N individuals, can be caught by one of two sampling methods or by both 

simultaneously. As for the TSJS model, on each sampling occasion t, t=1, 2, …, T, unmarked 

animals that are caught are given unique codes and released back into the population, while 

identification codes are recorded for previously marked animals which are also released back 

into the population. 

Two-source M0 model 
 

A closed form likelihood using both overlapping sources of data was contributed by 

Dr Rachel Fewster. It is included here as it represents an important stepping stone to the more 

flexible approach presented in section 1.4. This likelihood is a two-source version of model 

M0 for closed populations and will therefore be referred to as the two-source M0 model. It is 

presented here as its performance and results are later compared with the TSJS model in 

chapters four and five. 

 

Capture events are defined as following: 

{ }tiit occasion  captureon  1 methodby  sampled is  animalP =  

 
{ }tiit occasion  captureon  2 methodby  sampled is  animalG =  

 
 
with: 

1) pit =)Pr(P  for all  i=1, 2, …, N and t=1, 2, …, T 

 

2) git =)Pr(G  for all  i=1, 2, …, N and t=1,2, …, T 

 

3) αpitit =∩ )GPr(P  for all  i=1, 2, …, N and t=1, 2, …, T 
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 or alternatively αitit =)P Pr(G  

Therefore, events itP  and itG  are not assumed independent. 

 

From 1), 2) and 3), it follows that: 

αpitit =∩ )GPr(P  is the probability that animal i is sampled at occasion t by method 1 and 

method 2, 

α)pitit −=∩ 1()GPr(P  is the probability that animal i is sampled at occasion t by method 1 

but not by method 2, 

αpgitit −=∩ )GPPr(  is the probability that animal i is sampled at occasion t by method 2 but 

not by method 1, 

and αpgpitit +−−=∩ 1)GPPr(  is the probability that animal i is not sampled at occasion t 

by method 1 nor by method 2. 

Repeated sampling then results in capture histories that can be organized into three 

separate data frames: 

 

1) BD : all histories in which there was at least one simultaneous capture, i.e. itit GP ∩  

for some occasion t ( “B” for “Both”), such that, for example: 

 

       T capture occasions             (T=7 here)               

    Bh  histories         























...

0  0  0  3  1  0  0

0  0  0  0  3  0  2

0  3  0  0  0  0  0

0  0  2  3  0  1  0

 

where, on any capture occasion t, a “3” means a simultaneous capture by both method 1 and 

method 2, i.e. itit GP ∩ , a “2” means a capture by method 2 only, i.e. itit GP ∩ , a “1” means a 

capture by method 1 only, i.e. itit GP ∩  and a “0” means no capture, i.e. itit GP ∩ . 
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2) 1D : all histories consisting of captures by method 1 only, such that: 
 
          T capture occasions 

    1h  histories         























...

1  0  0  0  1  0  0

0  1  1  0  0  0  0

0  0  0  0  0  0  1

0  0  0  1  0  1  0

 

 
where, on any capture occasion t, a “1” means a capture by method 1 only i.e. itit GP ∩   and a 

“0” means no capture by method 1, i.e. itP . Therefore, every row has at least a “1” but it is not 

possible to have a “2” or “3”, otherwise history would be in data frame BD , not 1D . 

However, it is not known if the same individuals have been also caught by method 2 and the 

same individuals might also appear in 2D . 

 
 

3) 2D : all histories consisting of captures by method 2 only, such that: 
 

        T capture occasions 

    2h  histories         























...

0  0  0  0  0  0  2

0  2  0  2  0  2  0

0  2  0  0  0  0  0

0  0  0  2  2  0  0

 

 
where, on any capture occasion t, a “2” means a capture by method 2 only, i.e. itit GP ∩  and a 

“0” means no capture by method 1, i.e. itG . Therefore, every row has at least a “2” but it is 

not possible to have a “1” or “3”, otherwise history would be in data frame BD , not 2D . 

However, as mentioned for 1D , it is not known if the same individuals have been also caught 

by method 1 and therefore the same individuals might also appear in 1D . 

 

Model assumptions 

 

1) The population is closed, i.e. there is no death/emigration, and no recruitment (birth or 

immigration) during the study period, 

2) Capture probabilities are assumed to be the same for all individuals on all occasions, 
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3) There is no loss on capture, 

4) Marks are correctly recorded, 

5) Animals do not lose their marks, 

6) If event itit GP ∩  happens, then it is known that it happens, i.e. it is not possible to 

catch the same individual by the two different methods on the same occasion without 

knowing it is the same individual, i.e. being caught by method 1, by method 2 or by 

both simultaneously are mutually exclusive events on each capture occasion. This 

assumption is the same as assumption ix of the TSJS model. 

 

Estimating the population size N 

 
The key problem is the same as for the TSJS model: it is not known how many 

individuals are in both 1D  and 2D , i.e. captured separately by the two different methods but 

never simultaneously.  

The approach here aims at first describing the numbers of histories in datasets BD , 1D  

and 2D , in terms of the model parameters p, g and α , then conditioning them on membership 

of each dataset, in order to find the probability of the individual history records. 

 
 
Data summary statistics: 
 

Bh = number of histories in BD  (= number of individuals in BD ) 

1h = number of histories in 1D  

2h = number of histories in 2D  

 

N.B.: each history in 1D  and 2D  describes an individual but there is an unknown overlap 

between 1D  and 2D  resulting in some individuals having an history in both 1D  and 2D . 

 

B3B2B1B0 , n, n, nn : respectively number of captures in BD  that are “0”, “1”, “2”, “3” 

1110, nn : respectively number of captures in 1D  that are “0” and “1” 

2220, nn : respectively number of captures in 2D  that are “0” and “2” 
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Likelihood components: 
 
 The probability distribution of the observed data given the parameters can be split into 

four components: 

 

i) )D,D,Ddataseteach in  histories of Pr(numbers 21B21BH  ) ; N,p,g,α,h,h(hL = , 

 

ii) ) ; N,p,g,α h ,n,n,n(nL BB32BB1B0B : probability of the BD -captures “0”, “1”, “2”, “3”, 

conditional on membership of dataset BD , 

iii) ) ; N,p,g,α h ,n(nL 111101 : probability of the 1D -captures “0” and “1”, conditional on 

membership of dataset 1D , 

 

iv) ) ; N,p,g,α h ,n(nL 222202 : probability of the 2D -captures “0” and “2”, conditional on 

membership of dataset 2D . 

 

The overall likelihood is, therefore, given by: 21BH)parameters ; (data LLLLL =  or 

21BH logloglogloglog LLLLL +++=  with: 

 
1) Component BL  

 
B3B2B1B0

B3B2B1B0B
nnnn ppppL ×××∝  

 
where 3 2, 1, 0,c         )D  c Pr( )Ddataset in  is ptureca  ccapture Pr( BBB ====cp  

 
     and ...L ∝B  with a  constant of proportionality that does not depend on the parameters. 

The probability )Pr(DBi  that a capture history is in data set BD  is given by: 

occasions)  all ofout usly simultaneocaught never   animal Pr( -1)Ddataset in  ishistory  Pr( )Pr(D BB Tii ==
 

Then T
i αp)-(1-1 )Pr(DB =  

 

And: )D  GPr(P BB3 iititp ∩=
)Pr(D

)GP(Pr)GP  Pr(D

B

B

i

ititititi ∩×∩
=  so  

T
αp

αp
p

)-(1-1
1

B3

×=  

       )D  GPPr( BB2 iititp ∩=
)Pr(D

)GP(Pr)GP  Pr(D

B

B

i

ititititi ∩∩
=  so  

[ ]
T

T

αp

αpgαp
p

)-(1-1
)()1(1 1-

B2

−−−=  
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with: 1
B )1(1)GP  Pr(D −−−=∩ T

ititi αp  because it is known that there was no simultaneous 

capture for individual i on occasion t, i.e. GP ∩it , so that leaves T-1 other occasions, at least 

one of which must be a simultaneous capture in order for event iBD  to happen. 

 
Similarly: 

)D  GPr(P BB1 iititp ∩=
)Pr(D

)GP(Pr)GP  Pr(D

B

B

i

ititititi ∩∩
=  so  

[ ]
T

T

αp

pααp
p

)-(1-1
)1()1(1 1-

B1

−−−=  

 

and )D  GPPr( BB0 iititp ∩= [ ]
T

T

αp

αpgpαp

)-(1-1
)1()1(1 1- +−−−−=  

 
 
Consequently: 
 

B3B3B2B2B1B1B00BB logloglogloglog  pn pn pn pnL +++=  (up to an additive constant that 

can be ignored) 

 
 

2) Component 1L  

The probability )Pr(D1i  that a capture history i is in dataset 1D , i.e. 

)onceleast at  1 methodby caught  isbut  usly,simultaneocaught never  is  individual Pr( )Pr(D1 ii =  

is given by: ( ) ( )Tit

T

ititi )PPr()GPPr()Pr(D1 −∩=  

               so  TT
i pαp )(1)1()Pr(D1 −−−=  

Given: )Ddataset in  is capture  0capture Pr( 110 ==p   

and )Ddataset in  is capture  1capture Pr( 111 ==p  

 

== )D  P Pr( 110 iitp
)Pr(D

)PPr()P  Pr(D

1

1

i

ititi ×
 so 

[ ]
TT

TT

pαp

ppα
p

)1()1(
)(1)(1p)-(1

 
11-

10 −−−
−×−−=

−

 

 

with: 11
1 )(1)(1)P  Pr(D −− −−−= TT

iti pαp  because it is known that there was no capture by 

method 1 on occasion t, i.e. )P( it , so that leaves T-1 occasions on which no simultaneous 

capture should occur and 1 ≥  capture(s) by method 1 need(s) to happen. 

 
Further: 1011 1 pp −=  
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Consequently: 

111110101 logloglog  pn pnL +=  (up to an additive constant that can be ignored) 

 
 

3) Component 2L  
 

The probability )Pr(D2i  that a capture history i is in dataset 2D , i.e. 

)onceleast at  2 methodby caught  isbut  usly,simultaneocaught never  is  individual P( )Pr(D2 ii =  

 

is given by: ( ) ( )Tit

T

ititi )GPr()GPPr()Pr(D2 −∩=  

 
               so TT

i gαp )(1)1()Pr(D2 −−−=  

 
 

Given )Ddataset in  is capture  0capture Pr( 220 ==p  and 

           )Ddataset in  is capture  2capture Pr( 222 ==p  

== )D  G Pr( 120 iitp
)Pr(D

)GPr()G  Pr(D

1

1

i

ititi ×
 so 

[ ]
TT

TT

gαp

ggαp
p

)1()1(
)(1)(1)-(1

 
11-

20 −−−
−×−−=

−

 

with: 11
1 )(1)(1)G  Pr(D −− −−−= TT

iti gαp  because it is known that there was no capture by 

method 2 on occasion t, i.e. )G( it , so that leaves T-1 occasions on which there needs to be no 

simultaneous captures and 1 ≥  capture(s) by method 2. 

Further: 2022 1 pp −=  

Consequently: 

222220202 logloglog  pn pnL +=  (up to an additive constant that can be ignored) 

 
 

4) Component HL  

Consider a latent multinomial formulation where each individual can be: 

1. In no dataset (never observed) 

2. In BD  

3. In 1D  only 

4. In 2D  only 

5. In both 1D  and 2D  
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This is a partition, i.e. every individual is in exactly one of those 5 outcomes, and all 

probabilities need to be linked to each outcome. 

 

Let 
~
X  be the associated multinomial random variable: 

 
Outcome Probability Number of animals 

with this outcome 
Never observed T

αpgp )(10 +−−=ϑ  0X  

In BD  T
αp)1(1B −−=ϑ  BX  

In 1D  only TT
αgpg p)(1)(11 +−−−−=ϑ  1X  

In 2D  only TT
αpgpp )(1)(12 +−−−−=ϑ  2X  

In both 1D  and 2D  TTTT
αpgpgpαp )(1)(1)(1-)1(12 +−−+−−−−=ϑ  12X  

 
 
 

Then ),,,, ;( lMultinomia ~)( 1221B0
~

12210 ϑϑϑϑϑNX, X, X, X, XX B =  

 

But 
~
X  is not observed completely and what is observed is: 

  BX = number of histories in BD = Bh  

     1X + 12X = number of histories in 1D = 1h  

     2X + 12X = number of histories in 2D = 2h  

It is necessary to know 12X  in order to use the multinomial formula. One solution is to 

partition over all possible values of 12X  such that: 

  )  )(Pr() ),(( 1221B21BH
~~

N,X,h,hhN,,hhhL ϑϑ ∩=∑  

      
12

 of  valuespossible all X  
 

 XPr() )((

12

122

121

B

1221B

~
21BH

12























−
−

−−−−

==∑

x

xh

xh

h

xhhhN

N,,h,hhL
x

~
ϑ ), 

~
ϑN  

 
 

Consequently )  )(( 21BH
~

N,,h,hhL ϑ  is gained by summing the multinomial distribution 

over all possible values of 12X . 
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 For the variance of the maximum likelihood estimator (MLE) N̂ , we assume that the 

MLE is unbiased and therefore we use the Cramer-Rao lower bound: 
)(I

1
)ˆvar(

N
N =  where 

N̂  is any unbiased estimator of N that attains the Cramer-Rao lower bound and )(I N  is the 

Fisher information. 

 

 

Though clearly this method offers an elegant approach to the problem, at present it is 

limited to the simplest (and least useful) of the closed population models. Any development 

of the model to the other closed population forms, M t, Mh, and Mth, let alone the open 

populations will have to be left to others. 

 

Multinomial models based on a latent capture history approach  
 

An alternative, less mathematically demanding, approach is based on latent 

multinomials outlined in chapter 10 in Link and Barker (2010). The purpose in this section is 

to construct, using the raw encounter histories, a closed-population likelihood based on a 

complete data likelihood expressed in terms of true histories which are then corrupted into 

observed capture histories.  

 

On each sampling occasion t of a T-occasion experiment, there are four possible 

events for each individual: 

1) Not being caught, denoted “0” in a capture history 

2) Being caught by method 1 only, denoted “1” in a capture history 

3) Being caught by method 2 only, denoted “2” in a capture history 

4) Being caught by both methods simultaneously, denoted “3” in the capture history. 

 

There are therefore 4T possible latent histories 1 2( , ,..., )Tω ω ω , uniquely identified by 

indices 1

1

1 4
T

t
t

t

i ω −

=

= +∑ . However, since any latent history containing a “1” and “2” but no 

“3” cannot be observed, there are less types of observable records than there are latent ones. 
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For instance, an individual with latent histories “12021” is recorded as two separate 

individuals: one individual with record “10001” and the other with record “01010”. The exact 

number of possible types of observable histories is 4T-Y-1where Y=3T-2T+1+1 is the number of 

sequences of size T that contain both “1”s and “2”s but no “3” (i.e. that can never be 

observed). One is subtracted as the T zero-vector is also not observable. A recorded frequency 

vector (vector of observations) of the form ƒ+ ),...,,(
1432 −−

=
YTfff  can then be assumed to be 

an affine transformation of latent history frequencies X ),...,,(
421 Txxx=  with  ƒ+= A'X, where 

A is a 4T(4T-Y-1) matrix: Ai,j-1= 1 if latent history i gives rise to recorded history j. In the case 

of T=3 illustrated in Table 1-1, A is created by replacing each dot in the contributed record 

matrix with a zero and every number by a 1. The null space of matrix A' (Link and Barker, 

2010) is required in order to map the latent histories to the observed histories. This could be 

achieved by using the R function Null() (library(MASS) ****). 

 

i Latent history Contributed records j Recorded history 
1 000 …….52 dots 1 000 
2 100 2…… 2 100 
3 200 .3…… 3 200 
4 300 ..4…… 4 300 
5 010 ...5….. 5 010 
6 110 ....6…. 6 110 
7 210 .3.5... 7 310 
8 310 …..7 8 020 
9 020 .......8 9 030 
10 030 ........9 10 130 
11 120 2.....8...... fill to 52  
12 130 .........10   
fill to 64     
 
Table 1-1- Latent histories i and recorded histories j for a T=3-occasion experiment. 

 

General model assumptions include: 

1) The population is closed, i.e. there is no death/emigration, and no recruitment 

(birth or immigration) during the study period, 

2) Capture probabilities are assumed to be the same for all individuals, 

3) There is no loss on capture, 

4) Marks are correctly recorded, 

5) Animals do not lose their marks, 

6) It is not possible to catch the same individual by the two seperate methods on the 

same occasion without knowing it is the same individual, i.e. being caught by 
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method 1, by method 2 or by both simultaneously are mutually exclusive events on 

each capture occasion. This assumption is the same as assumption (ix) of the TSJS 

model and assumption 6 of the two-source M0 model. 

 

The latent capture histories can then be modeled by making assumptions 

corresponding to the model of interest: model M0 and Mt.  

 

Under model M0 

Under model M0, the capture probability is assumed to be the same for all individuals 

and does not vary over time. Therefore, the latent capture histories can be modeled, for all i 

with i in (1, …, N),  by making the following assumptions and based on the approach used 

above in Rachel Fewster's two-source M0 model: 

1) the probability of being caught by method 1 at time t, t=1, …, T is )1()1( )Pr( ppit =  

2) the probability of being caught by method 2 at time t, t=1, …, T is )2()2( )Pr( ppit =  

3) the probability of being caught by both method 1 and method 2 at time t, t=1, …, T 

is  )1()2()1( )Pr( αppp itit =∩  for all  i=1, 2, …, N and t=1, 2, …, T 

 or alternatively αpp itit =) Pr( )1()2( . Therefore, events )1(
itp  and )2(

itp  are not assumed 

independent, 

4) N is the unknown number of animals in a closed population. 

 

From these assumptions, the following probabilities can be derived: 

)1()2()1()2()1( 1)Pr( αppppp itit +−−=∩  

)1()2()1( )1()Pr( pαpp itit −=∩  

)1()2()2()1( )Pr( αpppp itit −=∩  

Thus, the likelihood that an individual has latent history itw  can be formulated as: 
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The probability of the recorded data ƒ+, conditional on the latent frequencies, is: 

[ƒ+
αppNx ,,,, )2()1( ] I= ( ƒ+= A'X) 

 

Extension to model Mt 

Under model Mt, the capture probability is assumed to be the same for all individuals 

but varies over time. Therefore, the latent capture histories can be modeled, for all i with i in 

(1, …, N),  by making the following assumptions: 

1) the probability of being caught by method 1 at time t, t=1, …, T is )1()1( )Pr( tit pp =  

2) the probability of being caught by method 2 at time t, t=1, …, T is )2()2( )Pr( tit pp =   

3) the probability of being caught by both method 1 and method 2 at time t, t=1, …, T 

is  )1()2()1( )Pr( titit αppp =∩  for all  i=1, 2, …, N  

 or alternatively αpp itit =) Pr( )1()2(  

Therefore, events )1(
itp  and )2(

itp  are not assumed independent. 

4) N is the unknown number of animals in a closed population. 

 

From these assumptions, the following probabilities can be derived: 

)1()2()1()2()1( 1)P( tttitit αppppp +−−=∩  
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)1()2()1( )1()P( titit pαpp −=∩  

)1()2()2()1( )P( ttitit αpppp −=∩  

  

Thus, the likelihood that an individual has latent history itw  can be formulated as: 

[ ] [ ] [ ] [ ] )3()1()2()1()2(

1

)1()1()0()1()2()1( ,,)1(1
==

=

== −−+−−= ∏ titiitit wI

t

wI

tt

T

t

wI

t

wI

ttti αpαpppααpppπ   

for i =1,2,…, 4T 

Conditioning on there being N individuals ever in the population, the probability of a 
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The probability of the recorded data +f , conditional on the latent frequencies, is: 

[ƒ+
αppppNx TT ,,...,,,...,,, )2()2(

1
)1()1(

1 ] I= ( ƒ+= A'X) 

 

Under model Mt, α  is set, here, to be constant. However, α  could potentially vary 

over time, i.e. tα  with t=1, …, T: in such case, at every capture occasion, )1(
tp  and )2(

tp  would 

need to be estimated. This implies a heavy parameterisation and potentially a loss in precision 

for the other parameters. So, depending on the application, α  can be set to be constant or to 

vary over time, both options having drawbacks that researchers need to take into account. 

 

These models could be formulated as a Bayesian problem and evaluated using Monte 

Carlo Markov chains as outlined by Link and Barker (2010). However, for real problems 

where the number of sampling occasions becomes large enough to be useful for field 

ecologists doing monitoring work (say 10 sampling periods or more), the size and complexity 

of the problem make this approach unattractive to ecologists. 
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1.6. Discussion 

While double sampling may be an efficient approach to minimize study costs, increase 

sample size and enhance the power of capture-recapture analysis (Salewski et al., 2007), 

minimize possible sampling bias and permit a deeper insight into the ecology of the 

population of interest (Laiolo et al., 2007; Salewski et al., 2007), there are a number of issues 

when data provided by the two sampling methods can only be partially linked. This sampling 

situation particularly leads to difficulties in estimating population size when the two partially-

overlapping datasets are combined: some individuals may appear twice in the combined 

dataset, resulting in an overestimation of the abundance and large standard errors. In the 

present thesis, an extension of the Jolly-Seber model, the two-source Jolly-Seber (TSJS) 

model, is proposed as a solution to this issue and discussed along with alternative approaches. 

The objective is the development of an analytical framework allowing the combination of two 

sources of data available in an open-population model to increase the sample size and provide 

a useful monitoring estimator, i.e. robust to departure from the underlying assumptions. 

However, researchers should keep in mind that differences in estimates provided by two 

sampling methods should not necessarily be taken as a problem but this difference could be a 

source of information about the population of interest and ways to use this information should 

be considered (Laiolo et al., 2007; Vögeli et al., 2008). 

 

The first important aspect is that care should be taken when comparing results from 

two sources of data. Researchers especially need to make sure that the two sampling methods 

indeed sample the same population. Recent studies (Salewski et al., 2007; Vögeli et al., 2008) 

have highlighted differences in estimates of survival between different sampling methods 

suggesting the existence of subsets of individuals differentially sampled within the 

population. Depending on which sampling method results are drawn upon, conclusions might 

differ drastically, potentially affecting predictions on the population dynamics and resulting in 

inappropriate conservation plans. In such a case, the two methods should be considered as 

complementary rather than alternative and should be combined: the unique information for 

one sampling method could correct the estimation provided by the other sampling method, 

providing a better insight into the population characteristics and dynamics. The other solution 

would be to acknowledge that the two subsets of the population are different and to study 

them separately. 
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There are several solutions to the estimation of abundance with two overlapping 

datasets: three new frameworks, all based on the fundamental assumption that the sampling 

methods sample the same population, were presented in this chapter. Two of those 

approaches, the TSJS and the two-source M0 models are applicable. The former is an 

extension of the JS model and therefore shares the basic properties and assumptions of the 

classic JS model. The TSJS model is an open population model leading to the estimation of 

population size, capture probability and less straightforwardly survival rate and recruitment. 

Population size is the parameter of interest in many ecological studies and is investigated in 

the present thesis. I however, show how survival and recruitment can be estimated under the 

TSJS framework. They are important population parameters that are not necessarily biased by 

the same assumption violations as the population size estimates can be. Survival estimates are 

especially relatively robust to heterogeneity in capture probabilities (Carothers, 1973, 1979; 

Hwang and Chao, 1995), a major issue investigated for population size estimates in the 

present thesis. Consequently, survival and recruitment parameters would deserve a full 

investigation with a different approach.  

 

A restrictive assumption of the TSJS model (and also of the JS model) is the 

assumption of homogeneity in capture probability among individuals because heterogeneity 

of capture probabilities among individuals is an ubiquitous feature in animal population 

(Boulanger et al., 2004c; Crespin et al., 2008; Hammond, 1990) leading to substantial bias in 

population size estimation with the standard JS model (Carothers, 1973, 1979; Hwang and 

Chao, 1995). Therefore, I explore, in chapter three, the robustness of the TSJS estimator from 

the departure of this underlying assumption to see its limitation at handling this common 

source of bias in population size estimates.  

 

The TSJS model also relies on the assumption that having a capture by one method in 

the capture history does not depend on whether the animals also have (or not) captures by the 

other methods (assumption viii). This assumption can only be justified asymptotically as the 

number of capture occasions increases since, on each occasion, captures by each sampling 

method are mutually exclusive. This assumption could be especially at risk in studies where 

the animals become trap-shy or trap-happy by a sampling method affecting the probability of 

the other sampling methods. This assumption is also at risk if some animals are more 
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available than others due to the sampling protocol or due to the behaviour of the animals: if 

the same kind of animals is favoured by both sampling methods, then a lack of independence 

between the types of captures will be induced. 

 

All the new models presented in this chapter (the TSJS model, the two-source M0 

model and the Bayesian latent-capture-history M0 and Mt approaches) rely on the assumption 

that the same individual cannot be caught by the two separate sampling methods on the same 

occasion without knowing it is the same individual, i.e. no unknown overlap occurs within a 

capture occasion, captures by each sampling method are mutually exclusive events on each 

capture occasion (assumption ix of the TSJS model). Therefore, a point of interest concerns 

the sampling occasion and how the definition of sampling occasion differs from one species 

or one field study to another. The length of the sampling occasion in particular differs 

depending on the species. For some animal population, the sampling occasion lasts a day but 

for some other animal populations (such as humpback whales) a sampling occasion could last 

over a few months. When sampling occasions are spread over a long period of time, 

secondary sampling occasions usually occur within these primary sampling occasions, like in 

a robust design experiment (Pollock, 1982). The longer the primary sampling occasion is, the 

better the chance of capturing the same individuals at least twice. Therefore, in some cases, 

multiple captures of the same individuals can occur during the secondary sampling occasion 

but only one capture appears on the primary sampling occasion scale in the capture histories 

of the individuals and the multiple aspect of the capture on the secondary sampling scale is 

ignored. However, if a simultaneous capture is lacking in the capture histories and if the 

multiple captures during secondary sampling occasions are of the form of captures by the 

single methods alone, the multiple aspect of the capture will be recorded at the primary 

sampling occasion, to the capture history of two different individuals that are actually one. If 

some individuals are captured by both sampling methods separately but not simultaneously 

during such a long primary sampling occasion, overlap will occur resulting in a further 

inflation of the population size. 

 

 Lengthy sampling occasions might also jeopardise assumption iv of the TSJS model 

(same assumption exists in the JS model): sampling periods are short enough to avoid death 

during a sampling period. For long-lived species with a high survival rate, the assumption will 

hold. However, an animal seen late in the sampling period is more likely to be seen again in 
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the next sampling occasion. Moreover, for species with high survival rate, therefore very 

small chance of dying during the sampling occasion, long sampling occasions could be used 

in a stopover duration analysis, i.e. study of duration of time spent on stopover sites for 

refuelling (typically in migratory birds) (Pledger et al., 2009; Schaub et al., 2001), the results 

of which could then be used to better redesign the sampling protocol. Indeed when study cost 

is a major issue, this type of analysis might especially permit the optimization of the sampling 

experiment because a stopover duration analysis could help identifying the best time period to 

sample the largest number of individuals by estimating residence time. Researchers using 

long sampling occasions should also consider, when appropriate, a robust-design type of 

experiment, i.e. an experimental design with primary sampling periods spaced apart and 

secondary sampling periods within each primary sampling period, during which the 

population is assumed closed (Pollock, 1982). 

 

Advantages of the TSJS framework include the possibility of reducing the proportion 

of totally uncatchable animals with the double-sampling experiment, which results in 

negatively biased abundance estimates (Aebischer, 1986). However, the sampling methods 

used in the double-sampling experiment need to sample the same population, otherwise the 

estimate would describe a population that does not exist or at least not the population of 

interest, misleading researchers and potentially leading to inappropriate management 

decisions. Moreover, for a more parsimonious parameterization and hence a better precision 

in the population size estimate, the use of covariates in modeling the capture probabilities 

(Pollock, 2002) could be especially useful. Modeling capture probabilities with auxiliary 

variables, such as individual covariates, could help to better explain heterogeneity in capture 

probabilities, which is a major cause of negatively-biased abundance estimates in many 

ecological studies. However, the TSJS model as presently formulated has the potential 

disadvantage of not allowing the use of covariates. 

 

Alternative modeling approaches have been considered to answer the issue of two 

overlapping datasets in the estimation of population size. These alternative models, also 

presented in chapter one, are rooted in different conceptual frameworks (e.g. closed 

population, likelihood-based, Bayesian) with different interpretation and involve different 

mathematical arguments compared to the TSJS approach. The first intuitive alternative 

solution of the TSJS model would simply be an average population size estimate of the 



1. An extension of the Jolly-Seber model: the two-source Jolly-Seber model 
 

 54 

estimates provided separately by the two sampling methods. The question is then how to 

combine them. Later on (chapter four), I explore a variance-weighted mean of the Jolly-Seber 

estimates based on each sampling method.  

 

The likelihood based-approach of the two-source M0 model enables us to highlight the 

difficulties of an extension of such likelihood to an open-population framework. With the 

two-source M0 model, identities of individuals are treated as latent variables and, in order to 

estimate the population size, it is necessary to sum over all possibilities. In an open-

population approach, the extension of this closed-population based likelihood would require 

taking survival and dispersal into account. Therefore, in an open population, when there is for 

instance a “0” in the capture history, the possibilities for the latent variable are extended to 

being alive but missed on this occasion and to being dead on this occasion (against simply 

being missed in the closed-population approach). Individuals will not simply fall into the five 

categories any more (as they do in the table on p.43). The five categories can no longer be 

expressed in terms of the detection probabilities and the model needs to allow for every 

possible combination of “arriving” (e.g. birth, immigration) and “leaving” (death, emigration) 

events within the survey. Then summing over all possibilities would become tremendous 

implementation-wise and require a powerful computer. Similarly, it would theoretically be 

possible to extend the multinomial models based on the latent history approach of Link and 

Barker (2010). The approach, though even more intractable with current technology and 

software, would consist in defining two more “events” that can occur at a sampling occasion 

(though associated with that occasion). They would be a “5” if the animal was as yet 

“unborn” and a “6” if it was “dead”. Thus, a history such as “5501366” would represent an 

animal that appeared in the population between sampling occasions 2 and 3, but disappeared 

after a mere three occasions in the population during which time it was caught once by 

method 1 and once by method 3. Enumerating the complete list of possible latent histories for 

any but the shortest of studies would be best left to a computer, and ensuring the MCMC 

process adequately sampled the full space would probably be a considerable logistical 

problem. 
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2. Chapter Two 
 

Results of simulation studies on the two-source Jolly-
Seber model 
 

 

2.1. Abstract 
 

Simulations are used here to test the performance of the two-source Jolly-Seber (TSJS) 

estimator when all assumptions are met and when survival and birth rates are constant in time. 

The mean relative error (MRE) and the root mean square relative error (RMSRE) are chosen 

to provide information on the suitability of the estimator given different situations. The 

simulations enable researchers to measure the dependence of the estimator on factors such as 

capture probability, sample size, and length of the experiment. The results show that the TSJS 

estimator is generally unbiased for capture probabilities equal or greater than 0.2 and for a 

simultaneous sampling probability greater than 0.2 per occasion. Increasing the population 

size results in a substantial reduction of the error and permits a greater inequality between the 

two single sampling probabilities (i.e. when the probability of sampling by one method is 

greater than the probability of sampling by the other single method on each capture occasion) 

that the model can handle.  
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2.2. Introduction 
 

The TSJS model is an open-population model, so the assumption of demographic 

closure of the population is relaxed and the one of geographic closure partially relaxed (the 

animals can enter or leave the study area only once during the monitoring period, i.e. 

temporary, short to medium term immigration or emigration is not allowed). Being an 

extension of the Jolly-Seber (JS) model, it relies on assumptions that are similar to those of 

the JS model (Jolly, 1965; Seber, 1965): 

      i. all animals present (marked or unmarked) in the population at the time of the t-

th sampling occasion (t = 1, 2, …, T) have an equal probability of being caught, 

     ii. all marked animals present in the population immediately after the t-th 

sampling occasion have an equal survival probability until the (t+1)th sampling time (t = 1, 2, 

…, T-1), 

    iii. animals do not lose their marks or tags, 

    iv. immigration cannot be separated from birth without additional information, 

     v. all emigration from the sampling population is permanent. 

Given the mathematical formulation of the TSJS model, it seems essential to explore 

thoroughly the performance of the estimator. The first logical step is to measure the error on 

the estimator when all assumptions are met. Then later (chapter three), the error will be 

measured when the underlying assumptions are violated. In this chapter, the effect of the 

population size, the number of capture occasions, the effect of the capture probability and the 

effect of the sampling probabilities are tested and the results are expressed in terms of mean 

relative error, root mean square relative error and confidence interval coverage rates. A 

simulation program was written in the statistical programming language R to generate capture 

histories for open populations sampled opportunistically by two methods and create the same 

data structure as described in chapter one (section 1.4.2).  

In the TSJS model, the I id parameter (also referred to as probability of single identity, 

see chapter one) is used as a way of estimating the unidentified overlap in experimental 

designs where two sampling methods are used but lack systematic simultaneous capture by 

both methods. It is therefore expected that the I id parameter will be of greater importance as 

the number of individuals in the class F (Fig.1-1) increases in the combined dataset (see 

chapter one, section 1.4.3). It is also expected that the relative error will decrease as capture 
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probability, population size and number of capture occasions increase, as in the standard JS 

model (Gilbert, 1973). 

 

2.3. Methods 
 

2.3.1. Simulation Description 
 

The simulation is an attempt to model an animal population in order to evaluate the 

performance of the new extension of the JS estimation described in chapter one. For the 

purpose of chapter two, the simulations have a basic form representing a general animal 

population and the base parameter settings are for a large long lived animal with recruitment 

as single young litters. 

Demographic process 
 

At the start of the simulation, a population of n living, unmarked individuals is 

created. A sex ratio can be used to determine the number of males and females in the 

population. Then an age is randomly given to each individual. Through each occasion of the 

simulations, individuals first die at a determined death rate. Uniform random numbers 

between 0 and 1 are used to determine the fate of each individual (die/live) on every occasion: 

if the random number associated with the individual is smaller than the death rate then this 

individual dies. 

Then age is updated by adding 1 before the reproduction process. A reproductive rate 

is assigned to mature females. Uniform (0, 1) random numbers are again used to create the 

birth history matrix (Fig.2-1) to keep track of the reproductive history of each mature female: 

if the random number associated with the female is smaller than the reproductive rate, then 

the female has an offspring on this occasion. 
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Fig.2-1- Structure of the birth matrix produced by the program. 
 

 

Each row of the birth history matrix represents the birth history of each individual 

whale: it is filled with “0” for males, immature females and those who never gave birth. For 

example, in Fig.2-1 individual 1 (first row) was a female which had an offspring in time 1, 3 

and 6, individual 2 was a female which had an offspring on two consecutive occasions 

(occasions 2 and 3). The last animals did not reproduce as they are new born, so immature 

and possibly male. 

Sex is then assigned to each new born randomly with a user-defined sex ratio and 

those new born are added to the population matrix recording the history of each individual. 

This matrix is filled by “0” when the individuals were not born in the corresponding occasion 

or died on this occasion or in a previous occasion, and by “1” when it was alive in the 

corresponding occasion. 
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Fig.2-2- Structure of the history matrix produced by the program. 
 
 

Each row represents, in Fig.2-2, the history of an individual. In this example, 

individual 1 was alive for the 6 occasions of the simulation while individual 2 died on the 

fourth occasion, the last individual was born on occasion 5 and still alive on occasion 6. As 

Occasion  

  Occasion  

Individual 

Individual 
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new born are added as the program runs, the first n lines are the population of origin that was 

created at the beginning of the simulations and the lines after line n are the new born 

individuals. So the last line corresponds to the last individual born.  

 

Once the population is created, the next step is to sample from it. 

 

Sampling process 
 

From the history matrix, a matrix of availability for sampling of each individual is 

created. At each time period, if the individual is alive, it is available for capture and sampling 

with probabilities defined as follows and illustrated in Fig.2-3: 

 

Let { }321 ,, sssS =  be a discrete sample space with: 

{ }1 methodby  sampled1 =s  

{ }2 methodby  sampled2 =s  

{ }methodsboth by usly simultaneo sampled3 =s  

The ks events are mutually exclusive and together cover everything in S , i.e. form a 

partition of S , so 1)Pr()Pr()Pr()Pr()Pr( 321321 =++=∪∪= ssssssS  

Now let the event { }captured=c  such that Sc ⊆ . From the partition theorem, it follows that: 

)Pr()Pr()Pr()Pr( 321 scscscc ∩+∩+∩=  

 
 
Fig.2-3- Venn Diagram illustrating the structure of the sampling process in the simulation. 
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Generating random numbers, the fate of the individual is set on every occasion: if the 

random number generated on the considered occasion is smaller than the set capture 

probability )Pr(c  then the individual is recorded as being captured. 

 Then each captured individual, on the considered occasion, is set to be sampled by 

either method 1 with probability )Pr( 1s  or method 2 with probability )Pr( 2s  or by both 

simultaneously with probability )Pr( 3s , such that 1)Pr()Pr()Pr( 321 =++ sss  as illustrated in 

Fig.2-3. For example, individuals can have an occasion-specific sampling probability defined 

as following: 1.0)Pr( 1 =s , 1.0)Pr( 2 =s  and 8.0)Pr( 3 =s . Probabilities )Pr( 1s , )Pr( 2s , )Pr( 3s  

will later on be expressed as percentages and referred to as single sampling probabilities for 

)Pr( 1s  and )Pr( 2s , and simultaneous sampling probability for )Pr( 3s . For the previous 

example, the individuals are set up to be, on all capture occasions, available for sampling with 

an 80% chance by both methods simultaneously , with an 10% chance by method 1 only and 

with an 10% chance by method 2 only (under the assumption of temporal homogeneity of 

)Pr( 1s , )Pr( 2s , )Pr( 3s ). They may, of course not be captured, but the captures will be in those 

proportions.  

Thus, using uniform random numbers, the type of sampling method (method 1, 

method 2 or both simultaneously) is defined as follows: if the random number is smaller than 

the value of )Pr( 3s  then the individual is available by both methods simultaneously; if it is 

between the values of )Pr( 3s  and )Pr()Pr( 13 ss +  then the individuals is available by method 1 

and if it is between the values )Pr()Pr( 13 ss +  and 1 then it is a method-2-capture type. 

 

Note that the probabilities )Pr( 1s , )Pr( 2s , )Pr( 3s  and )Pr(c  can be seen as resulting 

from the breakdown in two parts of a third kind of probabilities: the occasion-specific 

probabilities of being recorded in the dataset by methods 1, 2 and 3 which would be defined 

as the probabilities of being detected and available for sampling by method 1, 2 or 3, so 

respectively as:   

)Pr()Pr()Pr()Pr( 111 scscr ×=∩=   

)Pr()Pr()Pr()Pr( 222 scscr ×=∩=  

)Pr()Pr()Pr()Pr( 333 scscr ×=∩=  
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This simulation structure for the sampling process was developed in order to be able to 

vary independently the detection and the sampling availability by each method for different 

classes of individuals in the population: in chapters three and four, the population will be split 

into four demographic classes g (calves, adult males, non-breeding females, breeding 

females). Therefore, given this simulation structure, it will be possible to assign to each class 

of individuals specific detection and availability probabilities denoted gc)Pr( , gs )Pr( 1 , 

gs )Pr( 2 , gs )Pr( 3  and measure the performance of the TSJS estimator with various forms of 

heterogeneity (e.g. heterogeneity in sampling availability and/or heterogeneity in capture 

among the classes).    
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Creation of the capture history 
 

Capture data for each individual can be summarized using the following encounter 

history codes: 

Code     Definition 

0  Not captured 

1  First capture by method 1 and no simultaneous capture in the record 

2  First capture by method 2 and no simultaneous capture in the record 

4  Recapture by method 1 and never simultaneously captured  

5  Recapture by method 2 and never simultaneously captured 

10  First capture in the record, by method 1 with a later simultaneous recapture 

11  First capture in the record, by method 2 with a later simultaneous recapture 

9  First capture in the record and a simultaneous one  

6  First recapture by method 1 when the first capture was a simultaneous one 

7  First recapture by method 2 when the first capture was a simultaneous one 

8  Simultaneous recapture after a “9” 

14  First simultaneous recapture after a “10” or “11” 

15  First recapture by method 1 after a “11” in the record 

16  First recapture by method 2 after a “10” in the record 

12  Recapture by method 1 after a “10” or a “15” 

13  Recapture by method 2 after a “11” or a “16” 

17  Recapture by method 2 after a “7” in the record 

18  Recapture by method 1 after a “6” in the record 

19  Simultaneous recapture after a “14” in the record 
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Creating the overlap   
 

It is necessary to recreate the situation that researchers face in their datasets when 

individuals have been captured by both single methods but have not been captured by both 

methods simultaneously.  

So far the simulation produces one line of capture history for each individual. 

However, it is essential to create in addition the two capture histories for individuals that 

would have been captured by method 1 and method 2 but never captured simultaneously. So 

the overlapping situation is generated by splitting in two capture histories any capture history 

that contains captures by both single methods in the absence of a simultaneous capture. 

For example, before the creation of the overlap, the simulation can produce a capture 

history such as “0102045”: the individual is captured by method 1 on the second occasion, 

recaptured by method 2 on the fourth occasion, then recaptured by method 1 on the sixth 

occasion and recaptured by method 2 on the last occasion. In the field, in the absence of a 

simultaneous capture, such a record would actually not exist and what would appear in the 

final dataset is two “observed” capture histories. So it is necessary to split such simulated 

records into two capture histories in the simulation to mimic reality. Therefore, a capture 

history such as “0102045” will become two capture histories, “0100040” and “0002005”, in 

the simulation. The resulting matrix will be used to estimate the population size (except in the 

case of tag loss, see later) and will be referred to as the CMR (Capture-Mark-Recapture) 

matrix. 

 

Assumptions  
 

The general assumptions of the simulations in this chapter are:  

i. capture probability )Pr(c  is constant over time,  

ii.  sampling probabilities )Pr( 1s , )Pr( 2s , )Pr( 3s  are constant over time, 

iii.  there is no loss of mark: once an individual is marked (captured) it cannot lose 

its mark and will be necessarily recognised the next time it is captured , 

iv. permanent emigration cannot be dissociated from death, 

v. as all entering individuals are new-born, there is no immigration per se, 

vi. all individuals have the same survival rate. 
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2.3.2. Relative error and measure of difference 
 
 

The relative error can be described by measures of difference, especially by measures 

of the mean error. These measures aim at quantifying the estimate of the difference between 

values predicted by a model and actual values from the population (which may or may not be 

observable in real life). The performance of the model estimates at a given sampling period is 

discussed in terms of relative error (RE) calculated as following: 

N

NN
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where N̂  is the estimated population size and N  the true population size. 

Averaging the relative error over all simulation runs for a given set of parameters 

gives the mean relative error MRE per occasion t: 
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the expected value of the estimate as a proportion of the true value, minus 1. It is therefore a 

measure of bias, 

where       tjN̂  is the predicted population size given by the model at occasion t, for simulation 

run j,  

      tjN  is the observed, true population size at occasion t, for simulation run j, 

     α  is the number of “successful” simulation runs (“successful” because tjN  can be 

inestimable due to the values of the simulated data). 

I also chose to measure the performance, the overall error, of the TSJS estimator in 

terms of root mean squared relative error (RMSRE): 
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Here I discuss the choice of the mean relative error (MRE) and the root mean square 

relative error (RMSRE) rather than the mean absolute error (MAE), the mean square error 

(MSE) and other classic indices, to measure the error of the TSJS model. 

These other indices take the form: 
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The MAE and RMSE are reported to be among the best overall measures of model 

performance by Willmott (1982) and are similar measures. Although the MAE is less 

sensitive to extreme values than the RMSE, Willmott reports the MSE as being more 

commonly used by statisticians because it is amenable to a greater degree of complexity in 

statistical analysis. Nonetheless, in the present case, it might not be the best way to answer the 

biological question of interest: 

“How close to the true values are the estimates given by the model relative to the 

population size?” 

On the other hand, the measure MARE (mean absolute relative error) and RMSRE 

give an estimate of the relative average error, in other words both measures calculate the 

average of the error taken as a relative proportion of the true value. Moreover the information 

provided by the MARE is similar to the one given by the RMSRE. The important difference 

between the two indices, MRE and RMSRE, is that the MRE provides information on the 

average error (i.e. the bias of the proportion), while the RMSRE measures the bias and the 
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random variation around the expected value. The RMSRE can be seen as a measure of overall 

utility of the method and could be large even in the absence of bias. 

Therefore, estimates of both the MRE and the RMSRE across simulations will be 

reported to study the error produced by the TSJS model:  

1) the MRE will simply provide a measure of the relative error,  

2) the RMSRE will give the average deviation of estimates from the true value (i.e. 

bias+error).  

Finally, confidence intervals are one of the most effective ways to measure the 

accuracy of a method. So it is also important to evaluate how well the confidence interval 

works to see how useful the model is. Here, the coverage rate of the confidence intervals (CI 

coverage rate) will be calculated as the ratio of the number of times that the true value falls 

between the bounds of the estimated normal and log-normal 95% confidence interval over the 

total number of simulation runs.  

 

2.3.3. Number of simulation runs 
 
 

Preliminary simulations were done in order to decide the appropriate number of 

replicates necessary to obtain reliable and representative estimates of error and variation. A 

replicate corresponds to the generation of one population going through the cycle “Aging-

Surviving-Reproducing-Sampling” over T occasions. The output of each replicate is a matrix 

of capture histories leading to the estimation of the size of this population by the TSJS model. 

It will also include the estimation of the size of this population by the standard JS model (one 

for each sampling method), the variance-weighted mean of the two standard JS models (each 

based on one of the two datasets provided by the two sampling methods), the two-source M0 

model and the closed population model Mt by Darroch, Mh by Chao and Mth (based only on 

one of the two datasets) for the purposes of chapter four. 

Running 1000 replicates of the simulation for all the experiments in the thesis would 

have been impractical in terms of computer time. So it was necessary to see if the same results 

could be achieved by running a smaller number of runs. The case with homogeneity in 

capture probability, over 10 occasions, with a starting population of 500 individuals and 

sampling availability scenario “20-40-40”, i.e. 2.0)Pr( 3 =s  and 4.0)Pr()Pr( 21 == ss , was 



2. Simulation results 

 67 

used to decide how many runs of the simulation would give representative results in a 

reasonable computer time. This case includes a medium size sample size and a medium 

number of capture occasions to avoid confounding trends in the MRE and RMSRE that would 

result from small sample size or short study period. It will also be seen later that this case 

represents the minimum probability of double-tagging ( 2.0)Pr( 3 =s ) per occasion needed for 

the estimator to produce reasonable unbiased results and was thus thought to be the most 

suitable case for showing the number of replicates necessary to achieve representative results. 

 

Investigating the MRE 

It is necessary to see if running 100, 200 or 1000 replicates can give equivalent results 

in terms of MRE. Here, as the estimation of the population size with the TSJS estimator is not 

possible on the very first and very last occasions, the MRE is only available for 8 occasions. 
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Fig.2-4- MRE as a function of the capture probability and capture occasion over 10 years, with a starting 
population of 500 individuals for 200 replicates.  
 
 

Looking at the consequences on the MRE of increasing the number of replicates, 

Fig.2-4 and Fig.2-5 (see also Appendix 4) show that it only influences the results for small 

capture probabilities (<0.1) by flattening the graph. Running 200 replicates appears to be 

slightly better in term of variability of the MRE for small probabilities and just double the 

MRE 

Capture 
probability 

Capture occasion 

200 replicates 
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running time compared to running a 100 replicates which would still be reasonable. However, 

compared to the results with 200 replicates, running 1000 replicates does not seem to be 

worth multiplying the computer time by 5. 
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Fig.2-5- MRE for 200 replicates as a function of the capture probability and capture occasion over 10 years, with 
a starting population of 500 individuals for 100 and 1000 replicates. 

 

The objective here was to reduce the computer time (approximately 6 hours for 100 

replicates, 12 hours for 200 replicates and 60 hours for 1000 replicates) while roughly 

keeping the precision and dispersion of the bias achieved with a high number of loops. In the 

light of the present results, using 200 replicates for the simulation seems appropriate and will 

thus be applied for all simulation experiments in the thesis. 
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2.3.4. Analysis steps 
 

In the following, I investigate the effect of the population size N, of the number of 

capture occasions T, and of the capture probability )Pr(c  on the performance of the TSJS 

estimator. I also investigate the performance of the estimator with various simultaneous 

sampling probabilities )Pr( 3s  and single sampling probabilities )Pr( 1s  and )Pr( 2s .  

It is worth noting that when 100% of caught individuals have been simultaneously 

double-tagged at least once, the situation is that of the standard JS model with no unknown 

overlapping between the datasets of the two sampling methods. Doing a full factorial design 

with all the possible combinations of these factors would be impractical in computer time and 

representative scenarios were chosen to illustrate and detect potential impacts. 

 

 

2.4. Effect of the simultaneous sampling 
probability  

 
 

The objective here is to investigate the performance of the model for various 

simultaneous sampling probabilities )Pr( 3s : it is of particular interest to see if the model 

responds equally well for high and low probabilities of double-marking. It appears also 

important to investigate the performance of the estimator when the single sampling 

probabilities )Pr( 1s  and )Pr( 2s  are not equal as this situation will occur in most ecological 

studies and which will introduce a form of heterogeneity that could be expected to bias the 

TSJS estimates. 

A starting population of N=500 individuals over T=10 capture occasions is used for 

the simulations in this part of chapter two. It was chosen to use a medium size population and 

a medium length of study to avoid confounding possible problems inherent to small sample 

size and short study period and to avoid masking the error with large sample size and long 

experimental duration. 
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2.4.1. With equal single sampling probabilities 
 
 

In this section the single sampling probabilities )Pr( 1s  and )Pr( 2s  are set equal. 

Several simultaneous sampling probabilities )Pr( 3s  are used to test the TSJS estimator for 

relative error: when individuals have a 50%, 20% and 17% probability of being double 

tagged, i.e. 5.0)Pr( 3 =s , 2.0)Pr( 3 =s  and 17.0)Pr( 3 =s . The scenarios are expressed in terms 

percentages of sampling probabilities and are summarized as follows: value of the 

simultaneous sampling probability )Pr( 3s , value of sampling probability by method 1 )Pr( 1s , 

value of sampling probability by method 2 )Pr( 2s .  

So scenario 50-25-25 represents the situation where 5.0)Pr( 3 =s ,  

25.0)Pr()Pr( 21 == ss . 

 

Minimum simultaneous sampling probability for the two-source Jolly-Seber model 

The first investigation of the behavior of the TSJS model aims at determining if there 

is a critical simultaneous sampling probability )Pr( 3s . The MRE for the scenarios 50-25-25, 

20-40-40, 17-41.5-41.5 and 10-45-45 are investigated and illustrated in Fig.2-6 and Fig.2-7 

(see also Appendix 4). It is clear from Fig.2-7 that, if )Pr( 3s  is below 0.2 on every capture 

occasion, the TSJS estimator is (sometimes extremely) negatively biased for capture 

probabilities )Pr(c  smaller than 0.5.  

The other effects of double tagging are discussed below. It is worth noting that the 

estimates for periods 2 and 9 (the first and last estimates available) are likely to be unreliable 

because the first estimates may lack sufficient number of first captures on the first capture 

occasion and the last estimates may lack sufficient number of recaptures on the last capture 

occasion. 
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Fig.2-6- MRE as a function of the capture probability and capture occasion over 10 years, with a starting 
population of 500 individuals for scenarios of sampling probabilities 50-25-25 and 20-40-40. 
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Fig.2-7- MRE as a function of the capture probability and capture occasion over 10 years, with a starting 
population of 500 individuals for scenarios of sampling probabilities 10-45-45 and 17-41.5-41.5. 
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In the light of Fig.2-7, a simultaneous sampling probability of 0.2, i.e. 2.0)Pr( 3 =s , 

seems to be the critical value below which the model performs particularly poorly. Thus, for 

the following, I will investigate the relative error of the TSJS estimator for a minimum 

simultaneous sampling probability of 0.2. 

 

Effect of an increase of the simultaneous sampling probability  

The next step in the investigation of the model aims at studying the impact of the 

simultaneous sampling probability )Pr( 3s  above the critical value of 0.2 to see whether the 

relative error is reduced when this value increases. As shown in Fig.2-6, increasing the 

simultaneous sampling probability )Pr( 3s  leads to an average relative error being positive. 

This positive error induced with a simultaneous sampling probability )Pr( 3s  of 0.5 is 

equivalent to the absolute value of the negative error present when the simultaneous sampling 

probability is 0.2.  

Looking at Fig.2-8, where the MRE is averaged for each capture probability )Pr(c  

over the study period, the median is very close to zero, at equal capture probability, for both 

scenarios and, as expected, the MRE decreases with the increase of capture probability.  

 

.05 .075 .1 .2 .3 .4 .5 .6 .8

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

50-25-25

.05 .075 .1 .2 .3 .4 .5 .6 .8

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

20-40-40

 

Fig.2-8- Box plots of MRE averaged over the study period per capture probability for an experiment of 10 years, 
with a starting population of 500 individuals and simultaneous sampling probability of 0.2 and 0.5. 
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Increasing )Pr( 3s  only seems to affect the number of outliers for small capture 

probabilities ( )Pr(c ≤ 0.1) which slightly increases for 2.0)Pr( 3 =s . The variability in the 

MRE also appears to be higher for 2.0)Pr( 3 =s , at small capture probabilities, especially at 

05.0)Pr( =c .  

From the MRE perspective, it seems that, when all assumptions are met, the TSJS 

model produces almost no relative error for capture probabilities )Pr(c  higher or equal to 0.2 

when )Pr( 3s  is above the critical value of 0.2 when the length of the experiment (T) is 10 and 

the population size (N) is greater than 500. However, this needs to be confirmed by the study 

of the RMSRE and CI coverage rates which will give a measure of the utility of the estimator. 

Table 2-1 and Appendix 5 display, for a probability of simultaneous sampling )Pr( 3s  

of respectively 0.2 and 0.5, the average MRE and the RMSRE along with the mean estimated 

and true values on each capture occasion for capture probabilities )Pr(c  varying between 0.05 

and 0.8.  

Both cases are equivalent showing that, as long as )Pr( 3s  is equal to or above 0.2 

when T=10 and N=>500, the performance of the TSJS estimator does not depend 

)Pr( 3s (except, as noted previously, occasional estimates for sample occasions 2 and 9). 

 

Table 2-1- MRE, RMSRE, mean estimate and true value of the population size over the simulation runs,  and 
standard errors of the estimated values and nominal and log-normal CI coverage rates at each capture occasion of 
a 10-year study for different capture probabilities with scenario 20-40-40 and a starting population of 500 
individuals. 
 
Capture 
probability 

Mean  
Estimate 

Mean True 
Value 

MRE Mean 
estimated 
SE 

RMSRE Nominal 
95% CI 
coverage 
rate (%) 

Log-
normal CI 
coverage 
rate (%) 

Pr(c)=0.05 

            2N̂  

 
391 

 
627 

 
-0.38 

 
259 

 
0.56 

 
62 

 
81 

            3N̂  546 653 -0.16 323 0.62 73 84 

            4N̂  670 695 -0.04 372 0.89 75 86 

            5N̂  778 719 0.08 419 1.1 80 83 

            6N̂  873 748 0.17 466 1.3 84 87 

            7N̂  734 766 -0.04 396 0.61 75 88 

            8N̂  805 799 0.01 432 0.8 76 83 

            9N̂  653 834 -0.22 351 0.69 64 77 
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Capture 
probability 

Mean  
Estimate 

Mean True 
Value 

MRE Mean 
estimated 
SE 

RMSRE Nominal 
95% CI 
coverage 
rate (%) 

Log-
normal CI 
coverage 
rate (%) 

Pr(c)=0.075 

            2N̂  

 
614 

 
626 

 
-0.02 

 
252 

 
0.72 

 
68 

 
71 

            3N̂  699 654 0.07 257 0.64 78 83 

            4N̂  779 693 0.13 278 0.74 84 84 

            5N̂  836 719 0.16 292 0.75 85 89 

            6N̂  842 745 0.13 293 0.55 88 90 

            7N̂  823 764 0.08 282 0.49 90 88 

            8N̂  931 795 0.17 317 0.77 83 84 

            9N̂  787 831 -0.05 269 0.54 70 76 

Pr(c)=0.1 

            2N̂  

 
643 

 
627 

 
0.03 

 
194 

 
0.63  

 
74 

 
74 

            3N̂  696 656 0.06 186 0.4 84 86 

            4N̂  785 694 0.13 203 0.46 90 87 

            5N̂  803 719 0.12 204 0.44 87 88 

            6N̂  817 745 0.1 205 0.39 88 88 

            7N̂  880 762 0.15 220 0.45 85 84 

            8N̂  834 794 0.05 209 0.42 86 86 

            9N̂  937 829 0.13 234 0.77 75 75 

Pr(c)=0.2 

            2N̂  

 
648 

 
626 

 
0.04 

 
78 

 
0.28  

 
67 

 
67 

            3N̂  678 653 0.04 77 0.19 79 79 

            4N̂  713 692 0.03 80 0.17 86 86 

            5N̂  755 718 0.05 85 0.18 87 85 

            6N̂  769 743 0.03 87 0.17 85 84 

            7N̂  801 762 0.05 91 0.17 85 81 

            8N̂  820 793 0.03 94 0.16 89 87 

            9N̂  860 828 0.04 100 0.24 74 74 

Pr(c)=0.3 

            2N̂  

 
633 

 
627 

 
0.01 

 
40 

 
0.14  

 
61 

 
61 

            3N̂  662 655 0.01 41 0.1 76 76 

            4N̂  697 694 0 45 0.09 85 87 

            5N̂  719 718 0 47 0.08 87 88 

            6N̂  746 745 0 50 0.08 90 90 

            7N̂  768 763 0.01 52 0.09 89 90 
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Capture 
probability 

Mean  
Estimate 

Mean True 
Value 

MRE Mean 
estimated 
SE 

RMSRE Nominal 
95% CI 
coverage 
rate (%) 

Log-
normal CI 
coverage 
rate (%) 

            8N̂  795 796 0 55 0.09 88 87 

            9N̂  822 830 -0.01 58 0.12 81 82 

Pr(c)=0.4 

            2N̂  

 
608 

 
626 

 
-0.03 

 
22 

 
0.1  

 
50 

 
50 

            3N̂  643 653 -0.02 25 0.07 71 71 

            4N̂  693 694 0 29 0.06 82 85 

            5N̂  717 719 0 31 0.05 88 89 

            6N̂  747 745 0 33 0.05 91 91 

            7N̂  764 764 0 35 0.06 87 88 

            8N̂  787 796 -0.01 37 0.07 82 84 

            9N̂  813 829 -0.02 40 0.08 73 76 

Pr(c)=0.5 

            2N̂  

 
619 

 
627 

 
-0.01 

 
14 

 
0.07   

 
54 

 
54 

            3N̂  652 654 0 16 0.04 35 35 

            4N̂  698 694 0 20 0.04 60 60 

            5N̂  727 720 0.01 22 0.04 70 70 

            6N̂  750 744 0 24 0.04 79 79 

            7N̂  764 763 0 25 0.04 70 69 

            8N̂  793 795 0 27 0.04 71 73 

            9N̂  809 830 -0.02 29 0.06 55 56 

Pr(c)=0.6 

            2N̂  

 
618 

 
626 

 
-0.01 

 
9 

 
0.05  

 
41 

 
42 

            3N̂  657 654 0 11 0.03 66 67 

            4N̂  706 693 0.02 14 0.03 79 79 

            5N̂  732 718 0.02 16 0.03 80 80 

            6N̂  760 744 0.02 18 0.03 82 82 

            7N̂  773 762 0.01 19 0.03 90 90 

            8N̂  795 793 0 20 0.03 90 91 

            9N̂  814 828 0.02 22 0.04 73 75 

Pr(c)=0.8 

            2N̂  

 
623 

 
625 

 
0 

 
2 

 
0.02 

 
27 

 
27 

            3N̂  662 651 0.02 4 0.02 35 35 

            4N̂  711 693 0.03 7 0.03 31 31 

            5N̂  740 716 0.03 8 0.04 25 26 
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Capture 
probability 

Mean  
Estimate 

Mean True 
Value 

MRE Mean 
estimated 
SE 

RMSRE Nominal 
95% CI 
coverage 
rate (%) 

Log-
normal CI 
coverage 
rate (%) 

            6N̂  768 743 0.03 10 0.04 30 30 

            7N̂  783 761 0.03 11 0.03 46 47 

            8N̂  808 792 0.02 12 0.03 74 75 

            9N̂  823 827 0 13 0.02 89 90 

2N̂ , …, 9N̂ =population size estimate at time 2, …, 9. 

N.B.: mean estimates, mean true values and mean estimated standard errors are 

rounded to the nearest integer in the above table and in all subsequent ones, as population size 

and associated variables are generally integers. 

 

The TSJS estimator can be severely biased with values of the MRE reaching -0.38 on 

the second capture occasion for 05.0)Pr( =c  and 2.0)Pr( 3 =s . However, the estimates can 

also be unbiased with values of the MRE as low as 0.01. So, from the MRE perspective, there 

is no clear trend for the relative error: it is not stable, with no specific direction and 

unpredictable for capture probabilities smaller than 0.1. However, for a capture probability 

)Pr(c  equal to or higher than 0.1, the MRE quickly stabilizes and reaches values below 10% 

of the true population size. For the MRE, there is also no pattern concerning the evolution of 

the relative error during the study: though the first and last estimated values are more biased 

for a capture probability of 0.05, this is not the case for the other values of capture 

probabilities.    

Concerning the magnitude of the overall relative variation represented by the RMSRE, 

it follows the evolution of the MRE:  its values are irregular for both 2.0)Pr( 3 =s  and 

5.0)Pr( 3 =s , varying between 0.4 and 1.3 for capture probabilities smaller than 0.1, and then 

stabilizes at small values (<0.2) above this capture probability. 

As expected, the standard error decreases with an increase in the value of the capture 

probability )Pr(c  and it increases with the capture occasion. For capture probabilities smaller 

than 0.1, the standard errors are large (in the order of 50% of the estimated population size) 

while, for large capture probabilities, the standard error is generally much smaller. 

Consequently, the CI coverage rate is better for small capture probabilities ( )Pr(c <0.1), 

generally above 80% with both the nominal and log-normal approaches, than for very high 
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capture probabilities (0.8), where though the SE is small the small bias causes poor coverage. 

In this case coverage can be as small as 25%. However, the confidence intervals at small 

capture probabilities are too wide for the model to be useful (recapture rates are too low for 

reliable estimates). Standard errors and coverage rates of confidence intervals for capture 

probability between 0.2 and 0.6 (even though they are too liberal) still suggest that the 

estimation method works reasonably well for these values of )Pr(c . A smaller CI coverage 

rate is also usually observed for the second and the ninth capture occasions. Finally, using the 

normal scale or a log-normal transformation to construct the confidence intervals does not 

appear of major importance once the capture probability is 0.1 or greater. Below that the log-

normal CI clearly performs better. 

 

In the light of the present results, the TSJS estimator presents no serious error for 

capture probabilities )Pr(c  equal or higher than 0.2, for a simultaneous sampling probability  

)Pr( 3s  above the critical value of 0.2, over a 10-occasion period, when all assumptions are 

met and when the population (N) is greater than 500 individuals. In such conditions, for 

capture probabilities )Pr(c  smaller than 0.2, nothing can be stated as the estimated values can 

be unbiased or severely biased and the large standard errors underline a poor precision of the 

estimator. For very large capture probabilities (e.g. 8.0)Pr( =c ), while the estimates appear 

unbiased, the true value may often not be included in the confidence interval due to a very 

underestimated standard error, but the issue of poor confidence interval coverage at large 

capture probability seems to be overcome when  5.0)Pr( 3 =s  (Appendix 5).  

 

2.4.2. With unequal single sampling probabilities 
 

The TSJS model will often have intrinsic heterogeneity since the two sampling 

methods are unlikely to present the same capture probability. Therefore, in this section, I 

investigate the performance of the TSJS estimator with scenarios where )Pr( 1s  and )Pr( 2s  are 

not equal. In the previous section, I was investigating mainly the effect of )Pr( 3s , setting 

)Pr( 1s  and )Pr( 2s  equal. However, having )Pr( 1s  and )Pr( 2s  exactly equal is rather unlikely 

in reality. Moreover, )Pr( 1s  and )Pr( 2s  will also influence the proportion of unresolved latent 

histories (number of individuals in F, see chapter one, section 1.4.3) which is when the TSJS 
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should perform at its best compared with the other uncorrected methods. It is expected that 

the simultaneous sampling probability )Pr( 3s  will be the factor conditioning the marginal 

ratio between the two single sampling probabilities )Pr( 1s  and )Pr( 2s  that can still lead to 

useful estimates with the TSJS estimator. 

 

When the ratio between the single sampling probabilities is 3:1 

Table 2-2 shows that, when the simultaneous sampling probability )Pr( 3s  is as high as 

0.5, results are the same in terms of relative error, standard error and CI coverage rate, when 

the single sampling probabilities )Pr( 1s  and )Pr( 2s  are equal or when one is three times more 

likely to occur than the other, i.e. )Pr(3)Pr( 21 ss =  or )Pr()Pr(3 21 ss = : estimated population 

size might be slightly biased at small capture probabilities )Pr(c  but the error is negligible on 

any capture occasion for a capture probability higher than 0.1. 

 

Table 2-2- MRE, RMSRE, mean estimate and true value of the population size over the simulation runs, and 
standard errors of the estimated values and nominal and log-normal CI coverage rates at each capture occasion of 
a 10-year study for a 3:1 ratio in single sampling probabilities and with a simultaneous sampling probability of 
0.5 (sampling scenario 50-37.5-12.5 or 50-12.5-37.5) and a starting population of 500 individuals. 
 
Capture 
probability 

Mean  
Estimate 

Mean True 
Value 

MRE Mean 
estimated 
SE 

RMSRE Nominal 
95% CI 
coverage 
rate (%) 

Log-
normal CI 
coverage 
rate (%) 

Pr(c)=0.05 

            2N̂  

 
485 

 
626 

 
-0.23  

 
256  

 
0.61 

 
54 

 
77 

            3N̂  626 655 -0.04   299 0.8 72 84 

            4N̂  714 694 0.03   323 0.69 81 85 

            5N̂  847 718 0.18   374 0.98 82 85 

            6N̂  771 742 0.04   335 0.98 78 88 

            7N̂  848 761 0.11   371 0.81 81 84 

            8N̂  834 793 0.05 358 0.94 70 79 

            9N̂  749 828 -0.1 324 0.76 64 69 

Pr(c)=0.075 

            2N̂  

 
638 

 
626 

 
0.02   

 
215  

 
0.67 

 
67 

 
68 

            3N̂  740 654 0.13 220 0.7 79 80 

            4N̂  754 695 0.08 219 0.49 85 88 

            5N̂  779 719 0.08 220 0.46 85 84 
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Capture 
probability 

Mean  
Estimate 

Mean True 
Value 

MRE Mean 
estimated 
SE 

RMSRE Nominal 
95% CI 
coverage 
rate (%) 

Log-
normal CI 
coverage 
rate (%) 

            6N̂  785 746 0.05 221 0.47 82 87 

            7N̂  849 763 0.11 236 0.54 85 83 

            8N̂  847 796 0.06 238 0.5 80 85 

            9N̂  862 831 0.04 240 0.59 76 76 

Pr(c)=0.1 

            2N̂  

 
699 

 
627 

 
0.12  

 
165  

 
0.67  

 
67 

 
73 

            3N̂  734 656 0.12 158 0.55 82 81 

            4N̂  756 695 0.09 157 0.33 87 85 

            5N̂  793 721 0.1 164 0.32 92 88 

            6N̂  806 747 0.08 164 0.3 89 88 

            7N̂  843 767 0.1 171 0.35 90 86 

            8N̂  866 798 0.09 177 0.36 86 83 

            9N̂  891 834 0.07 183 0.48 68 68 

Pr(c)=0.2 

            2N̂  

 
667 

 
625 

 
0.07  

 
62 

 
0.27  

 
60 

 
62 

            3N̂  690 654 0.06 61 0.17 78 78 

            4N̂  752 692 0.09 68 0.17 79 76 

            5N̂  755 718 0.05 67 0.13 87 85 

            6N̂  782 745 0.05 71 0.13 86 86 

            7N̂  813 763 0.07 74 0.16 80 79 

            8N̂  844 795 0.06 78 0.16 84 81 

            9N̂  866 830 0.04 82 0.19 73 73 

Pr(c)=0.3 

            2N̂  

 
662 

 
626  

 
0.06 

 
32 

 
0.14  

 
54 

 
56 

            3N̂  681 653 0.04 33 0.1 68 71 

            4N̂  733 693 0.06 37 0.1 77 78 

            5N̂  743 718 0.04 39 0.08 86 86 

            6N̂  773 744 0.04 42 0.08 86 85 

            7N̂  791 762 0.04 44 0.08 87 85 

            8N̂  823 794 0.04 47 0.08 87 85 

            9N̂  863 828 0.04 51 0.12 66 67 

Pr(c)=0.4 

            2N̂  

 
647 

 
627 

 
0.03  

 
18  

 
0.09  

 
53 

 
53 

            3N̂  679 655 0.04 20 0.06 68 67 
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Capture 
probability 

Mean  
Estimate 

Mean True 
Value 

MRE Mean 
estimated 
SE 

RMSRE Nominal 
95% CI 
coverage 
rate (%) 

Log-
normal CI 
coverage 
rate (%) 

            4N̂  721 696 0.04 24 0.06 72 72 

            5N̂  743 721 0.03 26 0.05 86 86 

            6N̂  771 747 0.03 28 0.05 83 81 

            7N̂  790 764 0.03 29 0.05 88 87 

            8N̂  824 797 0.03 32 0.06 78 77 

            9N̂  857 832 0.03 35 0.08 75 75 

Pr(c)=0.5 

            2N̂  

 
643 

 
628 

 
0.02  

 
11 

 
0.06  

 
40 

 
41 

            3N̂  672 655 0.03 13 0.05 56 57 

            4N̂  712 694 0.03 16 0.04 75 75 

            5N̂  739 719 0.03 18 0.04 78 78 

            6N̂  763 746 0.02 19 0.04 83 83 

            7N̂  780 764 0.02 21 0.04 85 84 

            8N̂  814 796 0.02 23 0.04 85 85 

            9N̂  847 830 0.02 26 0.05 78 79 

Pr(c)=0.6 

            2N̂  

 
636 

 
625 

 
0.02  

 
6 

 
0.05   

 
36 

 
37 

            3N̂  666 652 0.02 8 0.03 49 49 

            4N̂  705 690 0.02 11 0.03 64 65 

            5N̂  728 715 0.02 12 0.03 80 80 

            6N̂  755 740 0.02 14 0.03 79 79 

            7N̂  769 756 0.02 15 0.03 89 89 

            8N̂  805 789 0.02 17 0.03 84 84 

            9N̂  837 823 0.02 19 0.04 79 81 

Pr(c)=0.8 

            2N̂  

 
631 

 
626 

 
0.01  

 
1 

 
0.02  

 
23 

 
20 

            3N̂  657 653 0.01 2 0.01 39 39 

            4N̂  698 693 0.01 5 0.01 68 69 

            5N̂  722 717 0.01 6 0.01 81 83 

            6N̂  750 744 0.01 7   0.01 88 88 

            7N̂  766 761 0.01 8   0.01 95 95 

            8N̂  799 793 0.01 10 0.01 97 97 

            9N̂  832 827 0.01 12 0.01 93 94 

2N̂ , …, 9N̂ =population size estimate at time 2, …, 9. 
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However, when )Pr( 3s  is equal to 0.2 (table 2-1), the model appears unable to provide 

reasonably unbiased results for capture probabilities )Pr(c  smaller than 0.2. Fig.2-9 (see also 

Appendix 4) displays the severe relative error that occurs with 2.0)Pr( 3 =s  compared to 

5.0)Pr( 3 =s  when the ratio between the two single sampling probabilities is 3:1, i.e. 

)Pr(3)Pr( 21 ss =  or )Pr()Pr(3 21 ss = .  

When 2.0)Pr( 3 =s , a ratio between )Pr( 1s  and )Pr( 2s  as great as 3:1, i.e. 

)Pr(3)Pr( 21 ss =  or )Pr()Pr(3 21 ss = , can be handled by the estimator for capture probabilities 

)Pr(c  greater than 0.2: in such cases the relative error is no greater than 0.1. When 

2.0)Pr( 3 =s , Fig.2-10 (see also Appendix 4) shows that a smaller ratio between the two single 

sampling probabilities of 1.5:1 can be handled by the estimator, even for small capture 

probabilities.  

So it seems that the greater )Pr( 3s  is, the greater the ratio between )Pr( 1s  and )Pr( 2s  

can be, for a given capture probability, Pr(c). Increasing )Pr( 3s  enables the model to support a 

greater ratio between )Pr( 1s  and )Pr( 2s : 1.5:1 when 2.0)Pr( 3 =s  up to 1:3 when 5.0)Pr( 3 =s .  
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Fig.2-9- MRE as a function of the capture probability and capture occasion over 10 years, with a starting 
population of 500 individuals for scenarios of sampling probabilities 50-37.5-12.5 and 20-60-20. 
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Fig.2-10- MRE as a function of the capture probability and capture occasion over 10 years, with a starting 
population of 500 individuals for scenarios of sampling probabilities 20-48-32 a ratio of 1.5:1. 
 
 

 

2.5. Effect of population size 
 

In small sample situations 

The TSJS model is investigated here in small population situations, with a starting 

population of N=50 individuals and over T=10 occasions. It is important to note that at small 

capture probabilities ( )Pr(c <0.2), some statistics and/or parameters described in the Methods 

part of this chapter can be zero on some occasions and in such conditions the estimation of the 

population size can not be computed. Fig.2-11 (see also Appendix 4) clearly shows when 

2.0)Pr( 3 =s , the estimator is severely negatively biased for capture probabilities below 0.2. 

However, if the capture probability is equal or higher than 0.2, the estimator provides 

reasonable, though over-estimated, population size estimates. 

MRE 

Capture 
probability 

Capture occasion 

20-48-32 
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Fig.2-11- MRE as a function of the capture probability and capture occasion over 10 years, with a starting 
population of 50 individuals for scenarios of sampling probabilities 20-40-40. 

 

 

Table 2-3 shows that, with 5.0)Pr( 3 =s  and a starting population of 50 individuals, the 

problem of the severe underestimation encountered at small capture probabilities ( )Pr(c <0.2) 

still remains: for capture probability of 0.05 and 0.075 the MRE is never smaller than -0.32 

and can be as high as -0.82. At capture probability )Pr(c =0.1, it is still severely biased at the 

first and last estimation but it is unbiased for the intermediate capture occasions 5, 6 and 7. 

Then, for capture probability )Pr(c >0.2, the MRE is smaller and quickly becomes negligible 

(<0.1). However, the RMSRE is higher than 0.23 for capture probability )Pr(c <0.3 

Capture 
probability 

Capture occasion 

N=50, 20-40-40 

MRE 
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suggesting that, for small populations, a high capture probability might be required to get 

reliable estimates.  

As observed previously, standard errors decrease significantly with the increase of the 

value of the capture probability and increase with the capture occasions for all capture 

probabilities. A log-normal transformation for the confidence intervals seems to be important 

at small capture probabilities ( )Pr(c <0.1) and small sample size. Indeed the CI coverage rate 

never exceeds 67% and can be as low as 29% for the normal confidence intervals while it is 

never smaller than 52% and can be as high as 84% with log-normal confidence intervals.  

Then, for higher capture probabilities, the CI coverage rate is generally similar for the normal 

and log-normal approaches and generally fluctuates between 70% and 95% on the 

intermediate capture occasions (second and ninth capture occasions often have smaller CI 

coverage rates).  

 

 
Table 2-3- MRE, RMSRE, mean estimate and true value of the population size over the simulation runs, and 
standard errors of the estimated values and nominal and log-normal CI coverage rates at each capture occasion of 
a 10-year study for sampling scenario 50-25-25 and a starting population of 50 individuals. 
 
Capture 
probability 

Mean  
Estimate 

Mean True 
Value 

MRE Mean 
estimated 
SE 

RMSRE Nominal 
95% CI 
coverage 
rate (%) 

Log-
normal CI 
coverage 
rate (%) 

Pr(c)=0.05 

            2N̂  

 
14 

 
63 

 
-0.78 

 
22 

 
0.81  

 
29 

 
61 

            3N̂  17 65 -0.75 27 0.8 40 62 

            4N̂  21 69 -0.7 31 0.77 42 69 

            5N̂  25 71 -0.65 35 0.8 44 69 

            6N̂  23 74 -0.69 32 0.8 44 71 

            7N̂  22 75 -0.71 34 0.79 44 71 

            8N̂  20 78 -0.75 29 0.83 36 64 

            9N̂  18 81 -0.82 27 0.86 31 52 

Pr(c)=0.075 

            2N̂  

 
22 

 
63 

 
-0.65 

 
24 

 
0.77  

 
40 

 
64 

            3N̂  32 65 -0.52 32 0.69 54 74 

            4N̂  40 69 -0.43 38 0.7 58 74 

            5N̂  45 71 -0.37 43 0.69 62 82 

            6N̂  50 74 -0.32 48 0.68 65 84 

            7N̂  50 76 -0.34 46 0.68 67 81 
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Capture 
probability 

Mean  
Estimate 

Mean True 
Value 

MRE Mean 
estimated 
SE 

RMSRE Nominal 
95% CI 
coverage 
rate (%) 

Log-
normal CI 
coverage 
rate (%) 

            8N̂  46 79 -0.42 44 0.69 55 77 

            9N̂  30 83 -0.65 30 0.73 40 67 

Pr(c)=0.1 

            2N̂  

 
29 

 
62 

 
-0.53  

 
23 

 
0.69 

 
53 

 
65 

            3N̂  46 65 -0.29 33 0.66 62 79 

            4N̂  51 69 -0.25 36 0.65 66 81 

            5N̂  68 72 -0.05 46 0.83 74 88 

            6N̂  72 74 -0.05 48 0.86 76 88 

            7N̂  69 76 -0.1 48 0.87 71 86 

            8N̂  66 79 -0.18 45 1.07 72 84 

            9N̂  54 82 -0.36 40 0.7 57 76 

Pr(c)=0.2 

            2N̂  

 
56 

 
63 

 
-0.1   

 
17 

 
0.56  

 
61 

 
64 

            3N̂  70 65 0.06 19 0.7 70 70 

            4N̂  76 69 0.1   22 0.67 77 78 

            5N̂  72 72 0.01  20 0.38 83 87 

            6N̂  76 75 0.03   22 0.43 86 89 

            7N̂  83 76 0.08   24 0.47 89 88 

            8N̂  90 80 0.13   27 0.6 82 86 

            9N̂  88 83 0.04 26 0.85 64 69 

Pr(c)=0.3 

            2N̂  

 
63 

 
62 

 
0.01  

 
9 

 
0.47 

 
54 

 
54 

            3N̂  66 65 0.01 10 0.32 66 68 

            4N̂  74 69 0.08 12 0.3 79 77 

            5N̂  74 72 0.03 12 0.23 88 87 

            6N̂  78 75 0.05 13 0.23 87 89 

            7N̂  79 76 0.03 13 0.26 87 84 

            8N̂  83 80 0.05 15 0.29 86 85 

            9N̂  86 83 0.03 16 0.38 74 72 

Pr(c)=0.4 

            2N̂  

 
63 

 
62 

 
0.01 

 
6 

 
0.3  

 
49 

 
47 

            3N̂  66 65 0.01 6 0.2 70 68 

            4N̂  72 69 0.04 7 0.18 78 75 

            5N̂  75 72 0.05 8 0.16 88 86 
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Capture 
probability 

Mean  
Estimate 

Mean True 
Value 

MRE Mean 
estimated 
SE 

RMSRE Nominal 
95% CI 
coverage 
rate (%) 

Log-
normal CI 
coverage 
rate (%) 

            6N̂  76 74 0.02 8 0.14 90 90 

            7N̂  78 76 0.03 9 0.14 91 90 

            8N̂  83 80 0.03 10 0.16 89 90 

            9N̂  85 84 0.02 11 0.24 75 78 

Pr(c)=0.5 

            2N̂  

 
63 

 
62 

 
0.01  

 
4 

 
0.18   

 
53 

 
52 

            3N̂  65 65 0.01 4 0.12 71 73 

            4N̂  70 69 0.02 5 0.1 81 78 

            5N̂  72 71 0.02 6 0.09 88 89 

            6N̂  76 74 0.03 6 0.1 86 87 

            7N̂  77 76 0.02 7 0.09 91 89 

            8N̂  80 79 0.01 7 0.11 86 88 

            9N̂  84 83 0.02 8 0.15 81 83 

Pr(c)=0.6 

            2N̂  

 
62 

 
62 

 
0   

 
2 

 
0.12  

 
41 

 
43 

            3N̂  65 65 0  3 0.09 62 62 

            4N̂  69 68 0.01  3 0.08 73 74 

            5N̂  73 71 0.02  4 0.08 84 84 

            6N̂  75 73 0.02  4 0.07 86 87 

            7N̂  76 75 0.01  5 0.08 90 89 

            8N̂  80 79 0.02   5 0.08 94 93 

            9N̂  83 82 0.01 6 0.1 82 83 

Pr(c)=0.8 

            2N̂  

 
63 

 
63 

 
0   

 
1 

 
0.05  

 
36 

 
36 

            3N̂  66 66 0 1 0.04 50 51 

            4N̂  70 70 0 1 0.03 74 75 

            5N̂  73 72 0 2 0.03 84 84 

            6N̂  75 75 0.01 2 0.03 94 94 

            7N̂  77 77 0.01 3 0.03 95 95 

            8N̂  80 80 0.01 3 0.04 95 95 

            9N̂  83 83 0 4 0.04 93 93 

2N̂ , …, 9N̂ =population size estimate at time 2, …, 9. 
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In large sample situations 

As expected, increasing the population size N decreases the relative error in the 

estimation: Fig.2-12 (see also Appendix 4) shows that, when 2.0)Pr( 3 =s  and )Pr()Pr( 21 ss = , 

the MRE is no more than 0.2 for all capture probabilities )Pr(c  on any capture occasion 

which, though still large for small )Pr(c , is relatively much smaller than many other scenarios 

tried earlier. 
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Fig.2-12- MRE as a function of the capture probability and capture occasion over 10 years, with a starting 
population of 1000 individuals for scenarios of sampling probabilities 20-40-40. 

 

The effect of the population size on the estimator performances is also relevant in 

terms of robustness to ratios between )Pr( 1s  and )Pr( 2s : in the last section, the model could 

not handle a ratio of 1:3 for capture probabilities )Pr(c  smaller than 0.4 when 2.0)Pr( 3 =s  

and a starting population of 500 individuals. Fig.2-13 shows that with a starting population of 
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N=1000 individuals, the TSJS approach produces estimates with a MRE no higher than 0.2 

for all capture probabilities on any capture occasion. 
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Fig.2-13- MRE as a function of the capture probability and capture occasion over 10 years, with a starting 
population of 1000 individuals for scenarios of sampling probabilities 20-60-20. 

 

So it seems that the bigger the population N is, the more robust the model is to 

differences in the values of  )Pr( 1s  and )Pr( 2s . With large populations, the estimator can still 

produce valuable results with greater ratios between )Pr( 1s  and )Pr( 2s  (e.g. with a ratio of 3:1 

when 2.0)Pr( 3 =s  up to a ratio of 1:4 when 5.0)Pr( 3 =s , as shown in Fig.2-14). 

N=1000, 20-60-20 

MRE 

Capture 
probability 

Capture occasion 



2. Simulation results 

 91 

2
3
4
5
6

7

8

9

0.1 0.2 0.3
0.4

0.5
0.6

0.7
0.8

-0.2

0.0

0.2

0.4

 
Fig.2-14- MRE as a function of the capture probability and capture occasion over 10 years, with a starting 
population of 1000 individuals for scenarios of sampling probabilities 50-10-40. 

 

 

In a high turnover and declining population situation 

This situation was created in order to show the generality of the results provided in 

this chapter. I show that, when all assumptions are met, the performances of the present 

estimator are independent from the parameters set for the simulated animal population: here 

the survival rate is 0.4 for all the individuals and the birth rate is 0.8 for all mature females. 

Given the survival rate, the population is declining over the T=10 occasions of the 

experiment: in the present simulation, the population starts at N=2000 individuals, is down to 

approximately 500 at capture occasion 4, 150 at capture occasion 6 and below 70 at capture 

occasion 9. Therefore, at the start of the simulation, the situation is that of a large declining 

population and of a small population on the last capture occasions. 

N=1000, 50-10-40 
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Fig.2-15- MRE as a function of the capture probability and capture occasion over 10 years, with a starting 
population of 2000 individuals for scenario of sampling probabilities 20-40-40. 
 
 

As shown in Fig.2-15 (see also Appendix 4), for all capture probabilities )Pr(c , the 

error is always greater on the last capture occasions which is not surprising since the situation 

in the last capture occasions is the one of small populations described above. For capture 

probabilities smaller than 0.1, the MRE is above 0.1 for all capture occasions. Then, as the 

capture probability )Pr(c  increases, the error on the last occasions decreases and from a 

capture probability of 0.2, the MRE is smaller than 0.1 on all capture occasions (except at 

capture occasion 9 for a capture probability of 0.2). 

 

 

 

 

 

 

MRE 

Capture 
probability 

Capture occasion 

N=2000, 20-40-40, high turnover 
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2.6. Effect of number of capture occasions 
 

In this section, the error of the TSJS estimator is explored for T=5 occasions. As for 

T=10 occasions and 5.0)Pr( 3 =s  in the dataset, MRE were found to be relatively small for 

)Pr(c >0.1 but the direction of the average relative error varies, as shown in Fig.2-16. For 

)Pr(c <0.1, increasing the length T of the experiment can reduce the error substantially. For 

low capture probabilities, this is consistent with Jolly’s (1965) conclusion that the bias of the 

JS model decreases as the number of the capture occasions T increases. 

 
 
Fig.2-16- MRE as a function of the capture probability and capture occasion over 5 years, with a starting 
population of 500 individuals for scenarios of sampling probabilities 50-25-25. 
 
 
 

When 2.0)Pr( 3 =s  and a minimum N=500, the MRE is not more than 10% of the true 

population size which is similar to the results with 5.0)Pr( 3 =s .  As shown in Table 2-4, 

when 2.0)Pr( 3 =s , the RMSRE is below 0.3, on any capture occasion, with )Pr(c >0.1. At 

smaller capture probabilities, i.e. )Pr(c <0.2, the MRE is generally below 0.1 when 

)Pr(c >0.075 but the RMSRE is always greater than 0.6. 
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Large variances arise at small capture probabilities ( )Pr(c <0.1), leading to 95% 

confidence intervals containing the true population size more than 62% of the time with the 

normal approach and more than 80% for the log-normal transformation. However, for 

)Pr(c <0.1, the confidence intervals are too wide for the method to be useful. As previously, 

standard errors decrease as the capture probability increases. Values of the standard error 

equal to no more than 12% of the population size are obtained with )Pr(c >0.2 and CI 

coverage rate is never below 70% though seldom above 90%. Moreover, for )Pr(c >0.2, the 

choice of the log-normal transformation over the normal approximation for the construction 

of the confidence intervals is not necessary, as both approaches lead to very similar coverage 

rates. For large capture probability ( 8.0)Pr( =c ), the issue of small standard errors leads to 

low CI coverage rate (54% to 69% for the normal approximation and 56% to 71% for the log-

normal transformation). 

 

Table 2-4- MRE, RMSRE, mean estimate and true value of the population size over the simulation runs, and 
standard errors of the estimated values and nominal and log-normal CI coverage rates at each capture occasion of 
a 5-capture-occasion study with sampling scenario 20-40-40 and a starting population of 500 individuals. 
  
Capture 
probability 

Mean  
Estimate 

Mean True 
Value 

MRE Mean 
estimated 
SE 

RMSRE Nominal 
95% CI 
coverage 
rate (%) 

Log-
normal CI 
coverage 
rate (%) 

       Pr(c)=0.05 

            2N̂  323 626 -0.48 352 0.7 62 83 

            3N̂  411 653 -0.37 410 0.91 65 81 

            4N̂  424 692 -0.39 439 0.76 67 86 

Pr(c)=0.075 

            2N̂  

 
527 

 
626 

 
-0.16  

 
348 

 
0.7  

 
73 

 
86 

            3N̂  604 655 -0.08   347 0.74 72 80 

            4N̂  741 694 0.07 411 1.06 76 80 

Pr(c)=0.1 

            2N̂  

 
681  

 
627 

 
0.09  

 
315 

 
1.02  

 
86 

 
85 

            3N̂  726 656 0.11 297 0.76 80 83 

            4N̂  703 695 0.01 282 0.68 73 76 

Pr(c)=0.2 

            2N̂  

 
643 

 
626 

 
0.03  

 
130 

 
0.32 

 
80 

 
79 

            3N̂  711 653 0.09 129 0.29 88 84 

            4N̂  735 691 0.06 130 0.29 
 
 

 

86 82 
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Capture 
probability 

Mean  
Estimate 

Mean True 
Value 

MRE Mean 
estimated 
SE 

RMSRE Nominal 
95% CI 
coverage 
rate (%) 

Log-
normal CI 
coverage 
rate (%) 

Pr(c)=0.3 

            2N̂  

 
641 

 
626 

 
0.02  

 
75 

 
0.21 

 
80 

 
80 

            3N̂  677 653 0.04 73 0.17 84 84 

            4N̂  722 692 0.04 78 0.18 83 82 

Pr(c)=0.4 

            2N̂  

 
641 

 
627 

 
0.02 

 
48 

 
0.13 

 
78 

 
78 

            3N̂  664 654 0.01 48 0.11 86 86 

            4N̂  701 694 0.01 51 0.12 78 79 

Pr(c)=0.5 

            2N̂  

 
619 

 
626 

 
-0.01   

 
31 

 
0.08 

 
80 

 
79 

            3N̂  654 653 0 33 0.07 83 83 

            4N̂  688 693 -0.01 35 0.08 80 80 

Pr(c)=0.6 

            2N̂  

 
613 

 
625 

 
-0.02  

 
21 

 
0.06  

 
68 

 
68 

            3N̂  646 654 -0.01 23 0.05 78 79 

            4N̂  679 695 -0.02 25 0.06 77 78 

Pr(c)=0.8 

            2N̂  

 
610 

 
626 

 
-0.03  

 
10 

 
0.04  

 
54 

 
56 

            3N̂  644 653 -0.01 12 0.03 69 71 

            4N̂  672 693 -0.03 14 0.04 58 60 

2N̂ , …, 4N̂ =population size estimate at time 2, …, 4. 
 

The effect of a shorter experiment (here 5 capture occasions compared to previously 

10 capture occasions) on the TSJS estimator performance lies mainly in an increase of the 

RMSRE: approximately 1.5 higher than the RMSRE in Table 2-1. For all Pr(c), standard 

errors are generally larger than the standard errors found on the capture occasions 7, 8 and 9 

for the same Pr(c) in Table 2-1. CI coverage rate is lower than in Table 2-1. 
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2.7. Discussion 
 

In this chapter, I have presented the results of simulations on the TSJS estimator when 

all assumptions are met. This simulation model is an attempt to recreate a subset of realistic 

animal populations. With this simulation model, there are no totally-uncatchable animals in 

the population: any individual is available for sampling on each capture occasion. I did not 

consider the case where there might be untrappable animals because I believe that the chance 

of having such individuals is considerably reduced with double-sampling experiments. 

Moreover in the simulation model, individuals can only be detected once and sampled by only 

one method on each occasion. Therefore, I did not model long sampling occasions during 

which secondary sampling occasions might occur even though that is the sampling situation 

in chapter five where each sampling occasion covers approximately two months. Indeed, I 

considered that, if an individual is available by both capture methods separately during a long 

sampling occasion, it means that it is available by the simultaneous method and then, if it is 

captured, it should be by both methods simultaneously at least once during this long sampling 

occasion. The single captures that might have occurred during this sampling occasion should 

be ignored and only the simultaneous event should figure in the capture history for this 

sampling occasion. 

 

The simulations show that the TSJS estimator presents generally a small error for 

capture probabilities )Pr(c  equal or greater than 0.2. The estimator is, however, severely 

biased and produces wide, and therefore useless, confidence intervals for capture probabilities 

smaller than 0.1. Increasing the population size N results in a substantial reduction of the error 

and permits a greater inequality between the values of the single sampling probabilities )Pr( 1s  

and )Pr( 2s  that the model can handle. 
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Important results include: 

 

With T=10 and N=500 and  )Pr()Pr( 21 ss = : 

Minimum/critical probability of double tagging following a capture )Pr( 3s = 0.2 

 

With T=10 and N=500 and )Pr( 3s =0.2:  

Most extreme ratio between the two single sampling probabilities that could be 

handled = 1:1.5 or 1.5:1, i.e. )Pr(5.1)Pr( 21 ss =  or )Pr()Pr(5.1 21 ss =  

 

With T=10 and N=500 and  )Pr( 3s =0.5: 

Ratio handled by the model between )Pr( 1s  and )Pr( 2s  = 3:1, i.e. )Pr(3)Pr( 21 ss =  or 

)Pr()Pr(3 21 ss =  

 

With T=10 and N=1000 and )Pr( 3s =0.2: 

Ratio handled by the model between )Pr( 1s  and )Pr( 2s  = 3:1, i.e. )Pr(3)Pr( 21 ss =  or 

)Pr()Pr(3 21 ss =  

 

With T=10 and N=1000 and )Pr( 3s =0.5: 

Ratio handled by the model between )Pr( 1s  and )Pr( 2s  = 1:4, i.e. )Pr(4)Pr( 21 ss =  or 

)Pr()Pr(4 21 ss =  

 

With T=10 and N=50 and )Pr()Pr( 21 ss = : 

Minimum )Pr( 3s = 0.5 

Severe negative bias (MRE>50%) for )Pr(c <0.2. 

CIs consistently too liberal, sometimes extremely. 
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The relative error can be small (<10%) and the precision is good when the capture 

probability is high and there is no violation of assumptions. These results are similar to those 

of Gilbert’s (1973) on the standard JS model, the only differences here being that the error is 

not systematically symmetrical with respect to capture occasion. Increasing the length of the 

study also results in a reduction of the error (RMSRE) which underlines the fact that the 

estimator becomes more useful as the length of the experiment increases. As in Gilbert (1973) 

the relative error is no greater than 10% when the capture probability is greater than 0.2 and 

the simultaneous sampling probability is above the critical value, i.e. )Pr( 3s >0.2. With 10 

capture occasions, 5.0)Pr( =c  and 5.0)Pr( 3 =s , 95% of all animals would be double tagged 

at least once if the population was closed. So, in such case, even though the population is 

open, the number of individuals in F (see chapter one, section 1.4.3) can be expected to be 

very low and thus, in the simulations, the JS model could perhaps be applied instead of the 

TSJS model.  

 

Confidence interval coverage could be reasonably good (e.g. 90%), indicating a good 

reliability of the estimation with the TSJS approach, although first and last estimation 

occasions generally present smaller CI coverage rates, but most of the times confidence 

interval coverage was poor. Using the log-normal approach to construct the confidence 

interval leads to a slight increase in the CI coverage rate especially at the smaller capture 

probabilities and population sizes. The estimated value of population size is usually believed 

to be a log-normally-distributed parameter, which explains why log-normal confidence 

intervals display better coverage rates than normal confidence intervals. In my thesis, I used a 

frequentist approach for the confidence intervals rather than Bayesian statistics. The 

interpretation, usefulness and application of these two approaches (frequentist vs Bayesian) 

are nowadays debated. Credible intervals based on Bayes’ theorem are considered to have a 

more straightforward and practical interpretation than confidence intervals based on sampling 

distributions do: with credible intervals the interpretation is usually of the form “My degree of 

belief that the true parameter is in fact in the interval is …%”. With 95% confidence intervals, 

results can only be interpreted as “The interval will contain the true value 95% of the time if 

the study were repeated many times using samples from the same population”. However, the 

use of credible intervals requires a prior probability prone to subjectivity, which inevitably 

provokes controversy. Avoiding subjectivity in the credible intervals would be equivalent of 

setting an uninformative prior probability, therefore leading to the credible interval 
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corresponding to the confidence interval. Confidence intervals are more commonly used by 

biologists, hence it seemed more appropriate to use the frequentist approach. However, here 

confidence interval coverage rate was, in most scenarios, poor. Indeed, the idea for the 95% 

nominal confidence interval in the frequentist approach is that confidence intervals will 

include the true value 95% of the time, so it does not seem satisfying for the TSJS method 

that the coverage rate barely reaches the 95% threshold in most of the cases explored here. 

However, confidence intervals were obtained by invoking the asymptotic properties of 

maximum likelihood estimates (MLEs), and more precisely the property that the estimates are 

asymptotically normally distributed. However, the TSJS estimator is not an MLE and as 

quoted earlier in this section, population size estimates are believed to be log-normally 

distributed but the use of a log-normal confidence interval does not significantly improve the 

confidence coverage rate. Furthermore, the method of profile likelihood that applies to all 

MLEs and usually improves the confidence interval coverage cannot be used since the TSJS 

estimator is not an MLE. Therefore, a major improvement for the TSJS method to be more 

useful would be a valid interval estimator. Nevertheless, as shown in chapter four, none of the 

current models leads to satisfying confidence interval coverage rate underlying the difficulty 

of getting a valid interval estimator.  

Problems in the estimation are also inevitable if the simultaneous sampling probability 

is too small. It is important for the general design of the study that the investigators put as 

much effort as possible in the double-tagging part of the experiment which will determine the 

robustness of the model. Depending on field conditions, it is also preferable not to favor one 

sampling method, make sure the sampling is opportunistic but keep a reasonable ratio 

between the two tagging methods when the simultaneous sampling probability is expected to 

be moderate.  

The performance of the model also depends on the validity of the underlying 

assumptions in the experiment and therefore the behaviour of the estimator is investigated in 

chapter three in various situations of departure from the model assumptions. If small rates of 

simultaneous marking can not be avoided, researchers must be aware that the estimator may 

also be more sensitive to violation of assumptions. The results of the TSJS estimator when 

model assumptions are violated will then be compared to those of classic closed-population 

models in the same situations in chapter four. 
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3. Chapter Three 
 

When things go wrong: heterogeneity among individuals 
in capture or sampling probabilities and tag misreading 
 

 

3.1. Abstract 
 

A common problem in capture-mark-recapture (CMR) studies is the presence of 

heterogeneous capture probabilities among individuals of a population. If not modelled, the 

magnitude of the resulting bias usually depends on the degree and characteristics of the 

heterogeneity in capture probabilities among individuals. Simulations described in chapter 

two are used here to test the performance of the Two-Source Jolly-Seber (TSJS) estimator 

when the assumption of equal catchability among individuals is violated, when the single-

sampling probabilities )Pr( 1s  and )Pr( 2s  are not equal among the individuals and when there 

is a tag misreading issue. To provide a relevant pattern of heterogeneity, knowledge from a 

humpback whale population is used to specify the model. The mean relative error (MRE), the 

root mean square relative error (RMSRE) and the confidence interval coverage rate are used 

to provide information on the suitability of the estimator under different scenarios believed to 

represent a simplifying approximation of the sampling situation in humpback whale 

populations. The TSJS model is fairly robust when the heterogeneity in catchability is small 

to moderate. Given the present simulation structure, this extension of the Jolly-Seber (JS) 

model gives little error when all individuals have capture probabilities greater than 0.5 on all 

capture occasions. As expected, the average negative error increases as the magnitude of the 

heterogeneity rises and serious negative error can occur when the average capture 

probabilities are small. In the presence of heterogeneity in sampling probabilities among 

classes of individuals, the estimator usually performs well. Finally, for the tag misreading 

issue, the TSJS estimator demonstrates no error for a homogeneous tag misreading rate. These 

results are probably relevant to a range of large mammal populations and possibly, given a 

proportional time scale shift, to some other groups as well.  However, only a small range of 
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the possible parameters and model space has been explored so these conclusions inevitably 

have limited generality. 

3.2. Introduction 
 

One of the challenges when estimating population size using CMR methodology is the 

ubiquity of heterogeneity in capture probabilities in field studies, where individuals of the 

same population often exhibit different degrees of catchability (Roff, 1973). These 

heterogeneous capture probabilities most likely depend on biological factors such as sex, size, 

reproductive status, age and it typically leads to negatively biased abundance estimates 

(Amstrup et al., 2005; Chao, 1987; Hwang and Chao, 1995; Otis et al., 1978; Seber, 1986; 

Williams et al., 2002). The magnitude of the bias usually depends also on the characteristics 

of the heterogeneity itself.  If some individuals of a population exhibit low capture probability 

on different trap occasions and a high capture probability on some others, there should be 

little bias in the abundance estimator (Williams et al., 2002). On the other hand, if, throughout 

the whole study, some individuals tend to have a relatively low capture probability while 

others exhibit a high probability of being caught, the magnitude of the error should be more 

important.  

Hwang and Chao (1995), Otis et al. (1978), Carothers (1973) and Gilbert (1973) 

showed that the heterogeneity in capture probabilities did not affect the estimates given by the 

JS model when all animals had high capture probabilities (>0.5). However, a high degree of 

heterogeneity can cause severe underestimation in the population size estimates with the JS 

model and new techniques to reduce the bias have been developed. Hwang and Chao (1995) 

developed a method using the sample coverage approach to minimize the bias. Pledger and 

Efford (1998) used a method aiming at correcting the abundance estimates for bias via inverse 

prediction. Both approaches performed well in simulation studies but have seen little use so 

far. 

In this chapter, the coefficient of variation is used to measure the degree of 

heterogeneity in capture probability present within the simulated populations. Many different 

patterns of heterogeneity in capture and sampling probability can occur and it is important to 

tailor the analysis of the error to the specific type of biological problem encountered. Due to 

the biological purpose of the model, values of biological parameters related to humpback 

whales and found in the literature were used to create the animal population in the simulations 
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for the purpose of chapters three and four. The aim was to ensure that the model was tested on 

a biologically relevant combination of parameters. 

In the simulations, I have chosen to divide the population into four demographic 

classes based on the reproductive status (adult males, non-breeding females, breeding females 

and calves) to test the effect of heterogeneity in capture and sampling probabilities between 

the classes. This pattern of heterogeneity seems to better suit the biological situation of the 

humpback whales, especially to test the heterogeneity in sampling probabilities )Pr( 1s , )Pr( 2s  

and )Pr( 3s  (see chapter one) which are probably related to the reproductive status for this 

species. Two types of heterogeneity will be analyzed here: heterogeneity in capture 

probabilities and heterogeneity in sampling probabilities. This keeps the problem tractable 

and allows us to investigate the separate effects of each source of error described above. It is 

also necessary to avoid confounding them in the analysis. Therefore, each type of 

heterogeneity is explored independently in this chapter. As shown in chapter two, the TSJS 

method does not perform well if the capture probability is too low ( )Pr( 3s <0.2). A logical 

step here is also to avoid confounding this type of problem with any problems coming from 

the failure of one or more of the underlying assumptions of the model. Thus, only some 

scenarios of sampling probabilities, described in chapter two and producing almost no error 

when all assumptions are met, are used to account for the effect of the heterogeneity on the 

abundance estimator. 

The possibility of heterogeneous capture probability among individuals of a 

population leads to the need to modify the simulations to account of the effect on the 

abundance estimator of the violation of the underlying assumption. The simulation structure 

described in chapter two, however, remains unchanged up to the sampling part where 

individuals are randomly captured.  

Two forms of heterogeneity can be tested within the present simulation experiment: 

heterogeneity in capture probabilities and heterogeneity in sampling probabilities. Due to the 

structure of the simulation, the animal population is divided into four classes g, based on sex, 

age and reproductive status, which will be characterized by specific capture or sampling 

probabilities gc)Pr( , gs )Pr( 1 , gs )Pr( 2  and gs )Pr( 3  for the purpose of this chapter.  

Another form of violation of assumption known to induce bias in precision in JS 

estimates is tag loss (Arnason and Mills, 1981; McDonald et al., 2003). In the context of 

humpback whale studies, tags are mainly lost by misreading and thus the loss may only be 
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temporary (similar to the misreading of rings in bird studies). While some morphological 

patterns of the fluke, such as the trailing edge, do not naturally change with time, some 

ventral fluke features, such as the pigmentation and superficial scars, have been found to be 

age-dependent and to become stable usually after sexual maturation (Blackmer et al., 2000; 

Carlson and Mayo, 1990). Tag misreading typically occurs during the matching process but 

experience of the matchers and photographic quality has proven to be an important factor to 

avoid tag misreading (Carlson and Mayo, 1990; Friday et al., 2000). As for the genetic 

tagging process in humpback whale studies, this can be done either via the invasive process of 

skin sampling biopsy or by a noninvasive one after a breach when it is possible to harvest 

some sloughed skin (Valsecchi et al., 1998). Tag loss in genetic mark-recapture studies is 

mostly due to allelic dropout, and for tag misreading that leads to false alleles, 

misinterpretation of allele banding patterns, product size, locus polymorphism (Hoffman and 

Amos, 2005; Taberlet et al., 1999). These sources of tag loss and tag misreading concern 

mainly noninvasive tagging for which the quality of the DNA is lowered. However, they 

should not be ignored for data arising from invasive sampling (McKelvey and Schwartz, 

2004; Roon et al., 2005; Taberlet et al., 1999). 

Arnason and Mills (1981) stated, in the first paper on the bias induced in the JS 

estimator by tag loss, that “N̂ […] is not biased by tag loss”. This finding has been discussed 

by McDonald et al. (2003) who showed that this result was only true for a tag loss situation 

where all the individuals were equally likely to lose their tag. A coding modification of the 

basic simulation structure is outlined in the present chapter to account for the effect of 

homogeneous tag misreading on the TSJS estimator.  

It is worth noting that tag misreading is only considered here as a way to produce new 

individuals, i.e. false-negative errors, and which will thereby induce an overestimation of the 

population size. Tag misreading can occur in the other direction, i.e. false-positive errors, 

leading to an underestimation, also known as the “shadow effect”, when several individuals 

have the same genetic tag as a result of using too few loci or loci with a low heterozygosity 

(Mills et al., 2000; Waits et al., 2001). However, this is not believed to be an issue in the 

context of mature research programs (such as humpback whale studies), as microsatellites 

will usually be well developed. 
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The aim of this chapter is to assess the degree of error and precision of the population 

size estimator, using the TSJS model, generated under different cases of heterogeneity in 

capture and sampling probabilities among the classes and under tag misreading situations. 

Given the multitude of possible scenarios and cases that could be investigated, it is very 

important to keep in mind that I chose to focus on scenarios and cases relevant to the study of 

long-lived animal populations. 

 

 

3.3. Heterogeneity in capture probabilities  
 

3.3.1. Materials and Methods 
 

Biological context of the simulation 

 
The humpback whale (Megaptera novaeangliae) is a baleen whale belonging to the 

Balaenopteridae family. Present in both hemispheres and in all oceans, it is a migratory 

species that alternates between warm waters in low latitude for breeding in winter and cold 

waters in high latitude for feeding in summer (Baker et al., 1986; Brown et al., 1995; 

Clapham, 2002; Clapham et al., 1993a; Darling and McSweeney, 1984; Garrigue et al., 2002; 

Katona and Beard, 1990). The seasonal cycle makes the Northern Hemisphere and South 

Hemisphere populations distinct stocks that never mix (Lockyer, 1984). Humpback whales 

exhibit a seasonal change in behavior linked with the migratory cycle and congregate in 

groups both in the feeding and breeding areas: cooperation for coordinated feeding has been 

observed in high latitude while competitive reproductive groups are likely to appear in 

breeding grounds (Baraff et al., 1991; Clapham, 1993; Clapham et al., 1993b; Stevick et al., 

2006; Tyack and Whitehead, 1982; Valsecchi et al., 2002). 

Application to the simulations 

Sex ratio 

Chittleborough’s study (1965) suggested a sex ratio very slightly biased towards males 

at birth. So a sex ratio of 52% of males was applied to the population at the beginning and to 

determine the sex of the new born.  
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Survival rate 

The following (over)simplifying assumption is made: survival probability is constant 

over all time periods and equal for all individuals. An equal survival rate is used for the 

population: 0.91, even though the calves (younger than 2 years-old) might have a slightly 

smaller survival probability (Buckland, 1990; Chittleborough, 1965; Gabriele et al., 2001; 

Mizroch et al., 2004). 

Reproductive rate 

In each year, except for the first year, mature females, the ones being more than 5 

years old (Chittleborough, 1965; Clapham and Mayo, 1990), could potentially give birth to a 

calf at a rate of 0.8 if they did not have a calf the year before or 0.1 if they did (Barlow and 

Clapham, 1997; Chittleborough, 1965; Clapham and Mayo, 1987, 1990). In the first year, the 

birth history for females is not available so a mean annual reproductive rate for females of 

0.37 is used (Barlow and Clapham, 1997; Chittleborough, 1965; Clapham and Mayo, 1987, 

1990). 

Sampling methods 

Two sampling methods are frequently used to generate capture histories for humpback 

whale populations: photo-identification and genotyping from skin biopsy. Then method 1 

described above could be assimilated to photo-identification and method 2 could correspond 

to genetic sampling. 

Heterogeneity in capture probability 

The model was designed in the context of the sampling protocol used in surveys of 

humpback whale populations but is relevant to a broad range of long-lived animals. 

Reproducing a realistic field sampling situation, though simplified, was an important 

consideration in the simulations to investigate the performance of the model when specific 

model assumptions were not met in the field.  

In this section, the simulated population is split into four classes g of animals: female 

breeding adults, female non-breeding adults, male adults, calves. Each class g is given a 

capture probability gc)Pr(  which stays constant over time. Indeed, in the biological context of 

the present model, it is believed that capture probabilities might be dependent on the 

reproductive status rather than depending randomly on time alone. Six cases of heterogeneity 

within the population are considered in this chapter. To make the comparison possible 

between the cases of heterogeneity and the homogeneity counterpart, four scenarios of 
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heterogeneity with an average capture probability for the population set at 0.2, and two 

scenarios with an average capture probability of 0.7 are explored. The average capture 

probability of 0.2 was believed to be in agreement with the average capture probability found 

in the biological population to which the model is later applied in chapter five. I chose also to 

test the performance of the estimator with a high average capture probability (0.7) and 

individual capture probabilities greater than 0.5 in the presence of heterogeneity. The purpose 

is to see whether, even with high capture probabilities, any potential problem still exists. 

Thus, for each scenario, a degree of heterogeneity is calculated. This degree of 

heterogeneity can be expressed by the coefficient of variation CV  of the distribution of the 

capture probabilities over individuals, i.e.: µσ=CV  

As stated above, in the simulated population, four subpopulations can have a distinct 

capture probability: calves (under 2 years-old), breeding females, non-breeding females, 

males.  

For a starting population comprising 500 individuals, the numbers of individuals in 

each class at the beginning of the simulations (during year 1) are approximated to be: 72 

calves, 72 breeding females, 168 non breeding females, 260 males. Then, the general equation 

to get all the capture probabilities and coefficient of variation for each case is given by: 

1) 2.0
572

)Pr(260)Pr(168)Pr(72)Pr(72
=

×+×+×+× mNBfBfca cccc
 

 (1) 

where  cac)Pr(  is the capture probability of the calves, 

 Bfc)Pr(  is the capture probability of the breeding females, 

 NBfc)Pr(  is the capture probability of the non-breeding females, 

 mc)Pr(  is the capture probability of the males. 

N.B.: “m” corresponds to adult males, “NBF” to non-breeding mature females, “BF” to 

breeding females and “ca” to calves. 

 

Note that the starting number is 500 but the reproductive process takes place just 

before the sampling process, adding approximately 72 calves to the population. Therefore, the 

total number of individuals just before sampling is not 500 but approximately 572. 
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I am aware that this is an open population but the mortality rate is assumed to be very 

low (0.09) and the same for all classes – emigration is being ignored (see chapter five for a 

discussion of these values for the New Caledonian population of humpback whales). So, even 

though the population increases through the simulation, this equation is assumed to 

approximately hold at later time periods. 

 

2) 2.0=µ  

[ ])²)Pr((260)²)Pr((168)²)Pr((72)²)Pr((72
572
1 µµµµσ −×+−×+−×+−××= mNBfBfca cccc

 

 

The capture probabilities for the four heterogeneity cases are the following: 

Table 3-1- Capture probability for each class for every case of heterogeneity considered at an average capture 
probability of 0.2.  
 
 

mc)Pr(  NBfc)Pr(  Bfc)Pr(  cac)Pr(   CV 

Case 1 0.21 0.22 0.15 0.15 0.14 
Case 2 0.24 0.24 0.1 0.05 0.37 
Case 3 0.25 0.25 0.05 0.05 0.43 
Case 4 0.35 0.1 0.05 0.05 0.68 

 

Case 1 has a small heterogeneity, cases 2 and 3 illustrate moderate heterogeneity and 

cases 4 presents what would be regarded as severe heterogeneity in capture probabilities. 

The same procedure is applied with an average capture probability of 0.7 and capture 

probabilities for each class of individuals all greater than 0.5 to create two cases of 

heterogeneity: 

Table 3-2-Capture probability for each class for every case of heterogeneity considered at an average capture 
probability of 0.7.  
 
 

mc)Pr(  NBfc)Pr(  Bfc)Pr(  cac)Pr(  CV 

Case 5 0.8 0.5 0.5 0.5 0.23 
Case 6 0.5 0.86 0.86 0.86 0.26 
 
 

Note that in case 5 the average capture probability is not 0.7 but 0.64. 
 

Only two cases with small heterogeneity are created here because with a high mean 

capture probability (0.7 or 0.64) and the necessity of having all capture probabilities higher 

than 0.5, it was not possible to obtain a big coefficient of variation. 
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3.3.2. Results 
 

Estimation with heterogeneity in capture and equal sampling probabilities 
 

The results of the simulation to estimate the error and the precision of the TSJS 

estimator in the presence of heterogeneity in capture probability are summarized in Table 3-3. 

The six cases of heterogeneity described in Table 3-1 and Table 3-2 are tested under the 

scenario 20-40-40 and a starting population of 500 individuals. Illustrating the performances 

of the TSJS model using scenario 20-40-40 presents two advantages: there is no other form of 

heterogeneity (i.e. no heterogeneity between the two sampling methods, i.e. )Pr()Pr( 21 ss = ) 

and the use of the smallest probability of double tagging handled by the model, i.e. 

2.0)Pr( 3 =s . This scenario should thus provide, under heterogeneity in capture probability, 

the biggest error given by the estimator that can be expected. 

 

 

 

 
 
Table 3-3- MRE, RMSRE, mean estimate and true value of the population size over the simulation runs, and 
standard errors of the estimated values and nominal and log-normal CI coverage rates at each capture occasion of 
a 10-occasion study for different cases of heterogeneity in capture probabilities with scenario 20-40-40 and a 
starting population of 500 individuals. 
 
Heterogeneity 
case 

Mean  
Estimate 

Mean 
True 
Value 

MRE Mean 
estimated 
SE 

RMSRE Nominal 
95% CI 
coverage 
rate (%) 

Log-
normal CI 
coverage 
rate (%) 

Case 1 
CV =0.14 

2.0)r(P =gc  

            2N̂  

 
 
 
 

608 

 
 
 
 

627  

 
 
 
 

-0.03 

 
 
 
 

73 

 
 
 
 

0.3 

 
 
 
 

64 

 
 
 
 

65 

            3N̂  638 654 -0.02 71 0.2 72 76 

            4N̂  660 693 -0.05 74 0.17 75 76 

            5N̂  696 719 -0.03 79 0.17 81 85 

            6N̂  738 745 -0.01 84 0.16 87 89 

            7N̂  745 763 -0.02 86 0.17 80 82 

            8N̂  774 794 -0.03 90 0.18 75 80 

            9N̂  815 830 -0.02 97 0.22 73 79 
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Heterogeneity 
case 

Mean  
Estimate 

Mean 
True 
Value 

MRE Mean 
estimated 
SE 

RMSRE Nominal 
95% CI 
coverage 
rate (%) 

Log-
normal CI 
coverage 
rate (%) 

Case 2 
CV =0.37 

2.0)r(P =gc  

            2N̂  

 
 
 

 
513 

 
 
 

 
626  

 
 
 

 
-0.18 

 
 
 

 
57 

 
 
 

 
0.26 

 
 
 

 
43 

 
 
 

 
47 

            3N̂  490 653 -0.25 50 0.28 27 30 

            4N̂  529 693 -0.24 56 0.27 29 34 

            5N̂  566 718 -0.21 63 0.25 39 44 

            6N̂  602 745 -0.19 68 0.23 45 52 

            7N̂  622 763 -0.18 73 0.22 49 55 

            8N̂  642 795 -0.19 75 0.24 44 50 

            9N̂  714 830 -0.14 85 0.24 56 59 

Case 3 
CV =0.43 

2.0)r(P =gc  

            2N̂  

 
 
 
 

508 

 
 
 
 

627 

 
 
 
 

-0.19  

 
 
 
 

57 

 
 
 
 

0.29 

 
 
 
 

38 

 
 
 
 

41 

            3N̂  490 655 -0.25 51 0.29 25 30 

            4N̂  523 694 -0.25 56 0.28 26 30 

            5N̂  568 718 -0.21 64 0.24 40 46 

            6N̂  597 744 -0.2 69 0.23 41 49 

            7N̂  626 761 -0.18 74 0.21 48 57 

            8N̂  626 793 -0.21 75 0.25 35 42 

            9N̂  730 827 -0.12 88 0.23 57 60 

Case 4 
CV =0.68 

2.0)r(P =gc  

            2N̂  

 
 
 
 

343 

 
 
 
 

627 

 
 
 
 

-0.45  

 
 
 
 

29 

 
 
 
 

0.46 

 
 
 
 

1 

 
 
 
 

1 

            3N̂  354 653 -0.46 27 0.46 0 0 

            4N̂  364 694 -0.48 29 0.48 0 0 

            5N̂  410 717 -0.43 36 0.43 0 0 

            6N̂  426 745 -0.43 39 0.43 0 0 

            7N̂  443 763 -0.42 42 0.42 1 1 

            8N̂  465 795 -0.42 45 0.42 1 1 

            9N̂  479 828 -0.42 47 0.43 2 2 
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Heterogeneity 
case 

Mean  
Estimate 

Mean 
True 
Value 

MRE Mean 
estimated 
SE 

RMSRE Nominal 
95% CI 
coverage 
rate (%) 

Log-
normal CI 
coverage 
rate (%) 

Case 5 
CV =0.23 

64.0)r(P =gc  

            2N̂  

 
 
 
 

556 

 
 
 
 

626 

 
 
 
 

-0.11  

 
 
 
 

6 

 
 
 
 

0.12 

 
 
 
 

2 

 
 
 
 

2 

            3N̂  605 653 -0.07 7 0.08 5 5 

            4N̂  654 692 -0.05 10 0.06 20 21 

            5N̂  685 718 -0.05 13 0.05 32 33 

            6N̂  712 744 -0.04 14 0.05 41 43 

            7N̂  723 761 -0.05 15 0.06 32 37 

            8N̂  738 793 -0.07 17 0.07 17 17 

            9N̂  741 828 -0.11 18 0.11 3 3 

Case 6 
CV =0.26 

7.0)r(P =gc  

            2N̂  

 
 
 
 

599 

 
 
 
 

627 

 
 
 
 

-0.05  

 
 
 
 

4  

 
 
 
 

0.05 

 
 
 
 

9 

 
 
 
 

9 

            3N̂  653 655 0 7 0.02 64 66 

            4N̂  712 695 0.02 10 0.03 62 62 

            5N̂  743 719 0.03   11 0.04 45 45 

            6N̂  771 746 0.03   13 0.04 55 55 

            7N̂  782 764 0.02 1 0.03 75 75 

            8N̂  795 795 0 15 0.02 93 93 

            9N̂  793 830 -0.04 16 0.05 35 35 

2N̂ , …, 9N̂ =population size estimate at time 2, …, 9. 

As already reported in other studies, the error for N̂  was found, in all heterogeneity 

cases explored, to be negative, bigger in the RMSRE and in the absolute value of the MRE 

than in the case of homogeneity reported in Table 2-1, where capture probability is also 0.2 

(for comparison with the heterogeneity case 1 to 4) or higher than 0.5 (for comparison with 

the heterogeneity case 5 and 6) (Carothers, 1973; Gilbert, 1973). As expected the more severe 

the heterogeneity within the population is, the bigger the underestimation. Case 1 exhibits a 

low degree of heterogeneity and as such the error is no more than the one produced by the 

homogeneous counterpart where the constant capture probability )Pr(c  equals 0.2. Cases 2 

and 3 demonstrate a moderate heterogeneity but both the MRE and the RMSRE are 

considerably larger (|MRE|>0.1 and RMSRE>0.22) than the homogeneous case. Case 4 
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shows a high degree of heterogeneity leading to very large MRE and RMSRE (|MRE|>0.42 

and RMSRE>0.42). 

In terms of standard error, case 1 does not differ from the homogeneous case but from 

case 2 onwards the standard errors decrease substantially as the degree of heterogeneity 

increases, becoming less than half the size in case 4 than the homogeneous counterpart (Table 

2-1): the values go from 8% of the population size on the first occasion to almost 10% on the 

last occasion against approximately 12% of the population at any given occasion when there 

is no heterogeneity.  

Concerning the CI coverage rate, in the case 1, it is similar to the ones reported in 

Table 2-1 for a capture probability )Pr(c  of 0.2, varying from 64% on the first estimation 

occasion to 87% on the fifth estimation occasion for the normal approximation. Both the 

normal and log-normal approaches to construct the confidence intervals perform very 

similarly with the log-normal method having slightly higher CI coverage rates. CI coverage 

rate decreases in case 2 and 3, being half of the value found for case 1. In the most extreme 

case of heterogeneity (case 4), the CI coverage rate is zero on almost all capture occasions. 

This seems to be due to a mixture of error in the population estimates and in the standard 

errors. With a higher capture probability and a reasonable heterogeneity in capture probability 

(case 5 and 6), standard errors tend to be small, the consequence of which is a very poor CI 

coverage on some capture occasions, especially on the early and last capture occasions. In 

these two cases, this seems to be due to error in the standard errors only as the RMSRE 

reports only a minimal error in the estimates. 

Finally, cases 5 and 6 present on average a high capture probability as all individuals 

have a probability of being caught equal or higher than 0.5. The estimator appears relatively 

unbiased in both cases with the MRE usually smaller than 0.1 and the overall error is small 

with the RMSRE below 0.1, except on the first and last occasions of case 5.  

As expected, the TSJS model performs better with high capture probability (i.e. 0.5) 

and small coefficient of variation.  

 

 

 

 



3. When things go wrong: individual heterogeneity and tag misreading 
 

 112 

Estimation with heterogeneity in capture and unequal sampling probabilities 
 

The TSJS model was investigated under heterogeneity in capture and sampling 

scenario 50-37.5-12.5 and the results are displayed in Table 3-4. The estimator is still robust 

to the inequality in the probabilities  between the two sampling methods with a ratio 3:1 as 

long as the probability of double capture is not smaller than 0.5 (Table 2-2) . Here the aim is 

to see if adding another disturbance (i.e. the heterogeneity in capture probabilities) would 

interfere with the performance of the estimator. 

Table 3-4- MRE, RMSRE, mean estimate and true value of the population size over the simulation runs, and 
standard errors of the estimated values and nominal and log-normal CI coverage rates at each capture occasion of 
a 10-occasion study for different cases of heterogeneity in capture probabilities with scenario 50-37.5-12.5 and a 
starting population of 500 individuals. 
 
Heterogeneity 
case 

Mean  
Estimate 

Mean True 
Value 

MRE Mean 
estimated SE 

RMSRE Nominal 
95% CI 
coverage 
rate (%) 

Log-
normal CI 
coverage 
rate (%) 

Case 1 
CV =0.14 

2.0)r(P =gc  

            2N̂  

 
 
 
 

640 

 
 
 
 

626 

 
 
 
 

0.02 

 
 
 
 

59 

 
 
 
 

0.23 

 
 
 
 

63 

 
 
 
 

65 

            3N̂  658 653 0.01 57 0.16 71 73 

            4N̂  704 692 0.02 63 0.15 81 80 

            5N̂  713 716 0 65 0.12 86 88 

            6N̂  745 743 -0.01 69 0.12 86 87 

            7N̂  753 761 0 71 0.11 89 90 

            8N̂  808 794 0.02 77 0.13 88 88 

            9N̂  831 827 0 81 0.19 73 73 

Case 2 
CV =0.37 

2.0)r(P =gc  

            2N̂  

 
 
 
 

526 

 
 
 
 

624 

 
 
 
 

-0.16 

 
 
 
 

45 

 
 
 
 

0.23 

 
 
 
 

34 

 
 
 
 

38 

            3N̂  505 652 -0.22 41 0.25 22 25 

            4N̂  539 691 -0.22 45 0.24 23 26 

            5N̂  591 716 -0.17 53 0.2 32 43 

            6N̂  610 742 -0.18 56 0.21 37 41 

            7N̂  644 761 -0.15 61 0.18 46 53 

            8N̂  663 792 -0.16 64 0.19 45 50 

            9N̂  729 826 -0.12 71 0.21 50 52 
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Heterogeneity 
case 

Mean  
Estimate 

Mean True 
Value 

MRE Mean 
estimated SE 

RMSRE Nominal 
95% CI 
coverage 
rate (%) 

Log-
normal CI 
coverage 
rate (%) 

Case 3 
CV =0.43 

2.0)r(P =gc  

            2N̂  

 
 

 
 

529 

 
 

 
 

626 

 
 

 
 

-0.15 

 
 

 
 

45 

 
 

 
 

0.24 

 
 

 
 

40 

 
 

 
 

40 

            3N̂  504 652 -0.23 41 0.25 20 23 

            4N̂  542 692 -0.22 44 0.24 23 25 

            5N̂  581 717 -0.19 52 0.21 34 38 

            6N̂  607 743 -0.18 56 0.21 36 38 

            7N̂  631 761 -0.17 61 0.2 39 46 

            8N̂  663 792 -0.16 64 0.21 44 47 

            9N̂  718 827 -0.13 70 0.21 48 52 

Case 4 
CV =0.68 

2.0)r(P =gc  

            2N̂  

 
 
 
 

362 

 
 
 
 

626 

 
 
 
 

-0.42 

 
 
 
 

24 

 
 
 
 

0.43 

 
 
 
 

0 

 
 
 
 

0 

            3N̂  367 653 -0.44 22 0.44 0 0 

            4N̂  385 693 -0.44 25 0.45 0 0 

            5N̂  424 716 -0.41 30 0.41 0 0 

            6N̂  438 743 -0.41 32 0.41 0 0 

            7N̂  474 760 -0.38 37 0.38 0 0 

            8N̂  482 793 -0.39 38 0.4 0 0 

            9N̂  511 827 -0.38 42 0.39 2 3 

Case 5 
CV =0.23 

64.0)r(P =gc
 

            2N̂  

  
 
 
 

            
           576 

 
 
 
 

               
              628 

 
 
 
 
 

        -0.08 

 
 
 
 
 

                   4 

 
 
 
 
 

         0.09 

 
 
 
 
 

            1 

 
 
 
 
 

              1 

            3N̂  619 655 -0.05 5 0.06 8 9 

            4N̂  665 695 -0.04 8 0.05 18 20 

            5N̂  691 719 -0.04 10 0.04 32 33 

            6N̂  716 745 -0.04 12 0.04 34 36 

            7N̂  733 763 -0.04 13 0.05 41 43 

            8N̂  756 796 -0.05 15 0.05 26 28 

            9N̂  773 832 -0.07 16 0.08 16 16 
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Heterogeneity 
case 

Mean  
Estimate 

Mean True 
Value 

MRE Mean 
estimated SE 

RMSRE Nominal 
95% CI 
coverage 
rate (%) 

Log-
normal CI 
coverage 
rate (%) 

 
Case 6 
CV =0.26

7.0)r(P =gc  

            2N̂  

 
 

 
 
 

617 

 
 

 
 
 

626 

 
 
 
 
 

-0.01 

 
 

 
 
 

3 

 
 

 
 
 

0.03 

 
 

 
 
 

24 

 
 

 
 
 

24 

            3N̂  658 655 0.01 5 0.02 55 56 

            4N̂  712 695 0.03 7 0.03 40 41 

            5N̂  738 718 0.03 9 0.03 38 39 

            6N̂  766 745 0.03 10 0.03 45 46 

            7N̂  778 763 0.02 11 0.02 75 76 

            8N̂  801 795 0.01 12 0.02 95 95 

            9N̂  809 828 -0.02 14 0.03 67 70 

2N̂ ,…, 9N̂ =population size estimate at time 2,…,9. 

 
 

The TSJS estimates appear unbiased only in the cases of high average capture 

probability (cases 5 and 6). For cases 1 to 4, the error increases with the degree of 

heterogeneity. For cases 2 and 3, the MRE is on average below 0.18 and the RMSRE is 

always below 0.25. However, for case 4 representing a high heterogeneity in capture 

probabilities, the estimates are severely negatively biased (|MRE|>0.38 and 

0.38<RMSRE<0.45). Compared to the results under the same scenario (50-37.5-12.5) with no 

heterogeneity (Table 2-2), case 1 of heterogeneity displays, for MRE and RMSRE, similar 

values to the values of the counterpart case with no heterogeneity with 2.0)Pr( =c . Cases 2 

and 3 of heterogeneity present similar RMSRE but the values of the MRE greatly differ 

compared to the case with 2.0)Pr( =c  in Table 2-2.  Case 4 shows RMSRE values more than 

twice bigger (except in the second occasion) and MRE values more than 7 times bigger in 

almost all capture occasions than the values of, respectively, RSMRE and MRE reported in 

Table 2-2 for 2.0)Pr( =c . In cases 5 and 6, values of MRE and RMSRE are similar to the 

values of MRE and RMSRE found in Table 2-2 for 5.0)Pr( ≥c . 

The CI coverage rate is equivalent to the one with equal sampling probabilities under 

scenario 20-40-40: in case 1, it is similar to the ones reported in Table 2-1 for a capture 

probability of 0.2. However, it quickly decreases in case 2 and 3, being half of the value 
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found for case 1. CI coverage rates are also smaller in cases 2 and 3 of heterogeneity than they 

are in Table 2-2 with 2.0)Pr( =c . In the most extreme cases of heterogeneity (case 4), the CI 

coverage rate is zero on almost all capture occasions. With a higher capture probability and a 

reasonable heterogeneity in capture probability (case 5 and 6), standard errors tend to be very 

small and the CI coverage rate is generally poor. Moreover, in cases 5 and 6, CI coverage 

rates are smaller than those found in Table 2-2 for 5.0)Pr( ≥c , although better in case 6 than 

in case 5. As observed earlier, the normal approximation and the log-normal transformation 

perform very similarly for the construction of the confidence intervals, with the log-normal 

approach leading to slightly higher coverage rates. 

 Finally, results in Table 3-4 are similar to the results in Table 3-3, presenting 

respectively cases with heterogeneity and unequal sampling probabilities and cases with 

heterogeneity and equal sampling probabilities. Therefore, errors in the estimates arise from 

the heterogeneity in capture probabilities and having unequal sampling probabilities with 

heterogeneous capture probabilities does not affect furthermore the performance of the TSJS 

model. 

 

3.4. Heterogeneity in sampling probabilities 
 

3.4.1. Materials and Methods 
 

Another degree of heterogeneity can be achieved by setting different sampling 

probabilities between the four classes which could be present in a humpback population. In 

this section, all the animals have the same probability of being caught (or detected) )Pr(c and 

the “heterogeneity” is characterized by a difference in sampling probabilities )Pr( 1s , )Pr( 2s , 

)Pr( 3s  between the classes g. Two cases representing the heterogeneity in sampling are tested 

for a capture probability )Pr(c  of 0.2 and 0.5. In both cases, each class is given as sampling 

probabilities gs )Pr( 1 , gs )Pr( 2 , gs )Pr( 3  either the scenario 20-40-40 or 50-25-25, i.e. for class 

g 2.0)Pr( 3 =gs , 4.0)Pr( 1 =gs , 4.0)Pr( 2 =gs  or 5.0)Pr( 3 =gs , 25.0)Pr( 1 =gs , 25.0)Pr( 2 =gs . 

The starting population just before the sampling process of the first sampling occasion 

comprises again approximately 572 individuals, and the number of individuals in each class at 

the beginning of the simulations is set at: 72 calves, 72 breeding females, 168 non breeding 
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females, 260 males. This gives the possibility of calculating a ratio for the sampling 

heterogeneity scenarios. This ratio simply describes the amplitude of the heterogeneity in 

sampling probability in the population in the absence of a statistic equivalent to the coefficient 

of variation. 

Table 3-5- Sampling scenario for each class g for the four cases investigated. 
 
 Pr(s3)m, Pr(s1)m, 

Pr(s2)m 

Pr(s3)NBF, 
Pr(s1)NBF, 
Pr(s2)NBF 

Pr(s3)BF, 
Pr(s1)BF, 
Pr(s2)BF 

Pr(s3)ca, 
Pr(s1)ca, 
Pr(s2)ca 

Pr(c) ratio 

Case 1 50-25-25 20-40-40 20-40-40 20-40-40 0.2 2:2 
Case 2 50-25-25 20-40-40 20-40-40 20-40-40 0.5 2:2 
Case 3 20-40-40 50-25-25 20-40-40 20-40-40 0.2 3:1 
Case 4 20-40-40 50-25-25 20-40-40 20-40-40 0.5 3:1 

 

Cases 1 and 2 have a less severe heterogeneity in sampling probabilities than cases 3 

and 4. 

3.4.2. Results 
 

Following the investigation of the TSJS model under four cases of heterogeneity in 

sampling probabilities among classes of individuals described in Table 3-5, results of the 

performance of the estimator when there is heterogeneity in sampling probabilities are shown 

in Table 3-6. 

Table 3-6- MRE, RMSRE, mean estimate and true value of the population size over the simulation runs, and 
standard errors of the estimated values and nominal and log-normal CI coverage rates at each capture occasion of 
a 10-occasion study for 2 cases of heterogeneity in sampling probabilities between the 4 classes of individuals 
with capture probability of 0.2 and 0.5 and a starting population of 500 individuals. 
 
Sampling 
case 

Mean  
Estimate 

Mean True 
Value 

MRE Mean 
estimated 
SE 

RMSRE Nominal 
95% CI 
coverage 
rate (%) 

Log-
normal CI 
coverage 
rate (%) 

Case 1  
Ratio=2 :2 
Pr(c)=0.2 

            2N̂  

 
 
 

611 

 
 
 

639 

 
 
 

-0.04  

 
 
 

59 

 
 
 

0.24 

 
 
 

52 

 
 
 

55 

            3N̂  656 692 -0.05 61 0.19 64 68 

            4N̂  718 757 -0.05 69 0.16 70 75 

            5N̂  779 804 -0.03 78 0.15 79 80 

            6N̂  834       851 -0.02 85 0.16 87 87 

            7N̂  872 886 -0.02 91 0.16 85 87 

            8N̂  936 943     0                                                                 100 0.19 80 81 
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Sampling 
case 

Mean  
Estimate 

Mean True 
Value 

MRE Mean 
estimated 
SE 

RMSRE Nominal 
95% CI 
coverage 
rate (%) 

Log-
normal CI 
coverage 
rate (%) 

            9N̂  1015 1003   0.01 110 0.24 74 75 

 
Case 2  
Ratio=2 :2 
Pr(c)=0.5 

            2N̂  

 
 
 
 

             593 

 
 
 
 

639 

 
 
 
 

-0.07  

 
 
 
 

7 

 
 
 
 

0.06  

 
 
 
 

23 

 
 
 
 

24 

            3N̂  632 693 -0.09 9 0.04 6 7 

            4N̂  697 757 -0.08 14 0.04 16 17 

            5N̂  762 806 -0.05 20 0.04 41 44 

            6N̂  809 852 -0.05 23 0.04 54 56 

            7N̂  859 888 -0.03 27 0.04 73 78 

            8N̂  901 943 -0.04 31 0.04 71 74 

            9N̂  961 1004 -0.04 35 0.05 71 72 

 
Case 3  
Ratio=3 :1 
Pr(c)=0.2 

            2N̂  

 
 

 
 

619 

 
 
 

 
639 

 
 
 
  

-0.03  

 
 
 

 
61 

 
 
 

 
0.21   

 
 
 

 
54 

 
 

 
 

54 

            3N̂  634 692 -0.08 60 0.16 59 61 

            4N̂  707 757 -0.07 69 0.16 67 72 

            5N̂  752 804 -0.06 76 0.14 77 81 

            6N̂  818 849 -0.04 85 0.13 83 86 

            7N̂  861 885 -0.03 91 0.14 87 90 

            8N̂  922 940 -0.02 99 0.16 81 84 

            9N̂  958 1002 -0.04 106 0.2 75 78 

Case 4  
Ratio=3 :1 
Pr(c)=0.5 

            2N̂  

 
 
 

584 

 
 
 

640 

 
 
 

-0.09  

 
 
 

7 

 
 
 

0.06  

 
 
 

12 

 
 
 

13 

            3N̂  626 694 -0.1 9 0.04 6 6 

            4N̂  688 757 -0.09 15 0.04 12 12 

            5N̂  747 805 -0.07 19 0.04 23 26 

            6N̂  796 851 -0.07 23 0.04 39 42 

            7N̂  834 886 -0.06 26 0.03 48 50 

            8N̂  887 940 -0.06 30 0.03 57 61 

            9N̂  935 1002 -0.07 34 0.05 49 50 

2N̂ , …, 9N̂ =population size estimate at time 2, …, 9. 
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The heterogeneity in sampling probabilities among the classes of individuals as 

presented here does not seem to affect the performance of the TSJS estimator at both capture 

probabilities 0.2 and 0.5 in terms of bias: the estimates are slightly negatively biased (MRE 

no more than -0.1 and values for the RMSRE on average below 0.1). For both ratios (2:2 and 

3:1) of heterogeneity in sampling probabilities among the classes, as one might expect, the 

cases with a capture probability of 0.5 give better results in terms of RMSRE with values 

below 0.06 (against values between 0.13 and 0.24 for a capture probability of 0.2). The higher 

capture probability produces smaller standard errors, as reported for earlier tables, i.e. Table 

2-1, Table 2-2, Table 2-3.  

In the presence of heterogeneity in sampling probabilities among the classes, as 

expected, increasing the capture probability leads to a decrease of the error, i.e. larger capture 

probabilities result in more precise estimates. So, if the error is small, the CI coverage rate 

should still be good. The problem here is that increasing the capture probability also leads to 

an excessive decrease in the standard errors which systematically results in a smaller CI 

coverage: for a capture probability of 0.2 the CI coverage rate varies, with the normal 

approximation to construct the confidence intervals, from 52% to 87% (55% to 90% with the 

log-normal transformation) while it ranges from 6% to 73% (7% to 78% with the log-normal 

transformation) for a capture probability of 0.5.  

 

3.5. Tag misreading 
 

3.5.1. Materials and Methods 
 

A tag is defined as any marking, natural or added to the individuals during capture that 

allows the identification of each animal specifically in later recapture. In order to evaluate the 

impact of tag misreading in this chapter, tag misreading was included in the simulation. The 

tag misreading concerns only the single-type of capture as I assume that, with simultaneous 

marking, i.e. marking by both methods on the same occasion, tags cannot be lost as one 

method backs-up the other. A probability of missing the tag or not recognizing it is introduced 

by creating a matrix of 0-1 uniform random numbers of the same dimensions as the CMR 

matrix (created after the situation of overlap). Then, if the random number is smaller than a 

set tag misreading rate and if the event corresponds to a recapture by method 1 or 2 (namely 

to a “4”, “5”, “17” or “18”) (see chapter two), the tag is considered lost, is erased from the 
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history of the individual and a new line is added to the CMR matrix. This new line only 

contains “0” and the capture event erased previously. So here I consider the situation where 

the tag misreading results from a false negative matching mistake (for visual tags such as 

ringing and photo-identification data), i.e. the visual tag is misread and not correctly matched, 

or a laboratory mistake (for genetic data such as scat or hair data), i.e. a new false genotype 

appears instead of the proper one. Therefore, individuals that lose their tag on one occasion do 

not retain this new identity for subsequent recaptures but could possibly lose again their tag 

on a later occasion. This configuration was chosen for the simulation as I believe that, in 

many vertebrate studies (e.g. humpback whales), it is the most likely scenario and that it is 

unlikely that an individual which has lost its tag (either the photo or the genetic one) retains 

this false identity for subsequent recaptures, except maybe if there is a new feature causing 

the mismatch (e.g. new scar resulting from an injury…). In the presence of tag misreading, 

the matrix created after the tag misreading process is used to estimate population size. 

The tag misreading rate is assumed homogeneous over the population, set at 5% per 

occasion which is believed to be above the rate of error present in humpback whale studies 

but might be plausible for other tag systems (Carlson and Mayo, 1990; Palsbøll et al., 1997; 

Stevick et al., 2001). 

 

3.5.2. Results 
 

The results obtained with a tag misreading situation in the case of equal catchability 

under the sampling scenario 20-40-40 and 50-25-25 are illustrated in Table 3-7  for a starting 

population of 500 (572 really) over 10 capture occasions. 
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Table 3-7- MRE, RMSRE, mean estimate and true value of the population size over the simulation runs, and 
standard errors of the estimated values and nominal and log-normal CI coverage rates at each capture occasion of 
a 10-occasion study with a tag misreading rate of 5% homogeneous within the population and a starting 
population of 500 individuals. 
 
Case Mean  

Estimate 
Mean True 
Value 

MRE Mean 
estimated 
SE 

RMSRE Nominal 
95% CI 
coverage 
rate (%) 

Log-
normal CI 
coverage 
rate (%) 

Case 1 
20-40-40 
Pr(c)=0.2 

            2N̂  

 
 
 

647 

 
 
 

641 

 
 
 

0.01   

 
  
 

68 

 
 
 

0.26  

 
 
 

56 

 
 
 

58 

            3N̂  699 694 0.01 71 0.17 77 79 

            4N̂  771 758 0.02 81 0.15 87 88 

            5N̂  807 805 0 86 0.14 88 89 

            6N̂  869   852 0.02 94 0.14 91 92 

            7N̂  919 887 0.03 100 0.15 91 88 

            8N̂  961 942 0.02 107 0.16 86 85 

            9N̂  1017 1002 0.01 115 0.19 76 78 

 
Case 2 
20-40-40 
Pr(c)=0.5 

            2N̂  

 
 
 

 
621 

 
 
 

 
638  

 
 
 

 
-0.03 

 
 
 

 
9 

 
 
 

 
0.14  

 
 
 

 
29 

 
 
 

 
30 

            3N̂  675 691 -0.02 13 0.12 49 49 

            4N̂  75 755 0 19 0.1 80 79 

            5N̂  803 803 0 22 0.1 86 87 

            6N̂  847 849 0 26 0.09 93 94 

            7N̂  877 886  -0.01 28 0.09 94 94 

            8N̂  919 939 -0.02 31 0.11 83 85 

            9N̂  966 999 -0.03 35 0.13 70 72 

Case 3 
50-25-25 
Pr(c)=0.2 

            2N̂  

 
 

 
674 

 
 

 
627 

 
  

 
0.07 

 
 

 
65 

 
 

 
0.26 

 
 

 
64 

 
 

 
64 

            3N̂  706 655 0.08 64 0.18 76 76 

            4N̂  757 694 0.09 69 0.17 79 76 

            5N̂  774 719 0.08 71 0.16 80 78 

            6N̂  789 745 0.06 73 0.14 84 84 

            7N̂  827 763 0.08 77 0.15 86 83 

            8N̂  855 795 0.08 82 0.16 82 82 

            9N̂  879 829 0.06 86 0.19 78 75 
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Case Mean  
Estimate 

Mean True 
Value 

MRE Mean 
estimated 
SE 

RMSRE Nominal 
95% CI 
coverage 
rate (%) 

Log-
normal CI 
coverage 
rate (%) 

Case 4 
50-25-25 
Pr(c)=0.5 

            2N̂  

 
 
 

643 

 
 
 

626 

 
 
 

0.03  

 
 
 

11 

 
 
 

0.07 

 
 
 

35 

 
 
 

36 

            3N̂  674 656 0.03 13 0.05 64 64 

            4N̂  715 694 0.03 16 0.05 72 72 

            5N̂  742 718 0.03 18 0.04 72 72 

            6N̂  771 743 0.04 20 0.05 74 73 

            7N̂  786 760 0.03 21 0.05 72 71 

            8N̂  819 792 0.03 24 0.05 79 76 

            9N̂  854 826 0.03 26 0.06 75 75 

2N̂ , …, 9N̂ =population size estimate at time 2, …, 9. 

 

With both scenarios, the results are similar to what was found in other studies: except 

under scenario 20-40-40 for a capture probability of 0.5 for which the error was negative or 0, 

tag misreading usually induces positive bias because capture probability )Pr(c  tends to be 

underestimated (Williams et al., 2002). The error is negligible for both capture probabilities, 

0.2 and 0.5 (|MRE|<0.1). The overall error is below 0.2 for all intermediate capture occasions 

and gets smaller as the capture and the simultaneous sampling probabilities )Pr(c  and )Pr( 3s  

get bigger. In terms of CI coverage, the results are similar to those found in the equivalent 

cases with no misread tag (Table 2-1 and Appendix 5), except in the case with a capture 

probability of 0.5 and scenario 20-40-40 where the results are better when there is tag 

misreading occurring. The CI coverage appears to be better than usual for this method (>80%) 

in most cases, except in case 4 (with capture probability )Pr(c =0.5 and sampling scenario 50-

25-25) where it does not exceed 79%. 
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3.6. Discussion 

Heterogeneity in capture probabilities 
 

Violation of the assumption of homogeneity in capture probability usually prevents or 

restricts the use of the classic JS model for the purpose of population size estimation in many 

wildlife studies. This chapter shows, however, that the TSJS estimator is fairly robust when 

the heterogeneity in catchability among classes of individuals is small. Studies focusing on 

the JS model report minor bias on the population size estimate when all individuals have 

capture probabilities greater than 0.5 on all capture occasions (Carothers, 1973; Gilbert, 1973; 

Hwang and Chao, 1995). Similarly here the extension of the JS model, the TSJS model, gives 

negligible error when all individuals have capture probabilities greater than 0.5 on all capture 

occasions. As expected, the negative error increases as the magnitude of the heterogeneity 

rises and serious negative error can occur when the average capture probabilities are small. 

The structure of this heterogeneity is also a factor to take into account when evaluating the 

impact of heterogeneous capture probabilities. Here, I chose to model the heterogeneity in 

capture among classes of individuals rather than among individuals and therefore to set the 

value of the capture probability of the individuals based on biological features rather than 

randomly as we suspect it to be the case in the population studied in chapter five. Another 

source of heterogeneity that should probably be explored in future studies when two sources 

of data are to be combined is where the degree of individual heterogeneity is not the same in 

the two sampling methods. 

 

The performance of the model depends on its assumptions and further work is required 

to develop an open-population model that can handle heterogeneity in capture probability 

which is one of the most frequent sources of bias in abundance estimators (Boulanger et al., 

2004c; Crespin et al., 2008; Hammond, 1986; Link, 2004; Prévot-Julliard et al., 1998).  

 

Heterogeneity in sampling probabilities  

 
In the presence of heterogeneity in sampling probabilities among classes of 

individuals, the estimator is usually relatively unbiased. 
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As mentioned earlier, temporal variation per se in capture or sampling probability was 

not considered here. However, in the present Monte Carlo experiment, some individuals can 

have different sampling and capture probabilities over the course of the study, depending on 

their reproductive status. A new-born female will have a different capture probability when it 

becomes adult and during the adult phase may change its probability of capture several times, 

depending on whether it is breeding or not. General patterns of heterogeneity in capture 

probability are difficult to predict because they may also depend on the magnitude of specific 

trends of temporal variation. In this chapter, I tried to reproduce a simplified pattern of 

heterogeneity in catchability that I think is relevant to the population studied in chapter five in 

order to extrapolate the results on the error of the TSJS estimator to real data. 

 

Tag misreading 
 

There are several ways tags can be misread: (1) an existing tag can be wrongly 

assigned to another individual, (2) a tag can be unrecognized, i.e. not matched where it should 

be, and a new individual is created, (3) the tag of a new individual can be assigned to an 

existing individual, (4) a tag that does not exist can be created, (5) a tag that does not exist can 

be assigned to an existing individual. Errors (4) and (5) correspond to what Creel et al. (2003) 

referred to as “ghost” to represent a non-existing genotype. With natural marking there is no 

list that is error-free and it is typically very hard to know when an error has occurred. In 

photo-matching, the only way to reduce the matching error rate is to have a team of 

experienced people and good-quality photographs. With genetic data, when possible, two runs 

of analysis could help minimizing the lab error. In their study of humpback whales double-

tagged by photo-identification and genetics, Stevick et al. (2001) did not find any false-

positive error, i.e. errors (1), (3), (5) and I also believe that in such studies, if the protocol is 

rigourous, false-positive error is unlikely in matching photographs, at least for this species. In 

genetic data, false-positive error is also very unlikely as the number of possible genotypes 

usually greatly exceeds the number of genotypes in the population. Therefore, for the present 

simulation experiment I only considered false-negative errors. However, the shadow effect is 

not really tag misreading but rather an example of a study design flaw, even though it was 

included in the tag misreading issue. In photo-identification, with non-evolving natural marks, 

as in the humpbacks (unless the animal is injured, e.g. shark bites), the matching error is 

unlikely to be repeated and the individual should not retain this new identity for subsequent 
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recaptures. However, in an effort to be more general, I considered the possibility in the 

simulation that an individual might be missed again creating another individual. Similarly, in 

genetic tagging, the chance of a false DNA fingerprint being assigned again is very small 

given the number of loci is adequate. I again considered potential false negative error for the 

same individual in subsequent recaptures. Finally, the tag misreading rate was assumed 

constant although this might not always be the case, especially in photo-identification data 

where animals with indistinct marks may be more likely to be misread. 

 

With a tag misreading issue, errors in identification generally leads to an 

overestimation of the population size (Stevick et al., 2001). The TSJS estimator demonstrates 

no error due to a homogeneous tag misreading rate, like the JS estimator (Arnason and Mills, 

1981). However, as stated in McDonald et al. (2003), these results should not be extrapolated 

to other situations for which they would be inappropriate: the magnitude of the error in 

abundance estimates certainly depends on the tag misreading rate (see Appendix 6) which 

should be kept as low as possible. In the matching of photographs, these errors can be 

substantially reduced, however, when the photo-quality standard is high. This has the 

disadvantage of reducing the sample size, leading to a decrease in precision. The magnitude 

of the error in population size estimate may also depends on the way the tags are lost in the 

population (whether it is homogeneous or not). Unlike the abundance estimators using one set 

of data, the TSJS estimator already makes full use of the double-marking. Double marking 

has been previously used to circumvent the problem of tag misreading in population size 

estimation and reduce the bias (Stevick et al., 2001). In the TSJS model, double-tagging is 

already integrated in the population size calculation and, given a sufficient simultaneous 

sampling probability, it should help overcome the tag misreading issue and similarly any form 

of tag loss. 

 

 

In the simulation model, I decided to use a survival rate of 0.91 (p.105) rather than the 

published value of 0.96 for adult humpback whales or higher (Buckland, 1990 Gabriele et al., 

2001; Mizroch et al., 2004) to have a population a little more open demographically to the 

death or permanent emigration process. At first sight, I may be biasing the simulation against 

closed population models. However, the “death” process that closed population models are 



3. When things go wrong: individual heterogeneity and tag misreading 
 

 125 

responding to in many species (particularly long lived ones as are primarily considered here) 

is dominated by emigration and in the simulation I have not included a separate permanent 

emigration process. Therefore, by lowering the survival rate I integrate a process of 

permanent emigration and the value of 0.91 is actually an apparent survival value somewhat 

larger than the estimates from the CJS (apparent survival=true survival + permanent 

emigration). In chapter five, apparent survival estimates with the CJS show that the humpback 

whale population used in this study appears to be even more open than that.  

 

These results are probably relevant to a range of large mammal populations and 

possibly, given a proportional time scale shift, to some other groups as well.  However, only a 

small range of the possible parameters and model space has been explored so these 

conclusions inevitably have limited generality. 
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4.  Chapter Four 
 

Model Comparison 
 

 

4.1. Abstract 
 
 

At present, many population size estimates are obtained using one set of data with 

closed population models. Some of those multiple-recapture closed-population models can 

handle individual or temporal heterogeneity in capture probabilities. These models could thus 

be appealing when estimating animal population size when capture probability likely varies 

among individuals or over time.  However, such models most likely violate the closure 

assumption and only provide a single point estimate over the whole study period. On the other 

hand, the two-source Jolly-Seber (TSJS) model is an open-population model providing an 

estimate for every capture occasion (except the first and the last one) but is not able to handle 

a great degree of individual heterogeneity. Thus, it is of interest to compare, in the presence of 

heterogeneity among classes of individuals as described in chapters two and three, the results 

of the TSJS, the Jolly-Seber (JS) model and of the closed population models handling 

heterogeneity in capture probabilities that are commonly used even with open populations: Mh 

and Mth by Chao and Mt by Darroch. Given the structure of the heterogeneity in the 

simulation, the estimator for model Mh is expected to perform better than the one for model 

M t. However, the estimator for model Mh only performs better than the one of model Mt when 

the heterogeneity is extreme (case 4). The TSJS estimator seems to be the most appropriate 

model when the individual heterogeneity is small and the capture probability high and is in 

most of the cases the best estimator among the JS type of models presented here. However, 

the closed population estimates and the average open-population estimates do not have the 

same meaning and should be compared with caution. If heterogeneity is believed to be 

important, effort should focus on the study design in order to meet the basic assumption of 

closure to use closed-population models handling heterogeneity or in order to use a model 

based around the robust design. If the population is open during the experiment and two 

sources of data available, the TSJS model is the most advisable among the JS models. 



4. Model comparison 
 

 127 

4.2. Introduction 
 

At present, many population size estimates are based on closed population models. 

The classical two-occasion models include Chapman’s, the Petersen two-sample capture-

recapture method or Bailey’s modification of the previous method (Buckland and Duff, 1989; 

Calambokidis and Barlow, 2004; Calambokidis et al., 1990; Felix and Haase, 2001a, b; 

Garrigue et al., 2004; Larsen and Hammond, 2004). Those models assume that all animals 

have the same capture probability on each capture occasion and that the population is closed 

demographically and geographically. Of the multiple-recapture closed-population models 

often used, the simplest model, denoted M0 (0 for no variation in capture probability) can be 

inappropriate for many wildlife studies where variation in capture probability is likely to 

occur. Therefore, more realistic multiple-recapture closed-population models are used to take 

account of this possible variability by allowing capture probabilities to vary with time, and/or 

among animals. Those last models could be appealing when estimating population size where 

capture probability most likely varies among individuals: 

M t: capture probabilities vary over time, 

Mh: capture probabilities vary among animals but are constant across time for each 

individual, 

M th: capture probabilities vary among animals and with time. 

However, closed-population models might have little relevance or might be hard to 

interpret for some populations due to the long monitoring period, migratory behavior of the 

species, sampling design (e.g. small grid size, inappropriate grid placement in bear studies) 

for instance and therefore due to the violation of the closure assumption (Boulanger et al., 

2004b; Calambokidis and Barlow, 2004; Calambokidis et al., 1990; Cerchio, 1998; Meekan et 

al., 2006; Smith et al., 1999). Kendall (1999) evaluated the robustness of closed-population 

methods with various types of departure from the closure assumption: in the present 

simulation study, the closure violation can be assimilated to the case of “one entry and one 

exit”. Kendall concluded that for this type of closure violation no closed-population method 

provides an unbiased estimate of abundance. Generally closure violation results in a positive 

bias in abundance estimation because it inflates the number of marked animals and negatively 

biases capture probability estimates (Boulanger and McLellan, 2001). 
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In some studies, researchers use two sampling methods for mark-recapture 

experiments and two sets of data are available (Forcada and Robinson, 2006; Garrigue et al., 

2004; Laiolo et al., 2007; Smith et al., 1999; Urbán et al., 1999). My objective here is to see 

whether the assumption of closure is more important than the assumption of equal capture 

probability and if using two datasets could overcome the systematic underestimation in the JS 

estimates in presence of heterogeneity in capture probability among individuals (Carothers, 

1973, 1979; Hwang and Chao, 1995).  

In this chapter, the performance of some closed-population models and of the JS 

model to estimate abundance using one set of data is compared to the new models combining 

the 2 sources of data, i.e. the TSJS model and the two-source M0 model, using the simulation 

described in Chapters two and three. The robustness of the two-source M0 estimator was 

checked and the two-source M0 estimator is unbiased when all the model assumptions are met 

(see Appendix 7). In this chapter, the closed-population methods are first briefly described 

before being compared to the JS model and the new framework developed in chapter one and 

the validity and usefulness of such a comparison is discussed.  

 

4.3. Materials and Methods 
 
 

4.3.1. Closed population models 
 

For comparison purposes, multiple-recapture models M t, Mh and Mth and the JS 

model, the variance-weighted JS model and the two-source M0 model were coded to be used 

in the simulations. This choice was based upon the closed-population models used in 

abundance assessment of many animal populations such as polar bears, whales, sharks 

(Calambokidis et al., 1990; Cerchio, 1998; Derocher and Stirling, 1995; Meekan et al., 2006; 

Parra et al., 2006). A number of approaches have been developed for models Mt and Mh 

(Chao, 2001; Williams et al., 2002). The Darroch approach for model Mt and the sample 

coverage method developed by Chao for model Mh were chosen, among the various 

approaches available: the Darroch approach for model M t because it is the most widely used 

for this class of models and model Mh by Chao because I anticipated the situation faced with 

the data analyzed in chapter five where most of the individuals are only caught once or twice. 

Therefore, Chao’s model Mh would appear to better suit the applied case (Chao, 1988). 
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Temporal variation: Model Mt by Darroch 
 

Under model Mt, animals have the same capture probability but this capture 

probability varies from one occasion to another. Darroch (1958) demonstrated that N could be 

estimated by solving the following equation: 

∏
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ˆ1ˆ1  where N̂  is the estimated population size, T  the number of capture 

occasions during the study, 1+TM  the total number of unmarked individuals that are caught for 

the first time during the study and tn  the number of animal caught at occasion t. 

Daroch (1958) gave an asymptotic variance estimator of the form: 
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Here I use a more recent approximation for the variance for model Mt given by the 

formula (Amstrup et al., 2005): 
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=  where N̂  is the estimated population size and n  the total 

number of animals caught during the study. 

Heterogeneity among individuals: Model Mh by Chao 
 

Under model Mh, every animal has its own capture probability but there is no temporal 

variation in capture probabilities. Chao (1988) proposed a moment estimator to estimate N, 

under model Mh, based on a method known as the sample coverage C. The sample coverage C 

can be calculated via frequency data: 
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11ˆ  where T  is the number of capture occasions during the study and tf  is the 

number of animals caught on exactly t  occasions.  

Then the estimate of the sample coverage can be used to estimate the population size 

N  as following: 
C

M
N T

ˆ
ˆ 1+=  where 1+TM  is the total number of unmarked individuals that are 

caught for the first time during the study. 
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The variance estimator under model Mh is provided using an asymptotic approach 

(Chao, 1989): 
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Temporal variation and heterogeneity among individuals: Model Mth by 
Chao 
 

The model described below is a version of model Mth. Both temporal and individual 

variations in capture probability are allowed by model Mth: each individual i can have its own 

capture probability which can also vary over time with t = 1, …, T.  At the time Otis et al. 

(1978) introduced model Mth, no estimation procedure for population size was available. 

Under such a model, the capture probabilities ip  are viewed as random elements from some 

probability distribution )( pF  and are contained in the resulting set of capture histories { }ix  

such that: 

tiit epp =   where 10 ≤≤ tiep  with i = 1, ..., N and t = 1, …, T 

e denotes a capture probability that varies over time. 
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where iy  is the number of times animal i is captured, [ ]1+TMP  the probability distribution of 

the number of animals that are caught for the first time which depends on the parameters 

TeeN ,...,, 1  and the distribution )( pF , 1+TM  is the total number of unmarked individuals that 

are caught for the first time during the study.  

Later Chao and Lee (1992) proposed an estimator for model Mth based on the sample 

coverage approach: 
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11 γ+= +  where 2γ̂  is an estimate of the coefficient of variation 

of the individual capture probabilities and Ĉ  an estimate of the sample coverage, both 

estimated as follows: 
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where kf  is the number of classes that have exactly k  elements in the sample. 

 

4.3.2. Heterogeneity cases 
 

For this analysis, I only consider the cases of heterogeneity in capture probability 

described in chapter three: 

i. Four cases of heterogeneity where the average capture probability )Pr(c  is 0.2. 

Table 4-1- Capture probability for each class for every case of heterogeneity considered at an average capture 
probability of 0.2.  
 
 

mc)Pr(  NBfc)Pr(  Bfc)Pr(  cac)Pr(   CV 

Case 1 0.21 0.22 0.15 0.15 0.14 
Case 2 0.24 0.24 0.1 0.05 0.37 
Case 3 0.25 0.25 0.05 0.05 0.43 
Case 4 0.35 0.1 0.05 0.05 0.68 

 

ii. Two cases where the average capture probability )Pr(c  is 0.7 (actually 0.64 in case 

5) with all capture probabilities above 0.5. 

Table 4-2- Capture probability for each subpopulation for every case of heterogeneity considered at an average 
capture probability of 0.7.  
 
 

mc)Pr(  NBfc)Pr(  Bfc)Pr(  cac)Pr(  CV 

Case 5 0.8 0.5 0.5 0.5 0.23 
Case 6 0.5 0.86 0.86 0.86 0.26 

 

N.B.: in the previous tables, “m” corresponds to adult males, “NBF” to the non-breeding 

mature females, “BF” to the breeding females and “ca” to the calves. 
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4.3.3. Tag misreading  
 

As stated in chapter three, tag misreading concerns only the single-type of capture as I 

assume that, with the simultaneous double captures, tags cannot be lost: with simultaneous 

double capture, if one tag is misread, it is unlikely for the tag from the other method to also be 

misread. Individuals that lose their tag on one occasion do not retain this new identity for 

subsequent recaptures but could possibly lose again their tag at a later occasion. The tag 

misreading rate is homogeneous over the population, set at 5% per occasion which is believed 

to be above the rate of error present in studies, such as studies in humpback whales (Carlson 

and Mayo, 1990; Palsbøll et al., 1997; Stevick et al., 2001). 

 

4.3.4. Expected trends in population size estimates 
 

In the simulation, the heterogeneity is mainly among individuals of the population. 

There is, however, a small heterogeneity in capture probabilities due to calves becoming 

adults and adult females shifting between the states of non-breeding and breeding. Model Mt 

does not seem very appropriate with the present simulation structure and is not expected to 

work very well in any case here. Models Mh and Mth might also be biased by the 

heterogeneity in capture probability among individuals (Kendall, 1999; Lee and Chao, 1994) 

but I expect them to perform better as the individual heterogeneity in capture probabilities 

gets bigger, compared to models not accommodating heterogeneity in capture probabilities 

among individuals (i.e. all the JS models, the two-source M0 model and the Mt model). The 

main impact of heterogeneous capture probabilities among individuals on models that are not 

robust to this type of heterogeneity in capture probabilities (i.e. the JS model, the weighted JS 

model, the TSJS model and the two-source M0 model) is a negative error in both population 

estimates and associated variances (Carothers, 1973; Hwang and Chao, 1995; White et al., 

1982). Therefore, the JS model, the weighted JS model, the TSJS model and the two-source 

M0 model are expected to underestimate the true population size, with the severity of the error 

in the estimates depending on the degree of heterogeneity in capture probabilities among 

individuals. 

Tag misreading as simulated here should intuitively result in underestimated capture 

probabilities and therefore should inflate the population size estimates. However, Arnason 

and Mills (1981) and later McDonald et al. (2003) showed that a homogeneous tag loss does 
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not result in error of the JS estimates so long as the capture probability is high. Consequently, 

when the capture probabilities are high in the simulation, the JS, the weighted JS and the 

TSJS estimates should be unbiased. 

The closed-population estimators produce a single estimate for the whole study period 

and in the case of an open population these estimators should be interpreted with caution. 

When using closed-population methods for the estimation of an open population size, the 

group of animals in the study area at any given capture occasion t belongs to a notional 

superpopulation assumed to be closed (Kendall, 1999). Therefore, in the simulation, closed-

population estimates should be interpreted as being the size of the entire closed 

superpopulation during the course of the experiment. Furthermore the TSJS and the JS 

estimators produce an estimate for each capture occasion, except the first and the last ones. To 

make possible the comparison of the open-population models with the closed population ones, 

the estimates, the MRE, RMSRE, standard errors and 95% confidence intervals given by the 

TSJS and the JS estimators are averaged over the 10 occasions as well as the true population 

size. Confidence intervals for the closed-population models are obtained using the traditional 

form: N̂ ±1.96×se and the log normal approximation: )ˆ;/ˆ( CNCN tt ×   

where 
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4.4. Results 
 

4.4.1. With heterogeneity in capture probability among 
individuals 

 

Table 4-3 shows that TSJSN̂  is only the best estimator when the heterogeneity is small 

and the capture probabilities high (case 1, 6 and 7) with respect to MRE, RMSRE and CI 

coverage. Then, for cases 2 and 3, 
0

ˆ
TSMN  appears like the best estimator in terms of MRE 

(<0.1) and RMSRE(<0.11). However, in cases 2 and 3, the second best estimator tN̂  in terms 

of MRE and RSMRE is the best in terms of CI coverage rate with more than 87% of CI 

coverage rate (
0

ˆ
TSMN  only has 10% of CI coverage in case 2  and 50% in case 3 with both 

approaches). In cases 2, 3, and 4, the closed-population estimators are better than the open-

population estimators, with the TSJS estimator always being the best of the JS models (which 

is obviously because it is using more data). However, in case 3, TSJSN̂  and hN̂  seem similar in 

RMSRE and absolute value of MRE (TSJSN̂  underestimates while hN̂  overestimates) and 

TSJSN̂  even appears slightly better than hN̂  in case 3, in terms of CI coverage rate: normal and 

log-normal CI coverage rates are respectively 39% and 44% while being 34% and 32% for 

hN̂ , though this could be just sampling error.  

All the estimators are expected to underestimate the true parameter when CV>0 

(Carothers, 1973; Hwang and Chao, 1995; Otis et al., 1978; Pollock et al., 1990) but most of 

the closed-population estimatorstN̂ , hN̂ , thN̂  and 
0

ˆ
TSMN  present a positive error (MRE>0.1) 

for most cases of heterogeneity (tN̂ , hN̂ , thN̂  and 
0

ˆ
TSMN  in cases 1, 2; tN̂ , hN̂ , thN̂  in case 3 

and thN̂  in case 4) and when the average capture probability is high (all closed-population 

estimators in cases 5, 6). When the heterogeneity is high (case 4), hN̂  and thN̂  provide a very 

good CI coverage (with the normal approximation and the log-normal transformation 

respectively 99 and 100% for hN̂  and 95% and 85% for thN̂ ). The JS estimator leads to 

estimates systematically more negatively biased than the ones given by the TSJS estimator 

but better CI coverage rates in cases 2, 3 and 4. 
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It is very interesting to note that tN̂  and 
0

ˆ
TSMN  behave very similarly even though 

0

ˆ
TSMN  has no correction for temporal heterogeneity. One reason might be that 

0

ˆ
TSMN  uses 

almost twice as more data as any of the other closed-population models. 

That the mean of the variance-weighted means for the two single JS simulations does 

not fall between the two separate JS averages might seem surprising. This comes from the fact 

that, even though each of the 1600 (8 estimates and 200 runs of simulation) individual  

weighted means is indeed between the values of the two corresponding estimates, one of the 

JS estimates ( 1
ˆ

JSN  from method 1 or 2
ˆ

JSN  from method 2) is not systematically smaller than 

the other. For example see Appendix 8. Moreover the fact that the average weighted JS 

estimate is always less than the smallest of the two single means of 1
ˆ

JSN  and 2
ˆ

JSN , is because 

the weight is always largest for the smallest mean (SE correlated with estimate) so the 

weighted mean is always closer to the lowest estimate in the pair. This introduces a systematic 

tendency to be small and explains why the average weighted mean is never higher than the 

two averages of the JS estimates 1ˆ
JSN  and 2

ˆ
JSN .  

 

 

Table 4-3- Comparison of mean estimates under 6 cases of heterogeneity in capture probabilities of closed-
population and JS models based on the dataset 1 and the weighted JS model,  the two-source M0 model, the TSJS 
model under scenario 20-40-40, over 10 occasions and with a starting population of 500 individuals. 
 
Heterogeneity 
case 

Mean  
Estimate 

Mean 
True 
Value 

MRE Mean 
estimated 
SE 

RMSRE Nominal 
95% CI 
coverage 
rate (%) 

Log-
normal CI 
coverage 
rate (%) 

Case 1 
CV =0.14 

2.0)r(P =gc  

       

             TSJSN̂  709 728 -0.03 82 0.19 76 79 

          1
ˆ

JSN  689  -0.06 113 0.27 72 76 

             2
ˆ

JSN  682  -0.06 112 0.26 71 75 

             wJSN̂  646  -0.11 75 0.22 60 64 

         tN̂  962  0.33 75 0.36 2 2 

             hN̂  1053  0.46 82 0.48 0 0 

             thN̂  1073  0.46 68 0.66 0 0 

            
0

ˆ
TSMN  943  0.31 34 0.31 0 0 
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Heterogeneity 
case 

Mean  
Estimate 

Mean 
True 
Value 

MRE Mean 
estimated 
SE 

RMSRE Nominal 
95% CI 
coverage 
rate (%) 

Log-
normal CI 
coverage 
rate (%) 

Case 2 
CV =0.37 

2.0)r(P =gc  

       

             TSJSN̂  585 728 -0.2 66 0.25 41 46 

             1
ˆ

JSN  566  -0.22 92 0.32 43 51 

             2
ˆ

JSN  569  -0.22 92 0.31 44 51 

             wJSN̂  534  -0.27 62 0.31 24 28 

             tN̂  799  0.11 69 0.16 94 92 

             hN̂  871  0.21 72 0.24 34 27 

             thN̂  847  0.17 52 0.19 50 50 

            
0

ˆ
TSMN  810  0.1 30 0.11 10 10 

Case 3 
CV =0.43 

2.0)r(P =gc  

       

             TSJSN̂  583 727 -0.2 67 0.26 39 44 

             1
ˆ

JSN  561  -0.23 92 0.33 41 48 

             2
ˆ

JSN  558  -0.23 91 0.32 40 47 

             wJSN̂  524  -0.28 61 0.32 21 26 

             tN̂  802  0.11 70 0.16 91 87 

             hN̂  877  0.22 75 0.25 34 32 

             thN̂  866  0.18 55 0.2 31 31 

            
0

ˆ
TSMN  773  0.08 27 0.09 50 50 

Case 4 
CV =0.68 

2.0)r(P =gc  

       

             TSJSN̂  411 728 -0.44 37 0.45 1 1 

             1
ˆ

JSN  401  -0.45 54 0.47 5 7 

             2
ˆ

JSN  398  -0.45 54 0.48 5 7 

             wJSN̂  382  -0.48 36 0.49 0 0 

             tN̂  628  -0.13 55 0.16 43 49 

             hN̂  700  -0.03 66 0.11 99 100 

             thN̂  761  0.06 48 0.1 95 85 

            
0

ˆ
TSMN  616  -0.16 16 0.16 0 0 
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Heterogeneity 
case 

Mean  
Estimate 

Mean 
True 
Value 

MRE Mean 
estimated 
SE 

RMSRE Nominal 
95% CI 
coverage 
rate (%) 

Log-
normal CI 
coverage 
rate (%) 

Case 5 
CV =0.23 

64.0)r(P =gc  

             TSJSN̂  677 727 -0.07 13 0.07 19 20 

             1
ˆ

JSN  558  -0.23 20 0.24 0 0 

             2
ˆ

JSN  561  -0.23 20 0.23 0 0 

             wJSN̂  557  -0.24 14 0.24 0 0 

             tN̂  1068  0.48 44 0.5 0 0 

             hN̂  1159  0.61 42 0.63 0 0 

             thN̂  1275  0.74 37 0.75 0 0 

            
0

ˆ
TSMN  1059  0.47 6 0.47 0 0 

Case 6 
CV =0.26 

7.0)r(P =gc  

       

            TSJSN̂  731 729 0 11 0.04 55 55 

            1
ˆ

JSN  581  -0.2 18 0.21 0 0 

            2
ˆ

JSN  580  -0.21 17 0.21 0 0 

            wJSN̂  578  -0.21 12 0.21 0 0 

            tN̂  1214  0.68 43 0.7 0 0 

            hN̂  1310  0.61 38 0.83 0 0 

            thN̂  1412  0.93 35 0.93 0 0 

            
0

ˆ
TSMN  1224  0.66 6 0.66 0 0 

TSJSN̂ , 1
ˆ

JSN , 2
ˆ

JSN , wJSN̂ , tN̂ , hN̂ , thN̂ , 
0

ˆ
TSMN = population size estimate for model TSJS, JS model by 

sampling method 1 and 2, weighted JS, Mt by Darroch, Mh by Chao, , Mth by Chao, and two-source M0 models. 
 
 
 

4.4.2. With heterogeneity in capture probability and unequal 
sampling probability 

 
Compared to the previous section, another disturbance known to be detrimental to the 

TSJS estimator (see chapter three) is added to the simulation experiment the results of which 

are shown in Table 4-4. This disturbance introduced in the form of unequal sampling 

probabilities )Pr( 1s  and )Pr( 2s  should only penalize the TSJS estimator. However, it should 

benefit the other models in the way that the sample size increases, because data for those 
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single-source models will be based on the largest of the two datasets available: with the 

previous scenario of 20-40-40 the dataset 1 covers 60% of all the data available for the TSJS 

model. Under the scenario of 50-37.5-12.5, the dataset 1 accounts for 87.5% of the total 

amount of data used in the TSJS model.  

 

 

 

Table 4-4- Comparison of mean estimates under 6 cases of heterogeneity in capture probabilities of closed-
population and JS models based on the dataset 1 and the weighted JS model,  the two-source M0 model, the TSJS 
model under scenario 50-37.5-12.5, over 10 occasions and with a starting population of 500 individuals. 
 
Heterogeneity 
case 

Mean  
Estimate 

Mean 
True 
Value 

MRE Mean 
estimated 
SE 

RMSRE Nominal 
95% CI 
coverage 
rate (%) 

Log-
normal CI 
coverage 
rate (%) 

 
Case 1 
CV =0.14 

2.0)r(P =gc  

       

             TSJSN̂  732 726 0.01 68 0.16 79 80 

             1
ˆ

JSN  709  -0.02 74 0.17 72 75 

             2
ˆ

JSN  668  -0.08 105 0.27 68 74 

             wJSN̂  679  -0.07 59 0.18 59 62 

             tN̂  977  0.36 53 0.36 2 2 

             hN̂  1062  0.47 53 0.48 0 0 

             thN̂  1082  0.5 49 0.69 0 0 

            
0

ˆ
TSMN  968  0.34 28 0.57 0 0 

Case 2 
CV =0.37 

2.0)r(P =gc  

       

             TSJSN̂  601 725 -0.17 54 0.22 36 41 

             1
ˆ

JSN  583  -0.2 60 0.25 35 41 

             2
ˆ

JSN  543  -0.25 84 0.32 37 44 

             wJSN̂  559  -0.23 48 0.27 22 24 

             tN̂  815  0.13 46 0.15 86 81 

             hN̂  884  0.23 43 0.24 38 30 

             thN̂  882  0.21 37 0.44 0 0 

            
0

ˆ
TSMN  827  0.14 24 0.35 0 0 
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Heterogeneity 
case 

Mean  
Estimate 

Mean 
True 
Value 

MRE Mean 
estimated 
SE 

RMSRE Nominal 
95% CI 
coverage 
rate (%) 

Log-
normal CI 
coverage 
rate (%) 

Case 3 
CV =0.43 

2.0)r(P =gc  

       

             TSJSN̂  597 726 -0.18 54 0.22 35 39 

             1
ˆ

JSN  580  -0.2 60 0.25 33 39 

             2
ˆ

JSN  536  -0.26 83 0.32 38 44 

             wJSN̂  553  -0.24 49 0.28 20 23 

             tN̂  813  0.13 46 0.16 86 82 

             hN̂  882  0.22 44 0.25 33 25 

             thN̂  878  0.22 39 0.45 0 0 

            
0

ˆ
TSMN  812  0.13 23 0.34 0 0 

Case 4 
CV =0.68 

2.0)r(P =gc  

       

             TSJSN̂  430 726 -0.41 31 0.41 0 1 

             1
ˆ

JSN  424  -0.42 36 0.43 1 1 

             2
ˆ

JSN  377  -0.48 48 0.49 2 3 

             wJSN̂  403  -0.45 29 0.45 0 0 

             tN̂  668  -0.07 37 0.15 48 58 

             hN̂  746  0.04 47 0.1 99 99 

             thN̂  850  0.16 47 0.4 20 20 

            
0

ˆ
TSMN  679  -0.07 15 0.25 30 30 

Case 5 
CV =0.23 

64.0)r(P =gc  

       

             TSJSN̂  691 729 -0.05 10 0.06 22 23 

             1
ˆ

JSN  649  -0.11 13 0.12 8 10 

             2
ˆ

JSN  523  -0.28 17 0.29 0 0 

             wJSN̂  597  -0.18 10 0.19 1 1 

             tN̂  1156  0.6 41 0.51 0 0 

             hN̂  1241  0.72 42 0.64 0 0 

             thN̂  1400  0.81 38 0.96 0 0 

            
0

ˆ
TSMN  1134  0.54 NA 0.74 NA NA 
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Heterogeneity 
case 

Mean  
Estimate 

Mean 
True 
Value 

MRE Mean 
estimated 
SE 

RMSRE Nominal 
95% CI 
coverage 
rate (%) 

Log-
normal CI 
coverage 
rate (%) 

Case 6 
CV =0.26 

7.0)r(P =gc  

            TSJSN̂  735 728 0.01 8.82 0.03 55 56 

            1
ˆ

JSN  680  -0.07 11.3 0.07 23 24 

            2
ˆ

JSN  537  -0.26 14.13 0.27 0 0 

            wJSN̂  623  -0.14 8.76 0.15 0 0 

            tN̂  1303  0.8 43.32 0.71 0 0 

            hN̂  1386  0.92 35.09 0.84 0 0 

            thN̂  1499  1.07 31.88 1.04 0 0 

            
0

ˆ
TSMN  1266  0.77 NA 0.88 NA NA 

TSJSN̂ , 1
ˆ

JSN , 2
ˆ

JSN , wJSN̂ , tN̂ , hN̂ , thN̂ , 
0

ˆ
TSMN = population size estimate for model TSJS, JS model by 

sampling method 1 and 2, weighted JS, Mt by Darroch, Mh by Chao, , Mth by Chao, and two-source M0 models. 
NA= not available, because maximum likelihood has occurred on the boundary of the parameter space, e.g. one 
of the probabilities is estimated very close to 0 or 1. 

  

TSJSN̂  appears again to be the best estimator in cases 1, 5 and 6 in term of RMSRE, 

MRE and CI coverage, then the second best estimator after tN̂  in cases 2 and 3. In case 3, 

1
ˆ

JSN  and hN̂  perform equally in terms of RMSRE and absolute value of MRE but 1
ˆ

JSN  has 

slightly better log-normal CI coverage rates. When the heterogeneity in capture probabilities  

)(P c  is the highest, i.e. case 4, the closed-population estimators tN̂  and hN̂  are the best 

although only hN̂  provides a very good CI coverage in case 4 (with the log-normal 

transformation 99% for hN̂  and only 58% for tN̂ ). However, in contrast to the previous 

section, thN̂  and 
0

ˆ
TSMN  do not perform well in any case. Results (RMSRE, MRE and CI 

coverage rates) with the variance-weighted mean estimator always appear between the results 

of the two JS estimators, with better estimates for the JS estimator based on dataset 1. It is 

interesting to highlight that the JS estimator based on the largest dataset, 1
ˆ

JSN , always 

performs better than 2
ˆ

JSN  in terms of MRE and RMSRE but 2
ˆ

JSN  provides better CI 

coverage rate in cases 2, 3 and 4. As before, when the average capture probability is high, i.e. 

cases 5 and 6, all the open-population estimators perform far better than the closed-population 

estimators. 
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4.4.3. With tag misreading   
 

In this simulation, all animals have the same chance of having their tag misread and 

could possibly lose it several times. Under the homogeneous tag misreading experiment, 

Table 4-5 shows that all estimators perform poorly for ≤)(Pr c 0.1 and then for ≥)(Pr c 0.2, 

the open-population estimators perform far better than all the closed-population estimators. 

For small capture probabilities, i.e. ≤)(Pr c 0.1, TSJSN̂  displays better than usual CI coverage 

rates (more than 78%). For ≤)(Pr c 0.5, all open-population estimators generally have CI 

coverage rates between 50% and 84%. Then, with the increase of the capture probability, the 

standard errors, as in earlier chapters (e.g. Table 2-1, Table 3-3) decrease excessively for all 

estimators leading to poor CI coverage rates at ≥)(Pr c 0.5.  

All closed-population estimators are systematically severely positively biased 

(MRE>0.3 and RMSRE>0.4): for hN̂ , tN̂  and thN̂ , the overestimation increases both in 

terms of RMSRE and MRE as the capture probability )(Pr c  increases. For 
0

ˆ
TSMN , the error is 

constant for )(Pr c <0.5, although higher for )(Pr c =0.05. 

Table 4-5- Comparison of mean estimates, with a 5% tag misreading rate under constant capture probability, of 
closed-population and JS models based on the dataset 1 and the weighted JS model,  the two-source M0 model, 
the TSJS model under scenario 50-25-25, over 10 occasions and with a starting population of 500 individuals. 
 
Capture 
probability 

Mean  
Estimate 

Mean True 
Value 

MRE Mean 
estimated 
 SE 

RMSRE Nominal 
95% CI 
coverage 
rate (%) 

Log-
normal CI 
coverage 
rate (%) 

Pr(c)=0.05        
               

    TSJSN̂  

 
785 

 
727 

 
0.03 

 
348 

 
0.8 

 
81 

 
84 

           1
ˆ

JSN  613  -0.17 360 0.71 68 82 

           2
ˆ

JSN  601  -0.18 352 0.72 66 83 

           wJSN̂  504  -0.31 222 0.59 52 66 

           tN̂  1033  0.43 188 0.5 1 10 

           hN̂  1146  0.59 230 0.66 0 3 

           thN̂  1165  0.6 221 0.76 42 32 

          
0

ˆ
TSMN  1122  0.55 271 0.73 82 78 
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Capture 
probability 

Mean  
Estimate 

Mean True 
Value 

MRE Mean 
estimated 
 SE 

RMSRE Nominal 
95% CI 
coverage 
rate (%) 

Log-
normal CI 
coverage 
rate (%) 

Pr(c)=0.075 
 

          TSJSN̂  

 
802 

 
729 

 
0.1 

 
240 

 
0.6 

 
82 

 
80 

           1
ˆ

JSN  703  -0.01 267 0.61 77 81 

           2
ˆ

JSN  721  -0.01 277 0.66 78 81 

           wJSN̂  640  -0.12 182 0.48 65 71 

           tN̂  1019  0.41 128 0.45 0 1 

           hN̂  1125  0.56 151 0.74 0 0 

           thN̂  1143  0.57 142 0.75 0 0 

          
0

ˆ
TSMN  992  0.35 134 0.57 56 49 

Pr(c)=0.1        
              

           TSJSN̂  

 
806 

 
730 

 
0.1 

 
174 

 
0.41 

 
83 

 
78 

           1
ˆ

JSN  738  0 203 0.44 80 81 

           2
ˆ

JSN  742  0.02 205 0.48 78 81 

           wJSN̂  699  -0.04 144 0.39 69 72 

           tN̂  1036  0.41 101 0.46 0 0 

           hN̂  1140  0.57 117 0.61 0 0 

           thN̂  1160  0.62 110 0.77 0 0 

          
0

ˆ
TSMN  953  0.33 85 0.57 12 11 

Pr(c)=0.2        
              

           TSJSN̂  

 
783 

 
728 

 
0.07 

 
73 

 
0.17 

 
74 

 
71 

           1
ˆ

JSN  729  0 91 0.2 80 80 

           2
ˆ

JSN  728  0 91 0.2 80 80 

           wJSN̂  737  0.01 68 0.19 82 70 

           tN̂  1048  0.45 61 0.47 0 0 

           hN̂  1144  0.58 64 0.61 0 0 

           thN̂  1274  0.77 69 0.87 0 0 

          
0

ˆ
TSMN  1010  0.38 36 0.59 0 0 
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Capture 
probability 

Mean  
Estimate 

Mean True 
Value 

MRE Mean 
estimated 
 SE 

RMSRE Nominal 
95% CI 
coverage 
rate (%) 

Log-
normal CI 
coverage 
rate (%) 

Pr(c)=0.3 
              

           TSJSN̂  

 
796 

 
730 

 
0.09 

 
47 

 
0.14 

 
64 

 
62 

           1
ˆ

JSN  738  0 59 0.13 79 78 

           2
ˆ

JSN  738  0 59 0.13 80 79 

           wJSN̂  734  0 41 0.1 84 72 

           tN̂  1144  0.58 53 0.6 0 0 

           hN̂  1254  0.73 56 0.75 0 0 

           thN̂  1409  0.96 58 0.98 0 0 

          
0

ˆ
TSMN  1046  0.44 21 0.64 0 0 

Pr(c)=0.4        
              

           TSJSN̂  

 
758 

 
728 

 
0.04 

 
27 

 
0.07 

 
50 

 
49 

           1
ˆ

JSN  697  -0.04 37 0.09 76 77 

           2
ˆ

JSN  697  -0.04 37 0.09 75 76 

           wJSN̂  722  -0.01 28 0.08 64 63 

           tN̂  1109  0.54 45 0.56 0 0 

           hN̂  1201  0.66 41 0.68 0 0 

           thN̂  1535  1.08 54 1.04 0 0 

          
0

ˆ
TSMN  972  0.35 14 0.69 0 0 

Pr(c)=0.5        
              

           TSJSN̂  

 
751 

 
727 

 
0.03 

 
19 

 
0.05 

 
33 

 
33 

           1
ˆ

JSN  675  -0.07 26 0.08 66 68 

           2
ˆ

JSN  673  -0.08 26 0.1 67 68 

           wJSN̂  704  -0.03 21 0.07 54 55 

           tN̂  1148  0.59 43 0.61 0 0 

           hN̂  1241  0.72 40 0.74 0 0 

           thN̂  1681  1.33 59 1.17 0 0 

          
0

ˆ
TSMN  1115  0.55 19 0.72 0 0 
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Capture 
probability 

Mean  
Estimate 

Mean True 
Value 

MRE Mean 
estimated 
 SE 

RMSRE Nominal 
95% CI 
coverage 
rate (%) 

Log-
normal CI 
coverage 
rate (%) 

Pr(c)=0.6 
              

           TSJSN̂  

 
750 

 
730 

 
0.02 

 
16 

 
0.04 

 
22 

 
22 

           1
ˆ

JSN  656  -0.1 19 0.11 46 47 

           2
ˆ

JSN  655  -0.1 19 0.13 46 47 

           wJSN̂  684  -0.06 15 0.09 33 34 

           tN̂  1190  0.64 43 0.66 0 0 

           hN̂  1283  0.77 41 0.79 0 0 

           thN̂  1818  1.48 66 1.26 0 0 

          
0

ˆ
TSMN  1129  0.55 7 0.73 0 0 

Pr(c)=0.8        
 

           TSJSN̂  

 
738 

 
728 

 
0.01 

 
9 

 
0.02 

 
6 

 
6 

           1
ˆ

JSN  602  -0.17 10 0.18 7 7 

           2
ˆ

JSN  602  -0.17 10 0.18 7 7 

           wJSN̂  643  -0.12 9 0.13 3 3 

           tN̂  1258  0.74 43 0.76 0 0 

           hN̂  1346  0.87 44 0.88 0 0 

           thN̂  2150  1.96 83 1.51 0 0 

          
0

ˆ
TSMN  1180  0.63 4 0.78 0 0 

TSJSN̂ , 1
ˆ

JSN , 2
ˆ

JSN , wJSN̂ , tN̂ , hN̂ , thN̂ , 
0

ˆ
TSMN = population size estimate for model TSJS, JS model by 

sampling method 1 and 2, weighted JS, Mt by Darroch, Mh by Chao, , Mth by Chao, and two-source M0 models. 
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4.5. Discussion 
 
 

The relevance of this chapter is based on the observation that researchers knowingly 

use closed-population models on open populations (Boulanger et al., 2002; Calambokidis and 

Barlow, 2004; Cerchio, 1998; Karanth and Nichols, 1998; Meekan et al., 2006). Therefore, I 

was interested in seeing which of the closed-population or the open-population approaches 

were the most appropriate with an open population in various cases of heterogeneous capture 

probabilities among individuals and tag misreading. The aim was to identify general 

guidelines in the use of closed and open-population models in the case of an open 

heterogeneous population, as well as to be able to extrapolate the magnitude and direction of 

the bias to results based on real data in chapter five. Consequently, the results in this chapter 

illustrate the need to carefully measure the balance between the bias caused by the violation of 

the assumption of closure with closed-population models and the bias caused by the violation 

of the assumption of homogeneous capture probabilities with open-population models on 

abundance estimates. It is not surprising here that for an open population it is more 

appropriate to use open-population estimators when the degree of heterogeneity in capture 

probabilities among individuals is fairly small or the average capture probability very high or 

the degree of openness high. As expected, the results show that when the heterogeneity in 

capture probabilities among individuals is small in an open population, the violation of the 

closure assumption leads to more biased estimates of population size with closed-population 

models than the abundance estimates with open-population models despite the violation of 

equal capture probability. It also seems straightforward that, when the heterogeneity in 

capture probabilities is high, using a closed-population estimator handling heterogeneity in 

capture probability is the best approach, even though the population is open, especially if the 

openness is not great. 

 

A major point about the interpretation of the results in this chapter is that closed 

population estimates and the average open-population estimates do not have the same 

meaning and should always be compared with caution. The closed population models 

estimate the total population size during the time of data collection, so over 10 occasions in 

the simulations. In fact, when closure is violated, closed population estimates often apply to 

the size of a superpopulation, from which animals in the sampling area are a random sample 

at each capture occasion, that is assumed closed (Boulanger and McLellan, 2001; Kendall, 
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1999). On the other hand, open-population models estimate the size of the open population for 

each capture occasion and I calculated the average over all occasions to get a single point 

estimate. Consequently, two different notions of population size are compared: the average 

size of an open population over the whole experiment with an open-population model and the 

closed superpopulation estimates provided by the closed-population models in this chapter. 

However, in the simulation, the population is only open demographically, there is no 

movement in and out the theoretical study area and no uncatchable individuals. Therefore, 

estimates of population size, with closed and open population models, should not be taken for 

the estimates of a superpopulation. 

 

An important point to highlight here is the direction of the error that systematically 

differs between open and closed-population models: except in case 4 (high heterogeneity), all 

closed-population estimators tend to overestimate the abundance while all open-population 

estimators consistently underestimate it. Underestimation was expected here with all the 

population size estimators when capture probabilities are heterogeneous among individuals 

(Carothers, 1973; Hwang and Chao, 1995; Kendall, 1999; Lee and Chao, 1994; White et al., 

1982). On the other hand, closure violation, especially of the kind of “one entry (i.e. birth) 

and one exit (i.e. death)” is known to introduce an overestimation in the population size 

estimates with closed-population models by negatively biasing the capture probability 

estimates (Kendall, 1999; Boulanger and McLellan, 2001). Therefore, the observed 

overestimation with closed-population models indicate that, for closed-population models, the 

positive bias induced by the violation of the closure assumption, even though limited in this 

simulation, is larger than the negative bias induced by the violation of the homogeneous 

capture probability assumption. 

 

In the presence of a moderate to high degree of heterogeneity (cases 2, 3, 4) in capture 

probabilities, all closed population estimators perform better in terms of the error on the 

abundance estimates than any of the open-population estimators presented here. However, 

with a relatively small degree of heterogeneity (case 1) or a high average capture probability 

(cases 5, 6), all the open-population estimators perform better than any of the closed-

population estimators. So it seems that the degree of heterogeneity in capture probabilities, 

the average capture probability and the degree of openness, if they can be measured or 
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estimated, would be sensible criteria to decide if it is more important to hold the assumption 

of closure or the assumption of equal capture probability and therefore choose between open 

or closed-population models. The degree of heterogeneity is an especially hard feature to 

estimate in field studies but the use of individual covariates recorded during the experiment 

could be an efficient way of explicitly modeling the heterogeneity in capture probability 

among individual (Huggins, 1991). The degree of openness can sometimes be estimated in the 

field with additional investigations (e.g. radiocollared bears (Boulanger et al., 2002)) or can 

be tested using specific tests for closure (Otis et al., 1978; Stanley and Burnham, 1999). 

 

With this structure of heterogeneity in capture probabilities, the new estimators 

combining both sources of data seem to be the most suitable estimators in most of the cases 

presented here. Therefore, combining both sources of data in a model to estimate population 

size appears to be an efficient way to reduce the error and, in some cases, enables researchers 

to use an open-population model with heterogeneous capture probabilities among individuals 

of the population without facing an unreasonable underestimation. The TSJS model was 

generally better with a small heterogeneity in capture probabilities among individuals (case 1) 

and high average capture probability (cases 5 and 6) while the two-source M0 model was the 

best model in terms of magnitude of the error when the heterogeneity was moderate (cases 2 

and 3). However, if the CI coverage rate is the criterion, the traditional closed-population 

estimator tN̂  is the best estimator when the heterogeneity is moderate (cases 2 and 3). In case 

4 (high heterogeneity), there is no ambiguity: hN̂  and thN̂  are the best estimators. 

 

While it seems that the TSJS estimator is always the best estimator among all the JS-

related estimators presented here, it is not necessarily obvious which of the closed-population 

estimators is the most reliable when closed-population models should be used, i.e. low 

population turnover with high heterogeneity. In the presence of a moderate to high degree of 

heterogeneity in capture probabilities, 
0

ˆ
TSMN  and tN̂  appear fairly consistent in the error 

while the results with hN̂  and thN̂  seem to greatly depend on the degree of heterogeneity. I 

would have expected tN̂  to perform not that well given the very small temporal heterogeneity 

and the increasing individual heterogeneity in capture probabilities and I would have expected  
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hN̂  to perform better than tN̂ . However, as anticipated, hN̂  turns out to be the most 

appropriate estimator when the heterogeneity is the most extreme.  

 

The TSJS estimator also appears to be better in handling tag misreading compared to 

closed population estimators. The single JS model could also be used with regards to CI 

coverage rate as, in most cases, it produces the best CI coverage rate.  

 

Researchers should keep in mind that, if the studied population is open during the data 

collection, results based on closed-population models can be difficult to interpret and the 

direction and magnitude of the bias will depend on possible violation of other assumptions, 

especially the assumption of homogeneous capture probability. If heterogeneity in capture 

probabilities, either temporal or among individuals or both, is an important source of bias in 

population size estimates, the study design should focus on meeting the assumption of closure 

so that closed-population models handling heterogeneity could be appropriately used. 

However, using the TSJS model proposed in the present dissertation leads to improvements in 

abundance estimation as compared to applying the classic JS estimator to a single source of 

data. From a monitoring point of view, an open-population model, for an open population, is 

sensible and interpretable, even though estimates might be biased by heterogeneity. The 

direction of the error is known when heterogeneity in capture probabilities is suspected and 

therefore, the estimates can be interpreted in consequence as being an underestimate of the 

true population size which is, in some cases, to be preferred in population size assessment for 

precautionary reasons, i.e. for an endangered species, quota management.  



5. Analysis of the abundance of the New Caledonian humpback whale population  
 

 149 

5. Chapter Five 
 
 
Analysis of the abundance of the New Caledonian 
humpback whale population  
 

 

5.1. Abstract 
 

The two-source Jolly-Seber (TSJS) and the two-source M0 models are applied to data 

from the humpback whale, Megaptera novaeangliae, population in New Caledonia (South 

Pacific). This globally distributed species undertakes systematic yearly migrations between 

feeding and breeding grounds: in the South Hemisphere, the feeding taking place in the 

Antarctic, so the whales are mainly accessible for sampling on the breeding grounds located 

in lower latitudes. On the breeding ground of New Caledonia, whales are usually present from 

July to September and a sampling protocol combining photo-identification and skin-biopsy 

has been used since 1999 to sample the population. This sampling protocol leads to the 

creation of two datasets: a dataset for the photo-identified whales and a dataset for the 

genotyped ones. Individuals are frequently, but not always, photographed and genotyped on 

the same capture occasion; the TSJS and the two-source M0 approaches thus seem ideal for 

analysis of these data. Estimates of abundance provided by these new approaches are 

compared to population sizes given by traditional methods: relevant multiple-occasion closed-

population models (Mt by Darroch, Mt by Chao, Mh by Chao, Mh using the jackknife method 

and Mth), the Chapman modified Lincoln-Petersen and the Jolly-Seber (JS) estimators. Those 

traditional estimators give very different results depending on the dataset used (photographic 

data 1999-2005, photographic data 1999-2004 with only quality-controlled (QC) photographs 

or genetic data 1999-2005) while the TSJS and the two-source M0 estimators disagree but are 

separately quite consistent between the two datasets available (combined dataset 1999-2005 

and combined 1999-2005 with only the QC photographs). Sources of bias for the different 

estimators are explored. Closed-population estimates are probably overestimated due to the 

violation of the closure assumption. Investigation on a larger spatial scale including data from 

neighboring breeding grounds (Tonga, Cook Island and French Polynesia) indicates that 

temporary emigration takes place, which violates the assumption of geographical closure for 
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the closed-population models. Results for apparent survival with the Cormack-Jolly-Seber 

(CJS) model also suggest that long-term emigration may occur in the population. Evidence of 

temporal heterogeneity and individual variation in capture probability is highlighted by the 

CJS model and the tests for temporal variation in trapping probabilities in program 

CAPTURE. The temporal heterogeneity in capture probabilities seems to arise from a 

heterogeneous sampling effort throughout the years (2002 and 2004 presenting considerably 

less effort than the other years) and could be avoided with a standardized sampling effort. 

Finally, tests with U-CARE indicate the presence of transient individuals (significant for 

males) passing through New Caledonia once with a very low probability of being captured 

again on a subsequent occasion. This heterogeneity in capture probabilities among individuals 

most likely results in an underestimation of the population size with the TSJS model.  
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5.2. Introduction 
 

Humpback whales were heavily hunted from the end of the 19th century through the 

20th century. Chittleborough assessed this population to be 22,000-34,000 in the 1930’s 

(Chittleborough, 1965). In the 20th century alone, 200,000 individuals were killed in the 

Southern Hemisphere, more than 48,000 were illegal Soviet catches from which 30,000 were 

killed between summers 1960 and 1962 (Clapham, 2002; Clapham and Baker, 2002; Findlay, 

2000; Walsh, 1999). Post-exploitation stocks might have been as low as 10% of the pre-

exploitation stocks for some populations. Humpback populations are nowadays recovering 

and rates of recovery might be as high as 10% per year in some cases (Zerbini et al., 2008). 

However, concerns remain for some subpopulations of humpback whales, i.e. the Arabian 

Sea, the western North Pacific, the West coast of Africa and the South Pacific subpopulations, 

for which information about status is lacking (Reilly et al., 2008). To monitor the recovery of 

these discrete subpopulations, it is therefore important to have reliable and precise estimates 

of population size.  

In the Southern Hemisphere, the Antarctic feeding area is divided into six areas (I to 

VI) and humpback whales are classified into seven groups (A to G) in the breeding ground. 

Humpback whales breeding in New Caledonia are believed to feed in area V and belong to 

the breeding group E (IWC, 1998). Two sampling methods are used to individually identify 

whales and gather data during the breeding season (July to September): photo-identification 

and skin biopsy (Garrigue et al., 2001). When humpback whales dive, they usually raise their 

flukes and enable researchers to photograph the markings and unique pigmentation patterns 

on the ventral surface: all whales in New Caledonia have a distinct marking that allows to 

uniquely identify them. In New Caledonia, whales are also genotyped via a tissue sample 

collected using a crossbow with an adapted bolt or, very opportunistically, via a skin sample 

that can be harvested with a net after the whale has breached. However, on a given capture 

occasion, some whales may not fluke so they cannot be photographed and some others cannot 

be approached to be genotyped. Using both photo-identification and the genotype via skin 

biopsy sampling during a vessel survey has proven effective to gather more data and is used 

to survey the humpback whale population in New Caledonia. This sampling protocol leads to 

the creation of two datasets, one for each sampling method: a dataset for the photo-identified 

whales and a dataset for the genotyped ones. Individuals are frequently but not always 
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photographed and genotyped on the same capture occasion. The TSJS and the two-source M0 

methods thus seem particularly well suited for analysis of these data. 

In this chapter, I start by estimating the abundance of the population using the 

traditional closed-population estimators, the traditional JS estimator estimator using each 

dataset independently, before comparing those results with those provided by the variance-

weighted mean of the JS estimators, the two-source M0 estimator and the TSJS estimator on 

the combined dataset. I then explore the possible sources of bias in those estimates due to 

violation of the demographic and geographic closure assumptions and to the possible 

heterogeneous capture probabilities and I make inferences on survival using the TSJS 

corrected estimator and an approximated CJS likelihood. Finally, I discuss the validity of 

these abundance estimates in the case of the humpback whale population of New Caledonia. 

 

5.3. Materials and Methods 
 

5.3.1. Field methods 
 

Since 1999, the same field protocol has been used in New Caledonia to gather data 

(Garrigue et al., 2001). The sampling season usually takes place from July to September and 

the team goes to sea every day, unless sea conditions are too bad, in an outboard-powered 

semi-inflatable boat. The boat randomly surveys an area of roughly 1,000 km² and can be 

directed towards whales by a land-based team monitoring the same area (Fig.5-1). When a 

whale or a pod of whales is encountered, an attempt is made to get a photograph and a skin 

sample of the solitary individual or of each of the individuals present in the group. Sampling 

ends when a photograph and a skin sample have been taken, or after approximately one hour 

of attempts. 
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Fig.5-1- Sampling area in the South lagoon of New Caledonia. 
 
 
 

5.3.2. Matching process 
 

Flukes were classified by their degree of whiteness to make the matching process 

easier (Carlson and Mayo, 1990; Friday et al., 2000). Every photo was matched against the 

existing catalogue by at least two experienced persons.  

Eleven published microsatellite loci were used by Garrigue et al. (2004) for 

genotyping matching. Alleles were sized with the software packages GENESCAN and 

GENOTYPER 2.5 (Applied Biosystems). Individual matching was done using CERVUS 2.0 

and GenAIEX. A genotype was a match when identical to another one. To decrease the risk of 

genotyping errors, two analyses were usually run for each biopsy sample. 

Finally, to avoid photo-matching and laboratory (or field recording) errors, genetic and 

photo records were also compared when available. 

For further information on the photographic material used and molecular analysis see 

Garrigue et al. (2004). I was involved in later field work in New Caledonia and I did not 

contribute to the collection of the 1999-2005 data used in this chapter. 
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5.3.3. Datasets 

Photo-identification catalogue 
 

Two photographic catalogues were available at the time of the thesis: 

1) the photographic catalogue 1999-2005 where all photos are included, 

2) the photographic catalogue 1999-2005 where photos have been checked for quality 

under a protocol for ranking the quality of each photograph (Calambokidis et al., 2001) (also 

referred to as quality control (QC) protocol). The purpose of this protocol is to make all 

photographic catalogues in the South Pacific homogeneous to ease the comparison and 

research of matches within and between the breeding grounds in this area. Under this protocol 

photographs are given a number between 1 and 5 (1 being good and 5 being bad) for different 

characteristics: exposure, fluke angle, percentage of the fluke that is visible, focus and lateral 

angle. If a photo receives at least one 5 or 4, it is deleted from the catalogue.  

 

  

 
Fig.5-2- Example of a photograph (on the left) removed under the quality-control protocol against a good-quality 
one (on the right). 
 
 
 

The photographic catalogue 1999-2005 contained a total of 227 capture histories: from 

this complete catalogue (with all the photos) 1999-2005, 29 photographs were deleted 

because of the photographic QC protocol, resulting in the suppression of 26 capture histories. 

Indeed, of those 29 deleted photographs, only three were part of a multiple capture history 



5. Analysis of the abundance of the New Caledonian humpback whale population  
 

 155 

and so 26 capture histories were actually deleted as their unique capture by photograph was 

deleted. 

 

Genetic database 
  

Genetic data were available for the years 1999 to 2005 which comprised 313 capture 

histories. In addition to capture-recapture information, the genetic database provided 

information on the sex of each biopsied individual.  

 

Combined datasets for the two-source Jolly-Seber model 
 

Since there were two photographic catalogues available in addition to the genetic 

database, there were two possible combined datasets for use with the TSJS model and the 

two-source M0 model: 

a) The genetic dataset 1999-2005 and the photographic catalogue 1999-2005, with all 

the photographs, which comprised 331 capture histories from which 107 have been genotyped 

only, 18 photographed only and the remaining 206 capture histories contained at least one 

double sampling capture, 

b) The genetic dataset 1999-2005 and the photographic catalogue 1999-2005 where 

photographs have been checked for quality. This combined dataset included 328 capture 

histories from which 128 have been genotyped only and 12 photographed only. From the 29 

photographs deleted under the quality-control protocol, only three capture histories were 

deleted from the data in the combined dataset 1999-2005 under the quality protocol. 

 

The compiled datasets with photographic and genetic data were formatted using the 

encounter history code detailed in chapter two. A computer program has been written 

(Appendix 9) to allow users to easily format their data in this way. 
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5.3.4. Capture-Recapture estimates 
 

Besides the TSJS estimator and the two-source M0 model, multiple-occasion closed-

population models, the Chapman modified Lincoln-Petersen estimator and the JS model were 

used to estimate the whale population size from the photographic datasets 1999-2005 with all 

the photographs, 1999-2005 with only the good-quality photographs and the genetic database 

1999-2005. The multiple-occasion closed-population estimates were produced using program 

CAPTURE included in the option “closed capture” in program MARK. Program CAPTURE 

computes the estimation of population size for models: Mt by Darroch (MtDarroch), Mt by Chao 

(M tChao), Mh by Chao (MhChao), Mh using the jackknife method (Mhjackknife), Mth, M0, Mb by 

Zippin, generalized removal Mbh, Pollock and Otto’s Mbh, Mtb by Burnham. Models including 

a behavioral response (denoted by a “b” in the subscript) were not explored because trap 

response is not believed to occur during sampling in humpback populations: studies have 

shown that biopsy sampling may cause a short-term minimal disturbance that typically does 

not affect later recaptures by biopsy or photo (Clapham and Mattila, 1993; Weinrich et al., 

1991). Here I considered models MtDarroch, MtChao, MhChao, Mhjackknife and Mth (Amstrup et al., 

2005; Borchers et al., 2002; Seber, 1986; Seber, 2002). Models MtDarroch, MhChao and Mth are 

described in chapter four and the JS in chapter one. 

 

Closed-population models 
 

Model Mt by Chao  
 

Under model Mt, all individuals have the same capture probability on a given capture 

occasion but this capture probability can vary over time. The general model Mt and the 

corresponding multinomial likelihood can be viewed as a T-sample version of the Lincoln-

Petersen estimator (Darroch, 1958; Williams et al., 2002): 
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where N  denotes the population size, p  the capture probability, 1+TM  the number of 

individuals recaptured at occasion T+1, ha  the frequency of observable capture history h, and 

Tnnnn +++= ...21  the total number of captures. 

Chao (1989) developed an estimator for model Mt, which is especially useful with 

sparse data: when the number of recaptures is small on each capture occasion, most of the 

individuals do not have many captures in their capture histories. Chao’s purpose was to base 

the estimator on the lower-order frequency counts with: 

0fSN +=  

where S  is the number of distinct individuals captured in the T samples and 0f  is the number 

of animals never captured. To do so, it is necessary to estimate ( )0fE  from 1f  and 2f  which 

are, respectively, the number of animals captured exactly once and twice. This leads to an 

estimator for N  of the form: 
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where tZ  is the number of animals caught only in the tth capture occasion. 

A bias-corrected form of the previous estimator was provided by Chao: 
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Under model Mt Chao, variance is given by: 
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Model Mh using the jackknife method 
 

Under model Mh, every individual has its own capture probability which does not vary 

over time. The vector of capture probabilities { }ip  is viewed as a random sample of size N 
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from some probability distribution )( pF  defined on the interval [0,1] (Burnham and Overton, 

1978; Burnham and Overton, 1979; Otis et al., 1978). The corresponding model is of the 

form: 
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jπ  can be viewed as the average probability that an animal is caught exactly j times.  

 

The approach for Mh using the jackknife statistic (Quenouille, 1949, 1956) gives 1+TM  

as a naïve estimator of N, and the bias is reduced using a linear function of the capture 

frequencies jf  such that: j

T

j
jkk faN ∑

=

=
1

ˆ  where k is the “order” of the jackknife estimator and 

jka  the coefficients generated by the jackknife procedure. 

For the variance, I chose to present the results using the profile likelihood approach as 

recommended in Cormack (1992) and applied in Otis et al. (1978). 

 

The Chapman modified Lincoln-Petersen estimator 
 

The Chapman modified Lincoln-Petersen estimator is also used on the same datasets 

(Borchers et al., 2002): 
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where N̂  is the estimated population size for the considered capture occasion, 1n  is the total 

number of capture on the previous capture occasion, 2n  the total number of capture on the 

considered capture occasion and m  the number of marked animals captured on the considered 

capture occasion. For estimation purposes, the data from one capture occasion were used as 

first-capture data for the estimate of the next capture occasion and as recapture data for the 

estimate of the relevant capture occasion (except the first capture occasion,i.e. year 1999 

which can only be used as first capture data for the estimation of year 2000).   



5. Analysis of the abundance of the New Caledonian humpback whale population  
 

 159 

The approximately unbiased estimator of the variance of Chapman modified Lincoln-

Petersen estimator is as follows (Wittes, 1972): 
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Confidence interval 
 

For all models, confidence intervals displayed in the results are classical approximate 

95% confidence intervals of the form:  estimate±1.96×se. A log-transformation 

approximation was also used to get improved 95% confidence intervals as )ˆ;/ˆ( CNCN ×  

where 
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Growth rate 
 

The Chapman modified Lincoln-Petersen, the JS and the TSJS estimators lead to an 

estimated population size for each capture occasion of a study (except on the first and last 

occasions for the JS and TSJS, and except on the first occasion for the Chapman modified 

Lincoln-Petersen). For those three estimators, it is then possible to get the finite rate of 

population increase. The growth rate tλ  at time t is defined here as the ratio of abundances tN  

in two successive capture occasions t and t+1: ttt NN 1+=λ . 

The associated approximate standard error is defined as follows (Kendall and Stuart, 

1969): 
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where r is the unknown but most likely positive correlation between 1+tN  and tN . Therefore, 

I choose to assume independence to get a conservative standard error and set 0=r . 

To investigate the abundance trend and see whether the three models (the Chapman 

modified Lincoln-Petersen, the JS and the TSJS models) provide the same evidence for the 

dynamics of the present population, the population growth rate and associated standard error 

were calculated and presented in the corresponding abundance table. 
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5.3.5. Exploration of model selection and assumption 
violation 

 

Goodness of fit and model selection with program CAPTURE 
 

Program CAPTURE includes, for closed-population models, goodness of fit and 

specific tests (Otis et al., 1978) based on standard Chi-square tests which allow a user: 

1) to test the fit of a given model to the data 

2) to test a model against a more general one. 

These tests provides information that can be used to determine the most appropriate 

model: the test for heterogeneity of trapping probabilities and the one for time specific 

variation in trapping probabilities might give insight on whether some kind of heterogeneity 

was present in the data. Program CAPTURE also implements a procedure to select the 

appropriate model based on a linear discriminant classifier. 

 

The Cormack-Jolly-Seber approach: a way to get information on the capture and 
survival probabilities 
 

As for closed population models, the original CJS model uses multinomial 

distributions to model captures and recaptures. The CJS model is related to the JS model as it 

was originally derived from one of the likelihood components of the JS containing the capture 

and the survival probabilities that are time-dependent. It requires information only on the 

marked individuals of the population and Lebreton et al. (1992) developed an approach 

allowing the modeling of survival and capture probability. The component L3 of the JS model 

was originally derived by Cormack (1964), and contains the recapture information conditional 

on the numbers of marked animals released at each occasion: 
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where tR  denote the number of releases at time t, tr  the number of tR  captured again later, 

tφ  the apparent survival at time t and tχ  the probability that an animal alive and in the study 

population at time t is not caught or observed again at any time after capture occasion t. 

Two parameters are used in the model: the capture probability tp  that a marked 

individual at time t is captured at time t and the probability of survival tφ  that a marked 

individual alive at time t survives until time t+1 and does not temporarily emigrate. This 

second probability combines the probability of survival per se and the probability of not 

emigrating from the sampling area between capture occasions and hence represents the 

probability of apparent survival. 

The use of the CJS model here could allow the estimation of the capture probabilities 

and survival rates from an open-population model. The first advantage of this model is the 

direct estimation of capture probabilities for the marked individuals of the population. This 

will provide valuable information to relate to the results of chapters three and four on the 

simulation of the TSJS given the estimated value of the capture probabilities obtained with the 

CJS. Then, because it allows the modeling of the capture probabilities, it will be possible to 

investigate whether the capture probability is time-specific using the photographic catalogue. 

Using the genetic data will provide additional information on the capture probability and 

survival: not only will it be possible to see if there is a temporal variation for capture 

probabilities and survival, but also to see if females and males have different capture and 

survival probabilities.  

The fully parameterized CJS model is usually denoted { }ttp φ,  (subscript t for time-

specific survival and encounter probability), and from this model, reduced parameterized 

models that allow for stationary values of .p  and .φ  or both, can be used. With the genetic 

dataset it is possible to build more complex models using the effect of the two groups, males 

or females, denoted “g”, in addition to time, as well as combination or interaction of those 

two factors: “*” denotes an interaction between the factors and “+” a linear combination of 

the effects. Therefore, a model such as model { }.,φgtp +   indicates that capture probabilities 

depends on combinations of group and time and that survival is constant. Then the model-

selection procedure uses the Akaike’s Information Criterion (AIC) of the general form: 

)ln(22 LkAIC −=  where k is the number of parameters in the model and L the maximized 

value of the likelihood function for the estimated model. The smallest AIC usually points out 
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the model that best explains the data with a minimum of parameters. A rule of thumb is useful 

to assess the strength of evidence between the best models: a difference of 2 or less between 

AIC of models usually gives support to both models while a difference greater than 2 in AIC  

gives considerably less support to the next best model (Burnham and Anderson, 2004). This 

helps to decide which model is the most parsimonious and thus how the capture probability 

should be modeled given the data.  

Finally, survival is a fundamental process governing population dynamics and is 

intuitively inherent to the population. Therefore, if the photographic and genetic sampling 

methods indeed sample the same population, both sampling methods should provide very 

close estimates of survival. It would therefore be of interest to compare the fit of models 

where survival varies by sampling method with models where the survival is constrained to be 

the same across the sampling methods. However, at present, except for the TSJS version of 

the JS survival estimator described in chapter one, I am unaware of a framework that allows 

the estimation of survival by combining two overlapping datasets. So I use the TSJS survival 

estimator and a likelihood-based approach based on an approximation: the idea is to multiply 

the likelihoods of the CJS models based on the genetic and photographic data and constrain 

the survival parameter to be the same across the two datasets. This can be done using program 

MARK and setting the photographic and genetic data as two distinctive groups. Using such an 

approximation leads to two major disadvantages: some individuals will knowingly be counted 

twice and multiplying likelihoods based on the two datasets also implies that the two 

sampling methods are assumed to be unconditionally independent. So results of the analysis 

should be interpreted with caution. In program MARK, the model-selection procedure is 

based on the AICc which is the AIC with a second order correction for small sample size such 

that: 
1

)1(2

−−
++=

kn

kk
AICAICc  where k is the number of parameters in the model and n the 

sample size. As n gets large AICc converges to AIC. 

 

Temporary emigration 
 

A Markovian multi-state counterpart of the CJS, the Conditional-Arnason-Schwarz 

(CAS) model was used to estimate the probabilities of transition of humpback whales 

between breeding grounds in the South Pacific, between 1999 and 2004 (Arnason, 1972, 

1973; Brownie et al., 1993; Hestbeck et al., 1991; Lebreton et al., 1992; Schwarz et al., 1993). 
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In this class of model, the state of an animal at time t+1 is stochastically determined as a 

function of its state at time t. Here the study site is the South West Pacific which can be split 

into r distinct, non-overlapping regions: New Caledonia, French Polynesia, Tonga and Cook 

Island. Animals are assumed to be able to move freely around the study area denoted R 

between sampling events: the transition between one region to another is Markovian and the 

region where the animals are caught at time t does not depend on the region where the 

animals previously were. The difficulty lies in the formulation of the likelihood since, for 

most studies, the complete data detailing the location of each animal is not available for the 

capture occasions where the animals were not observed. King and Brooks (2003) proposed 

likelihood forms for such a model. Where times of recapture are recorded and there is no dead 

recovery like in the present case, the likelihood takes the following form with : 

( ) { } { }∏ ∏ ∏∏∏
∈ =

−

=

−

= ∈








×=

R r R

T

t

T

l

T

lt

srn

tl
s

rv

t
tlt srOrdnvL

1

1

1

1
),(

),(
 

)( ),(),()(,,; χθ     

where )(rvt  is the number of animals that are recaptured for the last time in region r at time t; 

)(rtχ  the probability that an animal seen at time t in region r ∈ R is not seen again in the 

study, given by 
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),( tlO  the probability that an animal observed in region r at time l (l ∈{ }T ..., ,1  is unobserved 

until time t+1, for t ∈{ }1 ..., , −Tl , and is sighted in s ∈ R, given by 

),,()(),( ),(1),( srQspsrO tlttl +=  

where ),( tlQ  denotes the probability that an individual migrates from region r at time l (l 

∈{ }T ..., ,1  to region s ∈ R at time t+1, for t ∈{ }1 ..., , −Tl , and is unobserved between these 

times, such that:  { }
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The set of parameters therefore comprises: 

);1  timeuntil survives  at time region in  animalPr(an  )( += ttrrFt  
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); at time captured is  at time region in  animalPr(an  )( ttrrpt =  

; ,1 by time region   tomoves  at time region in  animalPr(an  ),( += tstrsrtψ  

) at time alive isit  given that t  

 

Besides estimating capture probability, the CAS model with general notation { }pF ,,ψ  

also allows a break-down of the probability φ  of apparent survival in the general CJS model 

into the two components which can be state-specific: true survival F and transition probability 

ψ . Different subscripts are used to parameterize F, ψ , and p: “from” indicates a variation in 

the parameter dependent on the previous region the animal was, “to” a variation dependent on 

the current region where the individual is, “time” a time-dependent variation. Moreover, two 

operators can be used to combine the effect of previous region, current region and time to 

build more complex models: “*” denotes an interaction between factors and “+” a linear 

combination of the effects. Therefore, a model such as model { }timetotofrom pF *. ,, +ψ  used later 

on, indicates a constant survival, a probability of transition depending on the linear 

combination of site of departure with site of arrival and a probability of capture depending on 

the interaction between site of arrival and on the time.  

It is of interest to model and estimate the transition probability for a better 

understanding of the stock structure of humpback whales in the South Pacific and to see if 

there is temporary emigration between different breeding grounds that would constitute a 

violation of the assumptions of both geographic closure for closed population models and of 

temporary emigration for the open-population JS and the TSJS models. Knowledge of 

occasional interchanges among neighboring breeding grounds (New Caledonia, Samoa, Cook 

Island, Tonga and French Polynesia) has been documented from individual identification 

photographs: 12 whales have been sighted in the two different areas between 1999 and 2004. 

The data were collected during synoptic surveys conducted by researchers from the South 

Pacific Whale Research Consortium (SPWRC) in each of the breeding grounds between 1999 

and 2004 (Garrigue et al., 2002; Garrigue et al., 2007; Garrigue et al., 2000). The quality 

protocol described above was used to homogenize all photographic catalogues and a search of 

matches, by researchers from the SPWRC, within and between the breeding grounds in this 

area permitted the building of multi-state capture-recapture histories (each breeding ground is 

considered as a state). The joined catalogue comprises 684 individual capture histories with a 
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total of 778 sightings. The number of sightings and re-sightings per region are summarized in 

Table 5-1. 

Table 5-1- Summary of photographic captures and recaptures by study site between 1999 and 2004. 
 

region Number of capture 
histories 

Number of resights 
within region 

New Caledonia 160 33 
Tonga 285 25 

Cook Islands 37 0 
French Polynesia 159 20 

 

The AIC criterion was again used to select the most appropriate model. 

The software M-SURGE was used for building and selecting CAS models (Choquet et 

al., 2004). 

 

Transient individuals and trap-dependence 
 

It is of interest to detect if there are transients among the population: animals that pass 

through the sampling area once with negligible probability of being caught again at a 

subsequent capture occasion. Their presence would lead to heterogeneity in capture 

probabilities between transients and residents. The transience issue has been previously noted 

based on genetic data for the humpbacks in New Caledonia between 1995 and 2001 (personal 

work, not published) but at that time, genetic samples were not taken systematically. 

 

Program U-Care version 2.2 (Choquet et al., 2005) conducts goodness-of-fit tests as 

well as specific tests for transience (test 3.SR) and trap-dependence (test 2.CT). Both tests are 

based on 2x2 contingency tables:  

1) one of observed values such as: 

Table 5-2- 2x2 contingency table for test 3.SR based on the individuals encountered at capture occasion i. 
 

 Seen later Never seen later Total 

“new” or “newly marked” o11 o12 o1. 

“old” or “already marked” o21 o22 o2. 

Total o.1 o.2 o.. 
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2) one of expected values such as: 

Table 5-3- 2x2 contingency table for test 3.SR of expected numbers of individuals encountered at capture 
occasion i. 
 

 Seen later Never seen later Total 

“new” or “newly marked” 

..

1..1
11 o

ooe ×=  

..

1..2
12 o

ooe ×=  
e1. 

“old” or “already marked” 

..

2..1
21 o

ooe ×=  
..

2..2
22 o

ooe ×=  
e2. 

Total e.1 e.2 e.. 

 

Hypotheses to be tested are: 

1) In test 3.SR 

H0: there is no difference between the “new” and the “old” individuals captured at 

occasion t in the probability of being later encountered. 

Alternatively 

H1: there is a difference in the probability of being later encountered between the new 

and the “old” individuals captured at occasion t. 

 

2) In test 2.CT 

H0: there is no difference between those encountered and not encountered at occasion t 

in the probability of being reencountered at t+1 conditional on presence at both occasions. 

Alternatively 

H1: there is a difference in the probability of being reencountered at t+1 between those 

encountered and not encountered at occasion t conditional on presence at both occasions. 

For both tests, the usual 2χ  statistic is obtained as: 

jk

jkjk
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where jko  is the observed value corresponding to the cell jk in the 2x2 contingency table of 

observed values and jke  the expected value corresponding to the cell jk in the 2x2 

contingency table of expected values. 

Under H0, the )(2 tχ  follows a 2χ distribution with 1 degree of freedom. Here those 

two tests were used to investigate possible sources of bias in the population size estimates. 

Even though trap response is believed not to be an issue in humpback whale studies, the data 

were checked for this. 

 

5.4. Results 
 

5.4.1. Survey effort 
 

Over the 7 years of the survey in the South lagoon, 290 boat trips were carried out and 

a total of 331 whales have been sampled in approximately 2138 hours of navigation. Year 

2002 was a “bad” year for field work, due to weather conditions, with not as many days at sea 

as the other years and 2004 had very few days in the South lagoon because field work was 

conducted in another part of New Caledonia for most of the season. Table 5-4 shows details 

of the effort deployed per year.  



 

 

16
8 

 

Table 5-4- Sampling effort in the South lagoon of New Caledonia between 1999 and 2005. 
 
Year 1999 2000 2001 2002 2003 2004 2005 

Number of days at sea 46 50 62 36 42 11 43 

Number of hours at sea 308h05 356h21 487h25 265h08 326h58 77h34 317h05 

Number of nautical miles 2581 2661 3717 2109 2316 567 2492 

Number of individual whales photographed 21 38 72 22 48 36 63 

Year-to-year resights with photo-identification  4 8 6 3 4 6 

Number of individual whales photographed under the QC protocol 19 35 64 22 43 32 46 

Year-to-year resights with photo-identification under the QC protocol  4 8 5 3 4 3 

Number of individual whales genotyped 27 46 88 33 63 39 84 

Year-to-year resights with genetic  3 7 5 3 2 4 
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5.4.2. Abundance 

Results based on photographic catalogues  
 

a) Under the photographic ranking protocol: QC photographs only 

As shown in Table 5-5, for the period 1999-2005, among the multiple-occasion 

closed-population models, the MtDarroch gave the smallest estimate and standard error 

(402± 39) and the MhChao and Mth the largest estimates and standard-errors (respectively 

646± 112 and 625± 102) which was consistent with the removal of negative bias resulting 

from heterogeneity. It resulted that the largest multiple-occasion closed-population estimate 

(MhChao) was larger that the smallest one (MtDarroch) by a factor 1.6, leading to a wide range of 

estimates with the closed-population models. With the present dataset, the two approaches for 

model Mt (Darroch and Chao) and Mh (Chao and jackknife) also gave results that disagreed 

within each model, with the approach of Chao always leading to larger estimates and 

standard-errors: 1.37 greater than the other approach for model Mt and 1.12 for model Mh. 

With the Chapman modified Lincoln-Petersen (Table 5-6) and the JS estimator (Table 

5-7), based on this QC photographic catalogue 1999-2005, the whale population was 

estimated to be respectively 143± 47 and 151± 50 in 2000. In 2004, the estimators were far 

from agreeing: the population was down to 76± 18 with the JS estimator and up to 289± 103 

with the Chapman modified Lincoln-Petersen estimator. While the Chapman modified 

Lincoln-Petersen estimator seemed to underline a quasi constant increase of the population 

from 1999 to 2005, the JS estimator showed a different pattern with an increase until 2002 

and then a decrease. Up to 2002, the abundance estimate and the growth rate were similar to 

those of the Chapman modified Lincoln-Petersen. Then, with the JS estimator, the population 

declined by half every year but increased with the Chapman modified Lincoln-Petersen with a 

growth rate also increasing every year from 1.02± 0.51 in 2003 to 1.34± 0.72 in 2005. 

 

b) With all photographs: catalogue 1999-2005 

Compared to the results based on the photographic catalogue 1999-2005 with only 

good-quality photos (Table 5-5), i.e. under the photographic QC protocol, the results 

produced by the same multiple-occasion closed-population estimators on a dataset including 

all quality photographs always appeared larger (Table 5-8): only by a factor 1.04 for model 

M tDarroch which encountered the smallest increase and by 1.33 for model MhChao which 
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displayed the largest increase. The only similarity between the results based on the two 

photographic catalogues was that MtDarroch also gave the smallest estimate and standard-errors 

(419± 36) and the MhChao and the Mth the largest ones (respectively 858± 160 and 806± 129). 

However, with the photographic catalogue 1999-2005 with all photographs, the MhChao 

estimate was larger than the MtDarroch one by a factor 2.05 whereas it was only larger than the 

M tDarroch estimate by a factor 1.61 with the QC catalogue 1999-2005. Moreover, the MtChao 

estimate was larger than the Mhjackknife estimate and had a larger standard-error while, with the  

photographic QC protocol catalogue 1999-2005, the MtChao estimate was smaller than the 

Mhjackknife estimate but still had a larger standard-error. Here, as with the photographic 

catalogue 1999-2005 under the photographic QC protocol, the two approaches for model Mt 

and Mh gave very different estimates within each kind of models (Mt or Mh), with the 

approach of Chao always leading to larger estimates: 1.72 greater than the other approach for 

model Mt and 1.27 for model Mh. 

As shown in Table 5-10, except in 2002 and 2004, the JS estimator gave very similar 

results as those based on the catalogue 1999-2005 under the photographic QC protocol. The 

population started at 166± 50 and was estimated in 2004 at 281± 67. Here the growth rate 

was, however, more stable and did not show an apparent decline from 2002 as did the growth 

rate with the photographic catalogue 1999-2005 under the photographic QC protocol. Here 

the growth rate fluctuated and the increase was less clear than with the previous results with 

the Chapman modified Lincoln-Petersen estimator on both photographic catalogues. The 

yearly JS estimates were below those of the Chapman modified Lincoln-Petersen estimator by 

a factor 0.98 (in 2000) to 0.59 (in 2002) (Table 5-9). The growth rate varied with the same 

trend for both models (population size increased except in 2002 where λ̂ <1) with the increase 

being greater with the JS estimator in 2003 and 2004.  

The Chapman modified Lincoln-Petersen estimator was consistent with both 

photographic catalogues leading to similar results: the population was estimated to be 

171± 58 in 2000 reaching 337± 102 in 2005. 

 

 
 
 
 
 
 



5. Analysis of the abundance of the New Caledonian humpback whale population  
 

 171 

Results based on the genetic data 
 

As shown in Table 5-11, the estimates based on the genetic dataset were ranked in the 

same order as the photographic catalogue 1999-2005 with only good-quality photographs 

(under the photographic QC protocol) (Table 5-5) but appeared more than twice larger than 

those based on both photographic catalogues (Table 5-5, Table 5-8), ranging from 847± 88 

with model MtDarroch to 1592± 285 with the MhChao.  

With the Chapman modified Lincoln-Petersen estimator, the situation was the same as 

with the multiple-occasion closed-population models, with results based on the genetic (Table 

5-12) twice as large as the population size given by the photographic data: from 328± 130 in 

2000 to 679±  252 in 2005. With the Chapman modified Lincoln-Petersen estimator, though 

photographic and genetic datasets did not agree on the estimates, they both showed an 

increase of the population size, except in 2002 even though this decrease was only really 

noticeable for the photographic catalogue with all photographs.  

When using the classical Jolly-Seber model separately on the three datasets (the two 

photo-identification ones (Table 5-7, Table 5-10) and the genetic one (Table 5-13)), the 

population size obtained using the genetic data was always larger than its photo-identification 

counterpart for the same year, agreeing with all the previous results with other models for the 

discrepancy between the size given by the genetic and the photo-id database. In 2002 and 

2004, the genetic dataset indicated a population twice as large as that produced by the photo-

identification data with all photographs (respectively 315± 80 and 559± 153). The standard 

error produced with the genetic dataset was as well always larger than the photo-identification 

one. Except in 2003 with the photographic data 1999-2005 with all photographs and in 2002 

with the QC photographic data 1999-2005 (under the photographic QC protocol), the growth 

rate estimated from the genetic data (Table 5-13) was always larger than its photographic 

counterpart (Table 5-7, Table 5-10). 

The JS estimates with the genetic dataset (Table 5-13) were again smaller than the 

Chapman modified Lincoln-Petersen estimator (Table 5-12) by a factor 0.54 (in 2003) to 0.81 

and than all closed-population estimates for the same dataset (Table 5-11) by a factor as high 

as 3. However, growth rates from the JS model were larger than with the Chapman modified 

Lincoln-Petersen estimator in 2001 and 2004 where they almost reached a value of 2 

(respectively 1.99± 1.16 and 1.9± 0.48), being the largest rates of increase so far. 

 



5. Analysis of the abundance of the New Caledonian humpback whale population  
 

 172 

Results based on combined datasets 
 

The TSJS model (Table 5-16, Table 5-17) seemed to produce estimates that were a 

intermediate among all the estimates based on the photographic data and genetic data 

separately but the two-source M0 estimator gave two of the largest estimates (Table 5-18). As 

expected, the weighted mean of the Jolly-Seber estimator (Table 5-14, Table 5-15) gave 

intermediate estimates between the estimates from the photographic and the genetic datasets 

separately and smaller standard errors.  

Compared to the results given by the JS and the Chapman modified Lincoln-Petersen 

estimators for the genetic and the photographic data separately, the TSJS estimates were 

closer to the ones provided by the genetic dataset (Table 5-12, Table 5-13): estimates varied, 

with dataset 1999-2005 with all photographs (Table 5-17), between 222± 68 in 2000 and 

445± 103 in 2004. However, the weighted estimates (Table 5-14, Table 5-15) were always 

closer to the photographic ones following the trend of the photographic estimates (Table 5-7, 

Table 5-10) but roughly consistent in 2000, 2001 and 2003 whether the complete or QC 

photographic dataset was used. The TSJS estimates were also consistent in 2000, 2001 and 

2003 between the combined data with all photographs (Table 5-17) and the one under the QC 

protocol (Table 5-16). In 2002, however, the TSJS estimates varied between the datasets by a 

factor 1.42: being 412± 97 for the dataset under the QC protocol and 289± 58 for the one 

with all photographs. In 2004 the situation was reversed, the estimate with the dataset under 

the QC protocol being 0.59 smaller than the one produced with the dataset with all 

photographs (respectively 262± 70 and 445± 103). Concerning the standard errors, the order 

of magnitude was equivalent between the two combined datasets and the standard errors 

produced with the TSJS estimator fell between the standard errors of the JS estimates given 

by the photographic data (Table 5-7, Table 5-10) and the ones given by the genetic data 

(Table 5-13). 

For the data 1999-2005 with all photographs, the growth rate in 2001 for the TSJS 

model (Table 5-17) was equal to that for the JS model with the genetic data (Table 5-13). The 

growth rates for the TSJS were very close to those provided by the Chapman’s estimator on 

the photographic dataset 1999-2005 with all photographs (Table 5-9). For the Chapman 

modified Lincoln-Petersen model, the growth rate indicated, in 2002, a slight decrease of the 

population with the two photographic and the genetic datasets (Table 5-6, Table 5-9, Table 

5-12). With the combined dataset under the QC protocol (Table 5-16), however, the 

population estimates from the TSJS showed an apparent constant decline since 2001 which 
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was also found with the JS estimator on the photographic data 1999-2005 under the QC 

protocol (Table 5-14) and on the weighted mean of the JS estimates from the QC 

photographic data and the genetic data (Table 5-14). 

Compared to the results of the multiple-occasion closed-population models, the 

abundance given by the TSJS estimator (Table 5-16, Table 5-17) and the weighted mean of 

the JS model (Table 5-14, Table 5-15) were generally smaller than any closed-population 

estimate for the same data, except for the estimates given by the MtDarroch on both 

photographic catalogues (Table 5-5, Table 5-8). The two estimates produced by the two-

source M0 estimator (Table 5-18) on the combined datasets (with all photographs and under 

the QC protocol) were consistent, respectively 1116± 231 and 1238± 274, and the largest 

estimates after the estimates based on the MtChao, the MhChao and the Mth models on the genetic 

dataset 1999-2005 (Table 5-11). The associated standard errors produced by the two-source 

M0 estimator on the combined datasets were also amongst the largest ones. Contrary to these 

closed-population models giving very different results depending on the dataset, the TSJS 

estimator and the two-source M0 estimator appeared fairly consistent over the different 

datasets available.  

Generally there was no major difference between the classical approximate 95% 

confidence intervals and the log-normal ones. 
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Table 5-5- Population size, associated standard error and confidence intervals (nominal and log-normal) for 
closed population models based on the 1999-2005 QC photographic catalogue. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 5-6- Population size, associated standard error, confidence intervals (nominal and log-normal), growth 
rate and associated standard error with the Chapman’s estimator based on the 1999-2005 QC photographic 
catalogue. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 5-7- Population size, associated standard error, confidence intervals (nominal and log-normal), growth 
rate and associated standard error with the JS model on the QC photographic catalogue 1999-2005.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Model 

   

   N̂  
 

 
     se 

Nominal 
lower CI 

Nominal 
Upper CI 

Log-normal 
lower CI 

Log-normal 
upper CI 

Mt Chao 551 88 379 723 401 757 
Mt Darroch 402 39 325 479 331 488 
Mh jackknife 576 44 490 662 495 671 
Mh Chao 646 112 426 866 458 912 
Mth 625 102 425 825 452 863 

year 2000 2001 2002 2003 2004 2005 

N̂  143 259 248 252 289 387 

se 47 66 77 98 103 155 
Nominal 
lower CI 

50 129 97 60 88 82 

Nominal 
upper CI 

236 389 399 444 491 692 

Log-normal 
lower CI 

75 157 135 119 145 179 

Log-normal 
upper CI 

272 428 455 534 576 839 

λ̂   1.81 0.96 1.02 1.15 1.34 

se( λ̂ )  0.75 0.38 0.51 0.6 0.72 

      year 2000 2001 2002 2003 2004 
 

N̂  

 
151 

 
246 

 
264 

 
134 

 
76 

se 50 93 59 38 18 
Nominal 
lower CI 

53 63 149 60 40 

Nominal 
upper CI 

249 429 379 208 111 

Log-normal 
lower CI 

79 118 170 77 48 

Log-normal 
upper CI 

288 512 409 233 121 

λ̂   1.63 1.07 0.51 0.56 

se( λ̂ )  0.82 0.47 0.18 0.21 
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Table 5-8- Population size, associated standard error and confidence intervals (nominal and log-normal) for 
closed population models based on the complete 1999-2005 photographic catalogue. 

 

 

 

                    

 
 
 
 
Table 5-9- Population size, associated standard error, confidence intervals (nominal and log-normal), growth 
rate and associated standard error with the Chapman’s estimator based on the complete 1999-2005 photographic 
catalogue. 
 

year 2000 2001 2002 2003 2004 2005 

N̂  171 315 239 281 362 337 
se 58 82 67 110 130 102 

Nominal 
lower CI 

58 154 107 66 106 138 

Nominal 
upper CI 

283 476 371 498 617 536 

Log-normal 
lower CI 

89 189 138 132 180 187 

Log-normal 
upper CI 

329 526 415 597 728 608 

λ̂   1.85 0.75 1.18 1.29 0.93 

se( λ̂ )  0.79 0.29 0.57 0.68 0.44 

 
 
 
 
Table 5-10- JS estimates, associated standard error, confidence intervals (nominal and log-normal), growth rate 
and associated standard error based on the complete 1999-2005 photographic catalogue. 
 

year 2000 2001 2002 2003 2004 

N̂  166 299 141 182 281 
se 50 104 24 47 67 

Nominal 
lower CI 

69 95 95 90 151 

Nominal 
upper CI 

264 503 187 274 412 

Log-normal 
lower CI 

92 152 101 110 176 

Log-normal 
upper CI 

298 588 196 302 448 

λ̂   1.8 0.47 1.29 1.55 

se( λ̂ )  0.83 0.18 0.4 0.54 

 
 

 
model 

 

N̂  
 

 
se 

Nominal 
lower CI 

Nominal 
upper CI 

Log-normal 
lower CI 

Log-normal 
upper CI 

Mt Chao 721 125 476 966 511 1017 
Mt Darroch 419 36 349 489 354 496 

Mh jackknife 676 46 585 767 589 775 
Mh Chao 858 160 544 1172 592 1243 

Mth 806 129 553 1059 587 1107 
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Table 5-11- Population size, associated standard error and confidence intervals (nominal and log-normal) for 
closed population models based on the 1999-2005 genetic dataset. 

 

 

 
 
 
 
 
 
 
 
 
Table 5-12- Population size, associated standard error, confidence intervals (nominal and log-normal), growth 
rate and associated standard error with the Chapman’s estimator based on the 1999-2005 genetic dataset. 
 

year 2000 2001 2002 2003 2004 2005 

N̂  328 522 503 543 852 679 
se 130 151 24 221 401 252 

Nominal 
lower CI 

73 225 176 109 67 185 

Nominal 
upper CI 

583 819 831 977 1638 1173 

Log-normal 
lower CI 

153 296 458 248 349 381 

Log-normal 
upper CI 

705 922 552 1189 2083 1212 

λ̂   1.59 0.96 1.08 1.57 1.26 

se( λ̂ )  0.78 0.28 0.44 0.98 0.48 

  
 
 
 
Table 5-13- JS estimates, associated standard error, confidence intervals (nominal and log-normal), growth rate 
and associated standard error based on the 1999-2005 genetic dataset. 
 

year 2000 2001 2002 2003 2004 

N̂  211 420 315 294 559 
se 82 181 80 93 153 

Nominal 
lower CI 

50 65 158 112 260 

Nominal 
upper CI 

372 774 471 476 859 

Log-normal 
lower CI 

100 184 191 159 327 

Log-normal 
upper CI 

447 958 519 544 956 

λ̂   1.99 0.75 0.93 1.9 

se( λ̂ )  1.16 0.38 0.8 0.48 

 
 
 

 
model 

 

N̂  
 

 
se 

Nominal 
lower CI 

Nominal 
upper CI 

Log-normal 
lower CI 

Log-normal 
upper CI 

Mt Chao 1338 266 816 1860 902 1985 
Mt Darroch 847 88 674 1020 688 1042 
Mh jackknife 1018 57 907 1128 911 1138 
Mh Chao 1592 285 1033 2150 1116 2271 
Mth 1519 248 1033 2005 1098 2102 
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Table 5-14- Population size, associated standard error, confidence intervals (nominal and log-normal), growth 
rate and associated standard error with the weighted mean of the JS model on the QC photographic catalogue 
and the genetic dataset 1999-2005. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 5-15- Population size, associated standard error, confidence intervals (nominal and log-normal), growth 
rate and associated standard error with the weighted mean of the JS model on the complete photographic 
catalogue and the genetic dataset 1999-2005. 
 

year 2000 2001 2002 2003 2004 

N̂  178 329 141 205 325 
se 43 90 23 42 61 

Nominal 
lower CI 

95 152 97 123 205 

Nominal 
upper CI 

261 506 185 287 445 

Log-normal 
lower CI 

111 192 103 137 224 

Log-normal 
upper CI 

285 564 193 307 472 

λ̂   1.85 0.43 1.45 1.56 

se( λ̂ )  0.67 0.14 0.38 0.44 

 
 
 
 
 
 
 
 
 
 
 
 
 

      year 2000 2001 2002 2003 2004 
 

N̂  

 
167 

 
283 

 
282 

 
157 

 
83 

se 43 83 47 35 18 
Nominal 
lower CI 

83 120 189 88 48 

Nominal 
upper CI 

251 446 375 226 118 

Log-normal 
lower CI 

101 159 202 101 55 

Log-normal 
upper CI 

276 502 393 244 125 

λ̂   1.69 1 0.56 0.53 

se( λ̂ )  0.66 0.34 0.15 0.16 
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Table 5-16- TSJS estimates, associated standard error, confidence intervals (nominal and log-normal), growth 
rate and associated standard error between 1999 and 2005 with the combined dataset under the photographic QC 
protocol. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 5-17- TSJS estimates, associated standard error, confidence intervals (nominal and log-normal), growth 
rate and associated standard error between 1999 and 2005 with the combined dataset with all the photographs. 
 

year 2000 2001 2002 2003 2004 

N̂  222        442 289 338 445 

se 68 151 58 87 103 
Nominal 
lower CI 

88 145 177 168 243 

Nominal 
upper CI 

355 738 402 507 648 

Log-normal 
lower CI 

122 227 195 204 281 

Log-normal 
upper CI 

405 859 429 559 704 

λ̂   1.99 0.66 1.17 1.32 

se( λ̂ )  0.91 0.26 0.38 0.46 

 
 
 
Table 5-18- Two-source M0 estimates, associated standard errors, confidence intervals (nominal and log-normal)  
and capture probabilities between 1999 and 2005 with the combined datasets with all photographs and under the 
photographic QC protocol. 
 

Capture probability   Combined 
Dataset 

1999-2005 

 

N̂  

 
se 

Nominal 
lower 

CI 

Nominal 
upper 

CI 

Log-
normal 
lower 

CI 

Log-
normal 
upper 

CI 

 
p̂  

 
se( p̂ ) 

 
ĝ  

 
se(ĝ ) 

 

α̂  

 

se(α̂ ) 

With all 
photographs 

 
1116 

 
231 

 
663 

 
1569 

 
740 

 
1681 

 
0.03 

 
0.01 

 
0.04 

 
0.01 

 
0.85 

 
0.02 

With good 
photographs 

only 

 
1238 

 
274 

 
701 

 
1775 

 
799 

 
1917 

 
0.03 

 
0.01 

 
0.04 

 
0.01 

 
0.87 

 
0.02 

p̂ = probability of capture by photo-identification; ĝ = probability of capture by genetics; α̂ = probability of 

capture by genetics given a capture by photo-identification on the same occasion. 

year 2000 2001 2002 2003 2004 

N̂  222 421 412 366 262 

se 76 160 97 104 70 
Nominal 
lower CI 

74 107 222 161 125 

Nominal 
upper CI 

     371 735 602 570 398 

Log-normal 
lower CI 

114 202 259 206 155 

Log-normal 
upper CI 

432 878 655 631 442 

λ̂   1.89 0.98 0.89 0.72 

se( λ̂ )  0.97 0.44 0.33 0.28 
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5.4.3. Model selection for closed-population models 
 

In all three datasets (photographic catalogues 1999-2005 with all photographs and 

under the QC protocol, and the genetic data 1999-2005), the test for heterogeneity in capture 

probabilities in population for model Mh and for time specific variation in capture 

probabilities for model Mt were both significant (p-value<<0.05). Thus, not surprisingly, for 

the three datasets, the linear classifier from program CAPTURE systematically selected 

model Mth as the most appropriate model.  

Goodness-of-fit tests in program CAPTURE consistently rejected the null hypothesis 

when testing the fit of model Mh and Mt. However, there is no goodness-of-fit available in 

program CAPTURE for model Mth. 

 

5.4.4. Capture probability 

Estimation using photographic data 
 

The CJS model { }ttp φ,  and the three other models possible with time-dependency 

({ }.. ,φp , { }.,φtp , { }tp φ,. ) were run on the photographic catalogue 1999-2005 with all 

photographs and under QC protocol. Results are displayed in Table 5-19. For the dataset 

1999-2005 with all photographs, from the AIC, 3 models were similarly supported by  the 

data and two out of the three models ({ }tp φ,. , { }.. ,φp ) seemed to demonstrate that capture 

probability was constant and did not depend on time: under the best model { }.. ,φp , capture 

probability was estimated to be 0.17± 0.03. Models with constant survival ({ }.. ,φp , { }.,φtp ) 

were better than models with time-specific survival ({ }ttp φ, , { }tp φ,. ): under model { }.. ,φp  

survival was estimated to be 0.65± 0.11 and under model { }.,φtp  to be 0.68± 0.12. 

The quality-control protocol procedure applied on the photographic data 1999-2005 

resulted in a more ambiguous situation for the capture probability and survival with the two 

best models disagreeing: one in favour of capture probabilities depending on time (Fig.5-3) 

and constant survival, i.e. model { }.,φtp  and the other one in favour of a constant capture 

probability and time-specific survival { }tp φ,. . The survival estimated under model { }.,φtp  

was 0.92± 0.091, greater and with a smaller standard error than previously reported by this 

model with the dataset with all photographs. With the second best model { }tp φ,.  capture 
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probability was estimated to be 0.2± 0.04 which was very close to the best model with the 

dataset with all photographs. Survival under model { }tp φ,.  varied between 0.34± 0.16 and 1, 

showing the unreliability of the estimation as such variation for survival (even though 

apparent survival) is unlikely to occur in the present case. 

Capture probabilities based on the best model from the dataset under the quality-

control protocol  { }.,φtp  and second best for the complete dataset 1999-2005 also { }.,φtp  are 

shown in Fig.5-3. Capture probabilities were very close except in 2005 where the capture 

probability given by the dataset with all photographs was more than four times higher than the 

one provided by the data under the quality-control protocol, respectively 0.17± 0.06 and 

0.04± 0.02. A glance at table 5-4 shows that this is most likely due to the QC protocol 

excluding half the resighted animals in that year, though in most years no resightings are 

excluded. 
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photos only

 

Fig.5-3- Capture probability estimates and standard errors from model { }.,φtp  for complete photographic data 

1999-2005 and for QC-photographic data 1999-2005. 
 
 
 

Given the present results with both photographic datasets, it was not clear whether 

capture probability was dependent on time. However, there were two “abnormal” years (2002 

and 2004: resulting from a shorter field work season) in the data always displaying smaller 

capture probabilities, and I suspected these values to be the origin of time-dependent capture 

probability. Hence, I removed those two years from each dataset and re-ran the models as 

shown in Table 5-19. Without those two years, from the AIC with the dataset under the 

quality-control protocol, three models demonstrated a similar adequacy to the data and two 
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out of the three models { }.,φtp  and { }ttp φ,  seemed to indicate that capture probability was 

still dependent on time and it was unclear whether the survival depended on time, although it 

is unlikely here. On the other hand, without those two years, with the dataset with all 

photographs, the two best models ({ }.. ,φp , { }tp φ,. ) agreed on constant capture probability but 

still disagreed on the survival. So, from the photographic data, it was not clear whether there 

was temporal heterogeneity in capture probability. Removing 2002 and 2004 from the dataset 

had an opposite effect depending on the dataset. With the dataset with all the photographs, 

survival was increased (0.78± 0.11 under model { }.. ,φp  and 0.86± 0.13 under model{ }.,φtp ) 

while survival estimates were lesser with the dataset with QC photographs: 0.87± 0.17 under 

model { }.,φtp  and 0.62± 0.11 under model { }..,φp . Under model { }tp φ,.  with the dataset 

under the quality-control protocol, survival estimates varied between 0.08± 0.05 and 

0.97± 0.26. The first important thing to note about these very small survival rates is that with 

the CJS model the parameter of survival actually mixes two processes: true survival and 

permanent (or at least long term) emigration. Therefore, if an estimate of 0.78± 0.11 seems 

small for a whale, it may actually underline that emigration is important and not that true 

survival is low. However, under the CJS model, an estimate of 0.08± 0.05 for apparent 

survival for humpback whales simply seems unreliable and most likely indicates difficulties 

for the model to estimate this parameter with values very close to the boundaries.  

 

Table 5-19- AIC for the CJS and related models for photographic catalogues 1999-2005 under the QC protocol 
(“Selected 1999-2005”), 1999-2005 with all photographs (“All 1999-2005”) and both without 2002/2004. 
 

                                              AIC  

Model 
Selected 

1999-2005 
Selected 1999-2005 without 2002 

and 2004 
All 

1999-2005 
All 1999-2005 without 2002 and 

2004 

ttp φ,  379.63 202.59  473.9 288.52 

.,φtp  376.33 202.74 467.91 286.42 

tp φ,.  378.67 202.07 469.66 285.25 

..,φp  387.23 219.92 467.75 283.04 

 

 

 

 



5. Analysis of the abundance of the New Caledonian humpback whale population  
 

 182 

Estimation using genetic data 
 

A deeper analysis was possible with the genetic data because it includes information 

about the sex of the individuals. From the genetic database 1999-2005, of the 308 animals that 

were sexed, 129 were females and 179 males. It was possible to model survival and capture 

probability with separate parameters for each time and group (females or males) denoted “g” 

in Table 5-20 which presents the 6 first best models in terms of AIC.  

I disregarded further time-dependent survival models as such models previously gave 

inconsistent and unreliable estimation of survival and always had bigger AIC than time-

constant survival models with the genetic data.  

For the genetic data 1999-2005, two models with constant survival, based on the AIC, 

seemed appropriate: the best model was model { }.,φtp  where capture probability only 

depended on time and second best model was model { }.,φgtp +  where capture probabilities 

were group and time-dependent. Under the later model, which may have more biological 

relevance in the context of humpback whales (Garrigue et al., 2004; Smith et al., 1999), males 

and females had different capture probabilities that also varied with time and equal survival 

probabilities. Estimates of capture probabilities under model { }.,φgtp +  are displayed in 

Fig.5-4. Under model { }.,φtp  and { }.,φgtp + , survival was estimated to be respectively 

0.68± 0.12 and 0.68± 0.13. Again these low values for survival with the CJS model may 

indicate that emigration from this population is an important process of loss for this 

population. 
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Fig.5-4- Capture probability estimates for males and females from model { }.,φgtp +  using genetic data in 1999-

2005. 
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Under this model, males had systematically higher capture probabilities than females, 

usually above 0.1. Given the fact that years 2002 and 2004 again gave very small estimates 

compared to the other years, I again removed those two capture occasions and re-ran all 

models to check whether the temporal variation in capture probabilities was still holding. As 

found with the photographic data, once those two years were removed, the best model did not 

include time-dependent capture probabilities. Instead, the best model was either model 

{ }.. ,φp  where survival and capture probability were constant over time; or model { }.,φgp  

where survival was constant over time and capture probability depended on the sex; or model 

{ }gp φ,.  where survival depended on sex and capture probability was constant. Under model 

{ }.. ,φp  and { }gp φ,. , the capture probability was estimated to be 0.2± 0.06 and model 

{ }.,φgp , males had again a higher capture probability: 0.22± 0.07 against 0.16± 0.06 for the 

females.  

Constant survival was estimated to be 0.65± 0.11 and 0.66± 0.11 under respectively 

model { }.. ,φp  and { }.,φgp . Under model { }gp φ,. , males had a higher survival probability: 

0.69± 0.12 against 0.59± 0.13 for females. This discrepancy between males and females may 

suggest two things: either the females have a lower true survival rate or they have a higher 

chance of leaving the population permanently (or for long periods).  

Table 5-20- AIC for the CJS and related models for genetic data 1999-2005 and 1999-2005 without 2002/2004. 
 

 AIC 
Model 1999-20005 1999-2005 without 02 & 04 

..,φp  451.06 272.54 

.,φgp  452.45 273.47 

gp φ,.  453,05 273.88 

.,φtp  447.82 277.95 

.,φgtp +  449.09 278.93 

ggp φ,  455.37 275.46 
 

The capture probabilities estimated with the two-source M0 model applied to the 

photographic data in Table 5-18 appeared very small compared to the corresponding capture 

probabilities estimated with the CJS model, although very close to the estimated capture 

probability in 2005 with the photographic data and in 2002 and 2004 with the genetic data: 

the probability p  and g  that a whale was sampled respectively by photo-identification and 
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genetics on any occasion was estimated to be 0.03± 0.01 and 0.04± 0.01. However, the 

probabilities α  that a whale was sampled by photo-identification given it has been sampled 

by genetics on the same occasion were very high: 0.85± 0.02 and 0.87± 0.02 with 

respectively the combined dataset with all photographs and under the quality-control protocol.  

Information provided by the analysis with the CJS framework on capture probabilities 

from photographic and genetic data with single-state open-population models led to four 

conclusions:  

1) there might be a small heterogeneity in capture probability among individuals of the 

population,  that could be based on sex, although no other source of heterogeneity could be 

tested,  

2)  there might be temporal heterogeneity in capture probabilities, most likely arising 

from an heterogeneous sampling effort, 

3)  estimated capture probabilities in genetics are slightly smaller than those obtained 

with photo-identification, and 

4)  capture probabilities for marked individuals are around 0.05-0.26 within both 

sampling methods. 

 

5.4.5. Two-set estimation of Survival 
 

In the previous section, capture probabilities and apparent survival probabilities were 

estimated using CJS-class of models run separately on the genetic and photographic data and 

estimates of survival based on the genetic data often appeared lower than those based on 

photographic data. As described earlier, in section 5.3.5, the approximation with the 

multiplication of the likelihoods of the CJS models on both sampling methods allowed the 

comparison between models where the parameter of apparent survival was constrained to be 

the same across the two sampling methods (denoted φ.) and those where it varied with the 

sampling methods (φm). As capture probabilities surely cannot be the same between the two 

sampling methods, only models where capture probabilities differed between the methods, 

i.e. .mp , tmp *. , were considered. 

First of all, as shown in Table 5-21 and Table 5-22, program MARK often returned a 

survival estimate of 1 with a corresponding standard error of 0 (more precisely in the order of 
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10-7) in models where survival varied with time, i.e. models ),( . tmp φ , ),( .* ttmp φ , ),( *. tmmp φ  

and ),( **. tmtmp φ . Such values for the SEs could be caused by some aspects of the data which 

prevented the parameter from being estimated. One solution would be to use the option of 

profile likelihood CI available in MARK. Unfortunately, the software systematically returned 

an error message when using this option. Moreover, with models ),( .* ttmp φ  and ),( **. tmtmp φ , 

program MARK returned small estimates with unreliable standard errors for year 2004 

probably due sparse data. Therefore, as in the previous section, models where survival varied 

with time are not discussed further and four models were retained for comparison: models 

),( mmp φ , ),( .φmp , ),( .* mtmp φ  and ),( ..* φtmp .  

Models were classified based on the AICc: model ),( ..* φtmp  was the best model 

(respectively with all photographs and selected photographs, AICc= 924.11 or 833.03) 

followed by model ),( .* mtmp φ  (AICc=926.12 or 834.57). Under the best model, model 

),( ..* φtmp , the apparent survival was estimated to be 0.85± 0.05 with the genetic dataset and 

the dataset including all photographs (Table 5-21) and 0.87± 0.06 with the genetic dataset and 

the dataset under the QC protocol (Table 5-22). Under the second best model, model 

),( .* mtmp φ  which supports the inference of a different apparent survival between the two 

sampling methods, the apparent survival was estimated to be: 0.83± 0.08 with the genetic 

sampling (Table 5-21 and Table 5-22), 0.87± 0.07 and 0.92± 0.09 with the photographic 

sampling based respectively on all photographs (Table 5-21) and selected photographs (Table 

5-22). These values for the survival were higher than those found in the previous section 

(Section 5.4.4) and standard errors smaller, for both the genetic data and the photographic 

data with all photographs: previously, with the best models for the genetic data, models 

{ }.,φtp  and { }.,φgtp + , the apparent survival was estimated to be respectively 0.68± 0.12 and 

0.68± 0.13; and previously, with the best models for the complete photographic data, models 

{ }.. ,φp  and { }.,φtp , the apparent survival was estimated to be respectively 0.65± 0.11 and 

0.68± 0.12 (Table 5-24).  

The value of apparent survival with the approximation of the CJS based on the genetic 

and the QC photographic datasets  for the photographic method under model ),( .* mtmp φ  was, 

however, exactly the same as previously reported with the QC photographic method alone 

(Table 5-24) with model { }.,φtp , i.e. 0.92± 0.09.  
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Table 5-21- “Approximated” two-set CJS models and corresponding value of AICc and survival estimates with 
standard error and 95% CI lower and upper bounds with the genetic dataset and the dataset with all photographs. 
 

Model AICc Year Survival for photographic data Survival for genetic data 

   Estimate se 95% CI 
lower 

95% CI 
upper 

Estimate se 95% CI 
lower 

95% CI 
upper 

),( ..* φtmp  924.11 NA 0.85 0.05 0.73 0.93 0.85 0.05 0.73 0.93 

),( . tmp φ  924.3 1999 0.93 0.17 0.07 1 0.93 0.17 0.07 1 

  2000 1 0 1 1 1 0 1 1 

  2001 0.62 0.08 0.44 0.76 0.62 0.08 0.44 0.76 

  2002 1 0 1 1 1 0 1 1 

  2003 0.64 0.1 0.43 0.81 0.64 0.1 0.43 0.81 

  2004 1 0 1 1 1 0 1 1 

),( .* mtmp φ  926.12 NA 0.87 0.07 0.68 0.95 0.83 0.08 0.63 0.94 

),( .. φmp  926.86 NA 0.85 0.04 0.75 0.92 0.85 0.04 0.75 0.92 

),( . mmp φ  928.89 NA 0.85 0.06 0.7 0.93 0.86 0.07 0.67 0.95 

),( .* ttmp φ  931.03 1999 0.9        0.19 0.12 1 0.9        0.19 0.12 1 

  2000 0.97        0.19 0 1 0.97        0.19 0 1 

  2001 0.66        0.15       0.35        0.88 0.66        0.15       0.35        0.88 

  2002 0.95        0.26 0 1 0.95        0.26 0 1 

  2003 0.91        0.32       0        1 0.91        0.32       0        1 

  2004 0.24        33.68 0 1 0.24        33.68 0 1 

),( *. tmmp φ  936 1999 1 0 1 1 0.76 0.24 0.19 0.98 

  2000 1 0 1 1 1 0 1 1 

  2001 0.62 0.11 0.4 0.81 0.61 0.13 0.35 0.82 

  2002 1 0 1 1 1 0 1 1 

  2003 0.62 0.13 0.35 0.83 0.66 0.16 0.33 0.88 

  2004 1 0 1 1 1 0 1 1 

),( **. tmtmp φ  940.5 1999 1 0 1 1 0.68 0.26 0.17 0.96 

  2000 0.99 0.23 0 1 0.98 0.3 0 1 

  2001 0.63 0.15 0.32 0.86 0.73 0.26 0.16 0.97 

  2002 1 0 1 1 0.85 0.34 0.03 1 

  2003 0.79 0.33 0.07 0.99 1 0 1 1 

  2004 0.41 177.1 0 1 0.34 60.53 0 1 

NA=not applicable 
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Table 5-22- “Approximated” two-set CJS models and corresponding value of AICc and survival estimates with 
standard error and 95% CI lower and upper bounds with the genetic dataset and the dataset with selected 
photographs (QC protocol). 
 

Model AICc Year Survival for photographic data Survival for genetic data 

   Estimate se 95% CI 
lower 

95% CI 
upper 

Estimate se 95% CI 
lower 

95% CI 
upper 

),( ..* φtmp  833.03 NA 0.87 0.06 0.71 0.95 0.87 0.06 0.71 0.95 

),( .* mtmp φ  834.57 NA 0.92 0.09 0.49 0.99 0.83 0.08 0.63 0.94 

),( .* ttmp φ  839.76 1999 0.95      0.2 0 1 0.95      0.2 0 1 

  2000 0.96       0.19 0 1 0.96       0.19 0 1 

  2001 0.95        0.26       0        1 0.95        0.26       0        1 

  2002 0.65        0.21 0.22 0.92 0.65        0.21 0.22 0.92 

  2003 0.8        0.34       0.06      1 0.8        0.34       0.06      1 

  2004 0.51       77.29 0 1 0.51       77.29 0 1 

),( . tmp φ  843.82 1999 1 0 0 1 1 0 0 1 

  2000 1 0 1 1 1 0 1 1 

  2001 0.68 0.1 0.46 0.84 0.68 0.1 0.46 0.84 

  2002 1 0 1 1 1 0 1 1 

  2003 0.52 0.1 0.33 0.71 0.52 0.1 0.33 0.71 

  2004 0.92 0.21 0.07 1 0.92 0.21 0.07 1 

),( *. tmmp φ  845.06 1999 1 0 1 1 0.76 0.24 0.19 0.98 

  2000 1 0 1 1 1 0 1 1 

  2001 0.72 0.14 0.39 0.91 0.61 0.13 0.35 0.82 

  2002 1 0 1 1 1 0 1 1 

  2003 0.46 0.14 0.22 0.72 0.66 0.16 0.33 0.88 

  2004 0.35 0.16 0.11 0.69 1 0 1 1 

),( **. tmtmp φ  846.32 1999 1 0 1 1 0.68 0.26 0.17 0.96 

  2000 1 0 1 1 0.98 0.3 0 1 

  2001 1 0 1 1 0.73 0.26 0.16 0.97 

  2002 0.61 0.23 0.19 0.91 0.85 0.34 0.03 1 

  2003 0.35 0.23 0.07 0.79 1 0 1 1 

  2004 0.31 57.84 0 1 0.34 60.53 0 1 

),( .. φmp  846.64 NA 0.83 0.05 0.71 0.9 0.83 0.05 0.71 0.9 

),( . mmp φ  848.37 NA 0.8 0.07 0.64 0.9 0.86 0.07 0.67 0.95 

NA=not applicable 
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So the approximation with the multiplication of the likelihoods based on the two 

sampling methods usually led to greater estimates of apparent survival than those from the 

separate models based on each type of data (photographic or genetic). This may be due to 

many individuals appearing in both datasets. When the two-set model with the approximation 

indicated that the apparent survival was not the same between the two sampling methods, the 

estimate based on the genetic data was, as previously reported, smaller than the estimate 

based on the photographic data. This probably suggested that the loss of animals by 

emigration was more easily detected with the genetic sampling than it was with the 

photographic sampling.  

 Corrected estimates for survival tφ̂  could also be obtained with the TSJS model as 

shown in chapter one. Except in 2003, the survival estimates reported in Table 5-23 were very 

similar whether they were based on the combined dataset with all photographs or with 

selected photographs. These survival estimates were also of the same order as those reported 

previously with the approximation of the CJS model, i.e. greater than 0.8. However, standard 

errors of the TSJS estimates of survival were large (>0.2), generally at least 3 times greater 

than those obtained with the approximation of the CJS model. This is consistent with the 

approximation of the CJS model using data where some individuals are counted twice and 

therefore using more data than it should be while the TSJS model corrects for duplicated 

animals and therefore have larger confidence intervals. 

 In the case of whales, it is reasonable to assume that survival is independent of time 

and to use a straight arithmetic mean of the estimates of survival (Buckland, 1990). Buckland 

(1990) also showed that survival estimates corresponding to the last few occasions of 

sampling can be smaller than earlier estimates in the presence of heterogeneous capture 

probabilities which was likely to be the case here. If the unreasonable estimate of 2003 was 

deleted, the annual survival rate, i.e. mean(2), was estimated to be 0.86± 0.05 (combined 

dataset with genetic and all photographs) and 0.86± 0.03 (combined dataset with genetic and 

selected photographs). These estimates might be expected to be underestimates of the true 

survival although the confidence intervals included most of the estimates found in the 

literature for humpback whales (Buckland, 1990; Chittleborough, 1965; Gabriele et al., 2001; 

Mizroch et al., 2004). But, as explained before, these parameters are really estimating loss to 

the population. 
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Table 5-23- Survival estimates and corresponding standard error (se) and 95% CI lower and upper bounds under 
the TSJS model for the combined datasets 1999-2005 with all photographs and selected photographs. 
 

Dataset genetic and all photographs genetic and selected photographs 
Year 

tφ̂  se 95% CI 
lower 

95% CI 
upper tφ̂  se 95% CI 

lower 
95% CI 
upper 

1999 0.84 0.22 0.4 1 0.86 0.23 0.41 1 
2000 0.93 0.23 0.49 1 0.9 0.23 0.45 1 
2001 0.85 0.24 0.38 1 0.86 0.32 0.23 1 
2002 0.84 0.3 0.25 1 0.83 0.42 0.01 1 
2003 0.44 0.21 0.03 0.85 0.42 0.29 0 0.99 
Mean 0.78 0.19 0.41 1 0.77 0.2 0.38 1 

Mean(2) 0.86 0.05 0.76 0.96 0.86 0.03 0.8 0.92 

 
 

Finally, Table 5-24 summarizes the survival estimates given by the best models (based 

on the AIC or the AICc) under the CJS, TSJS (ignoring 2003) and two-set CJS approaches, 

highlighting the broad range of values and the inconsistency between the different 

approaches. 

 
 
Table 5-24-Survival estimates or range of survival estimates and corresponding standard error with the best 
model(s) under the CJS, TSJS and two-set CJS approaches with the different datasets 1999-2005. 
 
         
Dataset - 
Approach 

All photographs Selected 
photo- 
graphs 

Genetic genetic and all 
photographs 

genetic and selected 
photographs 

CJS 0.65(0.11)-0.68(0.12) 0.92(0.09) 0.68(0.12)           -                - 
TSJS                  -            -                     - 0.84(0.3)-0.93(0.23) 0.83(0.42)-0.9(0.23) 
two-set 
CJS 

                 -            -             - 0.62(0.08)-1 0.83(0.08)-0.92(0.09) 

 
 
 

5.4.6. Temporary emigration 
 

Multistate models give an opportunity to investigate factors controlling, in particular, 

the process of movement of humpback whales between breeding grounds in the South Pacific. 

Using the multi-site capture history dataset 1999-2004 (where the sites are New Caledonia, 

French Polynesia, Tonga and Cook Island) models were built and run in M-SURGE. The six 

best models based on the AIC are displayed in Table 5-25 where F is the true survival, ψ  is 

the transition probability, p  is the capture probability. Different subscripts are used here to 

parameterize F, ψ , and p: “from” indicates a variation in the parameter dependent on the 

previous region the animal was, “to” a variation dependent on the current region where the 

individual is, “time” a time-dependent variation. Two operators can be used to combine the 
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effect of previous region, current region and time to build more complex models: “*” denotes 

an interaction between factors and “+” a linear combination of the effects. 

Table 5-25- AIC for multistate models using multi-site capture history data of Humpback whales between 1999 
and 2004. 
 

Model 
Number of 
parameters  AIC 

timetotofrom pF *. ,, +ψ  28 824.3 

timetofromto pF **. ,,ψ  25 829.95 

timetofromtimetofrom pF **. ,, ++ψ  32 830 

timetofromfrom pF **. ,,ψ  25 831.12 

timetofromtofromtofrom pF **,, ++ ψ  35 834.11 

timefromto pF +,,. ψ  9 839.69 

 

Based on the AIC, the best model was the CAS model { }timetotofrom pF *. ,, +ψ  for which 

the true survival was constant over the years and did not depend on the site of departure or the 

site of arrival ( .F =0.99± 0.00), the transition depended on the combination of site of 

departure with site of arrival and the probability of capture depended on the interaction 

between the site of arrival and on the year. The probabilities of interchange from one breeding 

ground to another are displayed in Table 5-26. The diagonal corresponds to the site fidelity. In 

the case of New Caledonia, there seemed to be interchange only with Tonga. Then, a whale 

first sighted in New Caledonia had a probability of 0.95± 0.03 of being seen again there, of 

0.05± 0.01 of being seen in Tonga afterwards and of 0.01± 0.01 of having been seen before 

in Tonga. 

 

Table 5-26- Estimates of the probabilities of transition of humpback whales between breeding grounds in the 

South Pacific, between 1999 and 2004, from the CAS model { }timetotofrom pF *. ,, +ψ . 

 
from/to NC Tg FP CI 

NC  0.95  (se=.03)   0.05   (se=.03) 0 0 
Tg 0.01   (se=.01)  0.83  (se=.15)  0.03 (se=.02)  0.13   (se= .15) 
FP 0 0 1 0 
CI 0 0.31   (se=.43)  0 0.69  (se=.43) 

NC = New Caledonia; Tg = Tonga; FP = French Polynesia; CI = Cook Island. 
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5.4.7. Transience and trap-dependence 
 

The test 3.SR provided by U-CARE on the combined (photo and genetic) dataset 

1999-2005 revealed a transience problem (2-sided test: p-value<< 0.000): some individuals 

passed through New Caledonia once with a very low probability of being captured again on a 

subsequent occasion.  

Two separate datasets being available, it was interesting to see whether it was an issue 

with the genetic or the photo-identification data or with both or if this transience problem in 

the combined data was the result of many individuals appearing twice in the combined 

dataset. Test 3.SR run on the photographic catalogue 1999-2005 and on the genetic database 

1999-2005 separately showed that the transience problem was present for both kinds of data 

(p-value<<0.05). Within the genetic dataset it was, however, possible to go deeper in the 

analysis of the transience: two groups (males and females) could be distinguished and test 

3.SR was run on each group separately. From those tests, it appeared that the transient 

individuals were the males (p-value<<0.05), while the group of females did not show a 

detectable issue with transience (2-sided test p-value= 0.25).  

As expected, trap-response was not a significant feature of the data from test 2.CT run 

on the combined data (2-sided test: p-value=0.2), i.e. biopsy sampling does not seem to 

detectably affect recapture. 
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5.5. Discussion 
 

Several population size estimates have, in the past, been produced for the humpback 

population of New Caledonia using photo-identification or genetic data (Garrigue et al., 

2004). While genetic and photographic data have been collected consistently since 1999, no 

attempt has been made yet to combine them in capture-recapture models to produce 

population size estimates. However, the need to merge both sources of data to estimate 

population was emphasized in Garrigue et al. (2004) and, from this example, questions arise 

in the absence of a way to use both datasets in one abundance model: which dataset to use and 

which model to believe? Would an average value be better? Average between sampling 

methods? Average between models for the same sampling method? 

 

Investigations in the thesis have shown that both temporal variability and 

heterogeneity among individuals in capture probability appear to be present in the data, 

therefore violating the assumption of the JS and TSJS models of homogeneous capture 

probability among individuals and over time. Some multi-occasion closed population models 

have the advantage of handling heterogeneity. Here, however, the closure assumption is most 

likely violated given the length of the study (7 years) and the migratory behavior of the 

animals. Therefore, the problem in this analysis is similar to the question investigated in 

chapter four: does the violation of the assumption of closure have more impact on the 

population size estimates of the closed-population models than the violation of the assumption 

of homogeneous capture probability on the TSJS estimates? 

 

The TSJS does not handle a high degree of heterogeneity among individuals in capture 

probability (see chapter three) but is more robust than the closed population estimators when 

this kind of heterogeneity in capture probability is small or the capture probability high (see 

chapter four). In the case of the humpback population in New Caledonia, heterogeneity 

among individuals in capture probability is certainly a factor to take into account but the 

degree is not known. Previous studies showed that females tend to have a lower capture 

probability than males on breeding ground, and that the number of individuals genotyped is 

biased towards males and that individuals are usually unequally available for the two 

sampling methods (Garrigue et al., 2004; Smith et al., 1999). For the structure of the 

heterogeneity in capture probability, investigations suggest that males tend to have a higher 
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capture probability than females, especially in biopsy sampling (Garrigue et al., 2004; Smith 

et al., 1999). However, the discrepancy between capture probabilities of males and females is 

not large, which could give evidence towards a small to moderate heterogeneity in capture 

probability. Moreover, capture probabilities of marked individuals are estimated around 0.05-

0.26 in both datasets and the average capture probability used in chapter four falls in this 

interval, even though the capture probabilities estimated with the CJS should be taken with 

caution as the extrapolation is valid only if the marked individuals are representative of the 

whole population. Thus, unless there are uncatchable animals, an issue that should be 

minimized by the double-sampling design, the situation in the data could be extrapolated from 

the results of the CJS model to be close to the simulation structure in chapter four in case 1, 2 

or 3 under heterogeneity in capture probability and unequal sampling probability for the TSJS 

model: in such a case the TSJS estimator appears to be a fairly good estimator and to 

underestimate the abundance on average (possibly from 1 to 18% of the true population size 

but a greater underestimation is probably to be expected as the simulation results were based 

on a 10-occasion experiment and here the study was over 7 occasions). Moreover, the TSJS 

model assumes that the probability of capture is the same across sampling methods and 

differences in capture by each sampling method are only dealt with in the estimation of the I id 

parameter. So heterogeneity is to be expected in the TSJS model since the sampling methods 

will usually be different. However, with an appropriate rate of simultaneous capture (see 

chapters two and three), this heterogeneity is handled by the TSJS model. 

 

Given the present evidence of temporal variation in capture probability probably due 

to the small sampling effort in 2002 and 2004 compared to the other years, it might be 

advisable to ignore estimates from 2002 and 2004 in the open-population and Chapman 

modified Lincoln-Petersen estimators or to interpret them with caution. My results suggest 

that the temporal heterogeneity in capture probability may not be due to any biological reason 

but due to the sampling effort that varied yearly. Therefore, standardizing sampling effort 

over years in future work would be desirable.  

 

Speculation about the kind of heterogeneity in capture probabilities forces us to run at 

least 5 closed-population models for both sampling methods (the genetic and the photographic 

data) and thus give a variety of estimates that the researcher has to choose from. Indeed these 
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estimators are not MLEs so the classic model selection approach with the Akaike’s 

Information Criterion is therefore not possible. The classifier from program CAPTURE 

selected model Mth as the most appropriate given the present data, which is not surprising 

given the evidence of a temporal and individual variability in capture probability found by 

other methods. As mentioned in Otis (1978), the usefulness of such a classifier declines with 

the capture probability: here evidence shows that the data could be of medium quality 

(following the Otis data qualifier) with an approximate average of capture probability of 

approximately 0.2. There is, thus, considerably less chance that the program selects an 

inappropriate model compared to the situation with poor data (average capture probability 

around 0.05) where it can select 34.7% of the time a model which is only appropriate 12.5% 

of the time as stated in Otis (1978). Model Mth could be the most suitable in the present case. 

Furthermore, with the three datasets available, models Mh by Chao and Mh using the Jackknife 

method may not perform well, as the tests in CAPTURE suggested. Generally, heterogeneity 

in capture probability results in negatively-biased estimates and, as shown in chapter four, 

closed population models perform well in some situations and poorly in others. The sample 

coverage approach developed by Chao (MhChao) is usually biased downward when there is 

heterogeneity in capture probability among the members of the population (Chao and Lee, 

1992), which is the case here. Model Mh using the Jackknife method performs poorly and can 

exhibit negative bias when data are sparse, a situation in which model Mh by Chao performs 

better, or when some individuals are not catchable (Otis et al., 1978), which is most likely the 

case here as well, as it appears that many individuals are catchable only by biopsy or only by 

photo-identification. However, the latter issue is probably only of concern for the 

photographic data, as there are considerably less individuals catchable only by photo-

identification than there are by genetics alone. On the other hand, model Mh using the 

Jackknife method can overestimate the population size when almost all the individuals have 

been caught (Amstrup et al., 2005), which I do not think is likely here. Model Mth seems to be 

able to handle a greater degree of heterogeneity but between the three datasets available for 

multiple-occasion closed-population models, model Mth, supposedly the most suitable of the 

closed population ones using the classifier from program CAPTURE, gave very different 

results: firstly between the two photographic catalogues with estimates apart by a factor 1.29 

and then between genetic and photographic datasets with population size greater for the 

genetic dataset by a factor 1.88 to 2.43. Moreover, in chapter four, model Mth was never the 

best model in the 6 cases of heterogeneity in capture probability. Consequently, I would not 

consider model Mth as reliable in the present analysis. The two-source M0 model leads to 
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results very similar to the results with model Mth, so very high compared to the results with 

the TSJS model. Under the two-source M0 model, the probability of being sampled by both 

methods is very high and it was shown, in chapter four, that the two-source M0 model leads to 

highly positively biased results when there is heterogeneity and a high average capture 

probability (cases 6 and 7, see chapter four), while the TSJS estimator gave very good results 

in such cases. Results from simulation in chapter four suggest that model Mt by Darroch 

performs well in the presence of a small heterogeneity and this model appeared fairly 

consistent through the simulation study. Therefore, I would consider model Mt by Darroch as 

a good candidate among the closed-population models. Finally, the modified Chapman’s 

estimator seems to also greatly depend on the data it is based on and like the other models 

based on one type of data, the inconsistency between the two photographic catalogues and 

with the genetic data, along with the extraordinary range of estimates, can only confuse the 

ecologist. 

 

The violation of the closure assumption leads to difficulties in interpreting closed-

population model estimates and such estimates should be regarded as estimators for an entire 

superpopulation whose members move in and out of the study area (Kendall, 1999). In this 

study the assumption of closure is violated both geographically and demographically. The 

demographic non-closure, here through the process of death and birth, is similar to the 

scenario of “one entry and one exit” during the course of the experiment, therefore leading to 

biased closed-population estimates (Kendall, 1999). Violation of the geographical closure 

assumption has also been brought to light by the evidence of interchange between New 

Caledonia and neighboring breeding grounds shown in this chapter: this study is the first 

attempt to understand the stock structure of humpback whales in the South Pacific and has not 

been published at the time of the writing of the present thesis. The interchange probabilities 

could be larger than the ones provided here. Indeed there is variation among the study areas in 

sampling effort, size of the area, geographic accessibility. Despite those sampling difficulties, 

it is clear that interchange, hence temporal emigration, exists and should not be ignored in the 

discussion of assumption violations. However, it is not known whether this emigration is 

completely at random, Markovian, or driven by climatic pseudocycles like the ENSO. The 

consequences of the violation of the geographical closure assumption for closed-population 

models depend on the nature of the movement process: if the emigration movement is 

random, unless there is heterogeneity among individuals in capture probability, there should 
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be no bias in closed-population estimators (Kendall, 1999). Finally, results on the apparent 

survival estimated with the CJS model could also highlight geographic openness of the 

population. Since it is almost certain that the true survival is high (also highlighted by the 

CAS model where true survival was estimated as 0.99) for the humpbacks, the relatively low 

apparent survival would reflect a probable high rate of permanent or long term emigration 

during the course of this study (again in the form of “one exit”, therefore leading to bias in the 

closed-population estimates). Therefore, the appropriate closed-population estimates here are 

most-likely positively biased by the violation of the assumption of closure, with a presumably 

larger overestimation than the overestimation found in chapter four since the population here 

seems more open than the simulated population. The TSJS model is certainly negatively 

biased by the violation of the assumption of homogeneous capture probability. 

 

Combining the photographic and the genetic sources using the approximated CJS 

models or the corrected TSJS estimates of survival generally led to smaller survival estimates 

than those found in the literature (Buckland, 1990; Chittleborough, 1965; Gabriele et al., 

2001; Mizroch et al., 2004). However, Buckland (1990) recommended, for reliable survival 

estimation, capture probabilities higher than 0.2 (here capture probabilities were estimated 

around 0.05-0.26) and ideally at least 10 years of an intensive research program (here only 7 

years were available, with two years, 2002 and 2004, with a small sampling effort). Results 

on the apparent survival suggested that estimates differed between the genetic sampling and 

the photographic sampling, with an apparent survival probability always greater with the 

photographic sampling than with the genetic sampling. It is unlikely that, for a species such as 

humpback whale, the true survival differed between the two sampling methods because that 

would mean that these sampling methods sampled two populations with different survival 

rates. However, it is possible that this discrepancy between apparent survival estimates 

indicated that the loss of animals through permanent emigration was higher with the genetic 

sampling and that there was a portion of the population that were transient individuals more 

likely to be sampled by the genetic sampling. In such case, a combined analysis where the 

survival is constrained to be the same across the sampling methods leads to the loss of 

valuable information. 
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One of the assumptions of the model is that captures are independent of one another. 

This suggests that individuals should be independent of each other. However, even in 

remotely sociable species, there is always some degree of relationship between individuals 

that begets the violation of this assumption. The humpback whale is no exception. 

Associations between adults are known to be temporary but mother and calf association on 

breeding grounds are stable throughout the season. Thus it might be advisable to ignore calves 

for the purpose of population size estimation with the TSJS model, even though the 

consequences of keeping them in the datasets are unknown. 

 

Among the possible violation of assumptions of the TSJS model, the misreading of 

tags is believed to be negligible in both the genetic and photographic data thanks to a rigorous 

laboratory protocol and to the experience of the team in matching. However, if misreading of 

tags is technically inevitable, researchers should take their results with caution as this may 

lead to overestimated population sizes along with a loss in precision in the estimation and 

therefore potentially affect conclusions and mislead researchers. In the case of the New 

Caledonian humpback whale population, estimation using all the photographs does not lead to 

a clear trend in the population dynamics. However, all open population models (JS, weighted 

JS and TSJS models) using the photographic data based on the most rigorous protocol (i.e. the 

QC protocol, therefore removing the chance of misread tags with the photographic data) agree 

on the fact that, since 2001 or 2002, the sampled population is declining. 

 

With the evidence provided by the present TSJS model, the humpback whale 

population of New Caledonia was estimated at less than 500 individuals in 2004 and may be 

declining. In addition, the population size between 1995 and 2001 was estimated by Garrigue 

et al. (2004) using two closed-population models: the weighted mean of the Petersen model 

and the Chapman’s modification of the Petersen 2-sample model. With the former, the 

abundance was 533 (CV=0.15) with the genetic data and 327 (CV=0.11) with the 

photographic data, and with the later 643 (CV=0.18) and 574 (CV=0.18), respectively. So, 

even though the estimation using the TSJS model is probably negatively biased by 

heterogeneity in capture probability among individuals, these new results emphasize the 

potential vulnerability of the New Caledonian humpback whale population and the need for a 

longer and rigorous monitoring study. Future work in this region would benefit from a 
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different sampling design. A robust-design type of experiment (Pollock, 1982) would be 

especially recommended here as in the long term the population is open but during the capture 

occasions that usually take place over a period of two months, the demographic closure 

assumption holds. The robust design could help recognizing and measuring temporary 

immigration that is suspected in the humpback whale population in New Caledonia and would 

allow the estimation of more population parameters than the present study design reasonably 

permits. Then the estimation of population size at each secondary period with closed-

population models could be faithfully compared to the abundance given on the primary 

periods by open-population estimators such as the TSJS estimator. Capture probabilities for 

primary periods should increase resulting in more precise estimates and better discrimination 

among models. A pitfall of the robust design is the extra sampling effort compared to a JS 

experiment because the design implies sampling at both primary and secondary time scales 

but in this case, it is being done anyway.  
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CONCLUSIONS 
 

 

 

The aim of the present thesis is to provide a solution to the extremely difficult task 

associated with the estimation of abundance while adding another difficulty to it with the use 

of two partially-overlapping sources of information. One objective was to emphasize to 

researchers the potential benefits of combining sources of information (Barker, 1997; Barker 

et al., 2004; Barker and White, 2001; Forcada and Robinson, 2006; Salewski et al., 2007) 

versus the traditional approaches based on one source. In this context, a new assessment 

methodology for the estimation of abundance could be useful for many species that are 

sampled by different methods: birds (ringing and acoustics) (Laiolo et al., 2007; Salewski et 

al., 2007), bats (ringing and genetics) (Rivers et al., 2005; Senior et al., 2005), whales (photo-

identification and genetics) (Garrigue et al., 2004), seals (tagging and photo-identification) 

(Forcada and Robinson, 2006). The novel approach proposed here, the two-source Jolly-Seber 

(TSJS) model, is an extension of the classic Jolly-Seber model and is therefore relevant to 

open population and to long-term monitoring studies on long-lived animals for which the 

classic JS model is often used.  

 

Although mathematical models inevitably simplify the biological complexity 

characterizing these animal populations, one has to identify the goal to pursue in order to 

choose which of the multiple approaches available today to use. Do we wish to obtain the size 

of the population at specific times? Do we wish to compare the actual abundance with the one 

of 10 years ago? Do we want to monitor a population over a period of time? And so on. In 

many cases even answering these questions to narrow the choice of models still leads to a 

broad list of possible methods. And the multiple sources of uncertainty about biological 

process describing these animal populations do not help identifying the optimal approach. 

Nevertheless, I attempted here to provide another method to answer a relatively-new situation 

in population size assessment: when two datasets based on two different sampling methods 

are available for the same population, which one should we use to estimate the size of this 

population? I suggest a sensible solution is that all sources of information should be used to 
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make inference on abundance. Moreover, double sampling is an efficient approach to increase 

the sample size without increasing the length of the experiment.  

 

This estimation method using the original Jolly-Seber moment estimator in which the 

I id parameter is plugged-in is a simple modification of a well accepted and widely used 

method and may not face the usual reluctance on the part of the field ecologists. It avoids 

intensive computer work and provides simple calculations that can even be checked by hand. 

However, I am aware that such a method does not make full use of the modern statistical tools 

available (Bayesian framework (Brooks et al., 2004; King and Brooks, 2001; Schofield and 

Barker, 2008), more sophisticated likelihood-based methods (Barker and White, 2004; 

Schwarz and Arnason, 1996)…). Nevertheless, I chose, with the present method, to match the 

complexity of the model with the intended use to create a model no more complex than 

necessary. I also show how survival and recruitment can be estimated using the TSJS 

approach, therefore extending the use of the model to more than just abundance estimation. 

 

In the present thesis, the verification of the robustness of the method to departure from 

the underlying assumptions was done using a specific simulation structure. This particular 

simulation structure is, however, relevant to a broad range of populations, i.e. relatively long-

lived, slow-reproducing with short sampling frequency relative to longevity. It is always hard 

to generalize results when it comes to heterogeneity in capture probabilities. Ideally 

simulations matching as closely as possible the situation should be run to test the population 

size estimators and the aim here was to be able to extrapolate (while being careful with the 

extrapolation) the results found in the simulation to the case study in chapter five. 

 

Unbiased estimates were obtained through the simulation study when all assumptions 

of the TSJS model held, for a range of parameter values. However, a researcher will be more 

interested in the validity of the method when underlying assumptions are violated, often the 

case in ecological studies. Interpretation of the analytical results depends on the validity of the 

underlying assumptions. For the TSJS model, the assumptions are: (1) the capture 

probabilities are the same over time and across individuals within each capture method, (2) all 

animals have the same probability of survival between occasion t and occasion t+1, (3) 

marked animals do not lose their mark and marks are not overlooked, (4) sampling periods are 
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short enough to avoid death during the sampling period, (5) emigration is permanent, (6) 

capture probabilities are independent of each other, (7) a sampling period can include multiple 

capture occasions: in this case only one event is recorded, the others ignored. If the individual 

is available by both methods and is captured at least once, then it should be captured by both 

simultaneously at least once during this sampling period, (8) having a capture by one method 

in the capture history does not depend on whether or not the animal has been captured by any 

other method. 

 

Studies have shown the limits of the robustness of the Jolly-Seber estimator due to the 

failure of assumption (1) (Carothers, 1973; Gilbert, 1973) and simulation studies on the TSJS 

estimator showed similar limitations. This assumption is the most likely to be violated and 

therefore the validity of the TSJS model was thoroughly checked with departure from this 

assumption. The TSJS model proves to be relatively efficient when heterogeneity is small or 

when the average capture probability is high (>0.5) (see chapter three). When heterogeneity in 

capture probability among individuals is expected or suspected, researchers should be aware 

that the population size will be underestimated with a degree depending on the degree of 

heterogeneity. There are two sources of heterogeneity in capture probabilities (Crespin et al., 

2008). The first source is the extrinsic heterogeneity that results from the design experiment. 

For example, bear studies where grid-sampling is used usually exhibits an edge effect (Jensen, 

1975): bears whose home ranges are entirely on the grid are at a higher risk of capture than 

those whose home ranges straddle the grid (Boulanger et al., 2004b). A sampling design 

where some regions (or habitats) are more extensively sampled than others and where data are 

pooled at a regional or habitat level will also necessarily display extrinsic heterogeneity 

(Mizroch et al., 2004; Thompson, 2004). Care should be given to the sampling design to 

decrease extrinsic heterogeneity. For instance, in bat studies, effort should be made to 

construct an appropriate sample frame which matches as closely as possible the target 

population (Thompson, 2004); in bear studies, grid design should take into account the 

topography and the number of bears expected (Boulanger et al., 2002). The second source of 

heterogeneity in capture probability is the intrinsic heterogeneity which conveys biological 

information and depends on observable characteristics, such as gender, colours (Pradel et al., 

1997), and on less obvious features such as social or reproductive status (Summerlin and 

Wolfe, 1973). In chapter four, I show that using each type of data separately could be less 

efficient, in terms of both precision and bias, than the combined approach developed here. I 
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show that the underestimation with the TSJS model will always be lesser than the one with 

the classic JS model on just one source of information when the capture probabilities vary 

among individuals. Results of chapter four also demonstrate that, for closed-population 

estimators, the balance of the underestimation due to the heterogeneous capture probability 

and the overestimation expected due to the violation of the closure assumption (of the form of 

one entry and one exit during the study period, e.g. (Kendall, 1999)) falls in favour of an 

overall overestimation. Therefore, with an open-population with a high survival rate and 

exhibiting heterogeneous capture probabilities among individuals, closed-population 

estimators are likely to overestimate the population size at that site. The calculated value 

should be interpreted as a superpopulation estimate (Boulanger and McLellan, 2001; 

Boulanger et al., 2002; Kendall, 1999).  

 

The use of multiple sampling methods is therefore potentially a good approach in 

sampling design to maximize effectively the number of catchable animals, thus decreasing 

heterogeneity in capture probabilities and ensuring that marked and unmarked animals in the 

sampled population have similar probabilities of entering the sample, without having to dilute 

the sampling effort over a large area. And as it is important to control variation in a sampling 

design, this methodology could provide a useful way to reduce variation by increasing the 

sample size and, hence, to increase the estimator precision.  

 

Assumption (2) concerns the survival that is assumed equal among individuals. While 

violation of this assumption should not bias the population size estimate and was not explored 

in the present thesis, survival is an important parameter in population dynamics that can 

increase understanding of causes of variation in population size and therefore requires 

consideration. With two overlapping sources of data, there are, at present, two ways survival 

can be estimated: using the approach of the TSJS model based on the ad hoc JS model (see 

p.34) and using an approximation based on the CJS framework (see p.160). The first approach 

uses the probabilistic framework with the I id parameter to correct the classic JS estimates for 

overlap. The second approach is based on a more flexible framework, allowing both capture 

probabilities and survival to be modeled as functions of external covariates but ignores the 

potential overlapping between the two sources of data. Therefore, I would not recommend the 

survival to be estimated this way. Moreover, results in chapter five highlight that a combined 

analysis, like the TSJS method, where the survival is constrained to be the same across the 



 

 203 

sampling method could lead to the loss of valuable information on the characteristics of the 

populations sampled by the two sampling methods. Therefore, researchers should combine 

data with caution in survival analysis. 

 

Assumptions (3) can be violated in various cases. In studies using photographic tags of 

natural marks (Karanth and Nichols, 1998; Meekan et al., 2006), marks can be unrecognized 

because of a natural change of patterns or because of a human matching mistake. The 

violation of this assumption in such studies can therefore be minimized by a rigorous 

matching protocol involving at least two experienced workers and by using only good quality 

photographs (Stevick et al., 2001). Studies with visual recaptures, e.g. visual recapture of 

seals (Schwarz and Stobo, 1999) or visual recapture in bird ringing studies will tend to be 

more prone to violation of this assumption than photographic tagging. In genetic studies, 

misidentification will be most likely of the form of false negative error and result in the 

creation of new “ghost” individuals (Stevick et al., 2001). Misidentification that results in the 

creation of new individuals will result in an overestimation of the population size (Stevick et 

al., 2001; Yoshizaki et al., 2009). In chapters three and four, I show that the TSJS model is 

relatively efficient in handling such misidentification as long as the misidentification is 

homogeneous within the population. This is not surprising because the TSJS model is prone 

to an underestimation of the population size which can be counterbalanced by the 

overestimation due to tag misreading. Therefore, the presence of a small homogeneous 

misidentification rate (<5%) in the data should not be an issue with the TSJS approach, 

similar to what was found for JS estimates (Arnason and Mills, 1981) as long as researchers 

are aware of it. In the specific case of the New Caledonian humpback whale study, 

photographic matching involves a minimum of two experienced researchers so mismatch is 

unlikely. Concerning the genetic data, the field protocol provides good-quality DNA (i.e. skin 

biopsy) and re-run of problematic samples is systematic, so mismatch is also unlikely.  

 

The TSJS model allows for an entry and one exit from the study area during the length 

of the experiment and therefore assumption (5) will be violated in studies where temporary 

emigration is present, i.e. individuals enter and exit the study sites several times (Kendall and 

Bjorkland, 2001). This temporary emigration can have an ecologically meaningful 

interpretation, e.g. home range of individuals extending outside the study area (Boulanger et 

al., 2002), being a temporary emigrant is equivalent to being a non-breeder in bird studies 
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(Pradel and Lebreton, 1999). Concerning the case study in the present thesis, some individuals 

have been sighted in other grounds in the South Pacific. Although the mechanism of the 

interchange between neighboring breeding grounds has just started to be studied, it seems 

unlikely that emigration is permanent. However, this needs to be confirmed and a similar 

sampling effort should be undertaken in each breeding ground not to minimize this possible 

issue.  

 

Assumption (6) requires independence of the individuals for capture. Surely this 

assumption can rarely hold for social species that live in groups, e.g., gorillas, elephants, 

wolves. This assumption can also be violated to some extent in species that display temporary 

associations. 

 

Non-violation of assumption (7) is directly contingent on the sampling protocol used 

in the field and is at risk of violation when the primary sampling occasions include several 

secondary sampling occasions, such as in a robust design experiment, or/and when several 

“teams” survey simultaneously the same area, i.e. the same population.  

 

Assumption (8) will inevitably be at risk in studies where animals are likely to become 

trap-shy or trap-happy after a capture. Behavioral response can be a problematic source of 

variation and there is often no way to fully eliminate the response: prebaiting (placing traps 

few days prior to the actual trap is set) can help reducing the trap-happy behavior or 

minimizing trap-shy behaviour can be accomplished by reducing the handling time. 

Nevertheless, if trap-shy/happy behavior is suspected (e.g number of captures decreases with 

time, number of captures increases with time) in one of the two sampling methods or in both, 

I would not recommend the use of the TSJS model because, in many studies, behavioral 

response will not be the only source of variation and general patterns in the bias in the 

abundance estimates with multiple sources of variation are extremely difficult to predict. 

 

There are therefore a large number of ways in which the TSJS can become biased. 

However, this is true of all the methods currently available. The case study on humpback 

whales in chapter five shows this clearly. However, there is here a consistent disagreement 
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between datasets, between closed population models and between open and closed population 

models. These differences may suggest that there is more than just an issue with the 

estimation method: does this suggest two populations of whales, a change in whale behavior, 

or an unknown bias in the genetic data? This case study shows the consequences of the 

peculiarities of the situation being investigated and shows that, without a lot of extra 

information and simulations, the researchers may easily end up undecided as to what is 

happening. 

 

I have shown through simulation studies, that the use of two sources of information 

rather than a single one can enhance the precision of the population size estimation. I also 

provide a comparison of the estimator with the Jolly-Seber model and closed-population 

methods and highlight the difficulty in comparing results coming from two approaches, i.e. 

open and closed population methodology. Matching sampling design with study goals is 

therefore essential for the validity of the data analysis and interpretation of the results. For 

monitoring purposes, the proposed method provides an efficient alternative to the existing 

approaches to deal with multiple sources of data to estimate abundance. At present, however, 

there is no way to evaluate the goodness-of-fit of the TSJS model. Therefore, a productive 

direction for future work would be the development of a goodness-of-fit procedure for the 

TSJS model in order to see if the model provides good adequacy in characterizing the field 

data. Future research on combining overlapping sources of information should also focus on 

the Crosbie-Manly-Arnason-Schwarz framework (Crosbie and Manly, 1985; Schwarz and 

Arnason, 1996) to develop a likelihood that would allow a more parsimonious modeling of 

population parameters than the TSJS model permits and would allow researchers to base their 

inference not only on the best model but on a set of models that seem to well fit the data.  

 

However, ultimately, workers are at the mercy of their data. For example if the 

methods sample different populations then combining the two makes no sense. Similarly, long 

term studies for which open population methods are appropriate are vulnerable to changes in 

personnel, technology and the behavior of animals (even the effects of climate change on the 

sampling environment) that can lead to misleading conclusions, unless these are recorded and 

explicitly included in the analysis. It may be some time before methods have evolved 

sufficiently to accommodate all the things that can go wrong in a long term study – even if the 
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information is available, for the entire study period, to model them. Until then, results from 

such studies must be interpreted with great caution. 

 

A user’s guide with R-codes implementing the two-source Jolly-Seber and the two-

source M0 models is available in Appendix 9. 
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Appendix 1 

 
 

Variances for Jolly-Seber parameters tM̂ , tφ̂ , tB̂  and tp̂ . 
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Appendix 2 
 
 

R codes simulating the Venn diagram in Fig.1-1 and calculating the approximation of the 
proportion of individuals in F (Fig.1-1). 
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The following R code produces capture histories as illustrated in the Venn diagram 

Fig.1-1 and the calculation of the approximation of the proportion of individuals in F (see 

Fig.1-1):    out=NULL 

histories=NULL 
T=10 #NUMBER OF CAPTURE OCCASIONS 
p=c(0.1, 0.1, 0.15) #INSERT OCCASION-SPECIFIC CAPTURE PROBS HERE 
respectively: prob getting a “1”, prob getting a “2”, prob getting a “3” on each 
capture occasion 
 
for (ind in 1:10000) # NUMBER OF DETECTED INDIVIDUALS during the 
experiment  
{  
r=runif(T) 
c=(r<p[1])*1 
d=((r>p[1])&(r<sum(p[1:2])))*2 
e= ((r>sum(p[1:2]))&(r<sum(p[1:3])))*3 
f=c+d+e 
histories=rbind(histories,f) 
if (any(f==3) & !any(f==2) & !any(f==1)) {aa="A"} else 
if (any(f==3) & !any(f==2) & any(f==1)) {aa="B"} else 
if (any(f==3) & any(f==2) & !any(f==1)) {aa="C"} else 
if (!any(f==3) & any(f==2) & !any(f==1)) {aa="D"} else 
if (any(f==3) & any(f==2) & any(f==1)) {aa="E"} else 
if (!any(f==3) & any(f==2) & any(f==1)) {aa="F"} else 
if (!any(f==3) & !any(f==2) & any(f==1)) {aa="G"} 
out=append(out,aa) 
} 
 
#GET THE TABLE OF FREQUENCIES OF A TO G 
tt=table(out) 
 
dd=rep(0,7) 
names(dd)=c("A","B","C","D","E","F","G") 
dd[match(names(tt),names(dd))]=tt 
tt=dd #MAKING SURE THAT ANY ZERO OCCURRENCES ARE PUT IN SO 
THAT A TO G ARE ALL THERE 
zz1=sum(tt[c(2,5,6,7)])/ sum(tt) #P1=B+E+F+G 
zz2=sum(tt[c(3:6)])/ sum(tt) #P2=C+D+E+F 
zz3=sum(tt[c(1,2,3,5)])/sum(tt) #P3=A+B+C+E 
 
#Get true F by subtraction 
pp=tt/sum(tt) #GET PROBS OF A TO G  
pp 

       #Get F by P1P2(1-P3) 
zz1*zz2*(1-zz3) 
 
#REAL VALUE 
pp[6] 
print("ratio of estimated to true value of F") 
zz1*zz2*(1-zz3)/pp[6] 
 
#histories[1:10,] 
 P=(1-(1-p)^10)/(1-(1-sum(p))^10) 
 round(P,digits=3) 
round(c(zz1,zz2,zz3), digits=3) 
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Appendix 3 
 

A linear model showing the effect of P1, P2, P3 on the approximation of the proportion of 
individuals in F (Fig.1-1). 
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The effect of the probabilities P1, P2, P3 on the adequacy of the approximation can be 

highlighted by fitting a simple linear model (to what is clearly non-linear, but apparently 

monotonic): 

 

iiii PPPX εβββ ++++= 322110 )(  (a) 

where  iX  is the proportion of individuals in F, 

            0β  is the intercept, 

            1β  is the regression coefficient associated with )( 21 PP + , 

            2β  is the regression coefficient associated with3P , 

            iε  is the error term. 

 

N.B.: P1 and P2 are summed because they are interchangeable in the estimator. 

 

Results in Table A and Table B show that P3 has the greatest effect on the 

approximation of the proportion of unidentified overlap: as the value of P3 increases, the 

value of the approximation of the proportion of individuals in F decreases, therefore leading 

to an increase of the value of the I id parameter. This effect does not seem much affected by the 

number of capture occasions in the experiment. However, as the number of capture occasions 

increases, the positive effect of )( 21 PP +  increases, counterbalancing the negative effect of P3 

on the approximation of the proportion of unidentified overlap. 

 
Table A- Results of the simple linear model (a) for a 5-occasion experiment. 
 

 Estimate Std. Error t value Pr(>|t|)  

(Intercept) 1.06028 0.07915 13.396 2.25E-09 *** 

sum(P1+P2) 0.09652 0.0384 2.513 0.0248 * 

P3 -0.57812 0.07275 -7.947 1.48E-06 *** 
 
 
Table B- Results of the simple linear model (a) for a 10-occasion experiment. 
 
 Estimate Std. Error t value Pr(>|t|)  

(Intercept) 0.96062 0.10405 9.232 4.51E-07 *** 

Sum(P1+P2) 0.22375 0.03766 5.941 4.90E-05 *** 

P3 -0.54728 0.09352 -5.852 5.67E-05 *** 
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Appendix 4 

 

Additional 2D views for figures 2-4, 2-5, 2-7, 2-9, 2-10, 2-11, 2-12 and 2-15.  
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Fig.A- Additional 2D views for figures 2-4 and 2-5. 
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Fig.B- Additional 2D views for figure 2-7. 
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Fig.C- Additional 2D views for figure 2-9. 
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Fig.D- Additional 2D views for figure 2-10. 
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Fig.E- Additional 2D views for figure 2-11. 
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Fig.F- Additional 2D views for figure 2-12. 
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Fig.G- Additional 2D views for figure 2-15. 
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Appendix 5 
 
 
MRE, RMSRE, mean estimate and true value of the population size over the simulation runs, 
and standard errors, normal and log-normal CI coverage rates of the estimated values, at each 
capture occasion of a 10-year study for different capture probabilities with scenario 50-25-25 

and a starting population of 500 individuals. 
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Capture 
probability 

Mean  
Estimate 

Mean True 
Value 

MRE Mean 
estimated 
SE 

RMSRE Nominal 
95%  CI 
coverage 
rate (%) 

Log-
normal CI 
coverage 
rate (%) 

       P(c)=0.05 

              2N̂  474 627 -0.24 246 0.59 62 75 

            3N̂  671 655 0.02 322 0.78 77 82 

            4N̂  720 694 0.04 352 0.86 75 83 

            5N̂  873 720 0.21 359 1.05 79 82 

            6N̂  819 746 0.1 385 0.68 80 82 

            7N̂  876 763 0.15 371 1.29 84 84 

            8N̂  906 795 0.14 369 1.07 79 82 

            9N̂  768 831 -0.08 335 0.73 67 78 

P(c)=0.075 

            2N̂  

 
637 

 
627 

 
0.02 

 
219 

 
0.74  

 
64 

 
72 

            3N̂  767 654 0.17 236 0.66 78 80 

            4N̂  753 69 0.09 222 0.53 86 85 

            5N̂  804 718 0.12 235 0.56 85 84 

            6N̂  822 744 0.1 237 0.46 86 84 

            7N̂  873 762 0.15 250 0.61 84 84 

            8N̂  873 794 0.1 247 0.8 80 83 

            9N̂  993 827 0.2 281 1.1 71 70 

P(c)=0.1 

            2N̂  

 
64 

 
626 

 
0.03 

 
157 

 
0.54  

 
71 

 
75 

            3N̂  711 654 0.09 157 0.47 76 74 

            4N̂  760 691 0.1 162 0.45 81 80 

            5N̂  779 717 0.09 165 0.3 91 90 

            6N̂  832 743 0.12 17 0.34 88 88 

            7N̂  808 760 0.06 168 0.31 87 84 

            8N̂  873 792 0.1 183 0.41 81 83 

            9N̂  927 826 0.12 194 0.49 73 72 

P(c)=0.2 

            2N̂  

 
690 

 
627 

 
0.1 

 
65 

 
0.26  

 
69 

 
65 

            3N̂  693 656 0.06 61 0.18 71 73 

            4N̂  746 696 0.07 67 0.16 84 81 

            5N̂  773 720 0.07 71 0.15 83 82 

            6N̂  790 746 0.06 72 0.14 86 81 

            7N̂  816 765 0.07 75 0.15 83 82 
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Capture 
probability 

Mean  
Estimate 

Mean True 
Value 

MRE Mean 
estimated 
SE 

RMSRE Nominal 
95%  CI 
coverage 
rate (%) 

Log-
normal CI 
coverage 
rate (%) 

            8N̂  834 797 0.05 78 0.14 84 82 

            9N̂  896 834 0.07 86 0.23 67 65 

P(c)=0.3 

            2N̂  

 
655 

 
627 

 
0.04 

 
32 

 
0.14  

 
61 

 
60 

            3N̂  684 653 0.05 33 0.1 65 63 

            4N̂  731 695 0.05 38 0.1 74 74 

            5N̂  752 719 0.04 40 0.08 83 83 

            6N̂  781 745 0.05 43 0.09 83 81 

            7N̂  799 763 0.05 44 0.09 82 81 

            8N̂  833 795 0.05 48 0.1 79 80 

            9N̂  880 830 0.06 52 0.13 69 68 

P(c)=0.4 

            2N̂  

 
646 

 
626 

 
0.03 

 
19 

 
0.09  

 
52 

 
52 

            3N̂  679 653 0.04 20 0.07 58 57 

            4N̂  716 691 0.04 24 0.07 73 72 

            5N̂  747 717 0.04 26 0.06 77 77 

            6N̂  770 742 0.04 28 0.06 81 81 

            7N̂  791 760 0.04 30 0.06 80 79 

            8N̂  819 793 0.03 32 0.06 82 82 

            9N̂  853 827 0.03 35 0.08 73 75 

P(c)=0.5 

            2N̂  

 
648 

 
627 

 
0.03 

 
11 

 
0.07  

 
38 

 
38 

            3N̂  669 653 0.03 13 0.04 64 64 

            4N̂  717 694 0.03 16 0.05 61 60 

            5N̂  740 718 0.03 18 0.04 73 72 

            6N̂  767 744 0.03 20 0.04 77 77 

            7N̂  781 761 0.03 21 0.04 85 85 

            8N̂  814 794 0.03 23 0.04 85 86 

            9N̂  850 828 0.03 26 0.06 77 77 

P(c)=0.6 

            2N̂  

 
638 

 
626 

 
0.02 

 
6 

 
0.04   

 
31 

 
32 

            3N̂  669 655 0.02 8 0.03 50 51 

            4N̂  709 694 0.02 11 0.03 64 65 

            5N̂  732 719 0.02 12 0.03 77 77 
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Capture 
probability 

Mean  
Estimate 

Mean True 
Value 

MRE Mean 
estimated 
SE 

RMSRE Nominal 
95%  CI 
coverage 
rate (%) 

Log-
normal CI 
coverage 
rate (%) 

            6N̂  763 746 0.02 14 0.03 80 80 

            7N̂  779 764 0.02 15 0.03 88 88 

            8N̂  812 797 0.02 18 0.03 88 88 

            9N̂  847 831 0.02 20 0.04 78 78 

P(c)=0.8 

            2N̂  

 
632 

 
626 

 
0.01 

 
1 

 
0.02 

 
14 

 
14 

            3N̂  659 653 0.01 3 0.01 36 37 

            4N̂  699 693 0.01 5 0.01 64 64 

            5N̂  725 719 0.01 6 0.01 73 73 

            6N̂  750 744 0.01 7 0.01 85 85 

            7N̂  769 763 0.01 8 0.01 93 93 

            8N̂  802 795 0.01 10 0.01 92 93 

            9N̂  838 830 0.01 12 0.02 88 89 

2N̂ , …, 9N̂ =population size estimate at time 2, …, 9. 
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Appendix 6 
 
 
MRE, RMSRE, mean estimate and true value of the population size over the simulation runs, 
and standard errors, normal and log-normal CI coverage rates of the estimated values, at each 

capture occasion of a 10-occasion study with a tag misreading rate of 50%, homogeneous 
within the population and a starting population of 500 individuals. 
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Case Mean  
Estimate 

Mean True 
Value 

MRE Mean 
estimated 
SE 

RMSRE Nominal 
95% CI 
coverage 
rate (%) 

Log-
normal CI 
coverage 
rate (%) 

 
Case 1 
20-40-40 
P(c)=0.2 

            2N̂  

 
 
 
 

617 

 
 
 
 

640  

 
 
 
 

-0.03 

 
  
 
 

79  

 
 
 
 

0.35  
 

 
 
 
 

51 

 
 
 
 

56 

            3N̂  689 693 0 84 0.28 68 77 

            4N̂  757 757 0 93 0.26 69 87 

            5N̂   821 804 0.02 102 0.27 69 88 

            6N̂  883    852 0.03 110 0.26 69 91 

            7N̂  933 888 0.04 118 0.29 64 91 

            8N̂  997 943 0.05                                                                 128 0.31 60 86 

            9N̂  1053 1006 0.04 137 0.34 59 76 

 
Case 2 
20-40-40 
P(c)=0.5 

            2N̂  

 
 
 
 

559 

 
 
 
 

640   

 
 
 
 

-0.13 

 
 
 
 

12 

 
 
 
 

0.14  

 
 
 
 

11 

 
 
 
 

11 

            3N̂  620 693   -0.11 16 0.12 15 16 

            4N̂  693 757 -0.08 22 0.1 29 30 

            5N̂  736 804 -0.08 25 0.1 28 30 

            6N̂  786 849 -0.07 28 0.09 41 42 

            7N̂  816 886  -0.08 31 0.09 37 40 

            8N̂  857 941 -0.09 34 0.11 35 38 

            9N̂  888 1002 -0.1 37 0.13 28 29 

 
Case 3 
50-25-25 
P(c)=0.2 

            2N̂  

 
 
 
 

690 

 
 
 
 

626 

 
  
 
 

0.1 

 
 
 
 

71 

 
 
 
 

0.27 

 
 
 
 

59 

 
 
 
 

58 

            3N̂  725 653 0.11 70 0.22 71 68 

            4N̂  749 693 0.08 73 0.18 80 77 

            5N̂  792 717 0.1 77 0.2 86 81 

            6N̂  836 744 0.12 82 0.2 84 81 

            7N̂  861 762 0.13 85 0.21 78 77 

            8N̂  901 794 0.14 90 0.21 70 66 

            9N̂  951 
 
 
 

829 0.15 97 0.27 68 64 
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Case Mean  
Estimate 

Mean True 
Value 

MRE Mean 
estimated 
SE 

RMSRE Nominal 
95% CI 
coverage 
rate (%) 

Log-
normal CI 
coverage 
rate (%) 

 
Case 4 
50-25-25 
P(c)=0.5 

            2N̂  

 
 
 

 
648 

 
 
 

 
627  

 
 
 

 
0.03  

 
 
 

 
14  

 
 
 

 
0.07  

 
 
 

 
42 

 
 
 

 
43 

            3N̂  683 653 0.05 16 0.06 50 49 

            4N̂  741 693 0.07 19 0.08 51 51 

            5N̂  768 717 0.07 21 0.08 38 38 

            6N̂  803 743 0.08 23 0.09 32 31 

            7N̂  831 760 0.09 25 0.1 24 23 

            8N̂  880 792 0.11 28 0.12 23 23 

            9N̂  918 826 0.11 31 0.13 29 29 

2N̂ , …, 9N̂ =population size estimate at time 2, …, 9. 
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Appendix 7 
 

Simulation results for the two-source M0 model (200 simulation runs). 
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True 

capture probabilities 

 
Estimated 

capture probabilities and se 

 
Number 

of 
capture 

occasions 
T  

 
True 

abundance 
N  

 
Mean 

estimate 

N̂  

 
Mean 

estimated 
SE 

 
 

MRE 

 
 

RMSRE 

 
Mean 

CI 
lower 
bound 

 
Mean 

CI 
upper 
bound 

 
Normal 

CI 
coverage 

rate 
 
p  

 
g  

 
α  

 
±p̂  se 

 
±ĝ  se 

 
±α̂  se 

10 500 502 19 0 0 491 514 100 0.25 0.12 0.2 0.25± 0.01 0.12± 0.01 0.19± 0.01 
10 50 49 2 0 0 44 53 100 0.25 0.12 0.2 0.23± 0.02 0.11± 0.02 0.12± 0.03 
5 500 482 16 -0.03 0.04 452 514 100 0.25 0.12 0.2 0.27± 0.01 0.12± 0.01 0.2± 0.02 
10 500 476 133 -0.05 0.05 278 815 100 0.05 0.01 0.025 0.04± 0.02 0.008± 0.003 0.017± 0.01 
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Appendix 8 

 
Sample of values of the two simulated JS estimates and corresponding weighted means under 

heterogeneity case 1, with scenario 20-40-40 and a starting population of 500 individuals. 
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The table below displays the three first values of the 1600 simulated estimates of 

population size obtained with the Jolly-Seber estimator on each of the two datasets available 

(dataset 1 from sampling method 1 and dataset 2 from sampling method 2) from a T=10-

occasion capture-recapture experiment repeated 200 times and the variance-weighted means 

of each pair of the JS estimates. Each of the three wJSN̂  presented below is the variance-

weighted mean of the 1
ˆ

JSN  and 2
ˆ

JSN  obtained on the same occasion and same run of the 

simulation, i.e. on capture occasion 2 and run of simulation 1, 2, 3. The table below shows 

that, despite the fact that each wJSN̂  falls between the value of the corresponding 1ˆ
JSN  and 

2
ˆ

JSN , it is possible that the arithmetic mean of the wJSN̂  does not fall between the arithmetic 

means of the 1
ˆ

JSN  and 2
ˆ

JSN . 

 
 
Capture occasion 

2 
JS model on 

dataset 1 
JS model on 

dataset 2 
Variance 

weighted mean 
Run of simulation 

1
ˆ

JSN  se 
2

ˆ
JSN  se 

wJSN̂  se 

1 311 50 345 60 325 38 
2 345 52 694 120 401 48 
3 896 171 336 55 388 52 

Arithmetic mean 517 91 458 78 371 46 
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Appendix 9 
 
 

A USER’S GUIDE to the TWO-SOURCE JOLLY-SEBER MODEL and MODEL TWO-
SOURCE M0. 
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Permission is granted to copy this document, at no charge and in its entirety, provided 
that the copies are not used for commercial advantage, and that the source is cited. The 
manual is available upon request in an electronic format from the author. 
 
 
STEP 1 
 
Download and install the software R available at http://www.r-project.org/ 
 
Manuals are also available on this website for further information on the software. 
 
 
 
STEP 2 
 
Create the table to be used in the analysis: 
 
 

• It must be a “.csv” file 
• It must only contain one spreadsheet 
• The table must contain no raw or column label 
• Start the table in the A1 cell 
• Write capture histories on raw, columns represent capture occasion 
• A capture by method 1 (i.e. photo-id) = “4” 
• A capture by method 2 (i.e. skin sampling) = “5” 
• A simultaneous double capture = “8” 
• Not captured = “0” 
• Multiple captures on a capture occasion are to be ignored: only 1 

capture per capture occasion allowed 
 
    
 
STEP 3 
 
Copy and past the following codes in the R-command space: 
 
 

data.csv=function(data=data)(data=read.csv2(file.choose(),header=F)) 
target=data.csv() 

 
 
 
STEP 4 
 
Select the “.csv” file to be analyzed 
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STEP 5 
 
Replace the x in the following code by the number of capture occasions in the study, 
copy and paste the updated code: 
 
   T<-x 
 
 
STEP 6 
 
Copy and paste the following codes (this will put the data in the appropriate format for the 
TSJS and the two-source M0 model): 
 
# Formatting the data for the two-source M0 model 
 # First separate matrix into 3 matrices: create dataP 

 newtargetP=target 

  for(m in 1 :T) { 
  for(z in 1:nrow(newtargetP)) { 

            x=newtargetP[z,] 
 
  if(x[m]==5) { newtargetP[z,m]=0} 
           }} 
for(m in 1 :T) { 

  for(z in 1:nrow(newtargetP)) {  

            x=newtargetP[z,] 
 
  if((sum(x[1:T]==8)!=0)&(x[m]==4)) {newtargetP[z,m]=0}}} 
for(m in 1 :T) { 

  for(z in 1:nrow(newtargetP)) {  

            x=newtargetP[z,] 
 if(x[m]==8) {newtargetP[z,m]=0}}} 

 

 #to remove histories when whales had not been caught once to get the 
matrix to be analyzed 

sortout <- function(object) 
{ 
  condition <- function(row) 
  { 
    return(all(row==0)) 
  } 
  rowindicator <- apply(object,1,condition) 
  return(object[!rowindicator,]) 
} 
sortout(newtargetP) 
dataP<- sortout(newtargetP) 
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# separate matrix into 3 matrices: create dataG 

 newtargetG=target 

  for(m in 1 :T) { 
 

  for(z in 1:nrow(newtargetG)) { 

            x=newtargetG[z,] 
  if(x[m]==4) { newtargetG[z,m]=0} 
           }} 
for(m in 1 :T) { 

  for(z in 1:nrow(newtargetG)) {  

            x=newtargetG[z,] 
 
  if((sum(x[1:T]==8)!=0)&(x[m]==5)) {newtargetG[z,m]=0}}} 
for(m in 1 :T) { 

  for(z in 1:nrow(newtargetG)) {  

            x=newtargetG[z,] 
 if(x[m]==8) {newtargetG[z,m]=0}}} 

 

 #to remove histories when whales had not been caught once to get the 
matrix to be analyzed 

sortout <- function(object) 
{ 
  condition <- function(row) 
  { 
    return(all(row==0)) 
  } 
  rowindicator <- apply(object,1,condition) 
  return(object[!rowindicator,]) 
} 
sortout(newtargetG) 
dataG<- sortout(newtargetG) 
 
 
 

 # separate matrix into 3 matrices: create dataB 

 newtargetB=target 

  for(m in 1 :T) { 
 

  for(z in 1:nrow(newtargetB)) { 

            x=newtargetB[z,] 
 
  if((sum(x[1:T]==8)==0)&(x[m]==4)) {newtargetB[z,m]=0} 
  if((sum(x[1:T]==8)==0)&(x[m]==5)) {newtargetB[z,m]=0} 
           }} 
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 #to remove histories when whales had not been caught once to get the 
matrix to be analyzed 

sortout <- function(object) 
{ 
  condition <- function(row) 
  { 
    return(all(row==0)) 
  } 
  rowindicator <- apply(object,1,condition) 
  return(object[!rowindicator,]) 
} 
sortout(newtargetB) 
dataB<- sortout(newtargetB) 

 
dB2<-as.matrix(dataB) 
dB<-as.vector(dB2) 
 
dP2<-as.matrix(dataP) 
dP<-as.vector(dP2) 
 
dG2<-as.matrix(dataG) 
dG<-as.vector(dG2) 
 
opensim<-
list(B=structure(dB,.Dim=as.integer(c(nrow(dB2),ncol(dB2)))),P=structure(dP,.Dim=as.integer(c(nrow(
dP2),ncol(dP2)))),G=structure(dG,.Dim=as.integer(c(nrow(dG2),ncol(dG2)))),.Names=c("B","P","G")) 
 
 
 
# Formatting the data for the TSJS model 
 

for(y in 1:T) { 
 
  for(z in 1:nrow(target)) { 
 
     w= target [z,] 
       
#at time 1 
if(y==1) { 
  if((w[y]==4)&(sum(w[(y+1):T]==8)==0)){ target[z,y]=1} 
  if((w[y]==5)&(sum(w[(y+1):T]==8)==0)){ target[z,y]=2} 
if((w[y]==5)&(sum(w[(y+1):T]==8)!=0)){target[z,y]=11} 
if((w[y]==4)&(sum(w[(y+1):T]==8)!=0)){target[z,y]=10} 
  if(w[y]==8){ target[z,y]=9} 
} 
#at subsequent occasion 
else{ 
#if((sum(w[1:(y-1)])==0)&(w[y]== 4)) { target[z,y]= 1} 
  if((sum(w[1:(y-1)]==4)==0)&(w[y]== 4)&(sum(w[1:(y-1)]==1)==0)&(sum(w[1:(y-
1)]==8)==0)&(sum(w[1:(y-1)]==9)==0)) { target[z,y]= 1} 
  if((sum(w[1:(y-1)]==5)==0)&(sum(w[1:(y-1)]==2)==0)&(sum(w[1:(y-
1)]==8)==0)&(sum(w[1:(y-1)]==9)==0)&(w[y]== 5)) { target[z,y]= 2} 
  if((sum(w[1:(y-1)]==9)==0)& (sum(w[1:(y-1)]==10)==0)& (sum(w[1:(y-1)]==11)==0) 
&(w[y]== 8)) { target[z,y]= 9} 
} 
   } 
} 
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 for(m in 1 :T) { 
 
 for(z in 1:nrow(target)) { 
 
            x=target[z,] 
 
  if((sum(x[1:(m-1)]==9)==1)&(x[m]==4)) { target[z,m]=6} 
  if((sum(x[1:(m-1)]==9)==1)&(x[m]==5)) {target[z,m]=7} 
  if((x[m]==1)&(sum(x[m:T]==9)!=0)){target[z,m]=10} 
  if((x[m]==2)&(sum(x[m:T]==9)!=0)){target[z,m]=11} 
  if((x[m]==9)&(sum(x[1:T]==10)!=0)){target[z,m]=14} 
  if((x[m]==8)&(sum(x[1:T]==10)!=0)){target[z,m]=14} 
  if((x[m]==9)&(sum(x[1:T]==11)!=0)){target[z,m]=14} 
  if((x[m]==8)&(sum(x[1:T]==11)!=0)){target[z,m]=14} 
 
} 
} 
 
 
for(m in 2 :T) { 
 
 for(z in 1:nrow(target)) { 
 
            x=target[z,] 
 
  if((sum(x[1:(m-1)]==9)==1)&(x[m]==9)) { target[z,m]=8} 
if((sum(x[1:(m-1)]==10)==1)& (sum(x[1:(m-1)]==14)!=0) &(x[m]==9)) { target[z,m]=19} 
if((sum(x[1:(m-1)]==11)==1)& (sum(x[1:(m-1)]==14)==0)& (x[m]==9)) { target[z,m]=14} 
if((sum(x[1:(m-1)]==10)==1)& (sum(x[1:(m-1)]==14)!=0)&(x[m]==8)) { target[z,m]=19} 
if((sum(x[1:(m-1)]==11)==1)& (sum(x[1:(m-1)]==14)==0)&(x[m]==8)) { target[z,m]=14} 
 
if((sum(x[1:(m-1)]==10)==1)& (sum(x[1:(m-1)]==14)!=0)&(x[m]==14)) { target[z,m]=19} 
if((sum(x[1:(m-1)]==11)==1)& (sum(x[1:(m-1)]==14)!=0)&(x[m]==14)) { target[z,m]=19} 
 
if((sum(x[1:(m-1)]==11)==1)& (sum(x[1:(m-1)]==15)==0) &(x[m]==10)) { target[z,m]=15} 
if((sum(x[1:(m-1)]==11)==1)& (sum(x[1:(m-1)]==15)!=0) &(x[m]==10)) { target[z,m]=12} 
if((sum(x[1:(m-1)]==11)==1)&(x[m]==11)) { target[z,m]=13} 
if((sum(x[1:(m-1)]==11)==1)& (sum(x[1:(m-1)]==15)==0) &(x[m]==1)) { target[z,m]=15} 
if((sum(x[1:(m-1)]==11)==1)& (sum(x[1:(m-1)]==15)!=0) &(x[m]==1)) { target[z,m]=12} 
if((sum(x[1:(m-1)]==11)==1)& (sum(x[1:(m-1)]==15)==0) &(x[m]==4)) { target[z,m]=15} 
if((sum(x[1:(m-1)]==11)==1)& (sum(x[1:(m-1)]==15)!=0) &(x[m]==4)) { target[z,m]=12} 
if((sum(x[1:(m-1)]==11)==1)& (sum(x[1:(m-1)]==15)==0) &(x[m]==6)) { target[z,m]=15} 
if((sum(x[1:(m-1)]==11)==1)& (sum(x[1:(m-1)]==15)!=0) &(x[m]==6)) { target[z,m]=12} 
 
if((sum(x[1:(m-1)]==10)==1)& (sum(x[1:(m-1)]==16)==0) &(x[m]==11)) { target[z,m]=16} 
if((sum(x[1:(m-1)]==10)==1)& (sum(x[1:(m-1)]==16)!=0) &(x[m]==11)) { target[z,m]=13} 
if((sum(x[1:(m-1)]==10)==1)& (sum(x[1:(m-1)]==16)==0) &(x[m]==2)) { target[z,m]=16} 
if((sum(x[1:(m-1)]==10)==1)& (sum(x[1:(m-1)]==16)!=0) &(x[m]==2)) { target[z,m]=13} 
if((sum(x[1:(m-1)]==10)==1)& (sum(x[1:(m-1)]==16)==0) &(x[m]==5)) { target[z,m]=16} 
if((sum(x[1:(m-1)]==10)==1)& (sum(x[1:(m-1)]==16)!=0) &(x[m]==5)) { target[z,m]=13} 
if((sum(x[1:(m-1)]==10)==1)& (sum(x[1:(m-1)]==16)==0) &(x[m]==7)) { target[z,m]=16} 
if((sum(x[1:(m-1)]==10)==1)& (sum(x[1:(m-1)]==16)!=0) &(x[m]==7)) { target[z,m]=13} 
 
if((sum(x[1:(m-1)]==10)==1)&(x[m]==10)) { target[z,m]=12} 
if((sum(x[1:(m-1)]==10)==1)&(x[m]==1)) { target[z,m]=12} 
if((sum(x[1:(m-1)]==11)==1)&(x[m]==11)) { target[z,m]=13} 
if((sum(x[1:(m-1)]==11)==1)&(x[m]==2)) { target[z,m]=13} 
if((sum(x[1:(m-1)]==11)==1)&(x[m]==5)) { target[z,m]=13} 
if((sum(x[1:(m-1)]==10)==1)&(x[m]==4)) { target[z,m]=12} 
if((sum(x[1:(m-1)]==11)==1)&(x[m]==7)) { target[z,m]=13} 
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if((sum(x[1:(m-1)]==10)==1)&(x[m]==6)) { target[z,m]=12} 
 
if((sum(x[1:(m-1)]==7)==1)&(x[m]==7)) { target[z,m]=17} 
if((sum(x[1:(m-1)]==6)==1)&(x[m]==6)) { target[z,m]=18} 
 
} 
} 
    
   newtarget=target 

 
 
 
STEP 7 
 
Copy and paste the following codes to run the models 
 
# to run the TSJS model 
 

#calcul of probabilities 
  Pp<-(sum(newtarget[,]==1)+ sum(newtarget[,]==10)+ sum(newtarget[,]==6)+ 
sum(newtarget[,]==15))/nrow(newtarget) 
  Pg<- (sum(newtarget[,]==2)+ sum(newtarget[,]==11)+ sum(newtarget[,]==7)+ 
sum(newtarget[,]==16))/nrow(newtarget) 
  Ppgtheo<-Pp*Pg 
 Ppgdata<- (sum(newtarget[,]==9)+sum(newtarget[,]==14))/nrow(newtarget) 
      
 #calcul of identity rate 

  f = 
     function(I, Ppgtheo, Ppgdata) 
     1 - (Ppgtheo/I^2 - Ppgtheo*Ppgdata/I^3) 
 
g = 
     function(I, Ppgtheo, Ppgdata) 
     1 - (Ppgtheo/I^2 - Ppgtheo*Ppgdata/I^3) - I 
plot(x, g(x, Ppgtheo, Ppgdata), type = "l", ylim = c(-1, 1)) 
abline(h = 0) 
 
uniroot(g, c(.001, .999), Ppgtheo = Ppgtheo, Ppgdata = Ppgdata) 
 
I<- uniroot(g, c(.001, .999), Ppgtheo = Ppgtheo, Ppgdata = Ppgdata)$root 
   
 
#calcul pop size 
m<-rep(0,T) 
mP<-rep(0,T) 
mG<-rep(0,T) 
 
R<-rep(0,T) 
RP<-rep(0,T) 
RG<-rep(0,T) 
 
n<-rep(0,T) 
nP<-rep(0,T) 
nG<-rep(0,T) 
 
M<-rep(0,T) 
MP<-rep(0,T) 
MG<-rep(0,T) 
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N<-rep(0,T) 
NP<-rep(0,T) 
NG<-rep(0,T) 
 
z<- rep(0,T) 
zp<-rep(0,T) 
zg<-rep(0,T) 
zpg<-rep(0,T) 
r<-rep(0,T) 
rp<-rep(0,T) 
rg<-rep(0,T) 
rpg<-rep(0,T) 
zP<-rep(0,T) 
zG<-rep(0,T) 
zPc<-rep(0,T) 
zGc<-rep(0,T) 
 
rP<-rep(0,T) 
rG<-rep(0,T) 
 
rPc<-rep(0,T) 
rGc<-rep(0,T) 
 
sum14Pfirst<-rep(0,T) 
sum14Gfirst<-rep(0,T) 
sum14Precapt<-rep(0,T) 
sum14Grecapt<-rep(0,T) 
 
sum15Pfirst<-rep(0,T) 
sum16Gfirst<-rep(0,T) 
sum15Precapt<-rep(0,T) 
sum16Grecapt<-rep(0,T) 
 
 for(i in 2:(T-1))  { 
 for(j in 1:nrow(newtarget)) { 
    v=newtarget[j,] 
    if((v[i]==0)&(sum(v[1:(i-1)]==2)!=0)&(sum(v[(i+1):T]==5)!=0)) 
{zg[i]=zg[i]+1} 
 
if((v[i]==0)&(sum(v[1:(i-1)]==6)!=0) & 
(sum(v[(i+1):T]==8)==0)&(sum(v[(i+1):T]==18)!=0)) {zPc[i]=zPc[i]+1} 
if((v[i]==0)&(sum(v[1:(i-1)]==10)!=0)&(sum(v[(i+1):T]==12)!=0)) {zPc[i]=zPc[i]+1} 
if((v[i]==0)&(sum(v[1:(i-1)]==14)!=0)& 
(sum(v[(i+1):T]==12)==0)&(sum(v[(i+1):T]==19)!=0)) {zPc[i]=zPc[i]+1} 
if((v[i]==0)&(sum(v[1:(i-1)]==15)!=0)&(sum(v[(i+1):T]==12)!=0)) {zPc[i]=zPc[i]+1} 
if((v[i]==0)&(sum(v[1:(i-1)]==9)!=0)&(sum(v[(i+1):T]==8)!=0)) {zPc[i]=zPc[i]+1} 
if((v[i]==0)&(sum(v[1:(i-1)]==9)!=0)& 
(sum(v[(i+1):T]==8)==0)&(sum(v[(i+1):T]==6)!=0)) {zPc[i]=zPc[i]+1} 
if((v[i]==0)&(sum(v[1:(i-1)]==10)!=0)& 
(sum(v[(i+1):T]==12)==0)&(sum(v[(i+1):T]==14)!=0)) {zPc[i]=zPc[i]+1} 
if((v[i]==0)&(sum(v[1:(i-1)]==14)!=0)& 
(sum(v[(i+1):T]==19)==0)&(sum(v[(i+1):T]==15)!=0)) {zPc[i]=zPc[i]+1} 
 
 
 
 
if((v[i]==0)&(sum(v[1:(i-1)]==7)!=0) & 
(sum(v[(i+1):T]==8)==0)&(sum(v[(i+1):T]==17)!=0)) {zGc[i]=zGc[i]+1} 
if((v[i]==0)&(sum(v[1:(i-1)]==11)!=0)&(sum(v[(i+1):T]==13)!=0)) {zGc[i]=zGc[i]+1} 
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if((v[i]==0)&(sum(v[1:(i-1)]==14)!=0)& 
(sum(v[(i+1):T]==13)==0)&(sum(v[(i+1):T]==19)!=0)) {zGc[i]=zGc[i]+1} 
if((v[i]==0)&(sum(v[1:(i-1)]==16)!=0)&(sum(v[(i+1):T]==13)!=0)) {zGc[i]=zGc[i]+1} 
if((v[i]==0)&(sum(v[1:(i-1)]==9)!=0)&(sum(v[(i+1):T]==8)!=0)) {zGc[i]=zGc[i]+1} 
if((v[i]==0)&(sum(v[1:(i-1)]==9)!=0)& 
(sum(v[(i+1):T]==8)==0)&(sum(v[(i+1):T]==7)!=0)) {zGc[i]=zGc[i]+1} 
if((v[i]==0)&(sum(v[1:(i-1)]==11)!=0)& 
(sum(v[(i+1):T]==13)==0)&(sum(v[(i+1):T]==14)!=0)) {zGc[i]=zGc[i]+1} 
if((v[i]==0)&(sum(v[1:(i-1)]==14)!=0)& 
(sum(v[(i+1):T]==19)==0)&(sum(v[(i+1):T]==16)!=0)) {zGc[i]=zGc[i]+1} 
 
 
 
   if((v[i]==0)&(sum(v[1:(i-1)]==1)!=0)&(sum(v[(i+1):T]==4)!=0)) 
{zp[i]=zp[i]+1} 
 
    if((v[i]==0)&(sum(v[1:(i-1)]==9)!=0)&(sum(v[(i+1):T])!=0)) 
{zpg[i]=zpg[i]+1} 
if((v[i]==0)&(sum(v[1:(i-1)]==10)!=0)&(sum(v[(i+1):T])!=0)) {zpg[i]=zpg[i]+1} 
if((v[i]==0)&(sum(v[1:(i-1)]==11)!=0)&(sum(v[(i+1):T])!=0)) {zpg[i]=zpg[i]+1} 
 
     } 
 
z[i]= zg[i]*I+ zp[i]*I+ zpg[i] 
zP[i]= zp[i]+zPc[i] 
zG[i]= zg[i]+zGc[i] 
     } 
 
 
 for(i in 1:(T-1)) { 
  for(j in 1:nrow(newtarget)) { 
   w=newtarget[j,] 
   if(w[i]==10) 
    {rpg[i]=rpg[i]+1} 
   if(w[i]==11) 
    {rpg[i]=rpg[i]+1} 
if((w[i]==9)&(sum(w[(i+1):T])!=0)) 
    {rpg[i]=rpg[i]+1} 
if((w[i]==12)&(sum(w[(i+1):T])!=0)) 
    {rpg[i]=rpg[i]+1} 
if((w[i]==13)&(sum(w[(i+1):T])!=0)) 
    {rpg[i]=rpg[i]+1} 
if((w[i]==14)&(sum(w[(i+1):T])!=0)) 
    {rpg[i]=rpg[i]+1} 
if((w[i]==7)&(sum(w[(i+1):T])!=0)) 
    {rpg[i]=rpg[i]+1} 
if((w[i]==6)&(sum(w[(i+1):T])!=0)) 
    {rpg[i]=rpg[i]+1} 
if((w[i]==8)&(sum(w[(i+1):T])!=0)) 
    {rpg[i]=rpg[i]+1} 
if((w[i]==15)&(sum(w[(i+1):T])!=0)) 
    {rpg[i]=rpg[i]+1} 
if((w[i]==16)&(sum(w[(i+1):T])!=0)) 
    {rpg[i]=rpg[i]+1} 
if((w[i]==17)&(sum(w[(i+1):T])!=0)) 
    {rpg[i]=rpg[i]+1} 
 
if((w[i]==18)&(sum(w[(i+1):T])!=0)) 
    {rpg[i]=rpg[i]+1} 
if((w[i]==19)&(sum(w[(i+1):T])!=0)) 
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    {rpg[i]=rpg[i]+1} 
 
if((w[i]==1)&(sum(w[(i+1):T])!=0)) 
    {rp[i]=rp[i]+1} 
if((w[i]==2)&(sum(w[(i+1):T])!=0)) 
    {rg[i]=rg[i]+1} 
 
if((w[i]==9)&(sum(w[(i+1):T]==6)!=0)) 
    {rPc[i]=rPc[i]+1} 
if((w[i]==9)&(sum(w[(i+1):T]==6)==0)&(sum(w[(i+1):T]==8)!=0)) 
    {rPc[i]=rPc[i]+1} 
if((w[i]==8)&(sum(w[(i+1):T]==8)!=0)) 
    {rPc[i]=rPc[i]+1} 
if((w[i]==14)&(sum(w[(i+1):T]==19)!=0)) 
    {rPc[i]=rPc[i]+1} 
if((w[i]==19)&(sum(w[(i+1):T]==19)!=0)) 
    {rPc[i]=rPc[i]+1} 
if((w[i]==10)& (sum(w[(i+1):T]==12)==0) &(sum(w[(i+1):T]==14)!=0)) 
    {rPc[i]=rPc[i]+1} 
if((w[i]==12)&(sum(w[(i+1):T]==12)!=0)) 
    {rPc[i]=rPc[i]+1} 
if((w[i]==12)&(sum(w[(i+1):T]==12)==0) &(sum(w[(i+1):T]==19)!=0)) 
    {rPc[i]=rPc[i]+1} 
if((w[i]==12)&(sum(w[(i+1):T]==12)==0) &(sum(w[(i+1):T]==19)==0) 
&(sum(w[(i+1):T]==14)!=0)) 
    {rPc[i]=rPc[i]+1} 
 
 
if((w[i]==6)&(sum(w[(i+1):T]==18)!=0)) 
    {rPc[i]=rPc[i]+1} 
if((w[i]==6)&(sum(w[(i+1):T]==18)==0)& (sum(w[(i+1):T]==8)!=0)) 
    {rPc[i]=rPc[i]+1} 
 
if((w[i]==18)&(sum(w[(i+1):T]==18)!=0)) 
    {rPc[i]=rPc[i]+1} 
 
if((w[i]==9)&(sum(w[(i+1):T]==7)!=0)) 
    {rGc[i]=rGc[i]+1} 
if((w[i]==9)&(sum(w[(i+1):T]==7)==0)&(sum(w[(i+1):T]==8)!=0)) 
    {rGc[i]=rGc[i]+1} 
if((w[i]==8)&(sum(w[(i+1):T]==8)!=0)) 
    {rGc[i]=rGc[i]+1} 
if((w[i]==14)&(sum(w[(i+1):T]==19)!=0)) 
    {rGc[i]=rGc[i]+1} 
if((w[i]==19)&(sum(w[(i+1):T]==19)!=0)) 
    {rGc[i]=rGc[i]+1} 
if((w[i]==11)& (sum(w[(i+1):T]==13)==0)&(sum(w[(i+1):T]==14)!=0)) 
    {rGc[i]=rGc[i]+1} 
if((w[i]==13)&(sum(w[(i+1):T]==13)!=0)) 
    {rGc[i]=rGc[i]+1} 
if((w[i]==13)&(sum(w[(i+1):T]==13)==0) &(sum(w[(i+1):T]==19)!=0)) 
    {rGc[i]=rGc[i]+1} 
if((w[i]==13)&(sum(w[(i+1):T]==13)==0) &(sum(w[(i+1):T]==19)==0) 
&(sum(w[(i+1):T]==14)!=0)) 
    {rGc[i]=rGc[i]+1} 
 
 
if((w[i]==7)&(sum(w[(i+1):T]==17)!=0)) 
    {rGc[i]=rGc[i]+1} 
if((w[i]==7)&(sum(w[(i+1):T]==17)==0) &(sum(w[(i+1):T]==8)!=0)) 
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    {rGc[i]=rGc[i]+1} 
 
if((w[i]==17)&(sum(w[(i+1):T]==17)!=0)) 
    {rGc[i]=rGc[i]+1} 
 
if((w[i]==19) & (sum(w[(i+1):T]==19)==0)&(sum(w[(i+1):T]==16)!=0)) 
    {rGc[i]=rGc[i]+1} 
if((w[i]==19)& (sum(w[(i+1):T]==19)==0)&(sum(w[(i+1):T]==15)!=0)) 
    {rPc[i]=rPc[i]+1} 
 
if((w[i]==14) & (sum(w[(i+1):T]==19)==0)&(sum(w[(i+1):T]==16)!=0)) 
    {rGc[i]=rGc[i]+1} 
if((w[i]==14) & (sum(w[(i+1):T]==19)==0)&(sum(w[(i+1):T]==15)!=0)) 
    {rPc[i]=rPc[i]+1} 
if((w[i]==14) & (sum(w[(i+1):T]==19)==0)& (sum(w[(i+1):T]==16)==0)& 
(sum(w[(i+1):T]==13)!=0)) 
    {rGc[i]=rGc[i]+1} 
if((w[i]==14) & (sum(w[(i+1):T]==19)==0)& (sum(w[(i+1):T]==15)==0)& 
(sum(w[(i+1):T]==12)!=0)) 
    {rPc[i]=rPc[i]+1} 
 
 
if((w[i]==10)&(sum(w[(i+1):T]==12)!=0)) 
    {rPc[i]=rPc[i]+1} 
if((w[i]==11)&(sum(w[(i+1):T]==13)!=0)) 
    {rGc[i]=rGc[i]+1} 
if((w[i]==15)&(sum(w[(i+1):T]==12)!=0)) 
    {rPc[i]=rPc[i]+1} 
if((w[i]==16)&(sum(w[(i+1):T]==13)!=0)) 
    {rGc[i]=rGc[i]+1} 
 
if((w[i]==15) & (sum(w[(i+1):T]==12)==0)&(sum(w[(i+1):T]==14)!=0)) 
    {rPc[i]=rPc[i]+1} 
if((w[i]==16) & (sum(w[(i+1):T]==13)==0)&(sum(w[(i+1):T]==14)!=0)) 
    {rGc[i]=rGc[i]+1} 
 
if((w[i]==8) & (sum(w[(i+1):T]==8)==0)&(sum(w[(i+1):T]==6)!=0)) 
    {rPc[i]=rPc[i]+1} 
if((w[i]==8) & (sum(w[(i+1):T]==8)==0)&(sum(w[(i+1):T]==7)!=0)) 
    {rGc[i]=rGc[i]+1} 
 
if((w[i]==8) & (sum(w[(i+1):T]==8)==0)& (sum(w[(i+1):T]==6)==0)& 
(sum(w[(i+1):T]==18)!=0)) 
    {rPc[i]=rPc[i]+1} 
if((w[i]==8) & (sum(w[(i+1):T]==8)==0)& (sum(w[(i+1):T]==8)==0)& 
(sum(w[(i+1):T]==7)==0)& (sum(w[(i+1):T]==17)!=0)) 
    {rGc[i]=rGc[i]+1} 
 
 
if((w[i]==4)&(sum(w[(i+1):T])!=0)) 
    {rp[i]=rp[i]+1} 
if((w[i]==5)&(sum(w[(i+1):T])!=0)) 
    {rg[i]=rg[i]+1} 
 
 
 
       } 
 
r[i]= rg[i]*I+ rp[i]*I+ rpg[i] 
rP[i]= rp[i]+rPc[i] 
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rG[i]= rg[i]+rGc[i] 
 
    } 
for(i in 1:T) { 
  for(j in 1:nrow(newtarget)) { 
        w=newtarget[j,] 
if((w[i]==14)&(sum(w[1:i]==10)==0)) 
   {sum14Pfirst[i]=sum14Pfirst[i]+1} 
if((w[i]==14)&(sum(w[1:i]==10)!=0)) 
   {sum14Precapt[i]=sum14Precapt[i]+1} 
 
if((w[i]==14)&(sum(w[1:i]==11)==0)) 
   {sum14Gfirst[i]=sum14Gfirst[i]+1} 
if((w[i]==14)&(sum(w[1:i]==11)!=0)) 
   {sum14Grecapt[i]=sum14Grecapt[i]+1} 
 
   } 
} 
 
for(i in 1:T) { 
  for(j in 1:nrow(newtarget)) { 
        w=newtarget[j,] 
if((w[i]==15)&(sum(w[1:i]==14)==0)) 
   {sum15Pfirst[i]=sum15Pfirst[i]+1} 
if((w[i]==15)&(sum(w[1:i]==14)!=0)) 
   {sum15Precapt[i]=sum15Precapt[i]+1} 
 
if((w[i]==16)&(sum(w[1:i]==14)==0)) 
   {sum16Gfirst[i]=sum16Gfirst[i]+1} 
if((w[i]==16)&(sum(w[1:i]==14)!=0)) 
   {sum16Grecapt[i]=sum16Grecapt[i]+1} 
 
   } 
} 
 
 
 for(i in 2:(T-1))  { 
 
  if (i==2) 
   { 
   R[i-1]=sum(newtarget[,i-1]==9)+ sum(newtarget[,i-1]==10)+ 
sum(newtarget[,i-1]==11)+sum(newtarget[,i-1]==1)*I+sum(newtarget[,i-1]==2)*I; 
RP[i-1]= sum(newtarget[,i-1]==1)+ sum(newtarget[,i-1]==10)+ sum(newtarget[,i-
1]==9)+ sum14Pfirst[i-1]; 
RG[i-1]= sum(newtarget[,i-1]==2)+ sum(newtarget[,i-1]==11)+ sum(newtarget[,i-
1]==9)+ sum14Gfirst[i-1]; 
 
m[i]=sum(newtarget[,i]==6)+sum(newtarget[,i]==4)*I+sum(newtarget[,i]==5)*I+sum(
newtarget[,i]==8)+sum(newtarget[,i]==7)+ sum(newtarget[,i]==12)+ 
sum(newtarget[,i]==13)+ sum(newtarget[,i]==14)+ sum(newtarget[,i]==15)+ 
sum(newtarget[,i]==16)+ sum(newtarget[,i]==17)+ sum(newtarget[,i]==18)+ 
sum(newtarget[,i]==19); 
 
mP[i]= sum(newtarget[,i]==4)+ sum(newtarget[,i]==12)+ sum(newtarget[,i]==18)+ 
sum(newtarget[,i]==8)+ sum(newtarget[,i]==19)+ sum(newtarget[,i]==6)+ 
sum14Precapt[i]+ sum15Precapt[i]; 
mG[i]= sum(newtarget[,i]==5)+ sum(newtarget[,i]==13)+ sum(newtarget[,i]==17)+ 
sum(newtarget[,i]==8)+ sum(newtarget[,i]==19)+sum(newtarget[,i]==7)+ 
sum14Grecapt[i]+ sum16Grecapt[i]; 
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   R[i]=sum(newtarget[,i]==9)+ 
sum(newtarget[,i]==10)+sum(newtarget[,i]==11)+sum(newtarget[,i]==1)*I+sum(new
target[,i]==2)*I; 
 
RP[i]= sum(newtarget[,i]==1)+ sum(newtarget[,i]==10)+ 
sum(newtarget[,i]==9)+sum14Pfirst[i]+ sum15Pfirst[i]; 
RG[i]= sum(newtarget[,i]==2)+ sum(newtarget[,i]==11)+ 
sum(newtarget[,i]==9)+sum14Gfirst[i]+ sum16Gfirst[i]; 
 
   
  
   } 
  else{ 
  
 m[i]=sum(newtarget[,i]==6)+sum(newtarget[,i]==4)*I+sum(newtarget[,i]==5)*I+su
m(newtarget[,i]==8)+sum(newtarget[,i]==7)+sum(newtarget[,i]==12)+ 
sum(newtarget[,i]==13)+ sum(newtarget[,i]==14) + sum(newtarget[,i]==15)+ 
sum(newtarget[,i]==16)+ sum(newtarget[,i]==17)+ sum(newtarget[,i]==18)+ 
sum(newtarget[,i]==19); 
   R[i]=sum(newtarget[,i]==9)+ 
sum(newtarget[,i]==10)+sum(newtarget[,i]==11)+sum(newtarget[,i]==1)*I+sum(new
target[,i]==2)*I; 
 
mP[i]= sum(newtarget[,i]==4)+ sum(newtarget[,i]==12)+ sum(newtarget[,i]==18)+ 
sum(newtarget[,i]==8)+ sum(newtarget[,i]==19)+ sum(newtarget[,i]==6)+ 
sum14Precapt[i]+ sum15Precapt[i]; 
mG[i]= sum(newtarget[,i]==5)+ sum(newtarget[,i]==13)+ sum(newtarget[,i]==17)+ 
sum(newtarget[,i]==8)+ sum(newtarget[,i]==19)+sum(newtarget[,i]==7)+ 
sum14Grecapt[i]+ sum16Grecapt[i]; 
 
RP[i]= sum(newtarget[,i]==1)+ sum(newtarget[,i]==10)+ 
sum(newtarget[,i]==9)+sum14Pfirst[i]+ sum15Pfirst[i]; 
RG[i]= sum(newtarget[,i]==2)+ sum(newtarget[,i]==11)+ 
sum(newtarget[,i]==9)+sum14Gfirst[i]+ sum16Gfirst[i]; 
 
   } 
     
n[i]= m[i]+ R[i] 
nP[i]= mP[i]+ RP[i] 
nG[i]= mG[i]+ RG[i] 
 
   M[i]=(z[i]*(n[i]+1))/(r[i]+1)+m[i] 
   N[i]=(n[i]+1)*M[i]/(m[i]+1) 
 
MP[i]=(zP[i]*(nP[i]+1))/(rP[i]+1)+mP[i] 
   NP[i]=(nP[i]+1)*MP[i]/(mP[i]+1) 
 
MG[i]=(zG[i]*(nG[i]+1))/(rG[i]+1)+mG[i] 
   NG[i]=(nG[i]+1)*MG[i]/(mG[i]+1)  } 
# Variance of Ni 
 
n1=n[-1] 
n2=n1[-(T-1)] 
m1=m[-1] 
m2=m1[-(T-1)] 
r1=r[-T] 
meanni=mean(n2) 
meanmi=mean(m2) 
meanri=mean(r1) 
varNi=rep(0,T) 
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seNi=rep(0,T) 
 
for (i in 2:(T-1)) { 
varNi[i]=N[i]*(N[i]-meanni)*((M[i]-meanmi+n[i])/M[i])*(1/meanri-1/n[i])+((N[i]-
M[i])/(N[i]*meanmi)) 
seNi[i]=sqrt(varNi[i]) 
} 
# Variance of NPi 
 
nP1=nP[-1] 
nP2=nP1[-(T-1)] 
mP1=mP[-1] 
mP2=mP1[-(T-1)] 
rP1=rP[-T] 
meannPi=mean(nP2) 
meanmPi=mean(mP2) 
meanrPi=mean(rP1) 
varNPi=rep(0,T) 
seNPi=rep(0,T) 
 
for (i in 2:(T-1)) { 
varNPi[i]=NP[i]*(NP[i]-meannPi)*((MP[i]-meanmPi+nP[i])/MP[i])*(1/meanrPi-
1/nP[i])+((NP[i]-MP[i])/(NP[i]*meanmPi)) 
seNPi[i]=sqrt(varNPi[i]) 
} 
 
# Variance of NGi 
 
nG1=nG[-1] 
nG2=nG1[-(T-1)] 
mG1=mG[-1] 
mG2=mG1[-(T-1)] 
rG1=rG[-T] 
meannGi=mean(nG2) 
meanmGi=mean(mG2) 
meanrGi=mean(rG1) 
varNGi=rep(0,T) 
seNGi=rep(0,T) 
 
for (i in 2:(T-1)) { 
varNGi[i]=NG[i]*(NG[i]-meannGi)*((MG[i]-meanmGi+nG[i])/MG[i])*(1/meanrGi-
1/nG[i])+((NG[i]-MG[i])/(NG[i]*meanmGi)) 
seNGi[i]=sqrt(varNGi[i]) 
 
       } 
 
taillepop<-N[-c(1,T)] 
taillepopP<-NP[-c(1,T)] 
taillepopG<-NG[-c(1,T)] 
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# to run the two-source M0 model 
 
est.func<-function(dat, start.vec=missing()) 
{   
 k <- ncol(dat$P) 
 Pdat.tab <- table(dat$P) 
 Gdat.tab <- table(dat$G) 
 Bdat.tab <- table(dat$B) 
 
 nB.0 <- Bdat.tab["0"] 
 nB.1 <- Bdat.tab["1"] 
 nB.2 <- Bdat.tab["2"] 
 nB.3 <- Bdat.tab["3"] 
 if(is.na(nB.0)) nB.0 <- 0 
 if(is.na(nB.1)) nB.1 <- 0 
 if(is.na(nB.2)) nB.2 <- 0 
 
 nP.0 <- Pdat.tab["0"] 
 nP.1 <- Pdat.tab["1"] 
 if(is.na(nP.0)) nP.0 <- 0 
 
 nG.0 <- Gdat.tab["0"] 
 nG.2 <- Gdat.tab["2"] 
 if(is.na(nG.0)) nG.0 <- 0 
 
 hvec <- unlist(lapply(dat, nrow)) 
 hb <- hvec["B"] 
 hp <- hvec["P"] 
 hg <- hvec["G"] 
 
 
 nllike.func <- function(pars) 
 { 
  p <- pars[1] 
  g <- pars[2] 
  phi <- pars[3] 
  N <- pars[4] 
  prob.inP <- (1 - phi * p)^k - (1 - p)^k 
  pP.0 <- ((1 - p) * ((1 - phi * p)^(k - 1) - (1 - p)^(k - 1)))/prob.inP 
  pP.1 <- 1 - pP.0 
 
  loglik.P <- nP.0 * log(pP.0) + nP.1 * log(pP.1) 
  prob.inG <- (1 - phi * p)^k - (1 - g)^k 
  pG.0 <- ((1 - g) * ((1 - phi * p)^(k - 1) - (1 - g)^(k - 1)))/prob.inG 
  pG.2 <- 1 - pG.0 
 
  loglik.G <- nG.0 * log(pG.0) + nG.2 * log(pG.2) 
  bk <- 1 - (1 - phi * p)^k 
  bkm1 <- 1 - (1 - phi * p)^(k - 1) 
  pB.0 <- (bkm1 * (1 - p - g + phi * p))/bk 
  pB.1 <- (bkm1 * (1 - phi) * p)/bk 
  pB.2 <- (bkm1 * (g - phi * p))/bk 
  pB.3 <- (phi * p)/bk 
 
  loglik.B <- nB.0 * log(pB.0) + nB.1 * log(pB.1) + nB.2 * log( 
   pB.2) + nB.3 * log(pB.3) 
  
 
  loglik.H <- log(histories.func(hB = hb, hP = hp, hG = hg, ps =  
   p, gs = g, phis = phi, Nwh = N, ks = k)) 
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  negloglik <- ( - loglik.H - loglik.B - loglik.P - loglik.G) 
  negloglik 
 } 
 test.nll <- 0 
 if(!missing(start.vec)){ 
  test.nll <- nllike.func(start.vec) 
  catline("Start.vec supplied:") 
  print(c(start.vec, test.nll)) 
 } 
 if(missing(start.vec) | test.nll==Inf){ 
  catline("Warning: start.vec missing or gives likelihood=0. Using ad-hoc start vector.") 
   
  start.p <- (nP.1 - hp)/(length(dat$P) - hp) + 0.01 
  start.g <- (nG.2 - hg)/(length(dat$G) - hg) + 0.01 
  start.phi <- 0.5 * min(c(start.g/start.p, 1)) 
  start.N <- 20 + hb/(1 - (1 - start.phi*start.p)^k) 
  start.vec <- c(start.p, start.g, start.phi, start.N) 
  names(start.vec) <- c("start.p", "start.g", "start.phi", "start.N") 
  catline("New start.vec:")  
  print(start.vec) 
 
 } 
 Nmin <- hvec["B"] + max(c(hvec["P"], hvec["G"])) 
 MLE <- nlminb(start = start.vec, objective = nllike.func, control =  
  list(iter.max = 2000, eval.max = 5000), lower = c( 
  0, 0, 0, Nmin), upper = c(1, 1, 1, Inf)) 
  
 MLE.params <- MLE$par 
 phat <- MLE.params[1] 
 ghat <- MLE.params[2] 
 phihat <- MLE.params[3] 
 Nhat <- MLE.params[4] 
 msgmax <- MLE$convergence 
 if(MLE$objective==Inf) msgmax <- "Inf" 
 ests <- c(MLE.params, msgmax) 
 names(ests) <- c("phat", "ghat", "phihat", "Nhat", "conv.0.good") 
 catline("------------------------------------") 
 catline("nlminb completed successfully: estimates are") 
 print(ests)  
 catline("------------------------------------") 
 
 nlm.hess.res <- nlm(f=nllike.func, p = MLE.params, iterlim = 2000,  
  stepmax = 5000, hessian=T) 
 nlm.params <- nlm.hess.res$estimate 
 hess.warn <- 0 
 
 if((any(abs(MLE.params[1:3]-nlm.params[1:3])>0.001)) |  
  abs(MLE.params[4]-nlm.params[4])>0.1) hess.warn <- 1 
 nlm.infmat <- solve(nlm.hess.res$hessian) 
 est.var.vec <- diag(nlm.infmat) 
 names(est.var.vec) <- c("varhat.p", "varhat.g", "varhat.phi", "varhat.N") 
 varhat.Nhat <- est.var.vec["varhat.N"] 
 ci.C <- exp(1.959964 * sqrt(log(1 + varhat.Nhat / Nhat^2))) 
 ci.lower <- Nhat / ci.C 
 ci.upper <- Nhat * ci.C 
 ci.vec <- c(ci.lower, ci.upper) 
 names(ci.vec) <- c("ciN.low", "ciN.hi") 
 res.all <- c(ests, est.var.vec, ci.vec, hess.warn=hess.warn) 
 print(res.all) 
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 res.all 
} 
 
 
 
STEP 8 
 
To get the results for the population size, copy and paste the following codes: 
 

#The population size given by the two-source Jolly-Seber model is estimated to be 
from time 2 to (T-1): 
taillepop 

 
 
To get the associated standard error, copy and paste: 
 

#The standard error given by the two-source Jolly-Seber model is estimated to be 
from time 2 to (T-1): 
seNi 

 
From the present codes, it is also possible to get the estimates provided by the classical Jolly-
Seber on each of the 2 separate datasets. 
 
To get the results of the JS using the data associated to method 1, copy and paste: 
 

#The population size given by the JS model with data from method 1 is estimated 
to be from time 2 to (T-1): 
taillepopP 

 
To get the associated standard errors: 
 

#The standard error given by the JS model with data from method 1 is estimated to 
be from time 2 to (T-1): 
seNPi 

 
 
To get the results of the JS using the data associated to method 2, copy and paste: 
 

#The population size given by the JS model with data from method 2 is estimated 
to be from time 2 to (T-1): 
taillepopG 

 
To get the associated standard errors, copy and paste: 
 

#The standard error given by the JS model with data from method 2 is estimated to 
be from time 2 to (T-1): 
seNGi 
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STEP 9 
 
To get the population size, standard error, capture probabilities with the two-source M0 model, 
copy and paste: 
 

#The results with the two-source M0 model are: 
est.func(opensim) 
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