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Abstract

| propose a modification of the Jolly-Seber moded two-source Jolly-Seber (TSJS)
model, to estimate population size by combining searces of capture-recapture data of the
same population where there might be an unknownrlagvebetween two independent
datasets. This is the case with recent surveyshalles and dolphins where researchers use
individual identification records from both photentification and DNA profiling of skin
biopsy samples. This sampling configuration resuitéwo datasets that might contain the
same individuals. This new approach enables thma&isbn of the overlap and the calculation
the population size using capture-recapture inféilonaarising from both sampling methods.
Monte Carlo simulations are used to assess theeprep of the present estimator. When all
the assumptions are met, the estimator seems toliased as long as the occasion-specific
simultaneous sampling probability is above 0.2. @ation analyses also indicate that the
proposed method performs better than existing dipegulation estimators when there is
little heterogeneity among individuals in capturelabilities and when the average capture
probability is high. Alternatives have been exptbend a two-source version of modey M
has also been developed and compared to the T8d®tes. Traditional closed-population
estimators have been compared to the new approd€tia$sS and two-source gvimodels)
when the population is open and the assumptionoofidgeneous capture probability is
violated. Both procedures are finally applied tal r@ata on the humpback whaWegaptera
novaeangliagon the wintering grounds of New Caledonia (Sdecific), where individuals
have been sampled independently by skin samplimgpslyi and photo-identification or
simultaneously by both methods on a same captuwrasam. The proposed methods hold
great promise in monitoring by providing researsherd managers with a method allowing a
diversity of sampling protocols. It could be mofféicgent in estimating population size, in
terms of both precision and bias, than models basédon one type of data. And as it is
important to control variation in a sampling desigims methodology could also provide a
useful way to reduce variation by increasing then@a size and, hence, to enhance the

estimator precision.
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INTRODUCTION

Animal population size is typically a variable ehportance in decision analysis to
develop optimal management strategies for wildiiégulations under uncertainty. Reliable
estimates are essential for conservation purposspecially to adequately monitor
endangered populations and prevent extinction. fiéeessary and difficult challenge of
sustainable harvest management also requires giodages in the fishery and sport hunting
industries where the management of commercialgresting species is vital for the targeted
species, the whole ecosystem balance and alsbdandustry itself. Investigating population
size can also provide a measure of success ingoestol management programs and it

ultimately leads to a better understanding of egpio general.

Historical background

The methodology behind modern population size edton goes back to Graunt in
England in 1662 with his work on ratios on the ratity due to the Black Plague, Stissmilch
in the first part of the 17th century with his wook the probability of mortality and later
Laplace in the second part of the 17th centuryt@advork on the French population census
(Hald, 1990; Horvath, 1991; Laplace, 1783). The asgbility for census to give a correct
count, the cost of such surveys and a rather uhoje»@ administration at that time, led to the
replacement of exhaustive knowledge by an extréipoldased on surveys of parts of the
population. The goal was to find a multiplier theduld give an estimated total size for the
population, once applied to a count based only quara of the population. Laplace in his
mémoires “Sur les naissances, les mariages et tets'm(1783) gives the prelude of the

importance and use of population size investigatiomodern ecological studies:

| est donc intéressant, & tous égards, de comeaila
population de France, d’en suivre les progres etvdir la loi
suivant laquelle les hommes sont répandus sur race de ce

grand royaume.”

LIt is therefore interesting in every regard todw the population of France, to follow the

progress of it, & to have a law according to whtble population has spread over this large realm.”



Overview of abundance estimation

In studying population dynamics in ecology it isléed desirable to have an estimate
of the population size to start with. Different imedologies have thus been developed to
estimate such a parameter. There are three maroaghes: census methods i.e. the complete
count of the population, surveys based on sammesampling space, and methods based on
the capture or removal of animals from the popataiie. sampling animals. The first one
being limited to confined populations, a great mgjoof ecological studies deal with sample

surveys or mark-recapture methods when trying timese abundance.

The main distinction between sample survey anducaphethods is the framework of
the survey protocol: while population size can beally obtained from one survey occasion
with sample surveys, capture methods typically iregseveral occasions to produce an

estimate.

Methods based on the capture or removal of anifnais the population are mostly
used for elusive organisms for which counts on ooeasion would not provide reliable
abundance estimates. Because of habitat charaicterisehavior, size or other aspects of the
biology, for some species, animals are not eadiyeovable in the wild and abundance
estimation can only be accomplished by capturingividuals (e.g. by traps). Capture
methods fall into two categories:

(1) removal methods in which the captured individuare not returned to the

population,

(2) capture-recapture methods in which individuale released back into the
population after capture.

In the latter, captured animals are usually makkedl returned to the population hence
the name: capture-mark-recapture (CMR) experimé&epeated sampling occasions provide
capture histories for the individuals, a conseqaent which is the possibility to use
probabilistic models to estimate population sizéio§e models can be divided in two

categories (1) closed-population CMR models; ane2n-population models.



Closed population models

In ecology an animal population that can be comsui@ot subject to any death, birth,
immigration or emigration processes over the stpelod is said to be closed. The closure
assumption for those models thus implies no gaitoss of individuals (i.e. no turnover)
during the entire duration of the experiment. Coaeatly, closed-population models rely on

the following assumptions:

1. animals do not die or leave the population byma@ment emigration during the

sampling period,

2. animals do not enter the population by birttpermanent immigration during the

sampling period.

Each model may in addition require other assumptitrat will be specified as

appropriate.

Two sampling occasions

Derived from the method used by Laplace (1783),Liimeoln-Peterson estimator is
based on a two-sampling occasion capture-recaixperiment and is at the basis of the
understanding of all CMR models (Begon, 1979; Rllet al., 1990; Schwarz and Seber,
1999; Seber, 2002; Williams et al., 2002). In addito the closure assumption, equal capture
probability and no loss of mark are assumed. Assalt of the assumption of equal capture
probability, the proportion of marked animals recagd in the second sample should be the
same on average as the proportion of animals aapatrthe first occasion in the population.
The Petersen estimate is therefore:

nn,
m,

N =

where N is the estimated population size, the number of individuals captured

on the first sampling occasion, the number of individuals captured on the secorzhsion
and m, the number of marked individuals on the first @oa that are recaptured on the

second.



However, a modification of this estimator, the Cmam’'s modification of the
Lincoln-Petersen is known to perform better, wiésd bias and a finite variance estimate
(Begon, 1979; Pollock et al., 1990; Seber, 2002):

J — (n1+1)(n2 +1)
T )

Multiple sampling occasions

If there are more than two sampling occasions, alsiare captured, marked, released
back and potentially recaptured on subsequent measOn each occasion the number of
marked and unmarked animals captured in the saimpéxorded. The type of marking used
helps to distinguish between features of two methodestimate abundance:(1) with only one
type of marking there is no way of distinguishirgfeeen marked individuals; and (2) with a

specific mark for each individual captured, all ket animals are uniquely recognizable.

The first marking option leads to a direct extensid the Lincoln-Petersen estimator:
the Schnabel method (Seber, 2002). The probaliityhat was seen is written as a function
of the number of captured individuals at ttietime ;) and the unknown paramet&)( This
can be expressed as the product of the probabiligbtainingm marked animals out af;
and the conditional probability of the number ofrkeal animals seen at thi& time givenm,
which depends only on the totaM{ of marked animals in the population just befdretth

sample is taken:
L(N,M) = P{mn: NJP{E,, £,..Jm; M }

As the probability of sighting a marked animaMgN at each sighting, the probability
of havingmx marked animals among sightings (given the assumption that animals are
sighted independently and with equal and constaobability) is given by the binomial

distribution:

dmpano M-



As M, is known, the likelihood oN given n, andM is just P{m|n;N} and m is

sufficient forN. In this case the maximum likelihood fbiris defined by the equation also
known as the Schnabel census estimator:

:
> Min

N =tz
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=1
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The marking option where all captured individuate aniquely marked is used in

multinomial models that are likelihood-based. Aataial assumptions include:
1. Animals do not lose their mark/tag,
2. Tags/marks are correctly recognized (no misregdind reported.

The simplest model, denotedofho variation in capture probability), also assumes
that the capture probabilitp is constant over the capture occasions and equah@
individuals (Amstrup et al., 2005; Borchers et &002; Chao, 2001; Otis et al., 1978;
Schwarz and Seber, 1999; Seber, 2002; Williamk,e2@02):

NI

N-wa P

L(N, p) =

whereT denotes the number of capture occasipribe capture probabilityg, the frequency
for observable capture histohy n=n, +n, +...+n; the total number of capturelslr.; the

number of unmarked animals caught during the study.

In this model there are only two parameté¥sand p, and the statistics that are
necessary to obtain them dvi.; andn. The maximum likelihood estimator &f andp are

then obtained using numerical methods that maxitegrevious equation.

However, this simple model Mis often inappropriate when applied to real,
heterogeneous populations (i.e. individuals varyhieir availability for capture), and other
models have been developed to relax the assumgitiequal probability. They allow capture
probabilities to vary with time, and/or among anlisné&some of these models are described
below (Amstrup et al., 2005; Borchers et al., 200Bao, 2001; Otis et al., 1978; Schwarz and
Seber, 1999; Seber, 2002; Williams et al., 2002):

M¢: capture probabilities can vary from one occasmtie next



Mp: capture probabilities can vary among animalsdpeitconstant across time for each

individual
M,: capture probabilities can vary among animalsaordss time

Mp: a behavioral response to being captured affduts dapture probability on

subsequent occasions.

As closed population models might have very litdéevance for some populations
where significant turnover can be expected, fomgda over long monitoring periods and
many biological cycles, open-population models @sed to better represent the population

and thus get more reliable estimates.

Open population models

When the population closure assumption is relarsatjels including potential gains,
by birth and immigration, and losses, by deathseanajration, for populations can be used to
study the changing nature of those open populatiéggen-population models allow
estimation of a wide variety of biological paramstancluding birth rate and survival rate
(Lebreton et al., 1992; Lebreton and Pradel, uriphbd; Lindberg et al., 2001; Nichols et al.,
2004; Schwarz, 2001; Schwarz and Arnason, 1996rS&B86).

At present, the only open-population model thaineges the population size is the
Jolly-Seber (JS) model. This model relies on théowdng assumptions (Schwarz, 2001;
Schwarz and Seber, 1999; Seber, 1986):

1. all animals present (marked or unmarked) inpgbpulation at the time of thteth
sample{=1, 2, .., T) have an equal probability of being caught,

2. all marked animals present in the populatiomediately after th&¢h sample have
an equal survival probabilityg) until the ¢+1)th sampling timet= 1, 2, .., T-1),
3. animals do not lose their marks or tags,

4. immigration and emigration cannot be separated fbirth and death without

additional information,
5. all emigration from the sampling populatiorpegmanent.

The major criticism leveled at the JS model for &séimation of abundance and the

probable reason why closed population models ngghtietimes be preferred is the fact that



heterogeneity is not permitted in capture probgbih the partial likelihood used in the JS
model to estimate population size. Methods to aweke this issue and reduce the bias in the
JS estimates have been developed but have sderapitlication (Hwang and Chao, 1995;
Pledger and Efford, 1998).

The Cormack-Jolly-Seber (CJS) model is a widelydusgen-population model and is
a partial likelihood of the JS model disregardihg terms for captures of unmarked animals
and losses on capture. It relies on the followisguanptions usually referred as the “iii (triple-

) assumptions” (Lebreton et al., 1992):

Identity of individuals (matching system is reliaptags are not ambiguous and not

lost),
Independence of individuals,

Independence of successive capture events.

However, it does not directly give an estimate ltd population size a¥ does not
appear in the likelihood. Therefore, McDonald anchstrup (2001) have developed a
Horvitz-Thompson estimator of population size thaés the capture probabilities obtained
with the CJS model and relies on the assumptionntfaaked and unmarked individuals have

the same capture probability, an assumption natired|in the CJS model.

Consequences of violating model assumptions

All abundance estimation methods are based on af sstsumptions under which the
method is hopefully robust and reliable. Howeveoften arises that one or more assumptions
cannot be met, even with the estimation method s¢leams the most appropriate. Studies
based on simulations have been carried out to ateline characteristics of bias (expected
range and direction) that occurs in the case afrapion violations (Chao, 1989; Devineau et
al., 2006; McDonald et al., 2003; Wittes, 1972)hdts been especially shown that estimators
assuming equal catchability are usually negativielgsed by heterogeneity in capture
probabilities and that some estimators like thesetbbpopulation jackknife estimators for
model M, generally underestimate population size when #ia dre sparse while others, like
Darroch’s model (Darroch, 1958), produce overegiona in such case (Carothers, 1973;
Chao, 1987, 1989; Chao et al., 2000; Gilbert, 19n8; et al., 1978).



Marking methodology

Investigating abundance estimation of wild animgpyation using CMR experiments
has been of growing interest in ecology and a lamgmber of marking methods have been
developed. For mammals, the most common are taggidgphoto-identification when the
individuals can be distinguished by some natural stable-over-time body patterns such as
pigmentation and shape (Adams and Hutchings, 2BGg&kwell et al., 2004; Calambokidis
and Barlow, 2004; Derocher and Stirling, 1995; dec and Robinson, 2006; Karanth and
Nichols, 1998).

The recent development of molecular ecology hagsddtie emergence of innovative
techniques of genetic tagging or DNA fingerprintih@t could be used as traditional marking
methods in CMR models to estimate population sizaés and Ardren, 2003; Manel et al.,
2005; Palsbgll, 1999; Palsbgll et al., 1997). Tke of non-invasive genetic methods by
genotyping hair, feather, faeces, or sloughed s&presents an alternative to traditional
marking methods and is becoming increasingly papualaconjunction with mark-recapture
methods to estimate population size (Bellemain let 2005; Boulanger and Hamilton,
unpublished; Boulanger et al., 2004a; Boulanged.e2004b; Creel et al., 2003; Eggert et al.,
2003; Keller et al., 2005; Lukacs and Burnham, 2006wat and Paetkau, 2002; Prugh et al.,
2005; Wilson et al., 2003). Cost and intensity amgpling can be reduced and trap-response
does not often arise as can be the case in traditmarking techniques (Brown et al., 1994;
Clapham and Mattila, 1993; McKelvey and Schwar@Q4£ Mills et al., 2000; Taberlet et al.,
1999; Weinrich et al., 1992; Weinrich et al., 199 pwever, even if the advances in this
field offer great promise, noninvasive genetic skmgpstill requires improvement in the
methodology to be used reliably in CMR studies @edcand Burnham, 2005; McKelvey and
Schwartz, 2004; Mills et al., 2000; Palsbgll, 198@0n et al., 2005; Schwartz et al., 1999;
Taberlet et al., 1999; Waits et al., 2001). Andspiie ethical issues and because DNA is
usually collected in greater quantities and of dretjuality, invasive sampling methodology
could be more easily and reliably used with CMR eisdor some species when non-invasive
sampling might be impossible (Garrigue et al., 200dler et al., 2005; Palsbgll et al., 1997;
Valsecchi et al., 1998).



Objectives

With the development of molecular ecology, multiptaurces of data can be obtained
for some species and combining them to obtain @djoul size estimates would provide more
information about abundance than each survey couddide alone. A good example is the
humpback whale population in the South Pacific wherprovement of whale population size
estimates is required for conservation purposestaratldress recent political issues. In the
Southern hemisphere, humpbacks migrate from tkeeilihg ground in Antarctica to warmer
waters to breed in winter. New Caledonia is onéhefbreeding grounds for this species and
whales are usually present from July to Septemberring this period, two sources of
information are opportunistically collected duringystematic boat surveys: photo-
identification and genetic identity from skin bigpsindividual whales are frequently
photographed and genotyped on the same captursioccé&owever, on a capture occasion,
some whales may not fluke so cannot be photographédome others cannot be approached
closely enough to be genotyped. Researchers, tipisally end up with two datasets that are
analyzed separately for abundance purposes. Therdfe problem of using both datasets
together extends to a two-list approach with annomkh overlap between the lists that
requires a formulation for this “matching dilemma&he problem of estimating the size of a
population by using multiple sources is often nefdrto as the multiple-recapture estimation
problem (Darroch, 1958). Several approaches haea lbeveloped to model multiple-list
census data for estimating the size of a closedlptpn: Rasch-type models (Bartolucci and
Forcina, 2001; Lindsay et al., 1991), log-lineardals (Darroch et al., 1993; Fienberg, 1972a,
b), Bayesian methods (Fienberg et al., 1999; Madiglad York, 1997; Smith, 1988). El-
Khorazaty et al. (1977) reviewed the early literatton methods for multiple-system

estimation.

My interest here was motivated by the situatioreoffaced with marine mammal
surveys for which researchers usually end up with overlapping datasets. If both sets of
data indeed lead to valid estimates, using thedatasets separately or using a mean of the
estimates is unefficient since that implies missogne recapture information, i.e. when the
animals are captured by one method and then reeaply the other. The objective was thus
to create an analytical framework that would all@worker to combine two sources of data
available in an open-population model to incre&sesample size and provide a more robust

monitoring estimator.



My first objective is the creation of an analytidahmework that will allow the
combination of two sources of data available inopen-population model. Therefore, | will
present an ad hoc re-formulation of the JS modehilll investigate the ability of this
extension of the JS method (Amstrup et al., 200By,J1965; Seber, 1965, 2002) to use two
sources of data by estimating the possible ovesfaihese data. However, | will also stress
alternative models and approaches to this twolditgnt variable problem in an effort to

consider a wider range of sampling situations.

My second objective is to develop simulations tceath the performance and
robustness of the model when all assumptions ateamé when one or more fail. | especially
focus on the violation of the assumption of homagers capture probability among
individuals of the population. In the final stadke simulations will aim at reproducing as
closely as possible a long-lived open populatieithsas a humpback whale population, and
the sampling protocol used to survey such a popualain order to check the error in the
abundance estimate in this situation. Existing nsd®irrently used in this field for
population assessment with only one list will benpared to this new approach.

As this new open-population model was motivatedhgyneed to estimate the size of
humpback whale populations, | will investigate gopulation size of this species in the South
Pacific and the new estimation methods will be i#opto data from New Caledonia and
compared to estimates resulting from other abureglasttmation methods already available.
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1. Chapter One

An extension of Jolly-Seber model: the two-source Jolly-
Seber model

1.1. Abstract

The Jolly-Seber (JS) model has been used in oppulgdmn abundance estimation
for many years, for organisms ranging from whalesbears, squirrels to alligators. In
particular, it has been used for humpback whalailadiens on a number of occasions where
there sometimes are two datasets resulting fromdifferent sampling methods. | propose a
modification of the Jolly-Seber model, the two-smudolly-Seber (TSJS) model, to estimate
population size by combining two sources of captempture data where there might be an
unknown overlap between the two datasets. Thisesase with recent surveys of whales and
dolphins where researchers use individual idematiiben records from both photo-
identification and DNA profiling of skin biopsy sqes. This sampling configuration results
in two datasets that might contain the same indiadsl For those individuals captured by
both sampling methods, some have been capturedotty rhethods on the same capture
occasion and it is consequently possible to mengerécords for those individuals, the two
capture histories in each dataset, into one inctimabined dataset. However, an unknown
overlap sometimes occurs, in the combined datagetn individuals have been captured by
both sampling methods separately but never simettasly by both, a consequence of which
is the risk of over-estimating the population siz¢he data are inappropriately combined.
Using the simultaneous double capture in the data,possible to estimate the “non-double
identity” rate of each individual, namely the prbbigy of having one and only one capture
history in the combined dataset. This new appraawibles researchers to avoid the over-
estimation of the population size when using thenlwoed dataset by estimating the
probability of non-double identity which is thenedsin the Jolly-Seber framework to
estimate the population size. | also investigabeoapproaches to answer the general issue of
two overlapping datasets for the estimation of alamce in an effort to consider a wider

range of sampling designs with closed-form liketils: an extension of modelgMith two
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overlapping sources of data referred to as theswwoee M model and latent multinomial
models based on modelsMnd M, using a latent capture history approach. | findiscuss
the limitation of an extension of these likeliholbased closed-population methodologies to

open populations.

1.2. Introduction

Population size estimates are important for mampgpecies for conservation
purposes, sustainable development aims, pest tatjectives and in many other situations.
Investigating abundance estimation of wild animgbydation has been of growing interest in
ecology and a large number of methods have beesiajed (Amstrup et al., 2005; Williams
et al., 2002). The use of capture-mark-recaptuMRELmethods, such as photo-identification
and genetic sampling, to estimate animal populagiaa is especially increasing (Bellemain
et al., 2005; Boulanger et al., 2004a; Calambokadid Barlow, 2004; Calambokidis et al.,
1990; Derocher and Stirling, 1995; Durban et aDP® Forcada and Robinson, 2006;
Garrigue et al., 2004; Katona and Beard, 1990;dfadt al., 2005; Kohn et al., 1999; Larsen
and Hammond, 2004; Lindeman, 1990; Lukacs and BumH005; Mowat and Paetkau,
2002; Palsbgll, 1999; Palsbgll et al., 1997; Patral., 2005; Pearse et al., 2001; Smith et al.,
1999; Urban et al., 1999). Photo-identification gahetic fingerprinting from skin sampling
are widely used to survey marine mammals, as iblesaresearchers to sample more
individuals and gives more information about th@udation. Doing so, researchers typically
end up with two datasets that are usually analywsgghrately for abundance purposes. The
objective here is to develop a model for abundastenation that uses the combined dataset
arising from the binding of those two datasets hadce to use all the data available. At
present most models used to get population sizenasts are closed-population based
(Amstrup et al., 2005; Borchers et al., 2002; Seb@86), even when the population is open
(Garrigue et al., 2004; Larsen and Hammond, 200®atl et al., 1999). Open-population
models have been developed to overcome the vialatfcassumptions when using closed-
population models for data collected over an exadnperiod (Amstrup et al., 2005; Seber,
1986). In terms of population size estimation, tloey also provide useful information on
abundance trend. Nevertheless, open-population Isyddes the Cormack-Jolly-Seber (CJS)
model, are mostly used to estimate parameters asidurvival rate and capture probability

12
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(Cormack, 1964). Even though one possibility toneste abundance with the CJS model is to
use a Horvitz-Thompson-like estimator after estintathe capture probabilities, currently
only the Jolly-Seber (JS) model leads to a dirstirate of population size (Amstrup et al.,
2005; Jolly, 1965; Lebreton et al., 1992; McDonaidl Amstrup, 2001; Seber, 1965; Seber,
1986). The JS model has been used for organisngsncafrom whales to bears, squirrels to
alligators (for examples see (Amstrup et al., 2@@&ambokidis and Barlow, 2004; Derocher
and Stirling, 1995; Pollock et al., 1990; Williares al., 2002)). Joint modeling of several
sources of recapture data (mark-recapture, taghesg, tag-recovery) has been previously
investigated by Burnham (1993), Barker (1997), Barknd White (2001) and Barker et al.
(2004): likelihoods and a framework to make fuleus these sources of reobservation data
were developed, leading to parameter estimators/agut to Jolly’s (1965) under random
emigration, i.e. non permanent emigration. Howeuwbgse sources of recapture data
contribute to observations of marked individualsl @imere is no unknown overlap between
the different types of data. Moreover, it is notsgible to estimate population size under
random (short-term relative to the monitoring péyiomigration without restrictive
assumptions about the movement of recruits or withdditional information (Barker, 1997).
So here | propose an extension of the formulatmretbped by Jolly (1965) and Seber (1965)
to obtain population size estimates by combining tfferent sources of live capture-mark-
recapture data where there might be an unknowragp/between the datasets. The focus here
is on aspects of study design that are especidiyant to open populations. However, | also
consider closed form likelihoods and discuss aiptesextension to open populations in order
to extend the methodology to a broader range opBagisituations.

This chapter first describes the original JS mauawe related existing models before
presenting the two-source Jolly-Seber (TSJS) mathéth uses two independent sources of
mark-recapture information. This method enablesaeshers to have bigger sample size for
the purpose of population size estimation, in tageovhere all individuals of a population are
not necessarily available by a single sampling oukthA likelihood based approach is
introduced using latent multinomial models, basednwodel My and a latent multinomial
capture history approach (Link and Barker, 201@&sdd on models Mand M. Finally,
extension of these likelihood approaches to opgulations is discussed as a future direction
for research when the computing power (or a swetaljorithm) becomes available to make it

feasible.
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1.3. The classic Jolly-Seber model

The JS model (Jolly, 1965; Seber, 1965, 2002} isresent, the most popular capture-
recapture open-population model used to estimapellpbon size. The data required to use
such a model are similar to the data for captuceptire closed-population models: animals
are captured, marked and released to be recaptiabsequent discrete sampling periods.
At each capture occasion, marked and unmarked &ih@ve to be recorded, leading to
capture histories being available for each caugtividual. From those capture histories,
population size can be calculated at most sampings as well as survival, recruitment rate

and capture probability.

1.3.1. Model components

Originally Jolly (1965) and Seber (1965) developkiflerent likelihood approaches
which led to the same estimator for the parametetstail here the approach of Brownie et
al. (1986) based on Jolly's (1982) work. This likebd for aT-sampling-occasion study can
be decomposed into 3 components:

1. The component 1L models the captures of unmarked individuals imgerof
conditionally independent binomial terms. Each bired probability gives the likelihood of

capturingu, unmarked individuals on occasibgiven there aréJ, unmarked animals in the
population each of whom has a probabilgy of being captured on that occasion:

Mo 0D~ []] iy 69

u!U, —u)!

whereu, is the number of unmarked individuals capturedcaasiort, with t=1, 2,...,T, U,

the available population of unmarked individuald g the capture probability.
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2. The component4. concerning loss on capture, i.e. captured animaisreleased
back into the population:

Pl fm ukfn.2})= ; {mw;)“{ (1—/7{)“‘}

XT m! A (1 1
D|:dt!(rnt_dt)!(,7t)m a-n.) }

where m is the number of marked animals captured at tiweth t=1, 2,...,T, d,,d, the
number of m and u, respectively not released back into the populaton 7,,7, the
probability of release into the population for medkand unmarked animars, andu,.

The component 4is a product, in two parts, of binomial likelihad he first part is a

product of likelihoods dealing with the unmarkediinduals: each gives the probability on

occasiort of releasing into the populatian — d, individuals, i.e. the number of the unmarked
animalsu, that were captured on occasipband did not die on capture, each of whom has a
probability 77, of being released into the population on that sicce The second part of

component L is a product of likelihoods dealing with the matkadividuals: each binomial

probability gives the probability on occasidnof releasing into the populatiom —d,
individuals, i.e. the number of the marked animajsthat were captured on occasiband
did not die on capture, each of whom has a proiabi}, of being released into the

population on that occasion.

3. The componentd, originally derived by Cormack (1964) and usua#ferred to as

the Cormack-Jolly-Seber (CJS) model, containingréwapture datan; (number of animals

seen at timé and seen again at timeconditional on the numbers of newly and previgusl

marked animals released at each occasion:

Al [0 [ @™

*{ [@@= Pe) P ]™ % X[ A= Py x @ ™ X
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1. An extension of the Jolly-Seber model: the twarse Jolly-Seber model

where R denote the number of releases at time the number ofR captured again later,
@ the apparent survival at tint@nd Y, the probability that an animal alive and in thedst

population at time is not caught or observed again at any time afipture occasion

The component 4 of the JS model is a product ®1 conditionally independent
multinomial distributions that specify a probalyilfor each possible capture history given the
number of animals exhibiting each capture histbdhyder the CJS model, all parameters are

based on the time index only and there are 2dentifiable parametersg,... ,@_, and p,,..

, P;- The initial capture probabilityp, cannot be estimated and the final survival and
capture probability cannot be estimated separdistyonly as a productg_,p,. It is also
important to note that the parametegr is a product of two biologically interpretable
parametersig = SF,. § is the probability of surviving between captureasiont andt+1,
also referred as “true survival” (as opposite tpparent survival”) andr, is the probability

of an animal being in the study area at that tigneen it is alive at occasiar1, also referred

as “fidelity”.

1.3.2. Abundance estimation

In the JS model, population size does not appeactty in the likelihood but can be
derived from component;lwith the estimation of the size of the unmarkeguation being:

~ U . L . ,
U, =—-. It follows that the population size is similar the Petersen-Lincoln estimator:
P

N, =U, +M :%: Mrrt1n[ where p, :N% and M, is the estimated number of marked
t t

animals.

However, the difficulty here lies in the estimatiohM,, the total number of marked

individuals in the population immediately beforméit, as it is an open-population model
and thus death and emigration can happen. Thigne Hy estimating the size of two different

groups of animals in the population:

1. the group(M, - m, ®f marked animals not seen at titne

16



1. An extension of the Jolly-Seber model: the twarse Jolly-Seber model

2. the groupR of animals seen at timg marked and released for subsequent

recaptures.

Taking z, and r, as members of, respective{i, —-m and R, which are seen at

least once again after tingthis leads, under the assumption of equal caiiityatio the

4 andr—t being approximately equal:zti =1

ratios of Tt
Mt_rn[ Rt Mt_rnt Rt

Consequently an estimator df, is given by:M, = m Rz
t

This estimator is defined fd+ 1,...,T-1 with M, =0, as animals are required to have

been seen before and after each tim&oreover if no loss happens on captufe, is
equivalent ton,, the total of animals captured at occadioHowever, the estimator‘&lt and

|\7It are biased and Seber (2002) recommended rthaand r, be greater than 10 for the

following approximately unbiased estimators:

| (nt +1)Mt
N, =————
m +1
5 =2(R+D
M, =221 4
t r+1 m
qf{ :AL whereég is the natural survival rate at tihe
M -m+n

A A

B =N, —(2{[\]t where ét is the estimator of the recruitment between tiraedt+1

pt_|\7It

The asymptotic variance fdf:lt is given by:

Var(|<lt|Nt) = N[N, - E(q)]x{Mt - El\slnl) +R X{E(lr) —%} +NI\I:<;EIE/IHI1)} (Pollock et al.,

1990)
This variance needs to be distinguished from theanee used by Seber (2002) which
includes both sampling variability and non-samplingriability associated with the

stochasticity of the birth and death processes. @bwsve formulation for the asymptotic
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1. An extension of the Jolly-Seber model: the twarse Jolly-Seber model

variance was chosen over Seber’s formulation becaesearchers are usually interested in

the variance associated with their estimation,\Mar(Nt|Nt) , and because the other term

present in Seber’s formulatio\dar(l(lt) , Which represents an approximation for:

_5* EIN(h?
=

conditioned on the{Bt} (the number of animals that enter the populatietwben occasioh

Var(Nt):E(Nt) where t>h, N,,(h)=B, and the expectations are

andt+1) is usually much smaller thafar(l(lt|Nt) and can therefore be ignored in most cases

(except maybe whemp, is large) (Jolly, 1965; Seber, 2002).

The variances of\7|t : ég ét and p, are given in Appendix 1.

1.3.3. Assumptions

The standard JS model relies on the following agsioms:

I. Within each capture method, the capture probadslitan vary over time but not
among individuals,

ii. All animals have the same probability of survivatween occasiohand occasiot+1
for all values ot,

iii. Marked animals do not lose their marks and mar&shat overlooked,

iv. Sampling periods are short enough to avoid deatingla sampling period,

v. Emigration is permanent,

vi. Capture events are independent of each other.

1.3.4. Derived models

From the original JS model described above, othedels have been developed to
target specific biological considerations that ¢inigginal JS model did not permit (Schwarz,

2001). However, under those models, total populatiae estimation is not always possible.
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1. An extension of the Jolly-Seber model: the twarse Jolly-Seber model

Partially open models

These models involve a sampling situation thatesafiom the original JS model in a
way that restricts partially the openness of thpupation. In the death-only model developed
by Darroch (1959), the population is not subjecimionigration and to recruitment over the
course of the study period. Thus, under this mddeé, survival can be estimated along with
capture probability and population size with thikoleing estimator:

N Rz

=t

I

where z is the number of animals not caught at tinkmown to be alive because seen alive
later.
Birth only models have also been considered by daar(1959) for situations where

there is no death or emigration but where recruitnoan happen in the population. Under

this model, the estimator for the population sg&lentical to the one of the JS model:

_ Mtnt
m

N,

However, here, the estimation of the marked pomrat straightforward as there is

no death or emigration.

The Cormack-Jolly-Seber model

The CJS model is based on the componertdflthe likelihood of the JS model and
provides a flexible framework for conditional oppopulation modeling. This model permits
the modeling of apparent survival and capture frdiya and the multistate models,
especially the Conditional-Arnason-Schwarz (CASY alolly Movement (JMV) models,
derived from it allow the modeling and estimationcapture probability, apparent or true
survival, and probability of transition betweentsta(Arnason, 1972, 1973; Brownie et al.,
1993; Hestbeck et al., 1991; Lebreton et al., 18&warz et al., 1993). Estimation of
capture probability and of probability of transitidbetween states is illustrated in an
application on real data in chapter five.
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1. An extension of the Jolly-Seber model: the twarse Jolly-Seber model

To estimate population size, a Horvitz-Thompsonnesdbr of population size has
been proposed by McDonald and Amstrup (2001) ferwigh open models such as the CJS

model and where individual covariates of captuseaaailable:
N,

~ R |
Nt :ZA_nzz,\_

i=1 pit i=1 pit
where Nt is the estimated size of the population at time
n, is the number of animals captured at time

|, is an indicator variable that takes the valuednifmali is captured at timeand O if

not,

p, is the estimated capture probability for aniinal timet.

However, this appears to be an inefficient estim@® Barker, pers. Comm.) so | do
not consider it any further in the present thesis.

Age-dependent models

In the JS model, all individuals belong to a singd® group. However, in many
animal populations, survival and capture probabilihay depend on the age of the
individuals. Thus, Pollock (1981) developed a matkrived from the JS model allowing age
specificity: age-specific capture probability!”’ are estimated for periods2,....T-1 and
agesv=1,....,/. The likelihood for this model can be written asproduct-multinomial
likelihood that specifies a probability for eaclptae history and maximum likelihood allows
the estimation of the capture probabilip/’ and the survival ratef” for each age-class.
The sampling design for such a model requires tihdihg of sampling and age transition

coincide and that every captured animal is colyeatisigned to an age-class. Then it is

possible to estimate age-specific abundance:

(©)

N© ="
N0

Pt

Total abundance for all ages can be obtained by sagnthe abundance of all age
classes. However, the age-specific capture prababibre based on marked individuals and
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1. An extension of the Jolly-Seber model: the twarse Jolly-Seber model

in order to estimate total population size using threvious equation, these capture
probabilities need to be applicable to unmarkedats.

The assumptions are similar to those of the JS hwaitle the additional requirements
that capture probability and survival are equalhimitan age-class. Moreover, under this
sampling design, any new unmarked individual isiae=] to be correctly assigned to an age-
class. In many situations, it is only possible istidguish young individuals from adults and
another approach is available where the age ohemahis only known if it has been captured
at age 0 (Amstrup et al., 2005). In such modelss possible to estimate the number of
marked animals alive in each class using the actuatber of caught individuals at the
corresponding sampling occasion and their captumbgbility and survival. However,
abundance estimation is usually not possible becaomarked individuals caught cannot be
assigned to a specific age unless they were caigige 0. Thus, the unmarked individuals
caught at time are a mixture of animals from different age classed only the information
provided by the known-age animals can be regardeddnot lead to an estimate of the total

population size (Williams et al., 2002).

Another alternative to the general age-dependerteiis the age-specific breeding
model, related to the CJS model (Clobert et al94)9that permits the abundance estimation
of the breeding part of the population. In this mlpdaught animals are either young (age 0)
or adults breeders (ader), all adults assumed to be breeders. Captureapiiities are
assumed to be the same for marked and unmarkedidosedeading to the following

abundance for breeders:

(k+)

Nk =

t T Ak
t

where n* is the number of breeding-age animals caughtat tiand equal to the sum of

the marked and unmarked breedefs’ = m** +ul*

However, under this model, neither the abundandéefinimals of age 0 nor that of

the non-breeders of age>0 can be estimated.
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1. An extension of the Jolly-Seber model: the twarse Jolly-Seber model

Reduced-parameter models

In these models survival and/or capture probabdity assumed constant over time
and the approach to calculate the abundance difiems the one used in the JS model. Jolly
(1982) and Brownie et al. (1986) proposed the failhg population estimation method for

reduced-parameter models:
as in the JS modeP§It = ljt + I\7It
and to estimate&?lt and ljt , they used:

E(m +2z/M,) =M, (1-qx,) and E(u|U,) =U,p

leading to:|\7lt L t%‘ andljt :u—f
@-ax) p

where=1-p and y, is the probability that an animal alive and in gfogpulation at sampling

timet is not caught or observed again at any sampling &fter timd.

Another difference from the JS model is that, wiglduced-parameter models, it is
possible to estimate the population size at tineed T as the capture probability is assumed

to be constant over time.

1.4. The two-source Jolly-Seber model

The standard sampling experiment for the TSJS misdéhat of a JS experiment with
two sampling methods and no loss on capture. Ifdhewing, individuals of a population
can be sampled, on any capture occasion, by a ohéflticor by a method “2” or by both
simultaneously on the same occasion, designateé@®’a®As usual in Jolly-Seber models,
“birth” refers to any mechanism by which new indivals enter the population: reproduction
or immigration. Similarly “death” refers to any nfemism by which individuals leave the

population: death or emigration.
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1.4.1. Assumptions

Assumptions are similar to those of the JS modeh three additional assumptions

which are specific to the TSJS model:

vii. There is no loss on capture, i.e. animals are metuito the population following a
capture,
viii. Having a capture by one method in the captureiyisioes not depend on whether
there has, or has not, been a capture by the wibirod,
ix. The same individual cannot be caught by the twaisdp sampling methods on an
occasion without knowing it is the same individuad, no unknown overlap occurs on
each capture occasion, i.e. being caught by methody method 2 or by both

simultaneously are mutually exclusive events o eapture occasion.

The consequences of the violation of those assomgpivill be discussed in chapters

three and four.

1.4.2. Notation
P, = probability of capture at timeby methodk (“1”, “2” or “3”)
@ = probability that an animal survives between timed timet+1 given it was alive at time
t,t=1, ..., T-1
B,= net birth, number of animals that enter and renmaithe population between occasion

andt+1,

t=1, ..., T-1. B, represents the number of animals alive just gherfirst sampling occasion
n= total number of animals, marked and unmarkeducag at occasion

R = number of unmarked animals captured for the finsé at occasiohby methock

u, = total number of unmarked animals captured atsiooa

r.1= number of marked animals recaptured at occasion method 1 given that they were

never captured simultaneously

r.o= number of marked animals recaptured at occaision method 2 given that they were

never captured simultaneously
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r.3= number of marked animals recaptured at occasmnmethodk given that they have at

least one simultaneous “3” capture in their record

r't1= number of animals captured at occadidnay method 1, given they were never captured

simultaneously, that are captured again by method 1

I'v2= number of animals captured at occadiday method 2, given they were never captured

simultaneously, that are captured again by method 2

I'ts= number of animals captured at occadidnyy methodk given that they have at least one

simultaneous “3” capture in their record, that @eaptured again by methéd

M, = total number of marked animals captured by eithethod before occasidn

m'= total number of marked animals captured at time

z= number of animals captured beforaot captured dtand captured again later

Zi1= number of animals captured by method 1 befomeot captured at and captured by

method 1 again later

Zi>= number of animals captured by method 2 befomeot captured at and captured by

method 2 again later

Z' s3=number of animals captured befér@ot captured dtand captured again later,

that have at least one simultaneous “3” captutbeir record

lig= probability of an individual having a single gnin the combined data set, i.e. it either
only appears in the dataset for one capture method, it does appear in both, it has, at

least once, been captured by both on the sameioncas

1.4.3. Data structure

The two sampling methods are used opportunisticalhd can also be used
simultaneously on any capture occasion (which eacdnsidered a third sampling method).
At the end of the study, there is a capture-recaptiataset for method 1 (dataset 1) and a
capture-recapture dataset for method 2 (dataseh Zptaset is defined as a set of capture
histories. The purpose of the model is to use tmhined dataset arising from the binding of
those two datasets. The starting point is a twas#dtapproach with some unknown overlap
between the datasets and this requires the use ofiformation resulting from simultaneous
captures (when an animal is simultaneously samipyeshethod 1 and method 2 on the same

occasion). Simultaneous captures enable the modelake the link between dataset 1 and
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dataset 2. Therefore, individuals with at least simeultaneous capture on one occasion and
separate captures by method 1 and by method 2 deast two other occasions, thus
belonging to dataset 1 and dataset 2, will be ifledtas one individual and will have only
one capture history in the final dataset when @atdsand dataset 2 are compiled together.
This will therefore increase the number of effeetrecaptures and consequently the precision
of the estimation. The problem comes from the imtligls that have never been sampled
simultaneously by method 1 and 2 but have beerucagtseparately by method 1 and 2 on
different occasions. Those individuals will haveagture history (also called entry) in dataset
1 and another in dataset 2. However, when the tataséts are compiled together, those
individuals will appear twice in this combined dsgtias it will not be possible to make the
link between the capture history with method 1 #reone with method 2, in other words to

know that they are the same individuals.

In this sampling situation, the observed data carafvanged in a 2x2 contingency

table:
In the method 2 dataset
Present Absent
In the method 1 dataset Present N, n
Absent n, _

where n, is the observed number of individuals in both setal and dataset 2, is the
observed number of individuals in dataset 1 onlg &) is the number of individuals in
dataset 2 only. However, given the misclassificatissue, the assignment to the correct
dataset for each individual is unknown. Hence,tthe numbers underlying,,, n, andn,

are unknown, biased by the numiogi(the number of animals in datasets 1 and 2 butrneve

caught simultaneously by both 1 and 2 at the sam®).t Thusn; and n; are too large bw,,

while ny2is too small by the same amount.

The approach here aims at estimating the probaliiat an individual has a single
entry (or capture history) in the combined datasetrder to extend the the Jolly-Seber model
to an ad hoc two-overlapping-list model to estimabendance. The first step is to estimate

this probabilityl;q.
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1.4.4. Estimation of the probability of single identity Iliqg

The possible histories of captured animals carebea snore clearly in Fig. 1-1, the set
of all possible histories of captured animals fof=6 study. Thus, the number of animals
actually caught by method 1 is the number of arsmialBL1 G ELlF, by method 2 the
number of animals in QDU EL F, and by both simultaneously, method 3, the nunolber
animals in ALIBLJ CLJ E. However, when lists 1 and 2 are combined, tkaltiag list will
be loo large by the number in[(H-. Those animals in E will be easily identified and
corrected thanks to the information provided by dheultaneous capture, but those in F will
not.

F e.g. 010022
E e.g. 120320

G e.g. 10000

D e.g. 020020

C e.g. 030020

B e.g. 010003

A e.g. 030030

Fig. 1-1- A Venn diagram showing the possible types of caphistories (with examples) for captured animals
for aT=6 study.

N.B.: in what follows, “Pr” means “probability”.

| define the following events:

¢, ={animali belongs to list 1}= BIGLU EUF
¢, ={animali belongs to list 2}=CIDUELF

¢, ={animali belongs to list 3}= AIBLUCLE
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It is assumed that:
1. membership of the lists is independent: the prdibgloif an individual being included
in the first list does not depend on whether it watuded in the other lists,
2. there is homogeneity in the probability of inclusion a list that does not vary from

individual to individual.

The first assumption is only justified asymptotigads the number of periods goes to
infinity, since the incidence of a capture by onetimod reduces the number of trials available
for another method (in the present sampling prdidbere is only one capture type possible
at each capture occasion). But, provided that amalns captured (or not) by any of the
methods on occasidnis independent of that dal, the simulation (Appendix 2) shows that
the approximation is good, though always an undenage, even at low number of occasions
(T=5), provided the proportion of capture historigattinclude one or more simultaneous
captures (list 3) does not get too large. As exgmkcthe approximation improves as the

number of sampling occasions increases (see App&ndir details).

The second assumption is equivalent to assumirtgthieaprobabilities of capture by
the three methods does not vary among individuatsassumed by the original JS method.

In all that follows, | reason conditionally on detien with B =Pr(/,), P, =Pr(’,)
and P, =Pr(/;).

Given eventy/, and/, are independent, events and/,, i.e. (/, n ¢,) is equivalent

to (EL/F)in Fig. 1-1 andPr(, n ¢,) = BPR,.

The probability of belonging to list 1 and list Bzgn the animal was sampled on some

occasions can be written as the sum of two proibiaisil

1) the probability of belonging to list 1 and list 2parately and being
acknowledged to belong to both list 1 and list (E)P

2) and the probability of belonging to list 1 and steparately and not being
acknowledged as belonging to both list 1 and lLif(#),
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such that:Pr(¢, n ¢,)=Pr(((,n ¢,)n £;) +Pr((¢;n ¢,) n 7,)
Therefore:Pr(¢, n 7,) =BRR+BR,(1-R, )

And the probability of the unknown overlap betwekst 1 and list 2, i.e. the

probability that an individual has an entry in listand an entry in list 2 but is not

acknowledged as being in both lists, i.e. P(FRIi€/, n ¢,) n /;) =PR,1-PR).
It follows that the probability that an individuaas a single entry in the combined list

is Iy =1-Pr((/,n £,)n z3) =1-RRA-R).

In a real dataset, the probabilities P,, P; can be estimated as being:

number of individuals with a capture method 1 on at least one occas_ I5r(£ )
1

P = =
! total number of individuals in the conmiaid dataset
~ _number of individuals with a capture yethod 2 on at least one occas_ I5r(£ )
? total number of individuals in the conmieid dataset 2
p = numberof individualk with acaptureby bothmethodsn atleastoneoccasion _ I5r(£ )
3 - 3

total numberof individualsin the combine(datase

The overlap rate as estimated above might be biagéue way probabilitieB;, P, P3
are estimated. Indeed the total number of indivgluged to estimate those probabilities is
likely to be overestimated due to the unknown nundfendividuals appearing twice in the
combined dataset. As the total number of individuatiudes some individuals twice,( the
number in set F), the estimates of probabiliRgsP,, P; using the total number of individuals

as a denominator will be negatively biased.

Two somewhat ad hoc approaches have been investigatry to solve this probable
source of bias in the approximation of the probgbibf single identity, hence in the
population size estimation. | first tried an itévatapproach to get an unbiased estimaig.of

An iterative approach
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The idea was to use an iterative method to cotrextvalue ofliy with the previous
value calculated. At the start of the iteration,aoorection is made to thl@;d parameter and

the formula is the following:

A

g =1_|51 L @d- |:33)

>

However, as mentioned earlier, the estimatedfP, P3; and of parametetq,
respectivelyP,, P,, P, and I, might be biased by the total number of individussd as the
denominator in the estimation &, P, Ps. The total number of individuals is likely to be
overestimated due to the presence of individuafgeapng in list 1 and in list 2 but not

acknowledged as the same individuals (those tha¢ lh@en captured by method 1 and 2

separately but never simultaneously, i.e. the nurabimdividuals in F (Fig. 1-1)).

The primary purpose of usinfly is to correct the population size estimate for
duplicated, “phantom”, individuals when using twatakets, so it seems legitimate to use it as

well to correct the total number of individuals. Torrect for the potential overestimation of

the total number of individuals, the total numbéinalividuals in the calculation ofsl, I52,

F33 is multiplied by the previous value of the paraenein the second step of the iteration, the

A

|, parameter becomes then:

B =1-(i T

2 3
Iid Iid

eeé,j

The iteration should continue substituting the prasivalue ofIAi0| calculated to get

the next one until convergence. However, the ptegeration method results in unstable

estimates where the iteration does not convergh@sn in Fig.1-2:
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10
|

o o o
o, ®0,| o,

iteration

Fig.1-2- Value of the parametel?id over 100 steps of the iteration.

The reason for non-convergence is that if the estimate overshoots the true value

and goes too small then because of the reciprdchigh powers ofIAid , the estimate gets
massively inflated and the process starts again.

Then | tried to modify the influence of the prevsowalues, and to reduce the degree of

“overshoot” by using the mean of the two previoabkies:

~ 1

lia =1-| 1= — ~P,P,P, | fori LU [3, +0)
Loy + Iid(i—Z)I

PP~ ~
II id (i-1) + Iid(i—Z)
Unfortunately this did not work.

Similarly, weighted means (with a variety of weiiglgt schemes) have also been tried

to fix the instability and produce convergence, With no success.

Thus, an alternative approach was developed.

30



1. An extension of the Jolly-Seber model: the twarse Jolly-Seber model

The function approach

Following the work on the iteration, an algebraiadtion ofliy can be written (Ross

Ihaka, pers. Comm.):

~ 1 1
f(ly) :1—(r—2a— E ab]

id id

wherea=PP, andb =P,

The idea here is to find the root(s) 6(fid). The root(s) of a function o1‘IAid can be
found at f(fid)=l , Which is equivalent tof(fid)—l = Ofor a continuous monotonic
function.

The parametely belongs to [0,1] andf(fid) is not necessarily monotonic on [0,1]:
the behavior off (fid) on [0,1] depends on the values of the probalslidieandb . It appears
that there are 4 possible scenarios denoted as &, B for the behavior off (fid) on [0,1]

that result inf(fid) having either a single root (scenarios B, C, D sokhe cases of A) or

three roots (in some cases of scenario A). Thedfft scenarios A, B, C and D are illustrated
in Fig.1-3.
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A B
= =
o o
I=T I=T
f(id) = | i) = |
[=T [=T
™ ™
= =
G_l T T T T T G_l T T T T T
0.0 02 04 08 08 1.0 0o 02 04 08 08 1.0
lid lid
C D
a \\_/_/—/_V ol
=T = A \&_
filid) S ] f(lid) o ]
-t _] =T _]
= =
I
= 7 = 7
-\:i_ -\:i_
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0.0 02 04 08 08 1.0 0o 02 04 08 08 1.0
lid lid

Fig.1-3- Root of the functionf (IAid ) in scenario A, B, C and D.

For scenarios B, C, D and some cases of scenarithédcorrected value oﬂd
corresponds to the root of(fid) in [0, 1]. For scenario B and C, the first and &t

derivatives are used to obtain the rootf((fid) . Here the first derivativef (fid) IS:

_2a 3ab

f'(lg) = s

id id
and the second derivative cbf(fid) corresponds to:
f'(ﬂa) _ —6a+12ab

4 (5
| id Iid
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If f(fid) IS monotonic on [0, 1] (scenario D), then the eored value forIAid

corresponds to the root df(l,) in [0, 1].

If f(fid) has an inflection point in [0, 1] and does noptiy any optimum in [0, root
of the second derivative] (scenario C), then theemted value forfid corresponds to the root

of f'(I,) in [0, 1].

If f(fid) has an inflection point in [0, 1], has a local mom in [0, 1] and
(f(fid)—l) is strictly positive (scenario B and in some casésscenario A), then the

corrected value f0|‘Aid corresponds to the root df (fid) in [0, 1].

If f(fid) has an inflection point in [0, 1], has a local maxm and a local minimum

in [0,1] and(f (ﬂd) - I) is strictly negative (scenario A), then there timee possible roots.

The largest root seems to be the most appropriatheaestimator produces a smaller bias

than with the other two roots.

Using the estimation of the probability of singteemtity, it is then possible to correct
the Jolly-Seber estimator to obtain an estimatibpapulation size, survival and recruitment

based on two overlapping datasets.

1.4.5. Estimating population size

nM,

The traditional mark-recapture formulgt = Mt is used which leads tci\?It =
t t

A A

where m =r,+r 1l +1,l
n = mi+y,
U = R;*+ Rl + R,
The estimator for the probability of single ideyltﬁ;d has to be used fan, andu, to
avoid counting twice individuals present in lisafd list 2 but not acknowledged to be the

same individuals.
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1. An extension of the Jolly-Seber model: the twarse Jolly-Seber model

As in the JS model, an estimator fdt; is then needed because the total number of
marked animals in the population is not known as th an open model. Following the

method in JS model to estimafe:

t~ Fiatlialia ¥zl

Mt* _m.t n n

N
—

A A

with z =7\ ;+7, 14 +Z,, |y
This leads to the following estimator fom,

M =20+
rt

However, the estimatorBAlt and |\7It* are biased and Seber (2002) recommended the

following approximately unbiased estimators:

N _(n[ +1)Mt*
t ]
m,+1

vt =zt

t r.t+1 t

The variance foﬂ\Alt is of the form of the formula of Pollock et al9dD):

Var(Nt|Nt):Nt[Nt—E(nt)]x{M:_E(mlt)-'-n‘x{ 1 _1} N, - M }

M, E(r) n | NyxE(m)

Confidence intervals fon(lt displayed in the results are classical approxin®i#
confidence intervals of the form:Ntﬂ.96xse As confidence intervals constructed by
assuming thai\Alt is lognormally distributed sometimes perform betkean those constructed

by assuming thanl:lt is normally distributed, a log-transformation appmation is also used
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in comparison to get improved 95% confidence irdgk\such that(NIt/C; I\Alt xC) where

t

C= exp{z\/log(1+ V%(L\lt))} (Buckland et al., 1993).

Note that corrected estimates for surviﬁpland recruitmenét and their variances at

timet of the form of the formula of Pollock et al. (199tan also be obtained with the TSJS
model:

C’é: _ M
Mt _m.t+n[

5 M., — E(Mi )X |M,,, — E(mi t 1
Var((qkq):(qz{[ (41 (mtﬂ)lxl[/l:t{l (rnt+1)"'nt+1l><|:E(rlt l)—ntl:|

o M —Eqm) { 1 _1}}

IM; —E(M)+n] |ECr,) n

and

A

Bt = Nt+1 - th

o~ { 87 m?., - E(m.)] M[M ~E(m,.,) + mJHE(r% - }

t+1

+t [M:—E(m’t)] ..xl-qqn[(Nt_Mt*)llzx|: 1 1}
E(ry) n

M’ —E(m )+ M2 -
|_ t t ntJ t

L INCE)]X (N, = B) X (N = M) x (- ¢)
N, x[M; —E(m’)+n]

+ Nt+1[Nt+1 _ E(nt+l)] X (Nt+1 _ Mt*+1)
Niw X E(M',)

o NN~ E()]x (N = M)
N, E(m,)
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1.5. Alternative models

In the present thesis, other modeling approaches@rsidered as alternatives to the
above extension of the JS estimator (the TSJS rpddebrder to estimate population size

with two overlapping datasets.

1.5.1. The variance-weighted mean of the JS estimators

The first obvious approach to answer the issugvofdverlapping datasets would be to
obtain an average of the estimates given by easelaseparately. If both sampling methods
lead to a valid estimate for the population sizé iithese sampling methods are independent,

then one simple solution would be a weighted mesiwéen the values, of the Jolly-Seber

estimator provided by each source of data. Theanaéiso” of the estimates; can be used

as weight such thatw, =i2 (Seber, 2002). In other words, the smaller théeawnae is, the
a.

bigger the weight is and the more influential tladue x is in the weighted mean.

n

2
>

i=1

\_><

2

Q

The weighted meam is in this caseX =

SHIS

and the variance of the weighted mean is given by:
2 l

]
22

The assumptions are those of the JS model for saphrate estimate and for the
variance-weighted mean to hold, as mentioned eabigth sampling methods need to be
independent and to sample the same population. ¥Hawsuch a solution is unlikely to be as
efficient as the TJSJ as the total number of ceptwill be smaller and the number of
recorded recaptures, which is an important contimibto the precision of the final estimate,
will usually be less in this method as an animaigtd first by method 1 and subsequently by
method 2 will not have this recapture used by 8stemator. This solution will be compared to
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1. An extension of the Jolly-Seber model: the twarse Jolly-Seber model

the TSJS estimator in various simulation experimentchapter four and on real data in

chapter five.

1.5.2. A closed form likelihood approach

The closed population approaches developed hemdvievsome numbell >1 of
discrete sampling occasions at which any animal, 2, ..., N, belonging to a closed
population ofN individuals, can be caught by one of two samplmgthods or by both
simultaneously. As for the TSJS model, on each §agmpccasion, t=1, 2, ...,T, unmarked
animals that are caught are given unique codegseaadsed back into the population, while
identification codes are recorded for previouslyked animals which are also released back

into the population.

Two-source M model

A closed form likelihood using both overlapping smes of data was contributed by
Dr Rachel Fewster. It is included here as it regmésan important stepping stone to the more
flexible approach presented in section 1.4. Thslilhood is a two-source version of model
Mo for closed populations and will therefore be reddrto as the two-sourceohhodel. It is
presented here as its performance and resultsatge dompared with the TSJS model in

chapters four and five.

Capture events are defined as following:

P, = {animali issampledy methodlon captureoccasiort}

G, = {animali issampledy method2on captureaccasiort}

with:
1) Pr(R)=p foralli=1, 2, ...,Nandt=1, 2, ...,T

2) Pr(G,)=g foralli=1, 2, ....Nandt=1,2, ..., T

3) PrR nG,)=ap foralli=1, 2, ...,Nandt=1, 2, ...,T
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1. An extension of the Jolly-Seber model: the twarse Jolly-Seber model

or alternativelyPr(G,| R,) = a

Therefore, event®, andG, are not assumed independent.

From 1), 2) and 3), it follows that:
Pr(R n G,) =ap is the probability that animiails sampled at occasiamy method 1 and
method 2,
Pr(P n G,) = (- a)p is the probability that animials sampled at occasidiy method 1
but not by method 2,

Pr(R, n G,) =g-ap is the probability that animals sampled at occasiady method 2 but
not by method 1,
andPr(P, n G,)=1- p—g+ap is the probability that animals not sampled at occasibn
by method 1 nor by method 2.
Repeated sampling then results in capture histdhiascan be organized into three

separate data frames:

1) D;: all histories in which there was at least oneudiameous capture, i.&, n G,

for some occasion( “B” for “Both”), such that, for example:

T capture occasions T={ here)

0103 200
0000030
hg histories 2030000
0013000

where, on any capture occasipra “3” means a simultaneous capture by both methadd

method 2, i.eP, n G, , a “2” means a capture by method 2 only, Pen G, , a “1” means a

capture by method 1 only, i.8, n G, and a “0” means no capture, iR.n G, .
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2) D, : all histories consisting of captures by methazhly, such that:

T capture occasions
0101000

1000000
h, histories 0000110
0010001

where, on any capture occasipm “1” means a capture by method 1 only Pen G, and a
“0” means no capture by method 1, iRe.. Therefore, every row has at least a “1” bug itdt

possible to have a “2” or “3", otherwise history wid be in data frameD,, not D,.

However, it is not known if the same individualsr&deen also caught by method 2 and the

same individuals might also appearDy} .

3) D,: all histories consisting of captures by methazhB, such that:

Tcapture occasions
0022000

0000020
h, histories 0202020
2000000

where, on any capture occasipm “2” means a capture by method 2 only, Ren G, and a
“0” means no capture by method 1, i®, . Therefore, every row has at least a “2” busit i
not possible to have a “1” or “3”, otherwise histawould be in data framé&g, not D, .

However, as mentioned fdD,, it is not known if the same individuals have be¢so caught

by method 1 and therefore the same individuals tatgo appear iD, .

Model assumptions

1) The population is closed, i.e. there is no deatlgetion, and no recruitment (birth or

immigration) during the study period,

2) Capture probabilities are assumed to be the sanadl fimdividuals on all occasions,
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1. An extension of the Jolly-Seber model: the twarse Jolly-Seber model

3) There is no loss on capture,
4) Marks are correctly recorded,

5) Animals do not lose their marks,

6) If event P, n G, happens, then it is known that it happens, i.és itot possible to
catch the same individual by the two different noelihon the same occasion without
knowing it is the same individual, i.e. being caubi method 1, by method 2 or by

both simultaneously are mutually exclusive evemniseach capture occasion. This

assumption is the same as assumption ix of the el

Estimating the population size N

The key problem is the same as for the TSJS mad&: not known how many
individuals are in bottD, andD,, i.e. captured separately by the two differenthods but
never simultaneously.

The approach here aims at first describing the raumbf histories in dataseBs;, D,
and D,, in terms of the model paramet@gy and «, then conditioning them on membership

of each dataset, in order to find the probabilityhe individual history records.

Data summary statistics:

hg = number of histories i, (= number of individuals i)
h, = number of histories D,

h, = number of histories i,

N.B.: each history irD, and D, describes an individual but there is an unknowerleyp

betweenD, and D, resulting in some individuals having an historypoth D, and D, .

Ngos Ngys Nsyy Ne3: respectively number of capturesin, that are “0”, “17, “2”, “3”
N N, : respectively number of capturesin that are “0” and “1”

N, N,,: respectively number of capturesin, that are “0” and “2”
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1. An extension of the Jolly-Seber model: the twarse Jolly-Seber model

Likelihood components:

The probability distribution of the observed dgiaen the parameters can be split into

four components:

) L,(hg,h,h, ; N,p,ga) = Pr(numbersf historiesn eachdataseD;,D,,D,),

i) Lg(NggsNg1sNg0sNes | h; ; N,p,g¢): probability of theD, -captures “0”, “1”, “2”, “3”,
conditional on membership of datag2y ,
iii) Ly(no,n, | h; Nop,ge) : probability of theD, -captures “0” and “1”, conditional on

membership of datasé@,,

V) Lz(nzo,nzz| h, ; N,p,g¢): probability of theD , -captures “0” and “2”, conditional on

membership of datasél, .

The overall likelihood is, therefore, given byl (data;parametens=L, L;LL, or

logL =logL,, +logL; +logL, +logL, with:

1) Component,
Le O psy X Pgi' X Pgy X Pg3’
where pg, =Pr(capture= d captureisin dataseD;) = Pr(c| D) c=01,23

andL; O ... with a constant of proportionality that does depend on the parameters.
The probabilityPr(D,, )that a capture history is in data &t is given by:

Pr(Dg,) =Pr(historyisin dataseD;) = 1- Pr(animali nevercaughtsimultaneaslyoutof all T occasions)

ThenPr(Dy ) =1-(1-ap)’

Pr(D, | P, n G,)xPr®, n G,) 1xa
And: pg; =Pr(R mG‘it|DBi)= B| : Pr(tD ) t - S0 psszﬁ
Bi
= Pr(Dg | R, n G, )Pr(R n Gy) 1- L-ap) *(g-a
P, =PI, 0 G, | D) = oy o b (1_(F1’)_al()9 g
Bi

41
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with: Pr(DB,‘ > nG,)=1-(L-ap)"" because it is known that there was no simultaneous

capture for individual on occasion, i.e. B, n G, so that leave$-1 other occasions, at least

one of which must be a simultaneous capture inrdoeeventD,, to happen.

Similarly:
Pr(Dy | P, n G, )Pr(R, n G,) s p _[-a-ap)Ha-ayp

=PrR n G, |D,) =
B1 ( it it | BI) Pr(DBi) B1 1_ (1_ ap)T

1-(1- a +
and py, =Pr(, n G, | D) = [ ( a‘i) (1kap)p g +ap)

Consequently:

logLg = ng,log pg, +Ng; 109 Pg; + N, 109 Pg, +Ng3 109 Py, (Up to an additive constant that

can be ignored)

2) Component.
The probabilityPr(D, )that a capture histonyis in dataseD,, i.e.
Pr(D,) = Pr(individuali is nevercaughtsimultaneasly,butis caughtoy methodlatleastonce
is given by:Pr(D,) = (Pr®, n G,)) -(Pr®))
soPr(D,)=(@-ap) —(1-p)’
Given: p,, = Pr(capture= 0| capturesin dataseD,)

and p,, = Pr(capture= 1| captureisin dataseD,)

Pr(D, | B) xPr(®,) s0 py = |(1-ap)* - (1= p)"x(1- p)

:Pr(§t|Dli)= 0 N T
Pr(D,) @-op) —(L-p)

with: Pr(D, ‘ﬁt) =(1-ap)" ™ -(1- p)"™" because it is known that there was no capture by

method 1 on occasion i.e. (B,), so that leave3-1 occasions on which no simultaneous

capture should occur arell capture(s) by method 1 need(s) to happen.

Further: p, =1-p,
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Consequently:

logL, =ny,log p,+n,log p, (up to an additive constant that can be ignored)

3) Component.,

The probabilityPr(D,, )that a capture histonyis in dataseD,, i.e.

Pr(D,;) =P(individuali is nevercaughtsimultaneaisly, butis caughtby method 2atleastonce
is given by:Pr(D,) = (Pr®, n G,)) - (PrG,))

saPr(D,) = @-oap)’ - (1-g)"

Given p,, = Pr(capture= 0| captureasin dataseD,) and

p,, = Pr(capture= 2| capturesin dataseD,)

Pr(D, ‘ G, ) xPr(G,) SO P, = [(1' ap)' - (1- g)T_llx (1-9)
Pr(D,) ® L-ap)’ - (@A-g)

Pao = Pr(éit | Dy) =

with: Pr(D; ‘Gn) =(1-ap)" " -(1-g)"" because it is known that there was no capture by

method 2 on occasidni.e. (G,), so that leaves-1 occasions on which there needs to be no

simultaneous captures agd capture(s) by method 2.

Further: p,, =1- p,,

Consequently:

logL, =n,,log p,, +n,,log p,, (Uup to an additive constant that can be ignored)

4) Component.,,

Consider a latent multinomial formulation whereeawividual can be:
1. In no dataset (never observed)
. In Dy

2

3. In D, only

4. In D, only

5. InbothD, andD,
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This is a patrtition, i.e. every individual is inaetly one of those 5 outcomes, and all

probabilities need to be linked to each outcome.

Let X be the associated multinomial random variable:

Outcome Probability Number of animals
with this outcome

Never observed 9, =(1-p-g+ap)” Xo

In D, I, =1-L-ap)’ Xg

In D, only §=(1-9) " -(1-p-g+ap) Xy

In D, only g, =(1-p)' -(1-p-g+ap)’ X,

Inboth D, andD, | ,=@-0ap)’ -(1-p)" -(1-g)" +(1-p-g+ap)’ X1

Then (X, Xg, X, X,, X;,) = X ~Multinomial (N; 5,,55,4,,5,,,,)

But X is not observed completely and what is observed is

Xg = number of histories i, =h,
X, + X,,= number of histories iiD, =h,
X, + X,,= number of histories i ,=h,
It is necessary to knowX,, in order to use the multinomial formula. One sioluts to
partition over all possible values &, such that:

L (s, 1) N&) = 3 Pr(hehuhy) 0 X, | NS)

all possiblevaluesof Xis

N-h,—h-h,-x,
hy
L. ((h,hyhy) N = > Pr(X =| h =, N,J)
e h, =X,
X1

Consequently,, ((hB,hl,hz)| N,z?) is gained by summing the multinomial distribution

over all possible values of,, .
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For the variance of the maximum likelihood estiongtMILE) N, we assume that the

MLE is unbiased and therefore we use the Crameri&aer bound:var(N) :ﬁ where

N is any unbiased estimator Nfthat attains the Cramer-Rao lower bound &(d) is the

Fisher information.

Though clearly this method offers an elegant apgrda the problem, at present it is
limited to the simplest (and least useful) of th@sed population models. Any development
of the model to the other closed population formdls, My, and M, let alone the open

populations will have to be left to others.

Multinomial models based on a latent capture hisgapproach

An alternative, less mathematically demanding, epgh is based on latent
multinomials outlined in chapter 10 in Link and Bar (2010). The purpose in this section is
to construct, using the raw encounter historiesJoged-population likelihood based on a
complete data likelihood expressed in terms of trigtories which are then corrupted into

observed capture histories.

On each sampling occasidnof a T-occasion experiment, there are four possible

events for each individual:
1) Not being caught, denoted “0” in a capture histo
2) Being caught by method 1 only, denoted “1” icapture history
3) Being caught by method 2 only, denoted “2” icapture history

4) Being caught by both methods simultaneouslyptish“3” in the capture history.

There are therefore' possible latent historie&y, @, ...,c; ), uniquely identified by
T

indices i :1+Zcq4t‘1. However, since any latent history containing & &hd “2” but no
t=1

“3” cannot be observed, there are less types oérebble records than there are latent ones.
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For instance, an individual with latent historie$2021” is recorded as two separate
individuals: one individual with record “10001” atite other with record “01010". The exact

-2™141 is the number of

number of possible types of observable historiet-¥%1whereY=3"
sequences of siz& that contain both “1"s and “2"s but no “3” (i.ehat can never be
observed). One is subtracted asTreero-vector is also not observable. A recordequeacy

vector (vector of observations) of the foifih= (f,, f,,.. ) can then be assumed to be

" f4T—Y—1
an affine transformation of latent history frequiesc< = (x;, X,,...,X,) with f'= A'X, where

Ais a 4(47-Y-1) matrix:A;j.1= 1 if latent historyi gives rise to recorded histogyin the case

of T=3 illustrated in Table 1-1A is created by replacing each dot in the contritbuexord
matrix with a zero and every number by a 1. The spdhce of matriA' (Link and Barker,
2010) is required in order to map the latent histoto the observed histories. This could be
achieved by using the R function Null() (library(N&&) ****).

i Latent history Contributed recordsj Recorded history
1 oo | .l 52 dots 1 000
2 100 2...... 2 100
3 200 3. 3 200
4 300 I 4 300
5 010 T 5 010
6 110 S T 6 110
7 210 3.5... 7 310
8 3.0 | ... 7 8 020
9 020 | ... 8 9 030
10 030 | 9 10 130
11 120 2...8...... fill to 52

12 30 | 10

fill to 64

Table 1-1- Latent histories and recorded historiggor aT=3-occasion experiment.

General model assumptions include:

1) The population is closed, i.e. there is no deatlgation, and no recruitment
(birth or immigration) during the study period,
2) Capture probabilities are assumed to be the saradl fiodividuals,
3) There is no loss on capture,
4) Marks are correctly recorded,
5) Animals do not lose their marks,
6) It is not possible to catch the same individualtvy two seperate methods on the

same occasion without knowing it is the same irtligl, i.e. being caught by
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method 1, by method 2 or by both simultaneouslynaneually exclusive events on
each capture occasion. This assumption is the sgsraessumption (ix) of the TSJS

model and assumption 6 of the two-sourcenvbdel.

The latent capture histories can then be modeled nipking assumptions
corresponding to the model of interest: modegldvid M.

Under model M

Under model M, the capture probability is assumed to be the damall individuals
and does not vary over time. Therefore, the latapture histories can be modeled, foriall
with i in (1, ...,N), by making the following assumptions and basedhe approach used

above in Rachel Fewster's two-sourcgrivbdel:
1) the probability of being caught by method limtt, t=1, ..., T is Pr(p’) = p®
2) the probability of being caught by method 2imitt, t=1, ..., T is Pr(p®) = p@®

3) the probability of being caught by both methodntl method 2 at timet=1, ..., T
is Pr(p® n p?)=ap® forall i=1, 2, ...,.Nandt=1, 2, ...,T

or aIternativerPr(p,ﬁz)‘ p®) =a. Therefore, eventp®” and p® are not assumed

independent,

4) N is the unknown number of animals in a closed pafpri.

From these assumptions, the following probabilites be derived:
Pr(g n ) =1- p¥ - p® +ap®
Pr(pi’ n B”) = - a)p®
Pr(p’ n p) = p ~ap”

Thus, the likelihood that an individual has lateistory w, can be formulated as:
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47

Conditioning on beindN individuals ever in the population, the probabilif a vector

X = (%, %,,-.,X,r )" Of latent frequencies is given by:

u

MN’ p®, p(2)'a]= 4Tﬂl—l s |(§Xi = N)

The probability of the recorded datg conditional on the latent frequencies, is:

[fx N, p?, p@,al=1 (f'=AX)

Extension to model M

Under model M the capture probability is assumed to be the damall individuals
but varies over time. Therefore, the latent caphiséories can be modeled, for allvith i in
(1, ...,N), by making the following assumptions:

1) the probability of being caught by method limtt, t=1, ..., T is Pr(p{”) = p®
2) the probability of being caught by method 2imitt, t=1, ..., T is Pr(p®) = p®

3) the probability of being caught by both methodntl method 2 at timet=1, ..., T
is Pr(p® n p@) =ap® forall i=1, 2, ...,N

or aIternativerPr(piﬁz)‘ piﬁl)) =a

Therefore, eventp® and p{® are not assumed independent.

4) N is the unknown number of animals in a closed pafr.

From these assumptions, the following probabilites be derived:

Py n p?) =1- p? - p? +ap
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P(p” n p?)=(-a)p?

PEY n p?) = p? —ap?

Thus, the likelihood that an individual has lateistory w, can be formulated as:

7= |lj [1_ pt(l) _ pt(z) + apt(l)]l (W, =0) [(1_ a) pt(l)]l (Wi :1)[pt(z) _ apt(l)]l (W, =2) [apt(l)]'(w"‘ =3)
L=

fori=1,2,.... 4

Conditioning on there beiny individuals ever in the population, the probapilif a

vector X = (%, %,,...,.X,r )'of latent frequencies is given by:

4N, BE 2 8 .= ] (T =)
I_l)ﬂ' 1=1 i=1

1=1

The probability of the recorded dafa’, conditional on the latent frequencies, is:

[F%N,p?,....p%, p@.,....p@a] = | ( f= AX)

Under model M « is set, here, to be constant. Howewvercould potentially vary
over time, i.e.o, witht=1, ..., T: in such case, at every capture occasigH, and p® would

need to be estimated. This implies a heavy pararsati®n and potentially a loss in precision
for the other parameters. So, depending on thecapipin,  can be set to be constant or to

vary over time, both options having drawbacks thaearchers need to take into account.

These models could be formulated as a Bayesiangmmoand evaluated using Monte
Carlo Markov chains as outlined by Link and Bark2910). However, for real problems
where the number of sampling occasions become® largpugh to be useful for field
ecologists doing monitoring work (say 10 samplirgigpds or more), the size and complexity

of the problem make this approach unattractivectdogists.
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1.6. Discussion

While double sampling may be an efficient appra@chinimize study costs, increase
sample size and enhance the power of capture-tgeapnalysis (Salewski et al., 2007),
minimize possible sampling bias and permit a dedpsight into the ecology of the
population of interest (Laiolo et al., 2007; Salkinet al., 2007), there are a number of issues
when data provided by the two sampling methodsordy be partially linked. This sampling
situation particularly leads to difficulties in ssating population size when the two partially-
overlapping datasets are combined: some individoay appear twice in the combined
dataset, resulting in an overestimation of the danne and large standard errors. In the
present thesis, an extension of the Jolly-Sebereindte two-source Jolly-Seber (TSJS)
model, is proposed as a solution to this issuedismlissed along with alternative approaches.
The objective is the development of an analyticamiework allowing the combination of two
sources of data available in an open-populationahtmdincrease the sample size and provide
a useful monitoring estimator, i.e. robust to dapar from the underlying assumptions.
However, researchers should keep in mind that réiffees in estimates provided by two
sampling methods should not necessarily be takenpasblem but this difference could be a
source of information about the population of iatgrand ways to use this information should
be considered (Laiolo et al., 2007; Vogeli et2008).

The first important aspect is that care shouldaken when comparing results from
two sources of data. Researchers especially needke sure that the two sampling methods
indeed sample the same population. Recent stug8aewski et al., 2007; Vogeli et al., 2008)
have highlighted differences in estimates of swalvibetween different sampling methods
suggesting the existence of subsets of individudiféerentially sampled within the
population. Depending on which sampling methodItesare drawn upon, conclusions might
differ drastically, potentially affecting predictis on the population dynamics and resulting in
inappropriate conservation plans. In such a cdsetwo methods should be considered as
complementary rather than alternative and shoulddmbined: the unique information for
one sampling method could correct the estimatiavided by the other sampling method,
providing a better insight into the population cweristics and dynamics. The other solution
would be to acknowledge that the two subsets ofptygulation are different and to study
them separately.
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1. An extension of the Jolly-Seber model: the twarse Jolly-Seber model

There are several solutions to the estimation afndbnce with two overlapping
datasets: three new frameworks, all based on théafuental assumption that the sampling
methods sample the same population, were presentetthis chapter. Two of those
approaches, the TSJS and the two-sourgenmMddels are applicable. The former is an
extension of the JS model and therefore sharebdbe properties and assumptions of the
classic JS model. The TSJS model is an open papulatodel leading to the estimation of
population size, capture probability and less ghthorwardly survival rate and recruitment.
Population size is the parameter of interest inyregological studies and is investigated in
the present thesis. | however, show how survivdl r@eruitment can be estimated under the
TSJS framework. They are important population patans that are not necessarily biased by
the same assumption violations as the populatmmestimates can be. Survival estimates are
especially relatively robust to heterogeneity iptaae probabilities (Carothers, 1973, 1979;
Hwang and Chao, 1995), a major issue investigatedpbpulation size estimates in the
present thesis. Consequently, survival and recantnparameters would deserve a full

investigation with a different approach.

A restrictive assumption of the TSJS model (and a$ the JS model) is the
assumption of homogeneity in capture probabilityoagindividuals because heterogeneity
of capture probabilities among individuals is anquiious feature in animal population
(Boulanger et al., 2004c; Crespin et al., 2008; khemd, 1990) leading to substantial bias in
population size estimation with the standard JS eh@@arothers, 1973, 1979; Hwang and
Chao, 1995). Therefore, | explore, in chapter thitlee robustness of the TSJS estimator from
the departure of this underlying assumption to isedimitation at handling this common

source of bias in population size estimates.

The TSJS model also relies on the assumption thahé a capture by one method in
the capture history does not depend on whethearireals also have (or not) captures by the
other methods (assumption viii). This assumptiom @aly be justified asymptotically as the
number of capture occasions increases since, dm @aasion, captures by each sampling
method are mutually exclusive. This assumptionddnd especially at risk in studies where
the animals become trap-shy or trap-happy by a kagnmethod affecting the probability of

the other sampling methods. This assumption is alsoisk if some animals are more
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1. An extension of the Jolly-Seber model: the twarse Jolly-Seber model

available than others due to the sampling protocalue to the behaviour of the animals: if
the same kind of animals is favoured by both samgpthethods, then a lack of independence

between the types of captures will be induced.

All the new models presented in this chapter (ti8J9 model, the two-sourceoM
model and the Bayesian latent-capture-histogyalld M approaches) rely on the assumption
that the same individual cannot be caught by the deparate sampling methods on the same
occasion without knowing it is the same individua, no unknown overlap occurs within a
capture occasion, captures by each sampling mettednutually exclusive events on each
capture occasion (assumption ix of the TSJS mod&krefore, a point of interest concerns
the sampling occasion and how the definition of @arg occasion differs from one species
or one field study to another. The length of thengling occasion in particular differs
depending on the species. For some animal popnljatie sampling occasion lasts a day but
for some other animal populations (such as humphdizkes) a sampling occasion could last
over a few months. When sampling occasions areadpmer a long period of time,
secondary sampling occasions usually occur withése primary sampling occasions, like in
a robust design experiment (Pollock, 1982). Thgdorihe primary sampling occasion is, the
better the chance of capturing the same individatleast twice. Therefore, in some cases,
multiple captures of the same individuals can oaluning the secondary sampling occasion
but only one capture appears on the primary saggatasion scale in the capture histories
of the individuals and the multiple aspect of tla@ptare on the secondary sampling scale is
ignored. However, if a simultaneous capture is itagkin the capture histories and if the
multiple captures during secondary sampling ocecasiare of the form of captures by the
single methods alone, the multiple aspect of thetura will be recorded at the primary
sampling occasion, to the capture history of twifedent individuals that are actually one. If
some individuals are captured by both sampling oushseparately but not simultaneously
during such a long primary sampling occasion, @agenvill occur resulting in a further

inflation of the population size.

Lengthy sampling occasions might also jeopardssum@ption iv of the TSJS model
(same assumption exists in the JS model): samplmigpds are short enough to avoid death
during a sampling period. For long-lived speciethwai high survival rate, the assumption will

hold. However, an animal seen late in the sampdiegod is more likely to be seen again in
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1. An extension of the Jolly-Seber model: the twarse Jolly-Seber model

the next sampling occasion. Moreover, for specidgb Wwigh survival rate, therefore very
small chance of dying during the sampling occasiong sampling occasions could be used
in a stopover duration analysis, i.e. study of daraof time spent on stopover sites for
refuelling (typically in migratory birds) (Pledget al., 2009; Schaub et al., 2001), the results
of which could then be used to better redesigrs#mepling protocol. Indeed when study cost
IS @ major issue, this type of analysis might esplggpermit the optimization of the sampling
experiment because a stopover duration analysid t@lp identifying the best time period to
sample the largest number of individuals by estimgatesidence time. Researchers using
long sampling occasions should also consider, wdygoropriate, a robust-design type of
experiment, i.e. an experimental design with primsampling periods spaced apart and
secondary sampling periods within each primary demgpperiod, during which the

population is assumed closed (Pollock, 1982).

Advantages of the TSJS framework include the pdggibf reducing the proportion
of totally uncatchable animals with the double-skngp experiment, which results in
negatively biased abundance estimates (Aebiscl®86)1 However, the sampling methods
used in the double-sampling experiment need to Eathp same population, otherwise the
estimate would describe a population that doesem@dt or at least not the population of
interest, misleading researchers and potentiallyditey to inappropriate management
decisions. Moreover, for a more parsimonious patanzation and hence a better precision
in the population size estimate, the use of cotesian modeling the capture probabilities
(Pollock, 2002) could be especially useful. Modglicapture probabilities with auxiliary
variables, such as individual covariates, coulg lelbetter explain heterogeneity in capture
probabilities, which is a major cause of negatiM@lgsed abundance estimates in many
ecological studies. However, the TSJS model aseptlsformulated has the potential

disadvantage of not allowing the use of covariates.

Alternative modeling approaches have been congidereanswer the issue of two
overlapping datasets in the estimation of poputasize. These alternative models, also
presented in chapter one, are rooted in differesniceptual frameworks (e.g. closed
population, likelihood-based, Bayesian) with diffiet interpretation and involve different
mathematical arguments compared to the TSJS apprdde first intuitive alternative

solution of the TSJS model would simply be an agerpopulation size estimate of the
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1. An extension of the Jolly-Seber model: the twarse Jolly-Seber model

estimates provided separately by the two samplieghads. The question is then how to
combine them. Later on (chapter four), | exploradance-weighted mean of the Jolly-Seber

estimates based on each sampling method.

The likelihood based-approach of the two-sourgenMdel enables us to highlight the
difficulties of an extension of such likelihood &m open-population framework. With the
two-source M model, identities of individuals are treated derévariables and, in order to
estimate the population size, it is necessary tm wer all possibilities. In an open-
population approach, the extension of this closgdfation based likelihood would require
taking survival and dispersal into account. Thaefon an open population, when there is for
instance a “0” in the capture history, the possieg for the latent variable are extended to
being alive but missed on this occasion and todoéiead on this occasion (against simply
being missed in the closed-population approaclviduals will not simply fall into the five
categories any more (as they do in the table o8)p¥he five categories can no longer be
expressed in terms of the detection probabilitied the model needs to allow for every
possible combination of “arriving” (e.g. birth, inignation) and “leaving” (death, emigration)
events within the survey. Then summing over allsgmbties would become tremendous
implementation-wise and require a powerful compu8milarly, it would theoretically be
possible to extend the multinomial models basedhenlatent history approach of Link and
Barker (2010). The approach, though even more datalbde with current technology and
software, would consist in defining two more “ev&@nhat can occur at a sampling occasion
(though associated with that occasion). They wdmdda “5” if the animal was as yet
“unborn” and a “6” if it was “dead”. Thus, a hisyosuch as “5501366” would represent an
animal that appeared in the population between Bagnpccasions 2 and 3, but disappeared
after a mere three occasions in the populationnguwhich time it was caught once by
method 1 and once by method 3. Enumerating the letenlist of possible latent histories for
any but the shortest of studies would be bestttefh computer, and ensuring the MCMC
process adequately sampled the full space wouldhapty be a considerable logistical

problem.
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2. Chapter Two

Results of simulation studies on the two-source Jolly-
Seber model

2.1. Abstract

Simulations are used here to test the performahtedwo-source Jolly-Seber (TSJS)
estimator when all assumptions are met and whesivalliand birth rates are constant in time.
The mean relative error (MRE) and the root mearaszjelative error (RMSRE) are chosen
to provide information on the suitability of thetiesator given different situations. The
simulations enable researchers to measure the depes of the estimator on factors such as
capture probability, sample size, and length ofetkgeriment. The results show that the TSJS
estimator is generally unbiased for capture prdhesi equal or greater than 0.2 and for a
simultaneous sampling probability greater than @e2 occasion. Increasing the population
size results in a substantial reduction of thereara permits a greater inequality between the
two single sampling probabilities (i.e. when thehability of sampling by one method is
greater than the probability of sampling by theeotsingle method on each capture occasion)
that the model can handle.
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2.2. Introduction

The TSJS model is an open-population model, soagsimption of demographic
closure of the population is relaxed and the ongeafgraphic closure partially relaxed (the
animals can enter or leave the study area only ahoeng the monitoring period, i.e.
temporary, short to medium term immigration or emign is not allowed). Being an
extension of the Jolly-Seber (JS) model, it rebasassumptions that are similar to those of
the JS model (Jolly, 1965; Seber, 1965):

I. all animals present (marked or unmarkedhe population at the time of the

th sampling occasiont € 1, 2, .., T) have an equal probability of being caught,

ii. all marked animals present in the popolatimmediately after thd-th
sampling occasion have an equal survival probghilitil the (+1)th sampling timet(= 1, 2,
ey T-1),

iii. animals do not lose their marks or tags,
iv. immigration cannot be separated from biithout additional information,
v. all emigration from the sampling populatisrpermanent.

Given the mathematical formulation of the TSJS nhotleseems essential to explore
thoroughly the performance of the estimator. Ti&t fogical step is to measure the error on
the estimator when all assumptions are met. Thaar [@hapter three), the error will be
measured when the underlying assumptions are gahldh this chapter, the effect of the
population size, the number of capture occasideseffect of the capture probability and the
effect of the sampling probabilities are tested #aresults are expressed in terms of mean
relative error, root mean square relative error andfidence interval coverage rates. A
simulation program was written in the statisticalgramming language R to generate capture
histories for open populations sampled opporturadii by two methods and create the same

data structure as described in chapter one (setiubf).

In the TSJS model, tHg parameter (also referred to as probability of leindentity,
see chapter one) is used as a way of estimatingutidentified overlap in experimental
designs where two sampling methods are used bkitsiggtematic simultaneous capture by
both methods. It is therefore expected thatlghparameter will be of greater importance as
the number of individuals in the class F (Fig.1lkigreases in the combined dataset (see

chapter one, section 1.4.3). It is also expectadtl tthe relative error will decrease as capture
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probability, population size and number of captoceasions increase, as in the standard JS
model (Gilbert, 1973).

2.3. Methods

2.3.1. Simulation Description

The simulation is an attempt to model an animalutegon in order to evaluate the
performance of the new extension of the JS estimatiescribed in chapter one. For the
purpose of chapter two, the simulations have acbfmsim representing a general animal
population and the base parameter settings ara lange long lived animal with recruitment
as single young litters.

Demographic process

At the start of the simulation, a population ofliving, unmarked individuals is
created. A sex ratio can be used to determine thmbar of males and females in the
population. Then an age is randomly given to eadividual. Through each occasion of the
simulations, individuals first die at a determinddath rate. Uniform random numbers
between 0 and 1 are used to determine the fatacbfiedividual (die/live) on every occasion:
if the random number associated with the individsadmaller than the death rate then this
individual dies.

Then age is updated by adding 1 before the reptmauprocess. A reproductive rate
is assigned to mature females. Uniform (0, 1) ramcmmbers are again used to create the
birth history matrix (Fig.2-1) to keep track of treproductive history of each mature female:
if the random number associated with the femalemaller than the reproductive rate, then

the female has an offspring on this occasion.
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Occasion

101001
011000

Individual

000000
000000
Fig.2-1- Structure of the birth matrix produced by the paog.

Each row of the birth history matrix represents keh history of each individual
whale: it is filled with “0” for males, immature rigales and those who never gave birth. For
example, in Fig.2-1 individual 1 (first row) wadeanale which had an offspring in time 1, 3
and 6, individual 2 was a female which had an oifgp on two consecutive occasions
(occasions 2 and 3). The last animals did not dygre as they are new born, so immature

and possibly male.

Sex is then assigned to each new born randomly avitiser-defined sex ratio and
those new born are added to the population mageerding the history of each individual.
This matrix is filled by “0” when the individualsexe not born in the corresponding occasion
or died on this occasion or in a previous occasanrg by “1” when it was alive in the

corresponding occasion.

Occasion

111111
111000

Individual

001110
000011
Fig.2-2- Structure of the history matrix produced by thegpam.

Each row represents, in Fig.2-2, the history of iadividual. In this example,
individual 1 was alive for the 6 occasions of tlimwdation while individual 2 died on the

fourth occasion, the last individual was born ocasion 5 and still alive on occasion 6. As

58



2. Simulation results

new born are added as the program runs, thenfilees are the population of origin that was
created at the beginning of the simulations and lites after linen are the new born

individuals. So the last line corresponds to tts¢ iladividual born.

Once the population is created, the next step santople from it.

Sampling process

From the history matrix, a matrix of availabilitprf sampling of each individual is
created. At each time period, if the individuahlsre, it is available for capture and sampling

with probabilities defined as follows and illusedtin Fig.2-3:

Let S={s,s,,s,} be a discrete sample space with:
s ={samplecy methodi}
s, ={sampledy method2}
s, ={samplesimultaneasly by bothmethod$
The s events are mutually exclusive and together covengling in S, i.e. form a
partition of S, so Pr(S) =Pr(s, s, s;) = Pr(s) + Pr(s,) + Pr(s;) =1
Now let the event :{capture(}! such thatc 0 S. From the partition theorem, it follows that:

Prc)=Prcns)+Prcns,)+Pricns,)

S
c
S 7
— cnS
cns .
CNSs

Fig.2-3- Venn Diagram illustrating the structure of the pding process in the simulation.
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Generating random numbers, the fate of the indalicgkiset on every occasion: if the
random number generated on the considered occasi@maller than the set capture

probability Pr(c) then the individual is recorded as being captured.

Then each captured individual, on the considemmzhgion, is set to be sampled by

either method 1 with probabilityPr(s) or method 2 with probabilityPr(s,) or by both
simultaneously with probabilityPr(s, ,)such thatPr(s) + Pr(s,) + Pr(s;) = 1as illustrated in
Fig.2-3. For example, individuals can have an docaspecific sampling probability defined
as following: Pr(s) = 0.1, Pr(s,) = 0.1 and Pr(s;) = 0.8 ProbabilitiesPr(s), Pr(s,), Pr(s;)
will later on be expressed as percentages andedfén as single sampling probabilities for
Pr(s) and Pr(s,), and simultaneous sampling probability fér(s, . for the previous

example, the individuals are set up to be, onaglture occasions, available for sampling with
an 80% chance by both methods simultaneously , aith0% chance by method 1 only and

with an 10% chance by method 2 only (under the aption of temporal homogeneity of
Pr(s), Pr(s,), Pr(s,)). They may, of course not be captured, but théucap will be in those

proportions.

Thus, using uniform random numbers, the type of gismm method (method 1,
method 2 or both simultaneously) is defined asofedl: if the random number is smaller than

the value ofPr(s, )then the individual is available by both methoasutaneously; if it is
between the values d¥r(s; gnd Pr(s,) + Pr(s, ) then the individuals is available by method 1

and if it is between the valud(s;) + Pr(s, and 1 then it is a method-2-capture type.

Note that the probabilitie®r(s), Pr(s,), Pr(s,) and Pr(c) can be seen as resulting

from the breakdown in two parts of a third kind mfobabilities: the occasion-specific
probabilities of being recorded in the dataset ethmads 1, 2 and 3 which would be defined
as the probabilities of being detected and avaldbl sampling by method 1, 2 or 3, so
respectively as:

Pr(r,) =Prcn s) =Pr(c) xPr(s)
Pr(r,) =Prcn s,) =Pr(c) x Pr(s,)

Pr(r,) =Prc n's;,) = Pr(c) xPr(s,)
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This simulation structure for the sampling procesas developed in order to be able to
vary independently the detection and the samplirailability by each method for different
classes of individuals in the population: in chapthree and four, the population will be split
into four demographic classeg (calves, adult males, non-breeding females, bngedi
females). Therefore, given this simulation struetutr will be possible to assign to each class

of individuals specific detection and availabilifyrobabilities denotedPr(c),, Pr(s),,
Pr(s,),, Pr(s;), and measure the performance of the TSJS estimatiorvarious forms of

heterogeneity (e.g. heterogeneity in sampling abdity and/or heterogeneity in capture
among the classes).
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Creation of the capture history

Capture data for each individual can be summarirdg the following encounter

history codes:

Code Definition

0 Not captured

1 First capture by method 1 and no simultaneoptucain the record

2 First capture by method 2 and no simultaneoptuca in the record

4 Recapture by method 1 and never simultaneoagljuced

5 Recapture by method 2 and never simultaneoagljuced

10 First capture in the record, by method 1 withtar simultaneous recapture
11 First capture in the record, by method 2 withtar simultaneous recapture
9 First capture in the record and a simultaneoés o

6 First recapture by method 1 when the first cagotuas a simultaneous one
7 First recapture by method 2 when the first cagtuas a simultaneous one
8 Simultaneous recapture after a “9”

14 First simultaneous recapture after a “10” dr™1

15 First recapture by method 1 after a “11” in theord

16 First recapture by method 2 after a “10” in tbeord

12 Recapture by method 1 after a “10” or a “15”

13 Recapture by method 2 after a “11” or a “16”

17 Recapture by method 2 after a “7” in the record

18 Recapture by method 1 after a “6” in the record

19 Simultaneous recapture after a “14” in the reéco
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Creating the overlap

It is necessary to recreate the situation thatarekers face in their datasets when
individuals have been captured by both single noghmut have not been captured by both

methods simultaneously.

So far the simulation produces one line of capthigory for each individual.
However, it is essential to create in addition twe capture histories for individuals that
would have been captured by method 1 and methad Bdver captured simultaneously. So
the overlapping situation is generated by splitimgwo capture histories any capture history

that contains captures by both single methodsdrabisence of a simultaneous capture.

For example, before the creation of the overlap,simulation can produce a capture
history such as “0102045”: the individual is captiby method 1 on the second occasion,
recaptured by method 2 on the fourth occasion, tleeaptured by method 1 on the sixth
occasion and recaptured by method 2 on the lastsamt. In the field, in the absence of a
simultaneous capture, such a record would acturadtyexist and what would appear in the
final dataset is two “observed” capture historigs. it is necessary to split such simulated
records into two capture histories in the simulatto mimic reality. Therefore, a capture
history such as “0102045” will become two captuigdries, “0100040” and “0002005”, in
the simulation. The resulting matrix will be usedestimate the population size (except in the
case of tag loss, see later) and will be refere@d the CMR (Capture-Mark-Recapture)

matrix.

Assumptions

The general assumptions of the simulations inchapter are:

I capture probabilityPr(c) is constant over time,
. sampling probabilitier(s), Pr(s,), Pr(s;) are constant over time,

ii. there is no loss of mark: once an individual is kedr(captured) it cannot lose
its mark and will be necessarily recognised thd time it is captured ,

Iv. permanent emigration cannot be dissociated frorthgdea

V. as all entering individuals are new-born, thenreasmmigrationper se

Vi. all individuals have the same survival rate.
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2.3.2. Relative error and measure of difference

The relative error can be described by measurelffefence, especially by measures
of the mean error. These measures aim at quargityie estimate of the difference between
values predicted by a model and actual values tr@population (which may or may not be
observable in real life). The performance of thedei@stimates at a given sampling period is
discussed in terms of relative error (RE) calcuaate following:

N-N

RE=—
N

where N is the estimated population size aNdthe true population size.

Averaging the relative error over all simulatiomsufor a given set of parameters

gives the mean relative error MRE per occasion

A

a th _
; Nti N th -
z}— 1

j=1 TV

MRE == %

QIH

the expected value of the estimate as a propootfidhe true value, minus 1. It is therefore a

measure of bias,

where AU Is the predicted population size given by the nhatleccasiort, for simulation
runj,

N, is the observed, true population size at occasitam simulation rurj,

a is the number of “successful” simulation runs ¢sessful” becaus®l; can be
inestimable due to the values of the simulated)data

| also chose to measure the performance, the dwaral, of the TSJS estimator in

terms of root mean squared relative error (RMSRE):
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Here | discuss the choice of the mean relativerdMdRE) and the root mean square
relative error (RMSRE) rather than the mean absodutor (MAE), the mean square error

(MSE) and other classic indices, to measure ther efrthe TSJS model.

These other indices take the form:

i(l\]tj — Ny jz

MSE =12
E a
z(l\]ﬂ Nt,j
RMSE = |1+
E a
Zth_th
MAE, =1=
E a
ith—th
~ N
MARE =221
E a

The MAE and RMSE are reported to be among the testall measures of model
performance by Willmott (1982) and are similar meas. Although the MAE is less
sensitive to extreme values than the RMSE, Willntetports the MSE as being more
commonly used by statisticians because it is anlertaba greater degree of complexity in
statistical analysis. Nonetheless, in the presase ct might not be the best way to answer the

biological question of interest:

“How close to the true values are the estimatesrgity the model relative to the

population size?”

On the other hand, the measure MARE (mean absodaéve error) and RMSRE
give an estimate of the relative average erromther words both measures calculate the
average of the error taken as a relative propodidhe true value. Moreover the information
provided by the MARE is similar to the one giventhg RMSRE. The important difference
between the two indices, MRE and RMSRE, is thatNHE provides information on the

average error (i.e. the bias of the proportion)jlevthe RMSRE measures the bias and the
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random variation around the expected value. The REI8an be seen as a measure of overall
utility of the method and could be large even ia #8ipsence of bias.

Therefore, estimates of both the MRE and the RM@RE©ss simulations will be
reported to study the error produced by the TSJ&eino

1) the MRE will simply provide a measure of theat®le error,

2) the RMSRE will give the average deviation ofirastes from the true value (i.e.

bias+error).

Finally, confidence intervals are one of the moleative ways to measure the
accuracy of a method. So it is also important talete how well the confidence interval
works to see how useful the model is. Here, thee@ge rate of the confidence intervals (Cl
coverage rate) will be calculated as the ratiohef number of times that the true value falls
between the bounds of the estimated normal anadogal 95% confidence interval over the

total number of simulation runs.

2.3.3. Number of simulation runs

Preliminary simulations were done in order to dectie appropriate number of
replicates necessary to obtain reliable and reptatee estimates of error and variation. A
replicate corresponds to the generation of one lptipn going through the cycle “Aging-
Surviving-Reproducing-Sampling” ovd@roccasions. The output of each replicate is a matrix
of capture histories leading to the estimationhef $ize of this population by the TSJS model.
It will also include the estimation of the sizetbis population by the standard JS model (one
for each sampling method), the variance-weightedn the two standard JS models (each
based on one of the two datasets provided by tbesamnpling methods), the two-sourcg M
model and the closed population modegldy Darroch, M by Chao and M (based only on

one of the two datasets) for the purposes of chapie.

Running 1000 replicates of the simulation for b# experiments in the thesis would
have been impractical in terms of computer timeit 3@s necessary to see if the same results
could be achieved by running a smaller number ofsrurhe case with homogeneity in
capture probability, over 10 occasions, with atstgrpopulation of 500 individuals and

sampling availability scenario “20-40-40", i.€r(s;) = 0&nd Pr(s) =Pr(s,) = 04, was
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used to decide how many runs of the simulation dogive representative results in a
reasonable computer time. This case includes aumedize sample size and a medium
number of capture occasions to avoid confoundiegds in the MRE and RMSRE that would

result from small sample size or short study peribavill also be seen later that this case

represents the minimum probability of double-taggiRr(s;) = 0.2) per occasion needed for

the estimator to produce reasonable unbiased seaolt was thus thought to be the most

suitable case for showing the number of replicagz®essary to achieve representative results.

Investigating the MRE

It is necessary to see if running 100, 200 or li@@licates can give equivalent results
in terms of MRE. Here, as the estimation of theyafton size with the TSJS estimator is not

possible on the very first and very last occasitims MRE is only available for 8 occasions.

200 replicates

Capture occasion

Capture
probability

Fig.2-4- MRE as a function of the capture probability angdtaee occasion over 10 years, with a starting
population of 500 individuals for 200 replicates

Looking at the consequences on the MRE of incrgasiie number of replicates,
Fig.2-4 and Fig.2-5 (see also Appendix 4) show thanly influences the results for small
capture probabilities (<0.1) by flattening the drafRunning 200 replicates appears to be
slightly better in term of variability of the MREbIf small probabilities and just double the
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2. Simulation results

running time compared to running a 100 replicatbglwwould still be reasonable. However,
compared to the results with 200 replicates, rumprif00 replicates does not seem to be

worth multiplying the computer time by 5.

100 replicates

MRE ,
Capture occasion

Capture
probability

1000 replicates

MRE
Capture occasion

Capture
probability

Fig.2-5- MRE for 200 replicates as a function of the cappnabability and capture occasion over 10 yeart) wi
a starting population of 500 individuals for 10@ar000 replicates.

The objective here was to reduce the computer {approximately 6 hours for 100
replicates, 12 hours for 200 replicates and 60 sidar 1000 replicates) while roughly
keeping the precision and dispersion of the biigeaed with a high number of loops. In the
light of the present results, using 200 replicdteshe simulation seems appropriate and will

thus be applied for all simulation experimentshie thesis.
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2. Simulation results

2.3.4. Analysis steps

In the following, | investigate the effect of thepgulation sizeN, of the number of
capture occasion$, and of the capture probabilitir(c) on the performance of the TSJS
estimator. | also investigate the performance & d#stimator with various simultaneous

sampling probabilitiedr(s, and single sampling probabilitid¥(s) and Pr(s,).
pling p S; g pliing p S S,

It is worth noting that when 100% of caught indivéds have been simultaneously
double-tagged at least once, the situation is dh@ihe standard JS model with no unknown
overlapping between the datasets of the two sagphathods. Doing a full factorial design
with all the possible combinations of these facteosild be impractical in computer time and

representative scenarios were chosen to illusaradedetect potential impacts.

2.4. Effect of the simultaneous sampling
probability

The objective here is to investigate the perforneané the model for various
simultaneous sampling probabilitig3r(s, : if is of particular interest to see if the model
responds equally well for high and low probabistief double-marking. It appears also
important to investigate the performance of theinestbr when the single sampling
probabilities Pr(s)) and Pr(s,) are not equal as this situation will occur in mesblogical

studies and which will introduce a form of hetenogi¢y that could be expected to bias the
TSJS estimates.

A starting population oN=500 individuals oveiT=10 capture occasions is used for
the simulations in this part of chapter two. It ve®sen to use a medium size population and
a medium length of study to avoid confounding palssproblems inherent to small sample
size and short study period and to avoid maskiegetinor with large sample size and long

experimental duration.
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2. Simulation results

2.4.1. With equal single sampling probabilities

In this section the single sampling probabiliti®s(s) and Pr(s,) are set equal.
Several simultaneous sampling probabilitiegs, arg used to test the TSJS estimator for

relative error: when individuals have a 50%, 20% d7% probability of being double
tagged, i.ePr(s;) = 05Pr(s;) = 02 and Pr(s,) = 017 The scenarios are expressed in terms
percentages of sampling probabilities and are sumeth as follows: value of the

simultaneous sampling probabili§r(s, , Yalue of sampling probability by methodPk(s,),

value of sampling probability by methodFZ(s,) .

So scenario 50-25-25 represents the situation wheR¥(s;) = 05,

Pr(s) =Pr(s,) = 025.

Minimum simultaneous sampling probability for thetsource Jolly-Seber model

The first investigation of the behavior of the TSd8del aims at determining if there
is a critical simultaneous sampling probabilRy(s, . The MRE for the scenarios 50-25-25,
20-40-40, 17-41.5-41.5 and 10-45-45 are investihated illustrated in Fig.2-6 and Fig.2-7
(see also Appendix 4). It is clear from Fig.2-7tthf Pr(s;) is below 0.2 on every capture

occasion, the TSJS estimator is (sometimes exty@@megatively biased for capture

probabilitiesPr(c) smaller than 0.5.

The other effects of double tagging are discussgdwb It is worth noting that the
estimates for periods 2 and 9 (the first and lastrates available) are likely to be unreliable
because the first estimates may lack sufficient memof first captures on the first capture
occasion and the last estimates may lack suffiaremiber of recaptures on the last capture

occasion.
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50-25-25

MRE
Capture occasion
Capture ' 0.8
probability
20-40-40
04
0.2
MRE (o
4
-0.2 5
6
7 Capture occasion
8
9
0.8
Capture
probability

Fig.2-6- MRE as a function of the capture probability angdtaee occasion over 10 years, with a starting
population of 500 individuals for scenarios of séimpprobabilities 50-25-25 and 20-40-40
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17-41.5-41.5

MRE
Capture occasion
Capture
probability
10-45-45
MRE

Capture occasion

Capture
probability

Fig.2-7- MRE as a function of the capture probability angitaee occasion over 10 years, with a starting
population of 500 individuals for scenarios of séimpprobabilities 10-45-45 and 17-41.5-41.5.
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2. Simulation results

In the light of Fig.2-7, a simultaneous samplinghability of 0.2, i.ePr(s,) = 02

seems to be the critical value below which the rhpdeforms particularly poorly. Thus, for
the following, | will investigate the relative err@f the TSJS estimator for a minimum
simultaneous sampling probability of 0.2.

Effect of an increase of the simultaneous samgdnodability

The next step in the investigation of the modelsamh studying the impact of the
simultaneous sampling probabilityr(s, above the critical value of 0.2 to see whether the
relative error is reduced when this value increages shown in Fig.2-6, increasing the
simultaneous sampling probabilityr(s, I¢ads to an average relative error being positive.
This positive error induced with a simultaneous glamy probability Pr(s,) of 0.5 is
equivalent to the absolute value of the negativergaresent when the simultaneous sampling
probability is 0.2.

Looking at Fig.2-8, where the MRE is averaged facte capture probabilityr(c)

over the study period, the median is very closeam, at equal capture probability, for both

scenarios and, as expected, the MRE decreasethwithcrease of capture probability.

50-25-25 20-40-40

15
|
15
|

°

1.0
1.0

0.5
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-0.5
|
-0.5
|
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-1.0
-1.0

05 075 1 2 3 4 5 6 8 05 075 1 2 3 4 5 6 8

Capture probabilit Capture probsility

Fig.2-8- Box plots of MRE averaged over the study periodgagture probability for an experiment of 10 years,
with a starting population of 500 individuals amchgltaneous sampling probability of 0.2 and 0.5.
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2. Simulation results

Increasing Pr(s, ) only seems to affect the number of outliers forabncapture
probabilities @r(c) <0.1) which slightly increases foPr(s;) = 0.2The variability in the
MRE also appears to be higher fBr(s;) = 0& small capture probabilities, especially at
Pr(c) = 005.

From the MRE perspective, it seems that, when sdumptions are met, the TSJS
model produces almost no relative error for capprababilities Pr(c )higher or equal to 0.2
when Pr(s, ) is above the critical value of 0.2 when the lengjftthe experimentT) is 10 and
the population sizeN) is greater than 500. However, this needs to Indéircoed by the study
of the RMSRE and CI coverage rates which will gau@easure of the utility of the estimator.

Table 2-1 and Appendix 5 display, for a probabibfysimultaneous samplingr(s, )

of respectively 0.2 and 0.5, the average MRE arRKWSRE along with the mean estimated

and true values on each capture occasion for ecaptobabilitiesPr(c )varying between 0.05

and 0.8.

Both cases are equivalent showing that, as lon®rgs) is equal to or above 0.2

when T=10 and N=>500, the performance of the TSJS estimator doets depend

Pr(s,) (except, as noted previously, occasional estinfatesample occasions 2 and 9).

Table 2-1- MRE, RMSRE, mean estimate and true value of thauladipn size over the simulation runs, and
standard errors of the estimated values and noraithlog-normal Cl coverage rates at each captagasion of

a 10-year study for different capture probabilitiggh scenario 20-40-40 and a starting populatiérb@0
individuals.

Capture Mean Mean True MRE Mean RMSRE Nominal Log-
probability Estimate Value estimated 95% ClI  normal ClI
SE coverage coverage
rate (%) rate (%)
Pr(c)=0.05
N 391 627 -0.38 259 0.56 62 81
2
N 546 653 -0.16 323 0.62 73 84
3
N 670 695 -0.04 372 0.89 75 86
4
N 778 719 0.08 419 11 80 83
5
N 873 748 0.17 466 1.3 84 87
6
N 734 766 -0.04 396 0.61 75 88
7
N 805 799 0.01 432 0.8 76 83
8
N 653 834 -0.22 351 0.69 64 17
9
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Capture Mean Mean True MRE Mean RMSRE Nominal Log-
probability Estimate Value estimated 95% ClI  normal ClI
SE coverage coverage
rate (%) rate (%)
Pr(c)=0.075
N 614 626 -0.02 252 0.72 68 71
2
N 699 654 0.07 257 0.64 78 83
3
N 779 693 0.13 278 0.74 84 84
4
N 836 719 0.16 292 0.75 85 89
5
N 842 745 0.13 293 0.55 88 90
6
N 823 764 0.08 282 0.49 90 88
7
N 931 795 0.17 317 0.77 83 84
8
N 787 831 -0.05 269 0.54 70 16
9
Pr(c)=0.1
N 643 627 0.03 194 0.63 74 74
2
N 696 656 0.06 186 0.4 84 86
3
N 785 694 0.13 203 0.46 90 87
4
N 803 719 0.12 204 0.44 87 88
5
N 817 745 0.1 205 0.39 88 88
6
N 880 762 0.15 220 0.45 85 84
7
N 834 794 0.05 209 0.42 86 86
8
N 937 829 0.13 234 0.77 75 15
9
Pr(c)=0.2
N 648 626 0.04 78 0.28 67 67
2
N 678 653 0.04 77 0.19 79 19
3
N 713 692 0.03 80 0.17 86 86
4
N 755 718 0.05 85 0.18 87 85
5
N 769 743 0.03 87 0.17 85 84
6
N 801 762 0.05 91 0.17 85 81
7
N 820 793 0.03 94 0.16 89 87
8
N 860 828 0.04 100 0.24 74 14
9
Pr(c)=0.3
N 633 627 0.01 40 0.14 61 61
2
N 662 655 0.01 41 0.1 76 76
3
N 697 694 0 45 0.09 85 87
4
N 719 718 0 47 0.08 87 88
5
N 746 745 0 50 0.08 90 90
6
N 768 763 0.01 52 0.09 89 90
7
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Capture Mean Mean True MRE Mean RMSRE Nominal Log-
probability Estimate Value estimated 95% ClI  normal ClI
SE coverage coverage
rate (%) rate (%)
N 795 796 0 55 0.09 88 87
8
N 822 830 -0.01 58 0.12 81 82
9
Pr(c)=0.4
N 608 626 -0.03 22 0.1 50 50
2
N 643 653 -0.02 25 0.07 71 11
3
N 693 694 0 29 0.06 82 85
4
N 717 719 0 31 0.05 88 89
5
N 747 745 0 33 0.05 91 o
6
N 764 764 0 35 0.06 87 88
7
N 787 796 -0.01 37 0.07 82 84
8
N 813 829 -0.02 40 0.08 73 16
9
Pr()=0.5
N 619 627 -0.01 14 0.07 54 54
2
N 652 654 0 16 0.04 35 36
3
N 698 694 0 20 0.04 60 60
4
N 727 720 0.01 22 0.04 70 10
5
N 750 744 0 24 0.04 79 70
6
N 764 763 0 25 0.04 70 69
7
N 793 795 0 27 0.04 71 (]
8
N 809 830 -0.02 29 0.06 55 56
9
Pr(c)=0.6
N 618 626 -0.01 9 0.05 41 42
2
N 657 654 0 11 0.03 66 67
3
N 706 693 0.02 14 0.03 79 19
4
N 732 718 0.02 16 0.03 80 80
5
N 760 744 0.02 18 0.03 82 82
6
N 773 762 0.01 19 0.03 90 90
7
N 795 793 0 20 0.03 90 o
8
N 814 828 0.02 22 0.04 73 15
9
Pr(c)=0.8
N 623 625 0 2 0.02 27 27
2
N 662 651 0.02 4 0.02 35 35
3
N 711 693 0.03 7 0.03 31 31
4
N 740 716 0.03 8 0.04 25 26
5
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Capture Mean Mean True MRE Mean RMSRE Nominal Log-
probability Estimate Value estimated 95% ClI  normal ClI
SE coverage coverage
rate (%) rate (%)
N 768 743 0.03 10 0.04 30 30
6
N 783 761 0.03 11 0.03 46 47
7
N 808 792 0.02 12 0.03 74 15
8
N 823 827 0 13 0.02 89 90
9
Nz, N9=population size estimate at time 2, ..., 9.

N.B.: mean estimates, mean true values and meamagstl standard errors are
rounded to the nearest integer in the above tatdaraall subsequent ones, as population size

and associated variables are generally integers.

The TSJS estimator can be severely biased witlesabfithe MRE reaching -0.38 on
the second capture occasion fer(c) = 005 and Pr(s;) = 0.2 However, the estimates can
also be unbiased with values of the MRE as low.@%.(5o0, from the MRE perspective, there
is no clear trend for the relative error: it is r&table, with no specific direction and
unpredictable for capture probabilities smallemntifal. However, for a capture probability
Pr(c) equal to or higher than 0.1, the MRE quickly diabs and reaches values below 10%
of the true population size. For the MRE, therals® no pattern concerning the evolution of
the relative error during the study: though thetfand last estimated values are more biased
for a capture probability of 0.05, this is not tbase for the other values of capture

probabilities.

Concerning the magnitude of the overall relativeateon represented by the RMSRE,
it follows the evolution of the MRE: its valueseairregular for bothPr(s;) = 0.2and
Pr(s;) = 05, varying between 0.4 and 1.3 for capture probi@dslismaller than 0.1, and then
stabilizes at small values (<0.2) above this cappwobability.

As expected, the standard error decreases withaease in the value of the capture

probability Pr(c) and it increases with the capture occasion. Fptuca probabilities smaller

than 0.1, the standard errors are large (in theranfl 50% of the estimated population size)
while, for large capture probabilities, the stawmdagrror is generally much smaller.

Consequently, the CI coverage rate is better foallseapture probabilities Rr(c 90.1),

generally above 80% with both the nominal and logaral approaches, than for very high
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capture probabilities (0.8), where though the S&msill the small bias causes poor coverage.
In this case coverage can be as small as 25%. Howthe confidence intervals at small
capture probabilities are too wide for the modebéouseful (recapture rates are too low for
reliable estimates). Standard errors and coveratgs rof confidence intervals for capture
probability between 0.2 and 0.6 (even though they tao liberal) still suggest that the
estimation method works reasonably well for theskies of Pr(c). A smaller CI coverage
rate is also usually observed for the second amahithith capture occasions. Finally, using the
normal scale or a log-normal transformation to tas the confidence intervals does not
appear of major importance once the capture prbtyaisi 0.1 or greater. Below that the log-
normal ClI clearly performs better.

In the light of the present results, the TSJS estimpresents no serious error for

capture probabilitie®r(c ¥qual or higher than 0.2, for a simultaneous serggrobability
Pr(s,) above the critical value of 0.2, over a 10-ocaagperiod, when all assumptions are

met and when the populatiolN)(is greater than 500 individuals. In such condsiofor

capture probabilities’r(c $maller than 0.2, nothing can be stated as theastd values can

be unbiased or severely biased and the large sthedars underline a poor precision of the

estimator. For very large capture probabilitieg.(ér(c) = 0.8), while the estimates appear

unbiased, the true value may often not be includeithe confidence interval due to a very
underestimated standard error, but the issue of poofidence interval coverage at large

capture probability seems to be overcome whn(s;) = (Apendix 5).

2.4.2. With unequal single sampling probabilities

The TSJS model will often have intrinsic heteroggnaince the two sampling
methods are unlikely to present the same captubapility. Therefore, in this section, |

investigate the performance of the TSJS estimaitbr secenarios wher®r(s) and Pr(s,) are
not equal. In the previous section, | was invesiigamainly the effect ofPr(s;, ) setting
Pr(s) and Pr(s,) equal. However, havin®r(s)) and Pr(s,) exactly equal is rather unlikely
in reality. Moreover,Pr(s)) and Pr(s,) will also influence the proportion of unresolvedent

histories (number of individuals in F, see chajtee, section 1.4.3) which is when the TSJS
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should perform at its best compared with the othrerorrected methods. It is expected that
the simultaneous sampling probabiliBr(s, will be the factor conditioning the marginal
ratio between the two single sampling probabilitfegs) and Pr(s,) that can still lead to

useful estimates with the TSJS estimator.

When the ratio between the single sampling proiaslis 3:1

Table 2-2 shows that, when the simultaneous sampliabability Pr(s; ) is as high as
0.5, results are the same in terms of relativerestandard error and CI coverage rate, when
the single sampling probabilitieRr(s)) and Pr(s,) are equal or when one is three times more
likely to occur than the other, i.€r(s) =3Pr(s,) or 3Pr(s) = Pr(s,): estimated population
size might be slightly biased at small capture philities Pr(c) but the error is negligible on

any capture occasion for a capture probability @ighan 0.1.

Table 2-2- MRE, RMSRE, mean estimate and true value of theuladipn size over the simulation runs, and
standard errors of the estimated values and norairthlog-normal Cl coverage rates at each captoasion of

a 10-year study for a 3:1 ratio in single samplimgbabilities and with a simultaneous sampling piulity of
0.5 (sampling scenario 50-37.5-12.5 or 50-12.53&r8 a starting population of 500 individuals.

Capture Mean Mean True MRE Mean RMSRE Nominal Log-
probability Estimate Value estimated 95% ClI  normal ClI
SE coverage coverage
rate (%) rate (%)
Pr(c)=0.05
N 485 626 -0.23 256 0.61 54 77
2
N 626 655 -0.04 299 0.8 72 84
3
N 714 694 0.03 323 0.69 81 85
4
N 847 718 0.18 374 0.98 82 85
5
N 771 742 0.04 335 0.98 78 88
6
N 848 761 0.11 371 0.81 81 84
7
N 834 793 0.05 358 0.94 70 79
8
X 749 828 -0.1 324 0.76 64 69
9
Pr(c)=0.075
N 638 626 0.02 215 0.67 67 68
2
N 740 654 0.13 220 0.7 79 80
3
N 754 695 0.08 219 0.49 85 88
4
N 779 719 0.08 220 0.46 85 84
5
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Capture Mean Mean True MRE Mean RMSRE Nominal Log-
probability Estimate Value estimated 95% ClI  normal ClI
SE coverage coverage
rate (%) rate (%)
N 785 746 0.05 221 0.47 82 b
6
N 849 763 0.11 236 0.54 85 8
7
N 847 796 0.06 238 0.5 80 8
8
N 862 831 0.04 240 0.59 76 1
9
Pr(c)=0.1
N 699 627 0.12 165 0.67 67 73
2
N 734 656 0.12 158 0.55 82 g
3
N 756 695 0.09 157 0.33 87 g
4
N 793 721 0.1 164 0.32 92 8
5
N 806 747 0.08 164 0.3 89 8
6
N 843 767 0.1 171 0.35 90 8
7
N 866 798 0.09 177 0.36 86 &
8
N 891 834 0.07 183 0.48 68 @
9
Pr(c)=0.2
N 667 625 0.07 62 0.27 60 62
2
N 690 654 0.06 61 0.17 78 1
3
N 752 692 0.09 68 0.17 79 1
4
N 755 718 0.05 67 0.13 87 8
5
N 782 745 0.05 71 0.13 86 8
6
N 813 763 0.07 74 0.16 80 1
7
N 844 795 0.06 78 0.16 84 8
8
N 866 830 0.04 82 0.19 73 1
9
Pr(c)=0.3
N 662 626 0.06 32 0.14 54 56
2
N 681 653 0.04 33 0.1 68 7
3
N 733 693 0.06 37 0.1 77 7
4
N 743 718 0.04 39 0.08 86 8
5
N 773 744 0.04 42 0.08 86 8
6
N 791 762 0.04 44 0.08 87 8
7
N 823 794 0.04 47 0.08 87 8
8
N 863 828 0.04 51 0.12 66 6
9
Pr(c)=0.4
N 647 627 0.03 18 0.09 53 53
2
N 679 655 0.04 20 0.06 68 6
3
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2. Simulation results

Capture Mean Mean True MRE Mean RMSRE Nominal Log-
probability Estimate Value estimated 95% ClI  normal ClI
SE coverage coverage
rate (%) rate (%)
N4 721 696 0.04 24 0.06 72 1
[\“l5 743 721 0.03 26 0.05 86 8
Ne 771 747 0.03 28 0.05 83 8
N7 790 764 0.03 29 0.05 88 8
Na 824 797 0.03 32 0.06 78 1
,\“lg 857 832 0.03 35 0.08 75 1
Pr(c)=0.5
Nz 643 628 0.02 11 0.06 40 41
N3 672 655 0.03 13 0.05 56 5
N4 712 694 0.03 16 0.04 75 1
,\“'5 739 719 0.03 18 0.04 78 1
N6 763 746 0.02 19 0.04 83 8
[\“l7 780 764 0.02 21 0.04 85 8
,\“'8 814 796 0.02 23 0.04 85 8
Ng 847 830 0.02 26 0.05 78 1
Pr(c)=0.6
Nz 636 625 0.02 6 0.05 36 37
Ns 666 652 0.02 8 0.03 49 4
N4 705 690 0.02 11 0.03 64 6
Ns 728 715 0.02 12 0.03 80 8
N(; 755 740 0.02 14 0.03 79 1
[\“l7 769 756 0.02 15 0.03 89 8
NS 805 789 0.02 17 0.03 84 8
Ng 837 823 0.02 19 0.04 79 8
Pr(c)=0.8
Nz 631 626 0.01 1 0.02 23 20
,\“'3 657 653 0.01 2 0.01 39 3
N4 698 693 0.01 5 0.01 68 6
NS 722 717 0.01 6 0.01 81 8
Ne 750 744 0.01 7 0.01 88 88
N7 766 761 0.01 8 0.01 95 95
NS 799 793 0.01 10 0.01 97 9
[\“lg 832 827 0.01 12 0.01 93 9
Nz, N9=population size estimate at time 2, ..., 9.
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2. Simulation results

However, whenPr(s, )is equal to 0.2 (table 2-1), the model appearsblerta provide
reasonably unbiased results for capture probadsiRir(c) smaller than 0.2. Fig.2-9 (see also
Appendix 4) displays the severe relative error thaturs with Pr(s,) = 0.2 compared to

Pr(s;) =05 when the ratio between the two single samplingb@bdities is 3:1, i.e.
Pr(s) =3Pr(s,) or 3Pr(s) =Pr(s,).

When Pr(s,)= 02 a ratio betweenPr(s) and Pr(s,) as great as 3:1, i.e.
Pr(s) =3Pr(s,) or 3Pr(s) = Pr(s,), can be handled by the estimator for capture fmtibas
Prc) greater than 0.2: in such cases the relative esono greater than 0.1. When
Pr(s;) = 0.2, Fig.2-10 (see also Appendix 4) shows that a smaditio between the two single
sampling probabilities of 1.5:1 can be handled by estimator, even for small capture
probabilities.

So it seems that the greater(s, is) the greater the ratio betwe®n(s) and Pr(s,)
can be, for a given capture probability,dpr(ncreasingPr(s, )enables the model to support a

greater ratio betweeRr(s) andPr(s,): 1.5:1 whenPr(s;,) = 0.2up to 1:3 wherPr(s;) = 05
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50-37.5-12.5

MRE
Capture occasion
Capture 038
probability
20-60-20
MRE

Capture occasion

Capture
probability

Fig.2-9- MRE as a function of the capture probability angitaee occasion over 10 years, with a starting
population of 500 individuals for scenarios of séimgpprobabilities 50-37.5-12.5 and 20-60-20
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20-48-32

4
5
6
7 Capture occasion
8
9

Capture ' 0.3
probability

Fig.2-10- MRE as a function of the capture probability angtaee occasion over 10 years, with a starting
population of 500 individuals for scenarios of séimgpprobabilities 20-48-32 a ratio of 1.5:1.

2.5. Effect of population size

In small sample situations

The TSJS model is investigated here in small pajussituations, with a starting
population ofN=50 individuals and oveF=10 occasions. It is important to note that at $mal
capture probabilitiesKr(c) <0.2), some statistics and/or parameters desciibdte Methods
part of this chapter can be zero on some occasintisn such conditions the estimation of the
population size can not be computed. Fig.2-11 édse Appendix 4) clearly shows when
Pr(s;) = 0.2, the estimator is severely negatively biased fapture probabilities below 0.2.
However, if the capture probability is equal or Heg than 0.2, the estimator provides
reasonable, though over-estimated, populationestimates.
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N=50, 20-40-40

MRE 0.

Capture occasion
o7 08

S 05 0.6
0.3 '

Capture
probability

Fig.2-11- MRE as a function of the capture probability andtaee occasion over 10 years, with a starting
population of 50 individuals for scenarios of saimglprobabilities 20-40-40.

Table 2-3 shows that, witRr(s;) = 04&nd a starting population of 50 individuals, the
problem of the severe underestimation encounterechall capture probabilitie{(c) <0.2)
still remains: for capture probability of 0.05 a@d75 the MRE is never smaller than -0.32
and can be as high as -0.82. At capture probalflifg)=0.1, it is still severely biased at the
first and last estimation but it is unbiased foe thtermediate capture occasions 5, 6 and 7.

Then, for capture probabilitf?r(c >0.2, the MRE is smaller and quickly becomes ndgjkg
(<0.1). However, the RMSRE is higher than 0.23 fmpture probability Pric ¥0.3
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suggesting that, for small populations, a high wapiprobability might be required to get
reliable estimates.

As observed previously, standard errors decregséfisantly with the increase of the
value of the capture probability and increase wiie capture occasions for all capture
probabilities. A log-normal transformation for thenfidence intervals seems to be important

at small capture probabilitie$¢(c) <0.1) and small sample size. Indeed the CI coveraige

never exceeds 67% and can be as low as 29% forottneal confidence intervals while it is
never smaller than 52% and can be as high as 84foleg-normal confidence intervals.
Then, for higher capture probabilities, the Cl aage rate is generally similar for the normal
and log-normal approaches and generally fluctudiesveen 70% and 95% on the
intermediate capture occasions (second and ningtui@a occasions often have smaller ClI

coverage rates).

Table 2-3- MRE, RMSRE, mean estimate and true value of theuladipn size over the simulation runs, and
standard errors of the estimated values and norairthlog-normal Cl coverage rates at each captoasion of
a 10-year study for sampling scenario 50-25-25aasthrting population of 50 individuals.

Capture Mean Mean True MRE Mean RMSRE Nominal Log-
probability Estimate Value estimated 95% CI normal ClI
SE coverage coverage
rate (%) rate (%)
Pr(c)=0.05
N 14 63 -0.78 22 0.81 29 61
2
,\“l 17 65 -0.75 27 0.8 40 6
3
N 21 69 -0.7 31 0.77 42 69
4
N 25 71 -0.65 35 0.8 44 69
5
,\“l 23 74 -0.69 32 0.8 44 71
6
N 22 75 -0.71 34 0.79 44 71
7
N 20 78 -0.75 29 0.83 36 64
8
,\“l 18 81 -0.82 27 0.86 31 52
9
Pr(c)=0.075
N 22 63 -0.65 24 0.77 40 64
2
N 32 65 -0.52 32 0.69 54 74
3
N 40 69 -0.43 38 0.7 58 74
4
,\“l 45 71 -0.37 43 0.69 62 82
5
,\“l 50 74 -0.32 48 0.68 65 84
6
N 50 76 -0.34 46 0.68 67 81
7
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Capture Mean Mean True MRE Mean RMSRE Nominal Log-
probability Estimate Value estimated 95% CI normal ClI
SE coverage coverage
rate (%) rate (%)
N 46 79 -0.42 44 0.69 55 w
8
N 30 83 -0.65 30 0.73 40 67
9
Pr(c)=0.1
N 29 62 -0.53 23 0.69 53 65
2
N 46 65 -0.29 33 0.66 62 79
3
N 51 69 -0.25 36 0.65 66 81
4
N 68 72 -0.05 46 0.83 74 88
5
N 72 74 -0.05 48 0.86 76 88
6
N 69 76 -0.1 48 0.87 71 86
7
N 66 79 -0.18 45 1.07 72 84
8
N 54 82 -0.36 40 0.7 57 76
9
Pr(c)=0.2
N 56 63 -0.1 17 0.56 61 64
2
N 70 65 0.06 19 0.7 70 70
3
N 76 69 0.1 22 0.67 77 78
4
N 72 72 0.01 20 0.38 83 87
5
N 76 75 0.03 22 0.43 86 89
6
N 83 76 0.08 24 0.47 89 88
7
N 90 80 0.13 27 0.6 82 86
8
N 88 83 0.04 26 0.85 64 69
9
Pr()=0.3
N 63 62 0.01 9 0.47 54 54
2
N 66 65 0.01 10 0.32 66 68
3
N 74 69 0.08 12 0.3 79 K
4
N 74 72 0.03 12 0.23 88 87
5
N 78 75 0.05 13 0.23 87 89
6
N 79 76 0.03 13 0.26 87 84
7
N 83 80 0.05 15 0.29 86 85
8
N 86 83 0.03 16 0.38 74 I
9
Pr(c)=0.4
N 63 62 0.01 6 0.3 49 47
2
N 66 65 0.01 6 0.2 70 68
3
N 72 69 0.04 7 0.18 78 75
4
N 75 72 0.05 8 0.16 88 86
5
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2. Simulation results

Capture Mean Mean True MRE Mean RMSRE Nominal Log-
probability Estimate Value estimated 95% CI normal ClI
SE coverage coverage
rate (%) rate (%)
,\“l 76 74 0.02 8 0.14 90 90
6
,\“l 78 76 0.03 9 0.14 91 90
7
N 83 80 0.03 10 0.16 89 90
8
N 85 84 0.02 11 0.24 75 78
9
Pr()=0.5
N 63 62 0.01 4 0.18 53 52
2
,\“| 65 65 0.01 4 0.12 71 73
3
N 70 69 0.02 5 0.1 81 78
4
N 72 71 0.02 6 0.09 88 89
5
,\“l 76 74 0.03 6 0.1 86 87
6
N 77 76 0.02 7 0.09 91 89
7
N 80 79 0.01 7 0.11 86 88
8
,\“l 84 83 0.02 8 0.15 81 83
9
Pr(c)=0.6
N 62 62 0 2 0.12 41 43
2
N 65 65 0 3 0.09 62 62
3
N 69 68 0.01 3 0.08 73 74
4
,\“l 73 71 0.02 4 0.08 84 84
5
,\“| 75 73 0.02 4 0.07 86 87
6
N 76 75 0.01 5 0.08 90 89
7
,\“l 80 79 0.02 5 0.08 94 93
8
,\“| 83 82 0.01 6 0.1 82 83
9
Pr(c)=0.8
N 63 63 0 1 0.05 36 36
2
N 66 66 0 1 0.04 50 51
3
N 70 70 0 1 0.03 74 75
4
,\“| 73 72 0 2 0.03 84 84
5
N 75 75 0.01 2 0.03 94 94
6
,\“l 77 77 0.01 3 0.03 95 95
7
,\“| 80 80 0.01 3 0.04 95 95
8
N 83 83 0 4 0.04 93 93
9
NZ, Ngzpopulation size estimate at time 2, ..., 9.
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2. Simulation results

In large sample situations

As expected, increasing the population sitedecreases the relative error in the
estimation: Fig.2-12 (see also Appendix 4) showas, twhenPr(s;) = 0.2and Pr(s) = Pr(s,) ,
the MRE is no more than 0.2 for all capture proli#s Pr(c) on any capture occasion
which, though still large for smaRr(c , )s relatively much smaller than many other scesar

tried earlier.

N=1000, 20-40-40

Capture occasion

0.7
Capture 08 °

probability

Fig.2-12- MRE as a function of the capture probability araptare occasion over 10 years, with a starting
population of 1000 individuals for scenarios of gding probabilities 20-40-40.

The effect of the population size on the estimgterformances is also relevant in

terms of robustness to ratios betwederfs) and Pr(s,): in the last section, the model could
not handle a ratio of 1:3 for capture probabilitieRgc) smaller than 0.4 whelr(s,) = 0.2

and a starting population of 500 individuals. F@2shows that with a starting population of
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2. Simulation results

N=1000 individuals, the TSJS approach produces attsnwith a MRE no higher than 0.2

for all capture probabilities on any capture ocoasi

N=1000, 20-60-20

0.4

0.2

MRE 0.0

Capture occasion

0.7
Capture 08 °

probability

Fig.2-13- MRE as a function of the capture probability anghtaee occasion over 10 years, with a starting
population of 1000 individuals for scenarios of gding probabilities 20-60-20.

So it seems that the bigger the populathdns, the more robust the model is to

differences in the values oPr(s) and Pr(s,). With large populations, the estimator can still
produce valuable results with greater ratios betweds ) and Pr(s,) (e.g. with a ratio of 3:1

when Pr(s,) = 0.2up to a ratio of 1:4 wheRr(s;) = 05s shown in Fig.2-14).
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N=1000. 50-10-40

Capture occasion

Capture
probability

Fig.2-14- MRE as a function of the capture probability anghtaee occasion over 10 years, with a starting
population of 1000 individuals for scenarios of ging probabilities 50-10-40.

In a high turnover and declining population situati

This situation was created in order to show theegaity of the results provided in
this chapter. | show that, when all assumptions me#, the performances of the present
estimator are independent from the parametersoseghé simulated animal population: here
the survival rate is 0.4 for all the individualsdatine birth rate is 0.8 for all mature females.
Given the survival rate, the population is decliniover the T=10 occasions of the
experiment: in the present simulation, the popaotastarts aN=2000 individuals, is down to
approximately 500 at capture occasion 4, 150 afucamccasion 6 and below 70 at capture
occasion 9. Therefore, at the start of the simutatthe situation is that of a large declining

population and of a small population on the lagtaee occasions.
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N=2000, 20-40-40, high turnover

MRE

Capture
probability

Fig.2-15- MRE as a function of the capture probability angtaee occasion over 10 years, with a starting
population of 2000 individuals for scenario of sdimgp probabilities 20-40-40

As shown in Fig.2-15 (see also Appendix 4), forcapture probabilitiedr(c), the
error is always greater on the last capture ocnasihich is not surprising since the situation
in the last capture occasions is the one of sm@dufations described above. For capture
probabilities smaller than 0.1, the MRE is abovk for all capture occasions. Then, as the
capture probabilityPr(c )increases, the error on the last occasions dexgeasd from a
capture probability of 0.2, the MRE is smaller tHad on all capture occasions (except at

capture occasion 9 for a capture probability 0).0.2
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2. Simulation results

2.6. Effect of number of capture occasions

In this section, the error of the TSJS estimatagxiglored forT=5 occasions. As for
T=10 occasions an@r(s,) = 0.n the dataset, MRE were found to be relativelyakrfor
Pr(c)>0.1 but the direction of the average relative rexaries, as shown in Fig.2-16. For
Pr(c)<0.1, increasing the length of the experiment can reduce the error substintiabr

low capture probabilities, this is consistent witilly’'s (1965) conclusion that the bias of the

JS model decreases as the number of the captuaisionsT increases.

50-25-25, T=5

MRE 0.0
2.0

3.0 .
Capture occasion

0.6

0.7 0g 490

Capture probability

Fig.2-16- MRE as a function of the capture probability angdtaee occasion over 5 years, with a starting
population of 500 individuals for scenarios of séimpprobabilities 50-25-25.

When Pr(s;) = 0.2and a minimunN=500, the MRE is not more than 10% of the true
population size which is similar to the resultshwPr(s;) = 0.5. As shown in Table 2-4,
when Pr(s;) = 0.2, the RMSRE is below 0.3, on any capture occasioth Pr(c)>0.1. At
smaller capture probabilities, i.ePr(c <0.2, the MRE is generally below 0.1 when

Pr(c) >0.075 but the RMSRE is always greater than 0.6.
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2. Simulation results

Large variances arise at small capture probatsli{iér(c)<0.1), leading to 95%
confidence intervals containing the true populasae more than 62% of the time with the
normal approach and more than 80% for the log-nbrmansformation. However, for

Pr(c) <0.1, the confidence intervals are too wide for rinethod to be useful. As previously,
standard errors decrease as the capture probainititgases. Values of the standard error
equal to no more than 12% of the population size @bstained withPr(c »0.2 and ClI
coverage rate is never below 70% though seldomeB0%. Moreover, folPrc 30.2, the
choice of the log-normal transformation over thenmal approximation for the construction
of the confidence intervals is not necessary, &l Bpproaches lead to very similar coverage
rates. For large capture probabilitiPr(c) =  ).8he issue of small standard errors leads to

low CI coverage rate (54% to 69% for the normalrappnation and 56% to 71% for the log-

normal transformation).

Table 2-4- MRE, RMSRE, mean estimate and true value of theuladipn size over the simulation runs, and
standard errors of the estimated values and norairthlog-normal Cl coverage rates at each captoasion of
a 5-capture-occasion study with sampling scend@#d@40 and a starting population of 500 individual

Capture Mean Mean True MRE Mean RMSRE Nominal Log-
probability | Estimate  Value estimated 95% ClI normal ClI
SE coverage coverage
rate (%) rate (%)
Pr(c)=0.05
N 323 626 -0.48 352 0.7 62 83
2
N 411 653 -0.37 410 0.91 65 81
3
N 424 692 -0.39 439 0.76 67 86
4
Pr(c)=0.075
N 527 626 -0.16 348 0.7 73 86
2
N 604 655 -0.08 347 0.74 72 80
3
N 741 694 0.07 411 1.06 76 80
4
Pr(c)=0.1
N 681 627 0.09 315 1.02 86 85
2
N 726 656 0.11 297 0.76 80 83
3
N 703 695 0.01 282 0.68 73 16
4
Pr(c)=0.2
N 643 626 0.03 130 0.32 80 79
2
N 711 653 0.09 129 0.29 88 84
3
N 735 691 0.06 130 0.29 86 82
4
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Capture Mean Mean True MRE Mean RMSRE Nominal Log-
probability | Estimate  Value estimated 95% CI normal ClI
SE coverage coverage
rate (%) rate (%)
Pr()=0.3
N 641 626 0.02 75 0.21 80 80
2
N 677 653 0.04 73 0.17 84 84
3
N 722 692 0.04 78 0.18 83 82
4
Pr(c)=0.4
N 641 627 0.02 48 0.13 78 78
2
N 664 654 0.01 48 0.11 86 86
3
N 701 694 0.01 51 0.12 78 19
4
Pr(c)=0.5
N 619 626 -0.01 31 0.08 80 79
2
N 654 653 0 33 0.07 83 83
3
N 688 693 -0.01 35 0.08 80 80
4
Pr(c)=0.6
N 613 625 -0.02 21 0.06 68 68
2
N 646 654 -0.01 23 0.05 78 19
3
N 679 695 -0.02 25 0.06 77 18
4
Pr(c)=0.8
N 610 626 -0.03 10 0.04 54 56
2
N 644 653 -0.01 12 0.03 69 11
3
N 672 693 -0.03 14 0.04 58 60
4
Nz, N4:population size estimate at time 2, ..., 4.

The effect of a shorter experiment (here 5 captaaasions compared to previously
10 capture occasions) on the TSJS estimator peafizenlies mainly in an increase of the
RMSRE: approximately 1.5 higher than the RMSRE ablé 2-1. For all Pdj, standard
errors are generally larger than the standard €foamd on the capture occasions 7, 8 and 9

for the same Pcf in Table 2-1CI coverage rate is lower than in Table 2-1.
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2.7. Discussion

In this chapter, | have presented the resultsrotisitions on the TSJS estimator when
all assumptions are met. This simulation modelnisatiempt to recreate a subset of realistic
animal populations. With this simulation model, rih@re no totally-uncatchable animals in
the population: any individual is available for gdimg on each capture occasion. | did not
consider the case where there might be untrapaditeals because | believe that the chance
of having such individuals is considerably reduceidh double-sampling experiments.
Moreover in the simulation model, individuals canyobe detected once and sampled by only
one method on each occasion. Therefore, | did rmdetlong sampling occasions during
which secondary sampling occasions might occur ¢lrengh that is the sampling situation
in chapter five where each sampling occasion coapmoximately two months. Indeed, |
considered that, if an individual is available thbcapture methods separately during a long
sampling occasion, it means that it is availablah®ysimultaneous method and then, if it is
captured, it should be by both methods simultarig@ideast once during this long sampling
occasion. The single captures that might have oedwturing this sampling occasion should
be ignored and only the simultaneous event shoiglard in the capture history for this

sampling occasion.

The simulations show that the TSJS estimator ptesgenerally a small error for

capture probabilitiesPr(c) equal or greater than 0.2. The estimator is, heweseverely

biased and produces wide, and therefore uselesfdence intervals for capture probabilities
smaller than 0.1. Increasing the population slzesults in a substantial reduction of the error

and permits a greater inequality between the valfiise single sampling probabilitid3r(s,)

and Pr(s,) that the model can handle.
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Important results include:

With T=10and N=500and Pr(s) =Pr(s,):

Minimum/critical probability of double tagging falwing a capturePr(s, F 0.2

With T=10 and N=500and Pr(s;) =0.2:

Most extreme ratio between the two single samplimgbabilities that could be

handled = 1:1.5 or 1.5:1, i.€r(s) = 1.5Pr(s,) or 1.5Pr(s) = Pr(s,)

With T=10and N=500and Pr(s,) =0.5:

Ratio handled by the model betweBn(s) and Pr(s,) = 3:1, i.e.Pr(s) =3Pr(s,) or
3Pr(s) = Pr(s,)

With T=10 and N=1000and Pr(s,) =0.2:

Ratio handled by the model betweBn(s) and Pr(s,) = 3:1, i.e.Pr(s) =3Pr(s,) or
3Pr(s) = Pr(s,)

With T=10 and N=1000and Pr(s,) =0.5:

Ratio handled by the model betweBn(s) and Pr(s,) = 1:4, i.e.Pr(s) = 4Pr(s,) or
4Pr(s) = Pr(s,)

With T=10and N=50 and Pr(s) = Pr(s,) :
Minimum Pr(s;)= 0.5
Severe negative bias (MRE>50%) fer(c) <0.2.

Cls consistently too liberal, sometimes extremely.
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The relative error can be small (<10%) and the ipi@t is good when the capture
probability is high and there is no violation osamptions. These results are similar to those
of Gilbert’s (1973) on the standard JS model, thiy differences here being that the error is
not systematically symmetrical with respect to oaptoccasion. Increasing the length of the
study also results in a reduction of the error (FRREP which underlines the fact that the
estimator becomes more useful as the length ofxperiment increases. As in Gilbert (1973)
the relative error is no greater than 10% whenctqgure probability is greater than 0.2 and

the simultaneous sampling probability is above ¢hgcal value, i.e.Pr(s; »0.2. With 10
capture occasion®r(c) = 0.5 and Pr(s;) = 05 95% of all animals would be double tagged

at least once if the population was closed. Sauich case, even though the population is
open, the number of individuals in F (see chaptes, ®ection 1.4.3) can be expected to be
very low and thus, in the simulations, the JS maneild perhaps be applied instead of the
TSJS model.

Confidence interval coverage could be reasonabbdde.g. 90%), indicating a good
reliability of the estimation with the TSJS approa@lthough first and last estimation
occasions generally present smaller Cl coveragesrdiut most of the times confidence
interval coverage was poor. Using the log-normgbragch to construct the confidence
interval leads to a slight increase in the CI cagerrate especially at the smaller capture
probabilities and population sizes. The estimat&des of population size is usually believed
to be a log-normally-distributed parameter, whickplains why log-normal confidence
intervals display better coverage rates than noooafidence intervals. In my thesis, | used a
frequentist approach for the confidence intervadgher than Bayesian statistics. The
interpretation, usefulness and application of thes® approaches (frequentist vs Bayesian)
are nowadays debated. Credible intervals basedagedBtheorem are considered to have a
more straightforward and practical interpretatibart confidence intervals based on sampling
distributions do: with credible intervals the imgestation is usually of the form “My degree of
belief that the true parameter is in fact in thenwal is ...%”. With 95% confidence intervals,
results can only be interpreted as “The intervdl @dntain the true value 95% of the time if
the study were repeated many times using sampies thhe same population”. However, the
use of credible intervals requires a prior probgbprone to subjectivity, which inevitably
provokes controversy. Avoiding subjectivity in tbeedible intervals would be equivalent of

setting an uninformative prior probability, theredoleading to the credible interval
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corresponding to the confidence interval. Configemtervals are more commonly used by
biologists, hence it seemed more appropriate tathesdrequentist approach. However, here
confidence interval coverage rate was, in mostaties, poor. Indeed, the idea for the 95%
nominal confidence interval in the frequentist ajgmwh is that confidence intervals will
include the true value 95% of the time, so it dnes seem satisfying for the TSJS method
that the coverage rate barely reaches the 95%hitvickén most of the cases explored here.
However, confidence intervals were obtained by kiwg the asymptotic properties of
maximum likelihood estimates (MLEs), and more pselyi the property that the estimates are
asymptotically normally distributed. However, th&JS estimator is not an MLE and as
guoted earlier in this section, population sizeinestes are believed to be log-normally
distributed but the use of a log-normal confideimterval does not significantly improve the
confidence coverage rate. Furthermore, the mettiqutadile likelihood that applies to all
MLEs and usually improves the confidence intenalerage cannot be used since the TSJS
estimator is not an MLE. Therefore, a major impraeat for the TSJS method to be more
useful would be a valid interval estimator. Nevel#iss, as shown in chapter four, none of the
current models leads to satisfying confidence vralecoverage rate underlying the difficulty

of getting a valid interval estimator.

Problems in the estimation are also inevitablééf simultaneous sampling probability
is too small. It is important for the general des@f the study that the investigators put as
much effort as possible in the double-tagging pathe experiment which will determine the
robustness of the model. Depending on field cooiis] it is also preferable not to favor one
sampling method, make sure the sampling is oppistianbut keep a reasonable ratio
between the two tagging methods when the simulizsampling probability is expected to

be moderate.

The performance of the model also depends on thiglityaof the underlying
assumptions in the experiment and therefore thawetr of the estimator is investigated in
chapter three in various situations of departusenfthe model assumptions. If small rates of
simultaneous marking can not be avoided, reseachast be aware that the estimator may
also be more sensitive to violation of assumptidriee results of the TSJS estimator when
model assumptions are violated will then be congbaoethose of classic closed-population

models in the same situations in chapter four.
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3. Chapter Three

When things go wrong: heterogeneity among individuals
in capture or sampling probabilities and tag misreading

3.1. Abstract

A common problem in capture-mark-recapture (CMR)d&s is the presence of
heterogeneous capture probabilities among indivedofa population. If not modelled, the
magnitude of the resulting bias usually dependsthendegree and characteristics of the
heterogeneity in capture probabilities among irdinals. Simulations described in chapter
two are used here to test the performance of the-Seurce Jolly-Seber (TSJS) estimator
when the assumption of equal catchability amongviddals is violated, when the single-

sampling probabilitiedr(s) and Pr(s,) are not equal among the individuals and when there

is a tag misreading issue. To provide a relevattepaof heterogeneity, knowledge from a
humpback whale population is used to specify theehaorhe mean relative error (MRE), the
root mean square relative error (RMSRE) and théidemce interval coverage rate are used
to provide information on the suitability of thetiesator under different scenarios believed to
represent a simplifying approximation of the samgplisituation in humpback whale
populations. The TSJS model is fairly robust whes lheterogeneity in catchability is small
to moderate. Given the present simulation structtims extension of the Jolly-Seber (JS)
model gives little error when all individuals hava@pture probabilities greater than 0.5 on all
capture occasions. As expected, the average negatior increases as the magnitude of the
heterogeneity rises and serious negative error eacur when the average capture
probabilities are small. In the presence of hetemegy in sampling probabilities among
classes of individuals, the estimator usually pent well. Finally, for the tag misreading
issue, the TSJS estimator demonstrates no errariomogeneous tag misreading rate. These
results are probably relevant to a range of largenmal populations and possibly, given a
proportional time scale shift, to some other groapsvell. However, only a small range of
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the possible parameters and model space has bprezkso these conclusions inevitably
have limited generality.

3.2. Introduction

One of the challenges when estimating populatinae sgsing CMR methodology is the
ubiquity of heterogeneity in capture probabilitiesfield studies, where individuals of the
same population often exhibit different degrees caftchability (Roff, 1973). These
heterogeneous capture probabilities most likelyedépon biological factors such as sex, size,
reproductive status, age and it typically leadsnematively biased abundance estimates
(Amstrup et al., 2005; Chao, 1987; Hwang and CH&885; Otis et al., 1978; Seber, 1986;
Williams et al., 2002). The magnitude of the biasially depends also on the characteristics
of the heterogeneity itself. If some individuafsagpopulation exhibit low capture probability
on different trap occasions and a high capture aisitity on some others, there should be
little bias in the abundance estimator (Williamslet 2002). On the other hand, if, throughout
the whole study, some individuals tend to have latively low capture probability while
others exhibit a high probability of being caughie magnitude of the error should be more

important.

Hwang and Chao (1995), Otis et al. (1978), Carsti{@®73) and Gilbert (1973)
showed that the heterogeneity in capture probedsldid not affect the estimates given by the
JS model when all animals had high capture proibiasil(>0.5). However, a high degree of
heterogeneity can cause severe underestimatidmeipdpulation size estimates with the JS
model and new techniques to reduce the bias haate developed. Hwang and Chao (1995)
developed a method using the sample coverage agptoaminimize the bias. Pledger and
Efford (1998) used a method aiming at correctireggdhundance estimates for bias via inverse
prediction. Both approaches performed well in satioh studies but have seen little use so

far.

In this chapter, the coefficient of variation isedsto measure the degree of
heterogeneity in capture probability present wittha simulated populations. Many different
patterns of heterogeneity in capture and sampligability can occur and it is important to
tailor the analysis of the error to the specifipeyof biological problem encountered. Due to
the biological purpose of the model, values of dgatal parameters related to humpback

whales and found in the literature were used taterthe animal population in the simulations
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for the purpose of chapters three and four. Theveasito ensure that the model was tested on

a biologically relevant combination of parameters.

In the simulations, | have chosen to divide the ybaion into four demographic
classes based on the reproductive status (adutisinadn-breeding females, breeding females
and calves) to test the effect of heterogeneitgapture and sampling probabilities between
the classes. This pattern of heterogeneity seemetter suit the biological situation of the

humpback whales, especially to test the heterogemesampling probabilitie®r(s), Pr(s,)
and Pr(s; ) (see chapter one) which are probably related ¢oréiproductive status for this

species. Two types of heterogeneity will be analyzeere: heterogeneity in capture

probabilities and heterogeneity in sampling proli#ds. This keeps the problem tractable
and allows us to investigate the separate effdotmch source of error described above. It is
also necessary to avoid confounding them in thelysisa Therefore, each type of

heterogeneity is explored independently in thisptéra As shown in chapter two, the TSJS
method does not perform well if the capture proligbis too low (Pr(s,;)<0.2). A logical

step here is also to avoid confounding this typgroblem with any problems coming from
the failure of one or more of the underlying asstioms of the model. Thus, only some
scenarios of sampling probabilities, describedhapter two and producing almost no error
when all assumptions are met, are used to accourthé effect of the heterogeneity on the

abundance estimator.

The possibility of heterogeneous capture probgbimong individuals of a
population leads to the need to modify the simatetito account of the effect on the
abundance estimator of the violation of the undegyassumption. The simulation structure
described in chapter two, however, remains unchnge to the sampling part where

individuals are randomly captured.

Two forms of heterogeneity can be tested within ghesent simulation experiment:
heterogeneity in capture probabilities and hetemedg in sampling probabilities. Due to the
structure of the simulation, the animal populati®ulivided into four classeg based on sex,
age and reproductive status, which will be chared by specific capture or sampling

probabilitiesPr(c), , Pr(s),, Pr(s,), and Pr(s,), for the purpose of this chapter.

Another form of violation of assumption known todute bias in precision in JS
estimates is tag loss (Arnason and Mills, 1981; Mic&ld et al., 2003). In the context of

humpback whale studies, tags are mainly lost byeading and thus the loss may only be
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temporary (similar to the misreading of rings indbstudies). While some morphological
patterns of the fluke, such as the trailing edge,ndt naturally change with time, some
ventral fluke features, such as the pigmentatiah superficial scars, have been found to be
age-dependent and to become stable usually aftealseaturation (Blackmer et al., 2000;
Carlson and Mayo, 1990). Tag misreading typicaligurs during the matching process but
experience of the matchers and photographic quiadisyproven to be an important factor to
avoid tag misreading (Carlson and Mayo, 1990; Krida al., 2000). As for the genetic
tagging process in humpback whale studies, thiseathone either via the invasive process of
skin sampling biopsy or by a noninvasive one adtdareach when it is possible to harvest
some sloughed skin (Valsecchi et al., 1998). Tas lm genetic mark-recapture studies is
mostly due to allelic dropout, and for tag misreadithat leads to false alleles,
misinterpretation of allele banding patterns, paidize, locus polymorphism (Hoffman and
Amos, 2005; Taberlet et al.,, 1999). These sourd¢daagloss and tag misreading concern
mainly noninvasive tagging for which the quality thle DNA is lowered. However, they
should not be ignored for data arising from invassampling (McKelvey and Schwartz,
2004; Roon et al., 2005; Taberlet et al., 1999).

Arnason and Mills (1981) stated, in the first paper the bias induced in the JS

estimator by tag loss, thaN‘[...] is not biased by tag loss”. This finding hasbealiscussed

by McDonald et al. (2003) who showed that this iteaas only true for a tag loss situation
where all the individuals were equally likely tas®their tag. A coding modification of the
basic simulation structure is outlined in the présehapter to account for the effect of

homogeneous tag misreading on the TSJS estimator.

It is worth noting that tag misreading is only ciolesed here as a way to produce new
individuals, i.e. false-negative errors, and whiah thereby induce an overestimation of the
population size. Tag misreading can occur in theeodirection, i.e. false-positive errors,
leading to an underestimation, also known as thadew effect”, when several individuals
have the same genetic tag as a result of usindetedoci or loci with a low heterozygosity
(Mills et al., 2000; Waits et al., 2001). Howevéris is not believed to be an issue in the
context of mature research programs (such as hwhkpbhale studies), as microsatellites

will usually be well developed.
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The aim of this chapter is to assess the degreerof and precision of the population
size estimator, using the TSJS model, generate@rutifferent cases of heterogeneity in
capture and sampling probabilities among the ctassel under tag misreading situations.
Given the multitude of possible scenarios and cdéisas could be investigated, it is very
important to keep in mind that | chose to focussoanarios and cases relevant to the study of
long-lived animal populations.

3.3. Heterogeneity in capture probabilities

3.3.1. Materials and Methods

Biological context of the simulation

The humpback whaléMegaptera novaeanglidas a baleen whale belonging to the
Balaenopteridae family. Present in both hemisphares$ in all oceans, it is a migratory
species that alternates between warm waters indotude for breeding in winter and cold
waters in high latitude for feeding in summer (Balet al., 1986; Brown et al., 1995;
Clapham, 2002; Clapham et al., 1993a; Darling an&Weeney, 1984; Garrigue et al., 2002;
Katona and Beard, 1990). The seasonal cycle mdiledNorthern Hemisphere and South
Hemisphere populations distinct stocks that never (toockyer, 1984). Humpback whales
exhibit a seasonal change in behavior linked wité imigratory cycle and congregate in
groups both in the feeding and breeding areas:aratipn for coordinated feeding has been
observed in high latitude while competitive reprciike groups are likely to appear in
breeding grounds (Baraff et al., 1991; Clapham 31@apham et al., 1993b; Stevick et al.,
2006; Tyack and Whitehead, 1982; Valsecchi eal?2).

Application to the simulations

Sex ratio
Chittleborough’s study (1965) suggested a sex kegrg slightly biased towards males
at birth. So a sex ratio of 52% of males was apgpitethe population at the beginning and to

determine the sex of the new born.
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Survival rate
The following (over)simplifying assumption is madrirvival probability is constant

over all time periods and equal for all individuafn equal survival rate is used for the
population: 0.91, even though the calves (youngant2 years-old) might have a slightly
smaller survival probability (Buckland, 1990; Chatiorough, 1965; Gabriele et al., 2001;
Mizroch et al., 2004).

Reproductive rate
In each year, except for the first year, maturedies) the ones being more than 5

years old (Chittleborough, 1965; Clapham and Mdg80), could potentially give birth to a
calf at a rate of 0.8 if they did not have a ch year before or 0.1 if they did (Barlow and
Clapham, 1997; Chittleborough, 1965; Clapham angdy1a987, 1990). In the first year, the
birth history for females is not available so a m@aanual reproductive rate for females of
0.37 is used (Barlow and Clapham, 1997; Chittlebghy 1965; Clapham and Mayo, 1987,
1990).

Sampling methods
Two sampling methods are frequently used to gea@abture histories for humpback

whale populations: photo-identification and genatgpfrom skin biopsy. Then method 1
described above could be assimilated to photo-itsation and method 2 could correspond

to genetic sampling.

Heterogeneity in capture probability
The model was designed in the context of the sagrotocol used in surveys of

humpback whale populations but is relevant to aatbreange of long-lived animals.
Reproducing a realistic field sampling situatiomough simplified, was an important
consideration in the simulations to investigate peeformance of the model when specific

model assumptions were not met in the field.

In this section, the simulated population is sipiib four classeg of animals: female
breeding adults, female non-breeding adults, mdldts calves. Each clagsis given a
capture probabilityPr(c), which stays constant over time. Indeed, inbllséogical context of
the present model, it is believed that capture abdlties might be dependent on the
reproductive status rather than depending randamlifme alone. Six cases of heterogeneity
within the population are considered in this chapfeo make the comparison possible
between the cases of heterogeneity and the homibgermunterpart, four scenarios of
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heterogeneity with an average capture probability the population set at 0.2, and two
scenarios with an average capture probability Gf &e explored. The average capture
probability of 0.2 was believed to be in agreemeithh the average capture probability found
in the biological population to which the modelaser applied in chapter five. | chose also to
test the performance of the estimator with a higlkrage capture probability (0.7) and
individual capture probabilities greater than 3he presence of heterogeneity. The purpose

is to see whether, even with high capture prokadsli any potential problem still exists.

Thus, for each scenario, a degree of heterogeneityalculated. This degree of
heterogeneity can be expressed by the coefficiemtuwation CV of the distribution of the

capture probabilities over individuals, i.e..CV =g/ u

As stated above, in the simulated population, ubpopulations can have a distinct
capture probability: calves (under 2 years-oldeedoing females, non-breeding females,

males.

For a starting population comprising 500 individyahe numbers of individuals in
each class at the beginning of the simulationsiriguyear 1) are approximated to be: 72
calves, 72 breeding females, 168 non breeding fe3n260 males. Then, the general equation
to get all the capture probabilities and coeffitiehvariation for each case is given by:

72xPr(C),, + 72xPr(C) g +168x Pr(C) g +260xPr(c),,, _

1
) 57z

0.2

1)

where Pr(c)., is the capture probability of the calves,
Pr(c)g is the capture probability of the breeding fesaa
Pr(c),s: Iis the capture probability of the non-breedemales,

Pr(c),, is the capture probability of the males.

N.B.: “m” corresponds to adult males, “NBF” to non-breedingture females, “BF” to
breeding females and “c#&3 calves.

Note that the starting number is 500 but the reypectide process takes place just

before the sampling process, adding approximat2lgalves to the population. Therefore, the
total number of individuals just before samplingnaét 500 but approximately 572.
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| am aware that this is an open population butntloetality rate is assumed to be very
low (0.09) and the same for all classes — emignaobeing ignored (see chapter five for a
discussion of these values for the New Caledonagulation of humpback whales). So, even
though the population increases through the sinomatthis equation is assumed to

approximately hold at later time periods.

2) p=02

Q
1

\/5%2 [72% (Pr(©).. = 12 + 72X (Pr(©)e; = 12)? +168% (Pr(Q) oy — 1) + 260% (PI(C),, ~ 1?]

The capture probabilities for the four heteroggnedéises are the following:

Table 3-1- Capture probability for each class for every cddeeterogeneity considered at an average capture
probability of 0.2.

PrO)n PrOwe PrC)e  Pr). | ©V
Casel 0.21 0.22 0.15 0.15 0.1
Case2 0.24 0.24 0.1 0.05 0.37
Case3 0.25 0.25 0.05 0.05 0.43
Case4 0.35 0.1 0.05 0.05 0.64

Case 1 has a small heterogeneity, cases 2 ands8alle moderate heterogeneity and

cases 4 presents what would be regarded as sesteredeneity in capture probabilities.

The same procedure is applied with an average i@ptobability of 0.7 and capture
probabilities for each class of individuals all gger than 0.5 to create two cases of
heterogeneity:

Table 3-2-Capture probability for each class for every cddaeterogeneity considered at an average capture
probability of 0.7.

Pr), Prwes PrC)e Pree. | ©V

Case5 0.8 0.5 0.5 0.5 0.23
Case 6 0.5 0.86 0.86 0.86 0.26

Note that in case 5 the average capture probalslityt 0.7 but 0.64.

Only two cases with small heterogeneity are creat@ because with a high mean
capture probability (0.7 or 0.64) and the necessithaving all capture probabilities higher

than 0.5, it was not possible to obtain a big doiefiit of variation.
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3.3.2. Results

Estimation with heterogeneity in capture and equsampling probabilities

The results of the simulation to estimate the eand the precision of the TSJS
estimator in the presence of heterogeneity in cagitobability are summarized in Table 3-3.
The six cases of heterogeneity described in TakleaBd Table 3-2 are tested under the
scenario 20-40-40 and a starting population of B@iduals. Illustrating the performances
of the TSJS model using scenario 20-40-40 presetsidvantages: there is no other form of
heterogeneity (i.e. no heterogeneity between tleegampling methods, i.€2r(s) = Pr(s,) )
and the use of the smallest probability of douldgging handled by the model, i.e.
Pr(s;) = 02. This scenario should thus provide, under hetereig in capture probability,

the biggest error given by the estimator that caexpected.

Table 3-3- MRE, RMSRE, mean estimate and true value of thgufation size over the simulation runs, and
standard errors of the estimated values and norairthlog-normal Cl coverage rates at each captoasion of

a 10-occasion study for different cases of hetareify in capture probabilities with scenario 204®-and a
starting population of 500 individuals.

Heterogeneity | Mean Mean MRE Mean RMSRE Nominal Log-
case Estimate True estimated 95% CI  normal ClI
Value SE coverage coverage
rate (%) rate (%)
Case 1
CV =0.14
Pr(c), =02
N 608 627 -0.03 73 0.3 64 65
2
N 638 654 -0.02 71 0.2 72 76
3
N 660 693 -0.05 74 0.17 75 16
4
N 696 719 -0.03 79 0.17 81 85
5
N 738 745 -0.01 84 0.16 87 89
6
N 745 763 -0.02 86 0.17 80 82
;
N 774 794 -0.03 90 0.18 75 80
8
N 815 830 -0.02 97 0.22 73 19
9
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Heterogeneity | Mean Mean MRE Mean RMSRE Nominal Log-
case Estimate True estimated 95% CI  normal ClI
Value SE coverage coverage
rate (%) rate (%)
Case 2
CV =0.37
Pr(c), = 02
N 513 626 -0.18 57 0.26 43 47
2
N 490 653 -0.25 50 0.28 27 3
3
N 529 693 -0.24 56 0.27 29 3
4
N 566 718 -0.21 63 0.25 39 4
5
N 602 745 -0.19 68 0.23 45 5
6
N 622 763 -0.18 73 0.22 49 5
7
N 642 795 -0.19 75 0.24 44 5
8
N 714 830 -0.14 85 0.24 56 5
9
Case 3
CV =0.43
Pr(c), =02
N 508 627 -0.19 57 0.29 38 41
2
N 490 655 -0.25 51 0.29 25 3
3
N 523 694 -0.25 56 0.28 26 3
4
N 568 718 -0.21 64 0.24 40 4
5
N 597 744 -0.2 69 0.23 41 4
6
N 626 761 -0.18 74 0.21 48 5
7
N 626 793 -0.21 75 0.25 35 4
8
N 730 827 -0.12 88 0.23 57 6
9
Case 4
CV =0.68
Pr(c), =02
N 343 627 -0.45 29 0.46 1 1
2
N 354 653 -0.46 27 0.46 0
3
N 364 694 -0.48 29 0.48 0
4
N 410 717 -0.43 36 0.43 0
5
N 426 745 -0.43 39 0.43 0
6
N 443 763 -0.42 42 0.42 1
;
N 465 795 -0.42 45 0.42 1
8
N 479 828 -0.42 47 0.43 2
9
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Heterogeneity | Mean Mean MRE Mean RMSRE Nominal Log-
case Estimate True estimated 95% CI  normal ClI
Value SE coverage coverage
rate (%) rate (%)
Case 5
CV =0.23
Pr(c), = 064
N 556 626 -0.11 6 0.12 2 2
2
N 605 653 -0.07 7 0.08 5 5
3
N 654 692 -0.05 10 0.06 20 21
4
N 685 718 -0.05 13 0.05 32 33
5
N 712 744 -0.04 14 0.05 41 43
6
N 723 761 -0.05 15 0.06 32 37
7
N 738 793 -0.07 17 0.07 17 17
8
N 741 828 -0.11 18 0.11 3 3
9
Case 6
CV =0.26
Pr(c), =07
N 599 627 -0.05 4 0.05 9 9
2
N 653 655 0 7 0.02 64 66
3
N 712 695 0.02 10 0.03 62 62
4
N 743 719 0.03 11 0.04 45 45
5
N 771 746 0.03 13 0.04 55 55
6
N 782 764 0.02 1 0.03 75 75
7
N 795 795 0 15 0.02 93 93
8
N 793 830 -0.04 16 0.05 35 35
9
Nz, N9=population size estimate at time 2, ..., 9.

As already reported in other studies, the errorNorwas found, in all heterogeneity
cases explored, to be negative, bigger in the RM&REIn the absolute value of the MRE
than in the case of homogeneity reported in Takle ®here capture probability is also 0.2
(for comparison with the heterogeneity case 1 tordhigher than 0.5 (for comparison with
the heterogeneity case 5 and 6) (Carothers, 19i3er§ 1973). As expected the more severe
the heterogeneity within the population is, thegeigthe underestimation. Case 1 exhibits a
low degree of heterogeneity and as such the esranimore than the one produced by the

homogeneous counterpart where the constant captabability Pr(c) equals 0.2. Cases 2

and 3 demonstrate a moderate heterogeneity but th@hMRE and the RMSRE are
considerably larger (IMRE|>0.1 and RMSRE>0.22) tlla® homogeneous case. Case 4
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shows a high degree of heterogeneity leading tg l\@ge MRE and RMSRE (|[MRE|>0.42
and RMSRE>0.42).

In terms of standard error, case 1 does not diften the homogeneous case but from
case 2 onwards the standard errors decrease diddtaas the degree of heterogeneity
increases, becoming less than half the size in4&disan the homogeneous counterpart (Table
2-1): the values go from 8% of the population sinethe first occasion to almost 10% on the
last occasion against approximately 12% of the [adjoun at any given occasion when there

is no heterogeneity.

Concerning the CI coverage rate, in the case ik, similar to the ones reported in

Table 2-1 for a capture probabilityr(c) of 0.2, varying from 64% on the first estimation

occasion to 87% on the fifth estimation occasiontfee normal approximation. Both the

normal and log-normal approaches to construct tbefidence intervals perform very

similarly with the log-normal method having slighthigher CI coverage rates. Cl coverage
rate decreases in case 2 and 3, being half ofahe\found for case 1. In the most extreme
case of heterogeneity (case 4), the Cl coverageisatero on almost all capture occasions.
This seems to be due to a mixture of error in tbpupation estimates and in the standard
errors. With a higher capture probability and asceeble heterogeneity in capture probability
(case 5 and 6), standard errors tend to be srhallgansequence of which is a very poor CI
coverage on some capture occasions, especiallhemdrly and last capture occasions. In
these two cases, this seems to be due to errdreirstandard errors only as the RMSRE

reports only a minimal error in the estimates.

Finally, cases 5 and 6 present on average a higureaprobability as all individuals
have a probability of being caught equal or higth@n 0.5. The estimator appears relatively
unbiased in both cases with the MRE usually sméllan 0.1 and the overall error is small

with the RMSRE below 0.1, except on the first aast bccasions of case 5.

As expected, the TSJS model performs better wigih lcapture probability (i.e. 0.5)

and small coefficient of variation.
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Estimation with heterogeneity in capture and unedusampling probabilities

The TSJS model was investigated under heterogemeitgapture and sampling
scenario 50-37.5-12.5 and the results are displayd@ble 3-4. The estimator is still robust
to the inequality in the probabilities between tiv® sampling methods with a ratio 3:1 as
long as the probability of double capture is noallen than 0.5 (Table 2-2) . Here the aim is
to see if adding another disturbance (i.e. therbgaeneity in capture probabilities) would

interfere with the performance of the estimator.

Table 3-4- MRE, RMSRE, mean estimate and true value of thauladipn size over the simulation runs, and
standard errors of the estimated values and norairthlog-normal Cl coverage rates at each captagasion of

a 10-occasion study for different cases of hetareig in capture probabilities with scenario 5058712.5 and a
starting population of 500 individuals.

Heterogeneity | Mean Mean True MRE Mean RMSRE Nominal Log-
case Estimate  Value estimated SE 95% ClI  normal ClI
coverage coverage
rate (%) rate (%)
Case 1l
CV =0.14
Pr(c), = 02
N 640 626 0.02 59 0.23 63 65
2
N 658 653 0.01 57 0.16 71 73
3
N 704 692 0.02 63 0.15 81 80
4
N 713 716 0 65 0.12 86 88
5
N 745 743 -0.01 69 0.12 86 87
6
N 753 761 0 71 0.11 89 90
7
N 808 794 0.02 77 0.13 88 88
8
N 831 827 0 81 0.19 73 73
9
Case 2
CV =0.37
Pr(c), =02
N 526 624 -0.16 45 0.23 34 38
2
N 505 652 -0.22 41 0.25 22 25
3
N 539 691 -0.22 45 0.24 23 26
4
N 591 716 -0.17 53 0.2 32 43
5
N 610 742 -0.18 56 0.21 37 41
6
N 644 761 -0.15 61 0.18 46 53
7
N 663 792 -0.16 64 0.19 45 50
8
N 729 826 -0.12 71 0.21 50 52
9
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Heterogeneity | Mean Mean True MRE Mean RMSRE Nominal Log-
case Estimate  Value estimated SE 95% CI  normal ClI
coverage coverage
rate (%) rate (%)
Case 3
CV =0.43
Pr(c), = 02
N 529 626 -0.15 45 0.24 40 40
2
N 504 652 -0.23 41 0.25 20 23
3
N 542 692 -0.22 44 0.24 23 25
4
,\“l 581 717 -0.19 52 0.21 34 38
5
,\“l 607 743 -0.18 56 0.21 36 38
6
N 631 761 -0.17 61 0.2 39 46
7
,\“l 663 792 -0.16 64 0.21 44 47
8
,\“l 718 827 -0.13 70 0.21 48 52
9
Case 4
CV =0.68
Pr(c), =02
N 362 626 -0.42 24 0.43 0 0
2
,\“l 367 653 -0.44 22 0.44 0 0
3
N 385 693 -0.44 25 0.45 0 0
4
N 424 716 -0.41 30 0.41 0 0
5
,\“l 438 743 -0.41 32 0.41 0 0
6
,\“l 474 760 -0.38 37 0.38 0 0
7
N 482 793 -0.39 38 0.4 0 0
8
,\“l 511 827 -0.38 42 0.39 2 3
9
Case 5
CV =0.23
Pr(c), = 064
N 576 628 -0.08 4 0.09 1 1
2
N 619 655 -0.05 5 0.06 8 9
3
N 665 695 -0.04 8 0.05 18 20
4
,\“l 691 719 -0.04 10 0.04 32 33
5
N 716 745 -0.04 12 0.04 34 36
6
,\“l 733 763 -0.04 13 0.05 41 43
7
,\“l 756 796 -0.05 15 0.05 26 28
8
N 773 832 -0.07 16 0.08 16 16
9
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Heterogeneity | Mean Mean True MRE Mean RMSRE Nominal Log-
case Estimate  Value estimated SE 95% CI  normal ClI
coverage coverage
rate (%) rate (%)

Case 6

CV =0.26

Pr(c), = 0.7
Nz 617 626 -0.01 3 0.03 24 24
Ns 658 655 0.01 5 0.02 55 56
N4 712 695 0.03 7 0.03 40 41
NS 738 718 0.03 9 0.03 38 39
Ne 766 745 0.03 10 0.03 45 46
N7 778 763 0.02 11 0.02 75 76
NS 801 795 0.01 12 0.02 95 95
[\“l 809 828 -0.02 14 0.03 67 70

9

A~

N,,..., N9=population size estimate at time 2,...,9.

The TSJS estimates appear unbiased only in thes aafsédnigh average capture
probability (cases 5 and 6). For cases 1 to 4, dtrver increases with the degree of
heterogeneity. For cases 2 and 3, the MRE is onageebelow 0.18 and the RMSRE is
always below 0.25. However, for case 4 representnfigh heterogeneity in capture
probabilities, the estimates are severely negativdbiased (JIMRE|>0.38 and
0.38<RMSRE<0.45). Compared to the results undesdnge scenario (50-37.5-12.5) with no
heterogeneity (Table 2-2), case 1 of heterogerdigiglays, for MRE and RMSRE, similar

values to the values of the counterpart case vwotheterogeneity withPr(c) = 0.2. Cases 2

and 3 of heterogeneity present similar RMSRE bet thlues of the MRE greatly differ
compared to the case witr(c) = (02 Table 2-2. Case 4 shows RMSRE values more than
twice bigger (except in the second occasion) ancEM&Iues more than 7 times bigger in
almost all capture occasions than the values shedively, RSMRE and MRE reported in

Table 2-2 forPr(c) = 0.2 In cases 5 and 6, values of MRE and RMSRE arédasino the
values of MRE and RMSRE found in Table 2-2 n(c)> .05

The CI coverage rate is equivalent to the one agfhal sampling probabilities under
scenario 20-40-40: in case 1, it is similar to tmes reported in Table 2-1 for a capture

probability of 0.2. However, it quickly decreasesdase 2 and 3, being half of the value
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found for case 1. Cl coverage rates are also smaltases 2 and 3 of heterogeneity than they
are in Table 2-2 witHPr(c) = 0.2. In the most extreme cases of heterogeneity @psbe Cli
coverage rate is zero on almost all capture oconasWith a higher capture probability and a
reasonable heterogeneity in capture probabilitgdcaand 6), standard errors tend to be very
small and the CI coverage rate is generally poasrddver, in cases 5 and 6, Cl coverage
rates are smaller than those found in Table 2-2Pide) = 0.5, although better in case 6 than
in case 5. As observed earlier, the normal appration and the log-normal transformation
perform very similarly for the construction of tkenfidence intervals, with the log-normal

approach leading to slightly higher coverage rates.

Finally, results in Table 3-4 are similar to thesuks in Table 3-3, presenting
respectively cases with heterogeneity and uneqamapbng probabilities and cases with
heterogeneity and equal sampling probabilities.r@&loee, errors in the estimates arise from
the heterogeneity in capture probabilities and mgwinequal sampling probabilities with
heterogeneous capture probabilities does not dffetttermore the performance of the TSJS

model.

3.4. Heterogeneity in sampling probabilities

3.4.1. Materials and Methods

Another degree of heterogeneity can be achievedsditing different sampling
probabilities between the four classes which cdddpresent in a humpback population. In

this section, all the animals have the same prdibabf being caught (or detectedr(c and
the “heterogeneity” is characterized by a diffeeeimt sampling probabilitie®r(s,), Pr(s,),
Pr(s;) between the classgs Two cases representing the heterogeneity in sagate tested
for a capture probabilityer(c pf 0.2 and 0.5. In both cases, each class is gagesampling

probabilitiesPr(s),, Pr(s,),, Pr(s;), either the scenario 20-40-40 or 50-25-25, i.ecfass

g Pr(s;), =02, Pr(s), = 04, Pr(s,), = 04 or Pr(s;), = 05, Pr(s), = 025, Pr(s,), = 025.

The starting population just before the samplingcpss of the first sampling occasion
comprises again approximately 572 individuals, grednumber of individuals in each class at

the beginning of the simulations is set at: 72 es|w2 breeding females, 168 non breeding
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females, 260 males. This gives the possibility efcglating a ratio for the sampling
heterogeneity scenarios. This ratio simply deserittee amplitude of the heterogeneity in
sampling probability in the population in the absenf a statistic equivalent to the coefficient

of variation.

Table 3-5- Sampling scenario for each clagfr the four cases investigated.

Pr (s3)m, Pr(Sp)m, Pr (Ss)ngr, Pr(Ss)sr, Pr(Ss)cas Pr(c) ratio
Pr(s)m Pr (su)ner Pr(sy)er, Pr (S1)ca
Pr(S)ner Pr(Sy)er Pr(sy)ca
Casel 50-25-25 20-40-40 20-40-40 20-40-40 0.2 212
Case?2 50-25-25 20-40-40 20-40-40 20-40-40 0.5 212
Case3 20-40-40 50-25-25 20-40-40 20-40-40 0.2 301
Case4 20-40-40 50-25-25 20-40-40 20-40-40 0.5 31

Cases 1 and 2 have a less severe heterogenedynplisg probabilities than cases 3
and 4.

3.4.2. Results

Following the investigation of the TSJS model unfiterr cases of heterogeneity in
sampling probabilities among classes of individuddscribed in Table 3-5, results of the
performance of the estimator when there is heterigein sampling probabilities are shown
in Table 3-6.

Table 3-6- MRE, RMSRE, mean estimate and true value of theuladipn size over the simulation runs, and
standard errors of the estimated values and norairthlog-normal Cl coverage rates at each captoasion of

a 10-occasion study for 2 cases of heterogeneisaimpling probabilities between the 4 classes dif/iduals
with capture probability of 0.2 and 0.5 and a stgrpopulation of 500 individuals.

Sampling Mean Mean True MRE Mean RMSRE Nominal Log-
case Estimate Value estimated 95% ClI normal CI
SE coverage coverage
rate (%) rate (%)
Casel
Ratio=2 :2
Pr(c)=0.2
l\] 611 639 -0.04 59 0.24 52 55
2
N 656 692 -0.05 61 0.19 64 68
3
N 718 757 -0.05 69 0.16 70 75
4
l\] 779 804 -0.03 78 0.15 79 80
5
l\] 834 851 -0.02 85 0.16 87 87
6
N 872 886 -0.02 91 0.16 85 87
.
l\] 936 943 0 100 0.19 80 81
8
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Sampling Mean Mean True MRE Mean RMSRE Nominal Log-
case Estimate Value estimated 95% CI  normal CI
SE coverage coverage
rate (%) rate (%)
N 1015 1003 0.01 110 0.24 74 75
9
Case 2
Ratio=2 :2
Pr()=0.5
N 593 639 -0.07 7 0.06 23 24
2
N 632 693 -0.09 9 0.04 6 7
3
N 697 757 -0.08 14 0.04 16 17
4
,\] 762 806 -0.05 20 0.04 41 44
5
,\] 809 852 -0.05 23 0.04 54 56
6
N 859 888 -0.03 27 0.04 73 18
;
,\] 901 943 -0.04 31 0.04 71 74
8
,\] 961 1004 -0.04 35 0.05 71 12
9
Case 3
Ratio=3 :1
Pr(c)=0.2
N 619 639 -0.03 61 0.21 54 54
2
N 634 692 -0.08 60 0.16 59 61
3
N 707 757 -0.07 69 0.16 67 12
4
l\] 752 804 -0.06 76 0.14 77 81
5
l\] 818 849 -0.04 85 0.13 83 86
6
N 861 885 -0.03 91 0.14 87 90
;
l\] 922 940 -0.02 99 0.16 81 84
8
l\] 958 1002 -0.04 106 0.2 75 78
9
Case 4
Ratio=3 :1
Pr()=0.5
N 584 640 -0.09 7 0.06 12 13
2
N 626 694 -0.1 9 0.04 6 6
3
N 688 757 -0.09 15 0.04 12 12
4
l\] 747 805 -0.07 19 0.04 23 26
5
l\] 796 851 -0.07 23 0.04 39 42
6
N 834 886 -0.06 26 0.03 48 50
;
l\] 887 940 -0.06 30 0.03 57 61
8
l\] 935 1002 -0.07 34 0.05 49 50
9
Nz, N9=population size estimate at time 2, ..., 9.
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3. When things go wrong: individual heterogeneity $ag misreading

The heterogeneity in sampling probabilities amohg tlasses of individuals as
presented here does not seem to affect the penhoenaf the TSJS estimator at both capture
probabilities 0.2 and 0.5 in terms of bias: thenestes are slightly negatively biased (MRE
no more than -0.1 and values for the RMSRE on gecbelow 0.1). For both ratios (2:2 and
3:1) of heterogeneity in sampling probabilities amdhe classes, as one might expect, the
cases with a capture probability of 0.5 give betemults in terms of RMSRE with values
below 0.06 (against values between 0.13 and 0.24 éapture probability of 0.2). The higher
capture probability produces smaller standard sfras reported for earlier tables, i.e. Table
2-1, Table 2-2, Table 2-3.

In the presence of heterogeneity in sampling priliab among the classes, as
expected, increasing the capture probability leads decrease of the error, i.e. larger capture
probabilities result in more precise estimates. iSthe error is small, the CI coverage rate
should still be good. The problem here is thataasing the capture probability also leads to
an excessive decrease in the standard errors vglystematically results in a smaller ClI
coverage: for a capture probability of 0.2 the ©varage rate varies, with the normal
approximation to construct the confidence intervatsm 52% to 87% (55% to 90% with the
log-normal transformation) while it ranges from &8673% (7% to 78% with the log-normal
transformation) for a capture probability of 0.5.

3.5. Tag misreading

3.5.1. Materials and Methods

A tag is defined as any marking, natural or adadetth¢ individuals during capture that
allows the identification of each animal specifigah later recapture. In order to evaluate the
impact of tag misreading in this chapter, tag naidneg was included in the simulation. The
tag misreading concerns only the single-type otwapas | assume that, with simultaneous
marking, i.e. marking by both methods on the sameasion, tags cannot be lost as one
method backs-up the other. A probability of misding tag or not recognizing it is introduced
by creating a matrix of 0-1 uniform random numbefghe same dimensions as the CMR
matrix (created after the situation of overlap)eihif the random number is smaller than a
set tag misreading rate and if the event corresptmé recapture by method 1 or 2 (namely
to a “4”, “5”, “17” or “18") (see chapter two), theag is considered lost, is erased from the
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history of the individual and a new line is addedthe CMR matrix. This new line only

contains “0” and the capture event erased prewo®b here | consider the situation where
the tag misreading results from a false negativécinirag mistake (for visual tags such as
ringing and photo-identification data), i.e. thewal tag is misread and not correctly matched,
or a laboratory mistake (for genetic data suchcas ar hair data), i.e. a new false genotype
appears instead of the proper one. Therefore, ishatils that lose their tag on one occasion do
not retain this new identity for subsequent recagstibut could possibly lose again their tag
on a later occasion. This configuration was chdeerthe simulation as | believe that, in

many vertebrate studies (e.g. humpback whalesy,the most likely scenario and that it is

unlikely that an individual which has lost its tégjther the photo or the genetic one) retains
this false identity for subsequent recaptures, gixoeybe if there is a new feature causing
the mismatch (e.g. new scar resulting from an ynjuy. In the presence of tag misreading,

the matrix created after the tag misreading prosessed to estimate population size.

The tag misreading rate is assumed homogeneoustt/gropulation, set at 5% per
occasion which is believed to be above the rateradr present in humpback whale studies
but might be plausible for other tag systems (@arland Mayo, 1990; Palsbgll et al., 1997;
Stevick et al., 2001).

3.5.2. Results

The results obtained with a tag misreading sitmaitiothe case of equal catchability
under the sampling scenario 20-40-40 and 50-25r2%llastrated in Table 3-7 for a starting
population of 500 (572 really) over 10 capture comas.
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Table 3-7- MRE, RMSRE, mean estimate and true value of theuladion size over the simulation runs, and
standard errors of the estimated values and norairthlog-normal Cl coverage rates at each captoasion of

a 10-occasion study with a tag misreading rate %f Bomogeneous within the population and a starting
population of 500 individuals.

Case Mean Mean True MRE Mean RMSRE Nominal Log-
Estimate Value estimated 95% CI  normal CI
SE coverage coverage
rate (%) rate (%)
Case 1
20-40-40
Pr(c)=0.2
N 647 641 0.01 68 0.26 56 58
2
N 699 694 0.01 71 0.17 77 79
3
N 771 758 0.02 81 0.15 87 88
4
N 807 805 0 86 0.14 88 89
5
N 869 852 0.02 94 0.14 91 o
6
N 919 887 0.03 100 0.15 91 88
7
N 961 942 0.02 107 0.16 86 85
8
N 1017 1002 0.01 115 0.19 76 78
9
Case 2
20-40-40
Pr(c)=0.5
N 621 638 -0.03 9 0.14 29 30
2
N 675 691 -0.02 13 0.12 49 49
3
N 75 755 0 19 0.1 80 79
4
N 803 803 0 22 0.1 86 8y
5
N 847 849 0 26 0.09 93 94
6
N 877 886 -0.01 28 0.09 94 94
7
N 919 939 -0.02 31 0.11 83 85
8
N 966 999 -0.03 35 0.13 70 12
9
Case 3
50-25-25
Pr(c)=0.2
N 674 627 0.07 65 0.26 64 64
2
N 706 655 0.08 64 0.18 76 76
3
N 757 694 0.09 69 0.17 79 16
4
N 774 719 0.08 71 0.16 80 78
5
N 789 745 0.06 73 0.14 84 84
6
N 827 763 0.08 77 0.15 86 83
7
N 855 795 0.08 82 0.16 82 82
8
N 879 829 0.06 86 0.19 78 75
9
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Case Mean Mean True MRE Mean RMSRE Nominal Log-
Estimate Value estimated 95% ClI  normal ClI
SE coverage coverage
rate (%) rate (%)
Case 4
50-25-25
Pr()=0.5
N 643 626 0.03 11 0.07 35 36
2
N 674 656 0.03 13 0.05 64 64
3
N 715 694 0.03 16 0.05 72 12
4
N 742 718 0.03 18 0.04 72 12
5
N 771 743 0.04 20 0.05 74 13
6
N 786 760 0.03 21 0.05 72 11
7
N 819 792 0.03 24 0.05 79 16
8
N 854 826 0.03 26 0.06 75 15
9
Nz, Ngzpopulation size estimate at time 2, ..., 9.

With both scenarios, the results are similar totwiras found in other studies: except
under scenario 20-40-40 for a capture probabilit9.6 for which the error was negative or 0,
tag misreading usually induces positive bias bexaapture probabilityPr(c) tends to be
underestimated (Williams et al., 2002). The ersoneégligible for both capture probabilities,
0.2 and 0.5 (J]MRE|<0.1). The overall error is be@® for all intermediate capture occasions

and gets smaller as the capture and the simultargupling probabilitie®r(c and Pr(s; )

get bigger. In terms of Cl coverage, the resules samilar to those found in the equivalent
cases with no misread tag (Table 2-1 and Appenjlixe%cept in the case with a capture
probability of 0.5 and scenario 20-40-40 where thsults are better when there is tag
misreading occurring. The Cl coverage appears toelter than usual for this method (>80%)

in most cases, except in case 4 (with capture piblyaPr(c) =0.5 and sampling scenario 50-

25-25) where it does not exceed 79%.
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3.6. Discussion

Heterogeneity in capture probabilities

Violation of the assumption of homogeneity in captprobability usually prevents or
restricts the use of the classic JS model for tirpgse of population size estimation in many
wildlife studies. This chapter shows, however, tiet TSJS estimator is fairly robust when
the heterogeneity in catchability among classemdiiduals is small. Studies focusing on
the JS model report minor bias on the populati@e sistimate when all individuals have
capture probabilities greater than 0.5 on all capteccasions (Carothers, 1973; Gilbert, 1973;
Hwang and Chao, 1995). Similarly here the extensfathe JS model, the TSJS model, gives
negligible error when all individuals have captprebabilities greater than 0.5 on all capture
occasions. As expected, the negative error incseasethe magnitude of the heterogeneity
rises and serious negative error can occur wheratbeage capture probabilities are small.
The structure of this heterogeneity is also a fatiaake into account when evaluating the
impact of heterogeneous capture probabilities. Hemhose to model the heterogeneity in
capture among classes of individuals rather thaongmndividuals and therefore to set the
value of the capture probability of the individudlased on biological features rather than
randomly as we suspect it to be the case in thelpbpn studied in chapter five. Another
source of heterogeneity that should probably bdoegg in future studies when two sources
of data are to be combined is where the degreeddfidual heterogeneity is not the same in

the two sampling methods.

The performance of the model depends on its assonspand further work is required
to develop an open-population model that can hahdterogeneity in capture probability
which is one of the most frequent sources of biaghundance estimators (Boulanger et al.,
2004c; Crespin et al., 2008; Hammond, 1986; Lirild4 Prévot-Julliard et al., 1998).

Heterogeneity in sampling probabilities

In the presence of heterogeneity in sampling priibieb among classes of

individuals, the estimator is usually relativelybissed.
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As mentioned earlier, temporal variatipar sein capture or sampling probability was
not considered here. However, in the present MQatdo experiment, some individuals can
have different sampling and capture probabilitiesrdhe course of the study, depending on
their reproductive status. A new-born female wdlvla a different capture probability when it
becomes adult and during the adult phase may chtsgeobability of capture several times,
depending on whether it is breeding or not. Genpadterns of heterogeneity in capture
probability are difficult to predict because thegyralso depend on the magnitude of specific
trends of temporal variation. In this chapter, iedrto reproduce a simplified pattern of
heterogeneity in catchability that | think is reden to the population studied in chapter five in
order to extrapolate the results on the error eftBJS estimator to real data.

Tag misreading

There are several ways tags can be misread: (l§xeting tag can be wrongly
assigned to another individual, (2) a tag can breaggnized, i.e. not matched where it should
be, and a new individual is created, (3) the tag ofew individual can be assigned to an
existing individual, (4) a tag that does not exesh be created, (5) a tag that does not exist can
be assigned to an existing individual. Errors @J &) correspond to what Creel et al. (2003)
referred to as “ghost” to represent a non-existjagotype. With natural marking there is no
list that is error-free and it is typically veryrdato know when an error has occurred. In
photo-matching, the only way to reduce the matchémgpr rate is to have a team of
experienced people and good-quality photographth @énetic data, when possible, two runs
of analysis could help minimizing the lab error.their study of humpback whales double-
tagged by photo-identification and genetics, Stewat al. (2001) did not find any false-
positive error, i.e. errors (1), (3), (5) and laalselieve that in such studies, if the protocol is
rigourous, false-positive error is unlikely in miaiteg photographs, at least for this species. In
genetic data, false-positive error is also veryikaty as the number of possible genotypes
usually greatly exceeds the number of genotypekdrpopulation. Therefore, for the present
simulation experiment | only considered false-negagrrors. However, the shadow effect is
not really tag misreading but rather an exampla study design flaw, even though it was
included in the tag misreading issue. In photo-idfieation, with non-evolving natural marks,
as in the humpbacks (unless the animal is injueegl, shark bites), the matching error is

unlikely to be repeated and the individual shoubd metain this new identity for subsequent
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recaptures. However, in an effort to be more généraonsidered the possibility in the
simulation that an individual might be missed aga®ating another individual. Similarly, in
genetic tagging, the chance of a false DNA fingetpibeing assigned again is very small
given the number of loci is adequate. | again abereid potential false negative error for the
same individual in subsequent recaptures. Findlg, tag misreading rate was assumed
constant although this might not always be the ,caspecially in photo-identification data

where animals with indistinct marks may be moreliiko be misread.

With a tag misreading issue, errors in identificati generally leads to an
overestimation of the population size (Stevicklgt2001). The TSJS estimator demonstrates
no error due to a homogeneous tag misreadinglieeethe JS estimator (Arnason and Mills,
1981). However, as stated in McDonald et al. (2008se results should not be extrapolated
to other situations for which they would be inapprate: the magnitude of the error in
abundance estimates certainly depends on the taigeading rate (see Appendix 6) which
should be kept as low as possible. In the matclohghotographs, these errors can be
substantially reduced, however, when the photoiyuatandard is high. This has the
disadvantage of reducing the sample size, leadireydecrease in precision. The magnitude
of the error in population size estimate may alspesds on the way the tags are lost in the
population (whether it is homogeneous or not). kinthe abundance estimators using one set
of data, the TSJS estimator already makes fullaiskhe double-marking. Double marking
has been previously used to circumvent the proldértag misreading in population size
estimation and reduce the bias (Stevick et al. 120l the TSJS model, double-tagging is
already integrated in the population size calcafatand, given a sufficient simultaneous
sampling probability, it should help overcome tag misreading issue and similarly any form

of tag loss.

In the simulation model, | decided to use a sudvigte of 0.91 (p.105) rather than the
published value of 0.96 for adult humpback whalekigher (Buckland, 1990 Gabriele et al.,
2001; Mizroch et al., 2004) to have a populatiolittee more open demographically to the
death or permanent emigration process. At firdgitsigmay be biasing the simulation against

closed population models. However, the “death” psscthat closed population models are
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responding to in many species (particularly lorvgdi ones as are primarily considered here)
is dominated by emigration and in the simulatidmale not included a separate permanent
emigration process. Therefore, by lowering the isatvrate | integrate a process of
permanent emigration and the value of 0.91 is #igtaa apparent survival value somewhat
larger than the estimates from the CJS (apparentivairtrue survival + permanent
emigration). In chapter five, apparent survivalraates with the CJS show that the humpback

whale population used in this study appears tovee enore open than that.

These results are probably relevant to a rangeamfel mammal populations and
possibly, given a proportional time scale shiftstame other groups as well. However, only a
small range of the possible parameters and modatespas been explored so these

conclusions inevitably have limited generality.
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4. Chapter Four

Model Comparison

4.1. Abstract

At present, many population size estimates areirdddausing one set of data with
closed population models. Some of those multipteypéure closed-population models can
handle individual or temporal heterogeneity in ca@tprobabilities. These models could thus
be appealing when estimating animal population sihen capture probability likely varies
among individuals or over time. However, such n®deost likely violate the closure
assumption and only provide a single point estiratr the whole study period. On the other
hand, the two-source Jolly-Seber (TSJS) model i®@an-population model providing an
estimate for every capture occasion (except tis¢ dind the last one) but is not able to handle
a great degree of individual heterogeneity. Thiis, of interest to compare, in the presence of
heterogeneity among classes of individuals as testin chapters two and three, the results
of the TSJS, the Jolly-Seber (JS) model and of dlesed population models handling
heterogeneity in capture probabilities that are mamly used even with open populations; M
and My by Chao and Mby Darroch. Given the structure of the heteroggnat the
simulation, the estimator for model,N& expected to perform better than the one for hode
M:. However, the estimator for modek®@hly performs better than the one of modeMten
the heterogeneity is extreme (case 4). The TSJ@ast seems to be the most appropriate
model when the individual heterogeneity is small #me capture probability high and is in
most of the cases the best estimator among thgp&Sof models presented here. However,
the closed population estimates and the average-pmaulation estimates do not have the
same meaning and should be compared with cautfoheterogeneity is believed to be
important, effort should focus on the study desigrorder to meet the basic assumption of
closure to use closed-population models handlirngrbgeneity or in order to use a model
based around the robust design. If the populatoopen during the experiment and two

sources of data available, the TSJS model is thst atvisable among the JS models.
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4.2. Introduction

At present, many population size estimates aredbaseclosed population models.
The classical two-occasion models include Chapmahs Petersen two-sample capture-
recapture method or Bailey’s modification of theypous method (Buckland and Duff, 1989;
Calambokidis and Barlow, 2004; Calambokidis et &P90; Felix and Haase, 2001a, b;
Garrigue et al., 2004; Larsen and Hammond, 2004psé& models assume that all animals
have the same capture probability on each capteastmon and that the population is closed
demographically and geographically. Of the multideapture closed-population models
often used, the simplest model, denotegl(™for no variation in capture probability) can be
inappropriate for many wildlife studies where véda in capture probability is likely to
occur. Therefore, more realistic multiple-recaptcised-population models are used to take
account of this possible variability by allowingptare probabilities to vary with time, and/or
among animals. Those last models could be appealveg estimating population size where

capture probability most likely varies among indivals:
M¢: capture probabilities vary over time,

My: capture probabilities vary among animals but @estant across time for each

individual,
M: capture probabilities vary among animals and twtte.

However, closed-population models might have litdeevance or might be hard to
interpret for some populations due to the long nwoimg period, migratory behavior of the
species, sampling design (e.g. small grid sizggpr@priate grid placement in bear studies)
for instance and therefore due to the violatiorthef closure assumption (Boulanger et al.,
2004b; Calambokidis and Barlow, 2004; Calambokadial., 1990; Cerchio, 1998; Meekan et
al., 2006; Smith et al., 1999). Kendall (1999) ee#d the robustness of closed-population
methods with various types of departure from thesute assumption: in the present
simulation study, the closure violation can be radaied to the case of “one entry and one
exit”. Kendall concluded that for this type of dwe violation no closed-population method
provides an unbiased estimate of abundance. Ggnelasure violation results in a positive
bias in abundance estimation because it inflatesittmber of marked animals and negatively

biases capture probability estimates (Boulangeracicellan, 2001).
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In some studies, researchers use two sampling oetHfor mark-recapture
experiments and two sets of data are availablecfféler and Robinson, 2006; Garrigue et al.,
2004; Laiolo et al., 2007; Smith et al., 1999; Url# al., 1999). My objective here is to see
whether the assumption of closure is more importaah the assumption of equal capture
probability and if using two datasets could overedime systematic underestimation in the JS
estimates in presence of heterogeneity in captwobability among individuals (Carothers,
1973, 1979; Hwang and Chao, 1995).

In this chapter, the performance of some closed#adipn models and of the JS
model to estimate abundance using one set of sla@mpared to the new models combining
the 2 sources of data, i.e. the TSJS model antvbrsource N model, using the simulation
described in Chapters two and three. The robustagske two-source M estimator was
checked and the two-source Ektimator is unbiased when all the model assumgtioe met
(see Appendix 7). In this chapter, the closed-pagh methods are first briefly described
before being compared to the JS model and the reemefvork developed in chapter one and

the validity and usefulness of such a comparisalisisussed.

4.3. Materials and Methods

4.3.1. Closed population models

For comparison purposes, multiple-recapture modidéls M, and M, and the JS
model, the variance-weighted JS model and the tuoege My model were coded to be used
in the simulations. This choice was based upon dlesed-population models used in
abundance assessment of many animal populations asicpolar bears, whales, sharks
(Calambokidis et al., 1990; Cerchio, 1998; Derochaat Stirling, 1995; Meekan et al., 2006;
Parra et al., 2006). A number of approaches haea lbeveloped for models (Mind M,
(Chao, 2001; Williams et al., 2002). The Darroclprapch for model Mand the sample
coverage method developed by Chao for model vidre chosen, among the various
approaches available: the Darroch approach for hMdgbecause it is the most widely used
for this class of models and mode}, By Chao because | anticipated the situation facéd w
the data analyzed in chapter five where most ofritlviduals are only caught once or twice.
Therefore, Chao’s model (Mvould appear to better suit the applied case (CHa&8).
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Temporal variation: Model M, by Darroch

Under model M animals have the same capture probability bus tapture
probability varies from one occasion to anothenr®eh (1958) demonstrated thdicould be

estimated by solving the following equation:

T ~
1—% = ”(1—%) where N is the estimated population siZg, the number of capture
t=

occasions during the studi,,, the total number of unmarked individuals that@aaght for

the first time during the study angl the number of animal caught at occadion

Daroch (1958) gave an asymptotic variance estinwdttire form:

| 1 T-1 1\
V(N){I\Al—nJr g Z(&-@H

Here | use a more recent approximation for theavexe for model Mgiven by the

formula (Amstrup et al., 2005):

A

AN — where N is the estimated population size andthe total
exp/N)-1-n/N

Var(N) =
number of animals caught during the study.

Heter ogeneity among individuals. Model M, by Chao

Under model N, every animal has its own capture probability thetre is no temporal
variation in capture probabilities. Chao (1988)pm®ed a moment estimator to estimidie
under model i, based on a method known as the sample cové€raflee sample coverage
can be calculated via frequency data:

C=1-—= fy whereT is the number of capture occasions during theysaml f, is the

Dotxf,

t=1

number of animals caught on exactlypccasions.

Then the estimate of the sample coverage can liktasestimate the population size

N as following: N :% where M., is the total number of unmarked individuals that a

caught for the first time during the study.
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The variance estimator under mode}, M provided using an asymptotic approach
(Chao, 1989):

Var(N) = U[OZ{LJ +(Lj + og{ij ]
f2 fz f2

Temporal variation and heter ogeneity among individuals: Model My, by
Chao

The model described below is a version of modgl Both temporal and individual
variations in capture probability are allowed bydabMy,: each individual can have its own
capture probability which can also vary over timghw = 1, ..., T. At the time Otis et al.
(1978) introduced model ) no estimation procedure for population size weailable.

Under such a model, the capture probabilitesare viewed as random elements from some

probability distributionF(p) and are contained in the resulting set of caphistories{x}

such that:

p, = pe where0O<peg < lwithi=1,..Nandt=1, ..., T
e denotes a capture probability that varies oveetim

Plx.] = PlxMr..JPM;..]

and

Plix JM-..] {I’] e }m [;p” [|‘] (L~ pe)" ™ ]dF( p)}

where y, is the number of times animiais captured,P[Mm] the probability distribution of
the number of animals that are caught for the firee which depends on the parameters
N,e,....e; and the distributiorF(p ,) M, is the total number of unmarked individuals that

are caught for the first time during the study.
Later Chao and Lee (1992) proposed an estimatam@mtel My, based on the sample
I\/II+1 + fl?z
C C

coverage approacH\AI = where j? is an estimate of the coefficient of variation

of the individual capture probabilities and an estimate of the sample coverage, both

estimated as follows:
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T
}A/z = max [MIHJ Zkzlk(k _1) fk _
T T
Zthlzk:Hln[nk

C

and
B -21,/(T-1)

d
LA
k=1

C=1

where f, is the number of classes that have exaktlglements in the sample.

4.3.2. Heterogeneity cases

For this analysis, | only consider the cases ottogfeneity in capture probability
described in chapter three:

I. Four cases of heterogeneity where the averggei@aprobabilityPr(c) is 0.2.

Table 4-1- Capture probability for each class for every cafSeeterogeneity considered at an average capture
probability of 0.2.

PrO)n PrOwe PrC)e  Pr). | ©V
Casel 0.21 0.22 0.15 0.15 0.14
Case2 0.24 0.24 0.1 0.05 0.37
Case3 0.25 0.25 0.05 0.05 0.43
Case4 0.35 0.1 0.05 0.05 0.64

ii. Two cases where the average capture probalili{g) is 0.7 (actually 0.64 in case

5) with all capture probabilities above 0.5.

Table 4-2- Capture probability for each subpopulation for gwease of heterogeneity considered at an average
capture probability of 0.7.

PrC), Prwes PrC)e Pree. | ¢V

Case5 0.8 0.5 0.5 0.5 0.23
Case 6 0.5 0.86 0.86 0.86 0.26

N.B.: in the previous tablespnt corresponds to adult males, “NBF” to the non-bliag

mature females, “BF” to the breeding females arad to the calves.
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4.3.3. Tag misreading

As stated in chapter three, tag misreading conaanhsthe single-type of capture as |
assume that, with the simultaneous double capttags, cannot be lost: with simultaneous
double capture, if one tag is misread, it is urtjiker the tag from the other method to also be
misread. Individuals that lose their tag on oneasmmn do not retain this new identity for
subsequent recaptures but could possibly lose abein tag at a later occasion. The tag
misreading rate is homogeneous over the populadietrat 5% per occasion which is believed
to be above the rate of error present in studigs) as studies in humpback whales (Carlson
and Mayo, 1990; Palsbgll et al., 1997; Stevick.e2801).

4.3.4. Expected trends in population size estimates

In the simulation, the heterogeneity is mainly amandividuals of the population.
There is, however, a small heterogeneity in capprababilities due to calves becoming
adults and adult females shifting between the statenon-breeding and breeding. Model M
does not seem very appropriate with the presentlation structure and is not expected to
work very well in any case here. Models, Mind M, might also be biased by the
heterogeneity in capture probability among indialdu(Kendall, 1999; Lee and Chao, 1994)
but | expect them to perform better as the indigldueterogeneity in capture probabilities
gets bigger, compared to models not accommodatatgrdgeneity in capture probabilities
among individuals (i.e. all the JS models, the ssarce M model and the Mmodel). The
main impact of heterogeneous capture probabilgresng individuals on models that are not
robust to this type of heterogeneity in capturebptmlities (i.e. the JS model, the weighted JS
model, the TSJS model and the two-sourgenibdel) is a negative error in both population
estimates and associated variances (Carothers, Hang and Chao, 1995; White et al.,
1982). Therefore, the JS model, the weighted JSeitde TSJS model and the two-source
Mo model are expected to underestimate the true populsize, with the severity of the error
in the estimates depending on the degree of hetreity in capture probabilities among

individuals.

Tag misreading as simulated here should intuitivelult in underestimated capture
probabilities and therefore should inflate the dapan size estimates. However, Arnason
and Mills (1981) and later McDonald et al. (200Bdwed that a homogeneous tag loss does
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not result in error of the JS estimates so lonthasapture probability is high. Consequently,
when the capture probabilities are high in the &tmon, the JS, the weighted JS and the

TSJS estimates should be unbiased.

The closed-population estimators produce a sirgfienate for the whole study period
and in the case of an open population these estimmahould be interpreted with caution.
When using closed-population methods for the esttmaof an open population size, the
group of animals in the study area at any giventiurapoccasiort belongs to a notional
superpopulation assumed to be closed (Kendall, )199¢erefore, in the simulation, closed-
population estimates should be interpreted as bdhmy size of the entire closed
superpopulation during the course of the experim&ntthermore the TSJS and the JS
estimators produce an estimate for each captursmy, except the first and the last ones. To
make possible the comparison of the open-populatiodels with the closed population ones,
the estimates, the MRE, RMSRE, standard errors9&#tl confidence intervals given by the
TSJS and the JS estimators are averaged over thechBions as well as the true population

size. Confidence intervals for the closed-poputatitodels are obtained using the traditional

form: N 1.96xseand the log normal approximatio(iilt /C; l(lt xC)

whereC = exp{z\/log(h Va’:]( th))}

t
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4.4. Results
4.4.1. With heterogeneity in capture probability among
individuals

Table 4-3 shows thalt:lTSJS is only the best estimator when the heterogengigmall
and the capture probabilities high (case 1, 6 andith respect to MRE, RMSRE and CI

coverage. Then, for cases 2 andI\ABrSMO appears like the best estimator in terms of MRE

(<0.1) and RMSRE(<0.11). However, in cases 2 ante&second best estimatb;ll; in terms
of MRE and RSMRE is the best in terms of Cl coveragte with more than 87% of ClI
coverage rate I\(ITSMO only has 10% of CI coverage in case 2 and 50%age G with both

approaches). In cases 2, 3, and 4, the closed-qtapulestimators are better than the open-
population estimators, with the TSJS estimator gdzeing the best of the JS models (which

is obviously because it is using more data). Howewnecase 3N.;5 and N, seem similar in

RMSRE and absolute value of MREQ{SJS underestimates Whi|é\Alh overestimates) and

A

N, even appears slightly better thﬁm in case 3, in terms of ClI coverage rate: normedl an
log-normal CI coverage rates are respectively 39 44% while being 34% and 32% for

A

N, , though this could be just sampling error.

All the estimators are expected to underestimate tthe parameter when CV>0
(Carothers, 1973; Hwang and Chao, 1995; Otis eflQ¥l8; Pollock et al., 1990) but most of

A

the closed-population estimatd\s, Nh, Nth and NTSMO present a positive error (MRE>0.1)

N A

for most cases of heterogeneiﬂgdt(, Nh, N,, and N, in cases 1, ZNt, Nh, Nth in case 3
and Nm in case 4) and when the average capture probalslihigh (all closed-population

estimators in cases 5, 6). When the heterogersehigh (case 4)[\]h and Nm provide a very
good CI coverage (with the normal approximation ahd log-normal transformation
respectively 99 and 100% fdﬁlh and 95% and 85% fol’:lth). The JS estimator leads to

estimates systematically more negatively biased tha ones given by the TSJS estimator

but better CI coverage rates in cases 2, 3 and 4.
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It is very interesting to note thalflt and NTSMO behave very similarly even though

NTSMO has no correction for temporal heterogeneity. Gegsson might be thaﬂTSMo uses
almost twice as more data as any of the other dipspulation models.

That the mean of the variance-weighted means ®itwlo single JS simulations does
not fall between the two separate JS averages reggm surprising. This comes from the fact

that, even though each of the 1600 (8 estimates2&@druns of simulation) individual

weighted means is indeed between the values dinbeorresponding estimates, one of the
JS estimatesriJSl from method 1 orﬁlJSZ from method 2) is not systematically smaller than
the other. For example see Appendix 8. Moreoverfétoe that the average weighted JS
estimate is always less than the smallest of tiesingle means ol 5 and N 152+ IS Decause

the weight is always largest for the smallest méaa correlated with estimate) so the
weighted mean is always closer to the lowest eséinmathe pair. This introduces a systematic

tendency to be small and explains why the averagighted mean is never higher than the

two averages of the JS estimat&& and N 152+

Table 4-3- Comparison of mean estimates under 6 cases ofogetagity in capture probabilities of closed-
population and JS models based on the dataset thangeighted JS model, the two-sourcgrivbdel, the TSIS
model under scenario 20-40-40, over 10 occasiodsdth a starting population of 500 individuals.

Heterogeneity | Mean Mean MRE Mean RMSRE Nominal Log-
case Estimate True estimated 95% CI  normal ClI
Value SE coverage coverage
rate (%) rate (%)
Case 1
CV =0.14
Pr(c), =02
N 709 728 -0.03 82 0.19 76 19
TSJS
N 689 -0.06 113 0.27 72 76
Jsl
N 682 -0.06 112 0.26 71 75
JS2
N 646 -0.11 75 0.22 60 64
wJS
N 962 0.33 75 0.36 2 D
t
N 1053 0.46 82 0.48 0 D
h
N 1073 0.46 68 0.66 0 D
th
) 943 0.31 34 0.31 0 D
TSM,

135



4. Model comparison

Heterogeneity | Mean Mean MRE Mean RMSRE Nominal Log-
case Estimate True estimated 95% ClI  normal ClI
Value SE coverage coverage
rate (%) rate (%)
Case 2
CV =0.37
Pr(c), = 02
,\“l 585 728 -0.2 66 0.25 41 46
TSJIS
N 566 -0.22 92 0.32 43 511
JS1L
,\“l 569 -0.22 92 0.31 44 511
Js2
,\“| 534 -0.27 62 0.31 24 28
wJS
,\‘l 799 0.11 69 0.16 94 9P
t
,\“l 871 0.21 72 0.24 34 27
h
,\“| 847 0.17 52 0.19 50 50
th
) 810 0.1 30 0.11 10 1P
TSM,
Case 3
CV =0.43
Pr(c), = 02
,\‘l 583 727 -0.2 67 0.26 39 44
TSJS
,\“l 561 -0.23 92 0.33 41 48
Jst
,\“| 558 -0.23 91 0.32 40 a7
Js2
l\] 524 -0.28 61 0.32 21 26
wJS
,\“l 802 0.11 70 0.16 91 87
t
,\“| 877 0.22 75 0.25 34 3P
h
N 866 0.18 55 0.2 31 31
th
X 773 0.08 27 0.09 50 50
TSM,
Case 4
CV =0.68
Pr(c), =02
l\] 411 728 -0.44 37 0.45 1 1
TSJS
,\“l 401 -0.45 54 0.47 5 v
Jst
N 398 -0.45 54 0.48 5 v
JS2
N 382 -0.48 36 0.49 0 D
wJS
,\“l 628 -0.13 55 0.16 43 49
t
N 700 -0.03 66 0.11 99 100
h
N 761 0.06 48 0.1 95 8b
th
) 616 -0.16 16 0.16 0 D
TSM,
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Heterogeneity | Mean Mean MRE Mean RMSRE Nominal Log-
case Estimate True estimated 95% ClI normal ClI
Value SE coverage coverage
rate (%) rate (%)
Case 5
CV =0.23
Pr(c), = 064
Y 677 727 -0.07 13 0.07 19 20
TSJS
N 558 -0.23 20 0.24 0 D
JSL
I\AI 561 -0.23 20 0.23 0 D
Js2
,\“l 557 -0.24 14 0.24 0 D
wJS
,\] 1068 0.48 44 0.5 0 D
t
I\AI 1159 0.61 42 0.63 0 D
h
I\AI 1275 0.74 37 0.75 0 D
th
N 1059 0.47 6 0.47 0 D
TSM,
Case 6
CV =0.26
Pr(c), = 0.7
,\] 731 729 0 11 0.04 55 55
TSJS
I\AI 581 -0.2 18 0.21 0 D
Jsi
I\AI 580 -0.21 17 0.21 0 D
Js2
,\] 578 -0.21 12 0.21 0 D
wJS
,\“l 1214 0.68 43 0.7 0 D
t
I\AI 1310 0.61 38 0.83 0 D
h
N 1412 0.93 35 0.93 0 D
th
N 1224 0.66 6 0.66 0 D
TSM,

~ A ~ ~ A A A A

Nrsiss Nysis Nusoy Nygss Nio Ny, Ny, Npgy = population size estimate for model TSJS, JS mbgel
sampling method 1 and 2, weighted JShylDarroch, M by Chao, , M,by Chag and two-source lyimodels.

4.4.2. With heterogeneity in capture probability and unequal
sampling probability

Compared to the previous section, another distwd&nown to be detrimental to the
TSJS estimator (see chapter three) is added tsiti@ation experiment the results of which
are shown in Table 4-4. This disturbance introdugedhe form of unequal sampling

probabilities Pr(s) and Pr(s,) should only penalize the TSJS estimator. Howeiveshould

benefit the other models in the way that the sansjde increases, because data for those
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single-source models will be based on the largédh® two datasets available: with the
previous scenario of 20-40-40 the dataset 1 cas@9s of all the data available for the TSJS
model. Under the scenario of 50-37.5-12.5, the s#ditd accounts for 87.5% of the total

amount of data used in the TSJS model.

Table 4-4- Comparison of mean estimates under 6 cases ofogetagity in capture probabilities of closed-
population and JS models based on the dataset thamekighted JS model, the two-sourcgrvbdel, the TSJS
model under scenario 50-37.5-12.5, over 10 occasaod with a starting population of 500 individuals

Heterogeneity | Mean Mean MRE Mean RMSRE Nominal Log-
case Estimate True estimated 95% ClI  normal ClI
Value SE coverage coverage
rate (%) rate (%)
Case 1l
CV =0.14
Pr(c), = 02
,\“l 732 726 0.01 68 0.16 79 80
TSJIS
N 709 -0.02 74 0.17 72 75
JS1L
N 668 -0.08 105 0.27 68 74
JS2
,\“l 679 -0.07 59 0.18 59 6P
wJS
,\] 977 0.36 53 0.36 2 D
t
N 1062 0.47 53 0.48 0 D
h
I\AI 1082 0.5 49 0.69 0 D
th
N 968 0.34 28 0.57 0 D
TSM,
Case 2
CV =0.37
Pr(c), = 02
,\] 601 725 -0.17 54 0.22 36 41
TSJS
N 583 -0.2 60 0.25 35 a1
JS1L
I\AI 543 -0.25 84 0.32 37 a4
Js2
,\] 559 -0.23 48 0.27 22 24
wJS
,\] 815 0.13 46 0.15 86 81l
t
I\AI 884 0.23 43 0.24 38 30
h
N 882 0.21 37 0.44 0 D
th
N 827 0.14 24 0.35 0 D
TSM,
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Heterogeneity | Mean Mean MRE Mean RMSRE Nominal Log-
case Estimate True estimated 95% ClI  normal ClI
Value SE coverage coverage
rate (%) rate (%)
Case 3
CV =0.43
Pr(c), = 02
,\“l 597 726 -0.18 54 0.22 35 39
TSJIS
N 580 -0.2 60 0.25 33 3D
JS1L
,\“l 536 -0.26 83 0.32 38 a4
Js2
,\“l 553 -0.24 49 0.28 20 23
wJS
,\‘l 813 0.13 46 0.16 86 8P
t
,\“l 882 0.22 44 0.25 33 25
h
,\“| 878 0.22 39 0.45 0 D
th
) 812 0.13 23 0.34 0 D
TSM,
Case 4
CV =0.68
Pr(c), = 02
,\‘l 430 726 -0.41 31 0.41 0 1
TSJS
,\“l 424 -0.42 36 0.43 1 N
Jst
,\“| 377 -0.48 48 0.49 2 3
Js2
l\] 403 -0.45 29 0.45 0 D
wJS
,\“l 668 -0.07 37 0.15 48 58
t
,\“| 746 0.04 47 0.1 99 99
h
N 850 0.16 47 0.4 20 20
th
X 679 -0.07 15 0.25 30 30
TSM,
Case 5
CV =0.23
Pr(c), = 064
J 691 729 -0.05 10 0.06 22 23
TSJS
,\“l 649 -0.11 13 0.12 8 1P
Jst
N 523 -0.28 17 0.29 0 D
JS2
l\] 597 -0.18 10 0.19 1 N
wJS
,\“l 1156 0.6 41 0.51 0 D
t
N 1241 0.72 42 0.64 0 D
h
N 1400 0.81 38 0.96 0 D
th
) 1134 0.54 NA 0.74 NA NA
TSM,

139



4. Model comparison

Heterogeneity | Mean Mean MRE Mean RMSRE Nominal Log-
case Estimate True estimated 95% ClI  normal ClI
Value SE coverage coverage
rate (%) rate (%)
Case 6
CV =0.26
Pr(c), = 0.7
,\“l 735 728 0.01 8.82 0.03 55 56
TSJIS
N 680 -0.07 11.3 0.07 23 24
JS1L
,\“l 537 -0.26 14.13 0.27 0 0
Js2
J 623 -0.14 8.76 0.15 0 0]
wJS
N 1303 0.8 43.32 0.71 0 0
t
,\“l 1386 0.92 35.09 0.84 0 0
h
,\“l 1499 1.07 31.88 1.04 0 0
th
N 1266 0.77 NA 0.88 NA NA
TSM,

~

N:s)s: I\AIJSl, NJSZ, Nst- Nt, Nh, Nth, NTSMO = population size estimate for model TSJS, JS mioylel

sampling method 1 and 2, weighted JSbyDarroch, M by Cha, , My by Cha, and two-source lyimodels.
NA= not available, because maximum likelihood hasuored on the boundary of the parameter spacegreg
of the probabilities is estimated very close ta Q.0

A

N;s,;s appears again to be the best estimator in casesadd 6 in term of RMSRE,
MRE and CI coverage, then the second best estinadtier I\AIt in cases 2 and 3. In case 3,

Nm and Nh perform equally in terms of RMSRE and absoluteigadf MRE butl\AlJSL has
slightly better log-normal CI coverage rates. Whie® heterogeneity in capture probabilities

P(c) is the highest, i.e. case 4, the closed-popuIaﬂeisﬂrmatorsI\AIt and Nlh are the best
although only Nh provides a very good CIl coverage in case 4 (with tog-normal
transformation 99% forl(lh and only 58% forNt). However, in contrast to the previous

section, Nth and NTSMO do not perform well in any case. Results (RMSRE,Bv&hd Cl

coverage rates) with the variance-weighted meamasir always appear between the results

of the two JS estimators, with better estimatesttierJS estimator based on dataset 1. It is

interesting to highlight that the JS estimator basa the largest datasel is0 always

performs better tharNJS2 in terms of MRE and RMSRE bul(lJSZ provides better CI

coverage rate in cases 2, 3 and 4. As before, Wieeaverage capture probability is high, i.e.
cases 5 and 6, all the open-population estimatnfenn far better than the closed-population

estimators.
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4.4.3. With tag misreading

In this simulation, all animals have the same ckavichaving their tag misread and
could possibly lose it several times. Under the bgemeous tag misreading experiment,

Table 4-5 shows that all estimators perform podoly Pr(c) <0.1 and then forPr(c) >0.2,
the open-population estimators perform far bett@ntall the closed-population estimators.
For small capture probabilities, i.8r(c) <0.1, NTSJS displays better than usual ClI coverage
rates (more than 78%). FdpPr(c) <0.5, all open-population estimators generally h&le

coverage rates between 50% and 84%. Then, witintlhease of the capture probability, the
standard errors, as in earlier chapters (e.g. TadleTable 3-3) decrease excessively for all
estimators leading to poor Cl coverage rateBrét) >0.5.

All closed-population estimators are systematicaflgverely positively biased

(MRE>0.3 and RMSRE>0.4): foNh, l(lt and Nm' the overestimation increases both in
terms of RMSRE and MRE as the capture probabRitfc incyeases. Fof(lTSMO , the error is
constant forPr(c ¥0.5, although higher foPr(c 50.05.

Table 4-5- Comparison of mean estimates, with a 5% tag migmgadte under constant capture probability, of
closed-population and JS models based on the datasel the weighted JS model, the two-sourgeniddel,
the TSJS model under scenario 50-25-25, over 18simes and with a starting population of 500 indiinls.

Capture Mean Mean True MRE Mean RMSRE Nominal Log-
probability Estimate Value estimated 95% ClI normal ClI
SE coverage coverage
rate (%) rate (%)
Pr(c)=0.05
x 785 727 0.03 348 0.8 81 84
TSJIS
N 613 -0.17 360 0.71 68 82
JSL
N 601 -0.18 352 0.72 66 83
Js2
N 504 -0.31 222 0.59 52 66
wJS
N 1033 0.43 188 0.5 1 10
t
N 1146 0.59 230 0.66 0 3
h
N 1165 0.6 221 0.76 42 32
th
N 1122 0.55 271 0.73 82 78
TSM,
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Capture Mean Mean True MRE Mean RMSRE Nominal Log-
probability Estimate Value estimated 95% ClI normal ClI
SE coverage coverage
rate (%) rate (%)
Pr(c)=0.075
N 802 729 0.1 240 0.6 82 80
TSJS
N 703 -0.01 267 0.61 77 81
Jst
N 721 -0.01 277 0.66 78 81
Js2
N 640 -0.12 182 0.48 65 7
wJS
N 1019 0.41 128 0.45 0 il
t
N 1125 0.56 151 0.74 0 0
h
l\] 1143 0.57 142 0.75 0 0
th
N 992 0.35 134 0.57 56 49
TSMo
Pr(c)=0.1
J 806 730 0.1 174 0.41 83 78
TSJIS
l\] 738 0 203 0.44 80 8L
JS1
N 742 0.02 205 0.48 78 81
Js2
N 699 -0.04 144 0.39 69 72
wJS
N 1036 0.41 101 0.46 0 0
t
N 1140 0.57 117 0.61 0 0
h
N 1160 0.62 110 0.77 0 0
th
N 953 0.33 85 0.57 12 mn
TSM,
Pr(c)=0.2
X 783 728 0.07 73 0.17 74 71
TSJIS
N 729 0 91 0.2 80 80
Jst
l\] 728 0 91 0.2 80 80
JS2
N 737 0.01 68 0.19 82 70
wJS
N 1048 0.45 61 0.47 0 D
t
l\] 1144 0.58 64 0.61 0 D
h
N 1274 0.77 69 0.87 0 D
th
J 1010 0.38 36 0.59 0 D
TSM,
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Capture Mean Mean True MRE Mean RMSRE Nominal Log-
probability Estimate Value estimated 95% ClI normal ClI
SE coverage coverage
rate (%) rate (%)
Pr()=0.3
N 796 730 0.09 47 0.14 64 62
TSJS
N 738 0 59 0.13 79 78
Jst
N 738 0 59 0.13 80 79
Js2
N 734 0 41 0.1 84 72
wJS
N 1144 0.58 53 0.6 0 D
t
N 1254 0.73 56 0.75 0 D
h
l\] 1409 0.96 58 0.98 0 D
th
X 1046 0.44 21 0.64 0 D
TSMo
Pr(c)=0.4
J 758 728 0.04 27 0.07 50 49
TSJIS
l\] 697 -0.04 37 0.09 76 T
JS1
N 697 -0.04 37 0.09 75 76
Js2
N 722 -0.01 28 0.08 64 63
wJS
N 1109 0.54 45 0.56 0 D
t
N 1201 0.66 41 0.68 0 D
h
N 1535 1.08 54 1.04 0 D
th
N 972 0.35 14 0.69 0 D
TSM,
Pr()=0.5
X 751 727 0.03 19 0.05 33 33
TSJIS
N 675 -0.07 26 0.08 66 68
Jst
l\] 673 -0.08 26 0.1 67 68
JS2
N 704 -0.03 21 0.07 54 55
wJS
N 1148 0.59 43 0.61 0 D
t
l\] 1241 0.72 40 0.74 0 D
h
N 1681 1.33 59 1.17 0 D
th
J 1115 0.55 19 0.72 0 D
TSM,
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Capture Mean Mean True MRE Mean RMSRE Nominal Log-
probability Estimate Value estimated 95% ClI normal ClI
SE coverage coverage
rate (%) rate (%)
Pr(c)=0.6
N 750 730 0.02 16 0.04 22 22
TSJS
N 656 -0.1 19 0.11 46 4y
Jst
N 655 -0.1 19 0.13 46 4y
Js2
N 684 -0.06 15 0.09 33 34
wJS
N 1190 0.64 43 0.66 0 D
t
N 1283 0.77 41 0.79 0 D
h
,\] 1818 1.48 66 1.26 0 D
th
X 1129 0.55 7 0.73 0 D
TSMo
Pr(c)=0.8
J 738 728 0.01 9 0.02 6 6
TSJIS
,\] 602 -0.17 10 0.18 7 v
JS1
N 602 -0.17 10 0.18 7 v
Js2
N 643 -0.12 9 0.13 3 3
wJS
N 1258 0.74 43 0.76 0 D
t
N 1346 0.87 44 0.88 0 D
h
N 2150 1.96 83 151 0 D
th
J 1180 0.63 4 0.78 0 D
TSM,

~ A

~ ~

A A

A

Nrsiss Nysis Nusoy Nygss Nio Ny, Ny, Npgy = population size estimate for model TSJS, JS mbgel
sampling method 1 and 2, weighted JSbiDarroch, M by Chao, , M,by Chag and two-source lMmodels.
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4.5. Discussion

The relevance of this chapter is based on the vhgen that researchers knowingly
use closed-population models on open populationsilgBiger et al., 2002; Calambokidis and
Barlow, 2004; Cerchio, 1998; Karanth and Nichol898; Meekan et al., 2006). Therefore, |
was interested in seeing which of the closed-pdjmuiaor the open-population approaches
were the most appropriate with an open populatiovarious cases of heterogeneous capture
probabilities among individuals and tag misreadifigne aim was to identify general
guidelines in the use of closed and open-populanoodels in the case of an open
heterogeneous population, as well as to be albdgtrapolate the magnitude and direction of
the bias to results based on real data in chapter €onsequently, the results in this chapter
illustrate the need to carefully measure the badm®tween the bias caused by the violation of
the assumption of closure with closed-populatiordel® and the bias caused by the violation
of the assumption of homogeneous capture prohabilivith open-population models on
abundance estimates. It is not surprising here tbatan open population it is more
appropriate to use open-population estimators whendegree of heterogeneity in capture
probabilities among individuals is fairly small thre average capture probability very high or
the degree of openness high. As expected, thetsesimbw that when the heterogeneity in
capture probabilities among individuals is smallam open population, the violation of the
closure assumption leads to more biased estimétespuilation size with closed-population
models than the abundance estimates with open-piiguimodels despite the violation of
equal capture probability. It also seems straighthod that, when the heterogeneity in
capture probabilities is high, using a closed-papaoh estimator handling heterogeneity in
capture probability is the best approach, evenghdbe population is open, especially if the

openness is not great.

A major point about the interpretation of the résuh this chapter is that closed
population estimates and the average open-populagiimates do not have the same
meaning and should always be compared with caufidre closed population models
estimate the total population size during the twhelata collection, so over 10 occasions in
the simulations. In fact, when closure is violateldsed population estimates often apply to
the size of a superpopulation, from which animalghie sampling area are a random sample

at each capture occasion, that is assumed closadai®yer and McLellan, 2001; Kendall,
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1999). On the other hand, open-population moddisate the size of the open population for
each capture occasion and | calculated the averageall occasions to get a single point
estimate. Consequently, two different notions gbpydation size are compared: the average
size of an open population over the whole expertmétih an open-population model and the
closed superpopulation estimates provided by theed-population models in this chapter.
However, in the simulation, the population is ordpen demographically, there is no
movement in and out the theoretical study arearamdincatchable individuals. Therefore,
estimates of population size, with closed and gugvulation models, should not be taken for

the estimates of a superpopulation.

An important point to highlight here is the directiof the error that systematically
differs between open and closed-population moasaisept in case 4 (high heterogeneity), all
closed-population estimators tend to overestimiageabundance while all open-population
estimators consistently underestimate it. Underegtton was expected here with all the
population size estimators when capture probadsliire heterogeneous among individuals
(Carothers, 1973; Hwang and Chao, 1995; Kendaf919ee and Chao, 1994; White et al.,
1982). On the other hand, closure violation, egdgcof the kind of “one entry (i.e. birth)
and one exit (i.e. death)” is known to introduce auerestimation in the population size
estimates with closed-population models by negbtiiasing the capture probability
estimates (Kendall, 1999; Boulanger and McLella®0D). Therefore, the observed
overestimation with closed-population models intkdhat, for closed-population models, the
positive bias induced by the violation of the cl@sassumption, even though limited in this
simulation, is larger than the negative bias indubg the violation of the homogeneous

capture probability assumption.

In the presence of a moderate to high degree efdgtneity (cases 2, 3, 4) in capture
probabilities, all closed population estimatorsfgen better in terms of the error on the
abundance estimates than any of the open-populagstmators presented here. However,
with a relatively small degree of heterogeneitysécd) or a high average capture probability
(cases 5, 6), all the open-population estimatondopa better than any of the closed-
population estimators. So it seems that the degrdesterogeneity in capture probabilities,

the average capture probability and the degreepehioess, if they can be measured or
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estimated, would be sensible criteria to decidéig more important to hold the assumption
of closure or the assumption of equal capture grtibaand therefore choose between open
or closed-population models. The degree of heterige is an especially hard feature to
estimate in field studies but the use of individoaVariates recorded during the experiment
could be an efficient way of explicitly modelingettheterogeneity in capture probability
among individual (Huggins, 1991). The degree ofnmgss can sometimes be estimated in the
field with additional investigations (e.g. radiolewed bears (Boulanger et al., 2002)) or can

be tested using specific tests for closure (Ota.et1978; Stanley and Burnham, 1999).

With this structure of heterogeneity in capture hadailities, the new estimators
combining both sources of data seem to be the suistble estimators in most of the cases
presented here. Therefore, combining both sourtdsata in a model to estimate population
size appears to be an efficient way to reduce e and, in some cases, enables researchers
to use an open-population model with heterogeneapsure probabilities among individuals
of the population without facing an unreasonabléenestimation. The TSJS model was
generally better with a small heterogeneity in aegpiprobabilities among individuals (case 1)
and high average capture probability (cases 5 amnehbe the two-source yimodel was the
best model in terms of magnitude of the error wtienheterogeneity was moderate (cases 2

and 3). However, if the ClI coverage rate is théedon, the traditional closed-population

estimatorNt is the best estimator when the heterogeneity derade (cases 2 and 3). In case

4 (high heterogeneity), there is no ambiguilt:y,; and Nm are the best estimators.

While it seems that the TSJS estimator is alwagsb#st estimator among all the JS-
related estimators presented here, it is not naggssbvious which of the closed-population
estimators is the most reliable when closed-pomriamodels should be used, i.e. low

population turnover with high heterogeneity. In firesence of a moderate to high degree of

heterogeneity in capture probabilitieB]TSMO and I\Alt appear fairly consistent in the error
while the results withN, and N, seem to greatly depend on the degree of heteritgehe

would have expected‘flt to perform not that well given the very small teorgd heterogeneity

and the increasing individual heterogeneity in aegprobabilities and | would have expected
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A

N, to perform better thari\Alt. However, as anticipatedl,\AIh turns out to be the most

appropriate estimator when the heterogeneity isrtbst extreme.

The TSJS estimator also appears to be better idlihgrtag misreading compared to
closed population estimators. The single JS modaldcalso be used with regards to ClI

coverage rate as, in most cases, it produces gt€Cbeoverage rate.

Researchers should keep in mind that, if the stugagulation is open during the data
collection, results based on closed-population rsodan be difficult to interpret and the
direction and magnitude of the bias will dependpossible violation of other assumptions,
especially the assumption of homogeneous captuwiapility. If heterogeneity in capture
probabilities, either temporal or among individuatsboth, is an important source of bias in
population size estimates, the study design shfoglas on meeting the assumption of closure
so that closed-population models handling hetereiggencould be appropriately used.
However, using the TSJS model proposed in the ptesssertation leads to improvements in
abundance estimation as compared to applying tesicl JS estimator to a single source of
data. From a monitoring point of view, an open-gapon model, for an open population, is
sensible and interpretable, even though estimatghtnbe biased by heterogeneity. The
direction of the error is known when heterogenéitgapture probabilities is suspected and
therefore, the estimates can be interpreted inempreice as being an underestimate of the
true population size which is, in some cases, tprbéerred in population size assessment for

precautionary reasons, i.e. for an endangeredespegiota management.

148



5. Analysis of the abundance of the New Caledohianpback whale population

5. Chapter Five

Analysis of the abundance of the New Caledonian
humpback whale population

5.1. Abstract

The two-source Jolly-Seber (TSJS) and the two-soWicmodels are applied to data
from the humpback whalé/legaptera novaeangliagopulation in New Caledonia (South
Pacific). This globally distributed species undkes systematic yearly migrations between
feeding and breeding grounds: in the South Hemigphbe feeding taking place in the
Antarctic, so the whales are mainly accessiblestonpling on the breeding grounds located
in lower latitudes. On the breeding ground of Neatgdonia, whales are usually present from
July to September and a sampling protocol combimpingto-identification and skin-biopsy
has been used since 1999 to sample the populafius. sampling protocol leads to the
creation of two datasets: a dataset for the plaeatified whales and a dataset for the
genotyped ones. Individuals are frequently, butalatays, photographed and genotyped on
the same capture occasion; the TSJS and the twoesty approaches thus seem ideal for
analysis of these data. Estimates of abundanceidewvby these new approaches are
compared to population sizes given by traditionathods: relevant multiple-occasion closed-
population models (Moy Darroch, Mby Chao, M by Chao, M using the jackknife method
and M), the Chapman modified Lincoln-Petersen and thig-3®ber (JS) estimators. Those
traditional estimators give very different resudepending on the dataset used (photographic
data 1999-2005, photographic data 1999-2004 with guality-controlled (QC) photographs
or genetic data 1999-2005) while the TSJS andwioesburce N estimators disagree bate
separately quite consistent between the two datasetilable (combined dataset 1999-2005
and combined 1999-2005 with only the QC photograp8surces of bias for the different
estimators are explored. Closed-population estisnate probably overestimated due to the
violation of the closure assumption. Investigatioma larger spatial scale including data from
neighboring breeding grounds (Tonga, Cook Island Brench Polynesia) indicates that

temporary emigration takes place, which violates desumption of geographical closure for
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the closed-population models. Results for appasentival with the Cormack-Jolly-Seber
(CJS) model also suggest that long-term emigratiag occur in the population. Evidence of
temporal heterogeneity and individual variationcapture probability is highlighted by the
CJS model and the tests for temporal variation repgding probabilities in program
CAPTURE. The temporal heterogeneity in capture abdlies seems to arise from a
heterogeneous sampling effort throughout the y&082 and 2004 presenting considerably
less effort than the other years) and could bedmebwith a standardized sampling effort.
Finally, tests with U-CARE indicate the presencetminsient individuals (significant for
males) passing through New Caledonia once withrg Mav probability of being captured
again on a subsequent occasion. This heteroganeaigpture probabilities among individuals

most likely results in an underestimation of th@uylation size with the TSJS model.
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5.2. Introduction

Humpback whales were heavily hunted from the enthefld century through the
20" century. Chittleborough assessed this populatmrbe 22,000-34,000 in the 1930's
(Chittleborough, 1965). In the 20th century alo860,000 individuals were killed in the
Southern Hemisphere, more than 48,000 were ill8galet catches from which 30,000 were
killed between summers 1960 and 1962 (Clapham, ;20@®ham and Baker, 2002; Findlay,
2000; Walsh, 1999). Post-exploitation stocks miggave been as low as 10% of the pre-
exploitation stocks for some populations. Humpbpokulations are nowadays recovering
and rates of recovery might be as high as 10% ear y» some cases (Zerbini et al., 2008).
However, concerns remain for some subpopulationsuofipback whales, i.e. the Arabian
Sea, the western North Pacific, the West coastfoé®and the South Pacific subpopulations,
for which information about status is lacking (Re#t al., 2008). To monitor the recovery of
these discrete subpopulations, it is therefore mapb to have reliable and precise estimates

of population size.

In the Southern Hemisphere, the Antarctic feedirgg as divided into six areas (I to
VI) and humpback whales are classified into sevegs (A to G) in the breeding ground.
Humpback whales breeding in New Caledonia are Vedido feed in area V and belong to
the breeding group E (IWC, 1998). Two sampling radthare used to individually identify
whales and gather data during the breeding sedsiwy to September): photo-identification
and skin biopsy (Garrigue et al., 2001). When huacgbvhales dive, they usually raise their
flukes and enable researchers to photograph thkimgarand unique pigmentation patterns
on the ventral surface: all whales in New Caleddrase a distinct marking that allows to
uniquely identify them. In New Caledonia, whaleg atso genotyped via a tissue sample
collected using a crossbow with an adapted bolvery opportunistically, via a skin sample
that can be harvested with a net after the whasebin@ached. However, on a given capture
occasion, some whales may not fluke so they cadmm@hotographed and some others cannot
be approached to be genotyped. Using both photdtisation and the genotype via skin
biopsy sampling during a vessel survey has proviecteve to gather more data and is used
to survey the humpback whale population in New @ahéa. This sampling protocol leads to
the creation of two datasets, one for each samptiathod: a dataset for the photo-identified

whales and a dataset for the genotyped ones. thdils are frequently but not always
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photographed and genotyped on the same captursioecdhe TSJS and the two-source M
methods thus seem particularly well suited for gsialof these data.

In this chapter, | start by estimating the abundaon€ the population using the
traditional closed-population estimators, the tiiadal JS estimator estimator using each
dataset independently, before comparing thosetsesuth those provided by the variance-
weighted mean of the JS estimators, the two-soMigestimator and the TSJS estimator on
the combined dataset. | then explore the possilecss of bias in those estimates due to
violation of the demographic and geographic closassumptions and to the possible
heterogeneous capture probabilities and | makerantes on survival using the TSJS
corrected estimator and an approximated CJS li@etih Finally, | discuss the validity of

these abundance estimates in the case of the haknpihale population of New Caledonia.

5.3. Materials and Methods

5.3.1. Field methods

Since 1999, the same field protocol has been usddeiv Caledonia to gather data
(Garrigue et al., 2001). The sampling season usteites place from July to September and
the team goes to sea every day, unless sea corddi@ too bad, in an outboard-powered
semi-inflatable boat. The boat randomly surveysasea of roughly 1,000 km? and can be
directed towards whales by a land-based team nmrongtohe same area (Fig.5-1). When a
whale or a pod of whales is encountered, an attésnpiade to get a photograph and a skin
sample of the solitary individual or of each of thdividuals present in the group. Sampling
ends when a photograph and a skin sample havetakem, or after approximately one hour

of attempts.
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Fig.5-1- Sampling area in the South lagoon of New Caledonia.

5.3.2. Matching process

Flukes were classified by their degree of whitenessnake the matching process
easier (Carlson and Mayo, 1990; Friday et al., 2080ery photo was matched against the
existing catalogue by at least two experiencedques.s

Eleven published microsatellite loci were used bwrrgue et al. (2004) for
genotyping matching. Alleles were sized with thdtware packages GENESCAN and
GENOTYPER 2.5 (Applied Biosystems). Individual nfatg was done using CERVUS 2.0
and GenAlEX. A genotype was a match when ident@ahnother one. To decrease the risk of

genotyping errors, two analyses were usually rureéeh biopsy sample.

Finally, to avoid photo-matching and laboratoryfietd recording) errors, genetic and
photo records were also compared when available.

For further information on the photographic matensed and molecular analysis see
Garrigue et al. (2004). 1 was involved in laterldievork in New Caledonia and | did not
contribute to the collection of the 1999-2005 dagad in this chapter.
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5.3.3. Datasets

Photo-identification catalogue

Two photographic catalogues were available atithe of the thesis:
1) the photographic catalogue 1999-2005 wherehaltqs are included,

2) the photographic catalogue 1999-2005 where ghodwe been checked for quality
under a protocol for ranking the quality of eaclofolgraph (Calambokidis et al., 2001) (also
referred to as quality control (QC) protocol). Tperpose of this protocol is to make all
photographic catalogues in the South Pacific homeges to ease the comparison and
research of matches within and between the breegtimgnds in this area. Under this protocol
photographs are given a number between 1 and &iiig lgood and 5 being bad) for different
characteristics: exposure, fluke angle, percentdgle fluke that is visible, focus and lateral

angle. If a photo receives at least one 5 orid,deleted from the catalogue.

Fig.5-2- Example of a photograph (on the left) removed unidequality-control protocol against a good-qualit
one (on the right).

The photographic catalogue 1999-2005 containetbhdb227 capture histories: from
this complete catalogue (with all the photos) 12995, 29 photographs were deleted
because of the photographic QC protocol, resultinfpe suppression of 26 capture histories.
Indeed, of those 29 deleted photographs, only thwexe part of a multiple capture history
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and so 26 capture histories were actually deleseth@ir unique capture by photograph was
deleted.

Genetic database

Genetic data were available for the years 19990fb 2vhich comprised 313 capture
histories. In addition to capture-recapture infaiiora the genetic database provided

information on the sex of each biopsied individual.

Combined datasets for the two-source Jolly-Sebedeio

Since there were two photographic catalogues a@lailan addition to the genetic
database, there were two possible combined datametse with the TSJS model and the

two-source N model:

a) The genetic dataset 1999-2005 and the photograptalogue 1999-2005, with all
the photographs, which comprised 331 capture héstdrom which 107 have been genotyped
only, 18 photographed only and the remaining 2Q@wa histories contained at least one

double sampling capture,

b) The genetic dataset 1999-2005 and the photograpitalogue 1999-2005 where
photographs have been checked for quality. Thisbtoed dataset included 328 capture
histories from which 128 have been genotyped onty B2 photographed only. From the 29
photographs deleted under the quality-control maltoonly three capture histories were
deleted from the data in the combined dataset P99%- under the quality protocol.

The compiled datasets with photographic and germztia were formatted using the
encounter history code detailed in chapter two. dputer program has been written
(Appendix 9) to allow users to easily format theata in this way.
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5.3.4. Capture-Recapture estimates

Besides the TSJS estimator and the two-sourgenbdel, multiple-occasion closed-
population models, the Chapman modified LincolnePsn estimator and the JS model were
used to estimate the whale population size fronpti@ographic datasets 1999-2005 with all
the photographs, 1999-2005 with only the good-dyalnotographs and the genetic database
1999-2005. The multiple-occasion closed-popula@stimates were produced using program
CAPTURE included in the option “closed capture’pimogram MARK. Program CAPTURE
computes the estimation of population size for nedd; by Darroch (Mbarrocy), Mt by Chao
(Michag, Mn by Chao (Mchag, Mn using the jackknife method {@ckknitd, Min, Mo, My, by
Zippin, generalized removal ) Pollock and Otto’s Mh, My, by BurnhamModels including
a behavioral response (denoted by a “b” in the ity were not explored because trap
response is not believed to occur during samplmdnumpback populations: studies have
shown that biopsy sampling may cause a short-temimmal disturbance that typically does
not affect later recaptures by biopsy or photo p6éam and Mattila, 1993; Weinrich et al.,
1991). Here | considered modelspMoch Michao Mhchae Mhjackknite @nd My (Amstrup et al.,
2005; Borchers et al., 2002; Seber, 1986; Seb&?2)20odels Mbaroch Mhchao@nd My, are

described in chapter four and the JS in chapter one

Closed-population models

Model M, by Chao

Under model M all individuals have the same capture probabditya given capture
occasion but this capture probability can vary otmere. The general model (Mand the
corresponding multinomial likelihood can be viewasl aT-sample version of the Lincoln-
Petersen estimator (Darroch, 1958; Williams et2flQ2):

ooy
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where N denotes the population sizey the capture probabilityM,,, the number of
individuals recaptured at occasidrl, a, the frequency of observable capture historgnd

n=n +n, +...+n, the total number of captures.

Chao (1989) developed an estimator for model Which is especially useful with
sparse data: when the number of recaptures is smatlach capture occasion, most of the
individuals do not have many captures in their gagphistories. Chao’s purpose was to base

the estimator on the lower-order frequency countis:w
N =S+ f,
where S is the number of distinct individuals capturedhe T samples and, is the number

of animals never captured. To do so, it is necgsmaestimateE(f,) from f, and f, which

are, respectively, the number of animals captursettey once and twice. This leads to an

estimator forN of the form:

where Z, is the number of animals caught only in ttiecapture occasion.
A bias-corrected form of the previous estimator was/ided by Chao:
T
f12 _ zth
S+ t=1
2(f,+1)
Under model Mchae Variance is given by:

A

Varest(lﬁj-:[lil—s}(ﬁ_sjz( 1 +i}r§(f1—zt)zzt—LTZl(fl—zt)th/N

f,+1 N (f,+2)

Model M, using the jackknife method

Under model N, every individual has its own capture probabityich does not vary

over time. The vector of capture probabilitigs} is viewed as a random sample of site
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from some probability distributiotr (p) defined on the interval [0,1] (Burnham and Oveyton

1978; Burnham and Overton, 1979; Otis et al., 19T8e corresponding model is of the

form:

N!

T
7TN_MT+lrlﬂfj
(N_MT+1)!|_|-;—:1fj! ’ 1= J

P(f,,....F;|F)=

T N
wheren = =y P 6P

7, can be viewed as the average probability thahamal is caught exactlytimes.

The approach for Musing the jackknife statistic (Quenouille, 19495&) givesM, ;

as a naive estimator &, and the bias is reduced using a linear functibthe capture

~ T
frequenciesf; such thatN, = Zajk f, wherek is the “order” of the jackknife estimator and
j=1

;. the coefficients generated by the jackknife proced

For the variance, | chose to present the resuitg uke profile likelihood approach as
recommended in Cormack (1992) and applied in Qt.€1978).

The Chapman modified Lincoln-Petersen estimator

The Chapman modified Lincoln-Petersen estimatofss ased on the same datasets
(Borchers et al., 2002):

N = (nl +1)(n2 +1) -1
m+1

where N is the estimated population size for the consuieapture occasiom, is the total

number of capture on the previous capture occasigrthe total number of capture on the

considered capture occasion amdthe number of marked animals captured on the densi
capture occasion. For estimation purposes, the fdata one capture occasion were used as
first-capture data for the estimate of the nexttwagpoccasion and as recapture data for the
estimate of the relevant capture occasion (exdeptfitst capture occasion,i.e. year 1999

which can only be used as first capture data feregtimation of year 2000).
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The approximately unbiased estimator of the vagasficChapman modified Lincoln-
Petersen estimator is as follows (Wittes, 1972):

n + 1)(”2 +1)(n1 ~ m)(nz - m)

)=
vl e

Confidenceinterval

For all models, confidence intervals displayedhe tesults are classical approximate

95% confidence intervals of the form: estimatel.96xse A log-transformation

approximation was also used to get improved 95%iademce intervals as{I\AI/ C;N xC)

whereC = exp{z\/log(1+ Va[EJ(ZN) )} .

Growth rate

The Chapman modified Lincoln-Petersen, the JS hadlSJS estimators lead to an
estimated population size for each capture occasiam study (except on the first and last
occasions for the JS and TSJS, and except onrdteoficasion for the Chapman modified
Lincoln-Petersen). For those three estimatorss ithen possible to get the finite rate of

population increase. The growth rateat timet is defined here as the ratio of abundanNes

in two successive capture occasibasdt+1: A =N,,,/N, .

The associated approximate standard error is dkfisefollows (Kendall and Stuart,
N S > (se Y S S
1969):s8,,,, =—* \/(—e“j +( ‘%j — p x My SR
/\lt Nt Nt+1 Nt Nt+1 Nt

wherer is the unknown but most likely positive correlatibetweenN,,; and N,. Therefore,

| choose to assume independence to get a consergéindard error and set 0.

To investigate the abundance trend and see wh#thethree models (the Chapman
modified Lincoln-Petersen, the JS and the TSJS tap@eovide the same evidence for the
dynamics of the present population, the populatjoowth rate and associated standard error
were calculated and presented in the corresporabingdance table.
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5.3.5. Exploration of model selection and assumption
violation

Goodness of fit and model selection with program ERURE

Program CAPTURE includes, for closed-population eled goodness of fit and

specific tests (Otis et al., 1978) based on stah@ai-square tests which allow a user:
1) to test the fit of a given model to the data
2) to test a model against a more general one.

These tests provides information that can be ugetktermine the most appropriate
model: the test for heterogeneity of trapping ploliges and the one for time specific
variation in trapping probabilities might give ight on whether some kind of heterogeneity
was present in the data. Program CAPTURE also imm@ies a procedure to select the

appropriate model based on a linear discriminaadsifier.

The Cormack-Jolly-Seber approach: a way to get imf@tion on the capture and
survival probabilities

As for closed population models, the original CJ®dei uses multinomial
distributions to model captures and recaptures.dJ® model is related to the JS model as it
was originally derived from one of the likelihoodnaponents of the JS containing the capture
and the survival probabilities that are time-degamndIt requires information only on the
marked individuals of the population and Lebretdnak (1992) developed an approach
allowing the modeling of survival and capture ptaobty. The component of the JS model
was originally derived by Cormack (1964), and corgdhe recapture information conditional

on the numbers of marked animals released at eaasion:

_ T-1 R
D (rnt,t+1)!(rnt,t+2)!"'(rnt,T)!(Rt _rt)!

p.{m} | {RM{akip))

((4 ptﬂ)m!,m

X{ [(q (1_ pt+1)¢?+1 sz]mt,t*er.. [(q (1_ pt+1)"'xﬂ'—lpT]rrLT tpt_rt}
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where R denote the number of releases at time the number ofR captured again later,

@ the apparent survival at tint@nd Y, the probability that an animal alive and in thedst

population at time is not caught or observed again at any time afipture occasion

Two parameters are used in the model: the captwobapility p, that a marked
individual at timet is captured at timé and the probability of survivalp that a marked

individual alive at timet survives until timet+1 and does not temporarily emigrate. This
second probability combines the probability of suml per seand the probability of not
emigrating from the sampling area between captweasions and hence represents the
probability of apparent survival.

The use of the CJS model here could allow the esiom of the capture probabilities
and survival rates from an open-population modék Tirst advantage of this model is the
direct estimation of capture probabilities for timarked individuals of the population. This
will provide valuable information to relate to thesults of chapters three and four on the
simulation of the TSJS given the estimated valuthefcapture probabilities obtained with the
CJS. Then, because it allows the modeling of thrtuca probabilities, it will be possible to
investigate whether the capture probability is tspecific using the photographic catalogue.
Using the genetic data will provide additional imf@tion on the capture probability and
survival: not only will it be possible to see ifetle is a temporal variation for capture
probabilities and survival, but also to see if fé&gsaand males have different capture and

survival probabilities.

The fully parameterized CJS model is usually denhc{m,gq} (subscriptt for time-

specific survival and encounter probability), amdni this model, reduced parameterized
models that allow for stationary values pf and ¢ or both, can be used. With the genetic
dataset it is possible to build more complex modsisg the effect of the two groups, males
or females, denoted “g”, in addition to time, adlves combination or interaction of those
two factors: “*” denotes an interaction between taetors and “+” a linear combination of

the effects. Therefore, a model such as md@glg,qa} indicates that capture probabilities
depends on combinations of group and time anddhatival is constant. Then the model-
selection procedure uses the Akaike’s Informatiamte@on (AIC) of the general form:

AIC =2k - 2In(L) wherek is the number of parameters in the model artle maximized

value of the likelihood function for the estimateddel. The smallest AIC usually points out
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the model that best explains the data with a mimned parameters. A rule of thumb is useful
to assess the strength of evidence between thertwekils: a difference of 2 or less between
AIC of models usually gives support to both modetsle a difference greater than 2 in AIC

gives considerably less support to the next bestein@urnham and Anderson, 2004). This
helps to decide which model is the most parsimaniaod thus how the capture probability
should be modeled given the data.

Finally, survival is a fundamental process govegnpopulation dynamics and is
intuitively inherent to the population. Therefoiethe photographic and genetic sampling
methods indeed sample the same population, botiplsegmethods should provide very
close estimates of survival. It would therefore dfenterest to compare the fit of models
where survival varies by sampling method with medehere the survival is constrained to be
the same across the sampling methods. Howevergsaémt, except for the TSJS version of
the JS survival estimator described in chapter bae) unaware of a framework that allows
the estimation of survival by combining two ovepapm datasets. So | use the TSJS survival
estimator and a likelihood-based approach baseshapproximation: the idea is to multiply
the likelihoods of the CJS models based on thetgeard photographic data and constrain
the survival parameter to be the same across thel@#asets. This can be done using program
MARK and setting the photographic and genetic datawo distinctive groups. Using such an
approximation leads to two major disadvantages:esmiividuals will knowingly be counted
twice and multiplying likelihoods based on the twatasets also implies that the two
sampling methods are assumed to be unconditiomadlpendent. So results of the analysis
should be interpreted with caution. In program MARKe model-selection procedure is
based on the AICc which is the AIC with a secordkorcorrection for small sample size such

2k(k +1)
n-k-1

that: AICc= AIC + wherek is the number of parameters in the model artie

sample size. As gets large AICc converges to AIC.

Temporary emigration

A Markovian multi-state counterpart of the CJS, enditional-Arnason-Schwarz
(CAS) model was used to estimate the probabilibéstransition of humpback whales
between breeding grounds in the South Pacific, éetw1999 and 2004 (Arnason, 1972,
1973; Brownie et al., 1993; Hestbeck et al., 19%hreton et al., 1992; Schwarz et al., 1993).
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In this class of model, the state of an animalimet+1 is stochastically determined as a
function of its state at time Here the study site is the South West Pacificctvlan be split
into r distinct, non-overlapping regions: New Caledofigench Polynesia, Tonga and Cook
Island. Animals are assumed to be able to movdyfraemund the study area denotBd
between sampling events: the transition betweenregien to another is Markovian and the
region where the animals are caught at tinsboes not depend on the region where the
animals previously were. The difficulty lies in tif@mulation of the likelihood since, for
most studies, the complete data detailing the iocaif each animal is not available for the
capture occasions where the animals were not obdeKing and Brooks (2003) proposed
likelihood forms for such a model. Where timeseaxfapture are recorded and there is no dead

recovery like in the present case, the likelihaades the following form with :

T-1T-1

lj{)(t (r)}vl () u |—|| sl;J {om)(r,S)}n(.w,s)}

t=

L(6;v,n,d)= l_!

wherev, (r) is the number of animals that are recapturednferddst time in region at timet;
X, (r) the probability that an animaken at timé in regionr LI Ris not seen again in the

study, given by

1 (t=T),
X 0=11-F Oh-Y. ¢ .9 pa©ba)] (t<T),
~fi-F )} (t<T);

O

1y the probability that an animal observed in regiat timel (| |_|{],...,T} is unobserved

until imet+1, fort LI{I,...,T -1}, and is sighted is LI R, given by

O(I,t)(rls) = pt+1(S)Q(|,t)(r,S),
where Q,,, denotes the probability that an individual migsafeom regionr at timel (|

LI{1...,T} to regions LI Rat timet+1, fort LI{I,...,T -1}, and is unobserved between these

F Dy, (r,s) (I =t),

times, such thatQ, , (r,s) ={F| (r)zm{l_ o )}llh () Qo (b9 (1 <1y

The set of parameters therefore comprises:

F.(r) =Pr(ananimalin regionr at timet survivesuntil timet + 1);
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p,(r) =Pr(ananimalin regionr at timet is capturedat timet);
@, (r,s) = Pr(ananimalin regionr at timet movestoregionsby timet +1,;

given thait isaliveat timet)

Besides estimating capture probability, the CAS ehedth general notati0|{1F,t//, p}
also allows a break-down of the probabilityof apparent survival in the general CJS model

into the two components which can be state-spedrfie survivalF andtransition probability

. Different subscripts are used to parametefiz¢y , andp: “from” indicates a variation in

the parameter dependent on the previous regioartimeal was, “to” a variation dependent on
the current region where the individual is, “timee’time-dependent variation. Moreover, two
operators can be used to combine the effect ofiquewregion, current region and time to
build more complex models: “*” denotes an interactibetween factors and “+” a linear

combination of the effects. Therefore, a model saEMOAERF ¢ ;om0 Porimef USEd later

on, indicates a constant survival, a probability todnsition depending on the linear
combination of site of departure with site of aatiand a probability of capture depending on

the interaction between site of arrival and ontime.

It is of interest to model and estimate the tramsitprobability for a better
understanding of the stock structure of humpbacklegin the South Pacific and to see if
there is temporary emigration between differentetineg grounds that would constitute a
violation of the assumptions of both geographicsuate for closed population models and of
temporary emigration for the open-population JS #mel TSJS models. Knowledge of
occasional interchanges among neighboring breegliognds (New Caledonia, Samoa, Cook
Island, Tonga and French Polynesia) has been dadethdrom individual identification
photographs: 12 whales have been sighted in thalifferent areas between 1999 and 2004.
The data were collected during synoptic surveysduoted by researchers from the South
Pacific Whale Research Consortium (SPWRC) in edt¢heobreeding grounds between 1999
and 2004 (Garrigue et al., 2002; Garrigue et &072 Garrigue et al., 2000). The quality
protocol described above was used to homogenigghatbgraphic catalogues and a search of
matches, by researchers from the SPWRC, withinbeteleen the breeding grounds in this
area permitted the building of multi-state captrgeapture histories (each breeding ground is

considered as a state). The joined catalogue ceagpfi84 individual capture histories with a
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total of 778 sightings. The number of sightings amdightings per region are summarized in
Table 5-1.

Table 5-1- Summary of photographic captures and recapturesualy site between 1999 and 2004.

region Number of capture Number of resights
histories within region
New Caledonia 160 33
Tonga 285 25
Cook Islands 37 0
French Polynesia 159 20

The AIC criterion was again used to select the mppropriate model.

The software M-SURGE was used for building anddilg CAS models (Choquet et
al., 2004).

Transient individuals and trap-dependence

It is of interest to detect if there are transieant®ong the population: animals that pass
through the sampling area once with negligible pholity of being caught again at a
subsequent capture occasion. Their presence wadd to heterogeneity in capture
probabilities between transients and residents.tidresience issue has been previously noted
based on genetic data for the humpbacks in NewdGala between 1995 and 2001 (personal

work, not published) but at that time, genetic skmpvere not taken systematically.

Program U-Care version 2.2 (Choquet et al., 20@5)dacts goodness-of-fit tests as
well as specific tests for transience (test 3.SR)) taap-dependence (test 2.CT). Both tests are

based on 2x2 contingency tables:

1) one of observed values such as:

Table 5-2- 2x2 contingency table for test 3.SR based on tHiwinluals encountered at capture occasion

Seen later Never seen lafer Tatal
“new” or “newly marked” Q1 012 0.
“old” or “already marked” o 022 02,
Total o]} 02 0.
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2) one of expected values such as:

Table 5-3- 2x2 contingency table for test 3.SR of expectedlmensof individuals encountered at capture
occasion.

Seen later Never seen later Total
“new” or “newly marked”
y - o.l X Ol. = 0.2 X 01. &
e11 o) elZ o)
“old” or “already marked”
y o :ollxo% e :szo% =)
21 0 22 0
Total €1 €> €.

Hypotheses to be tested are:
1) In test 3.SR

Ho: there is no difference between the “new” and ‘thld” individuals captured at

occasiort in the probability of being later encountered.
Alternatively

Hi: there is a difference in the probability of belater encountered between the new

and the “old” individuals captured at occaston

2) Intest 2.CT

Ho: there is no difference between those encountmnddchot encountered at occasion

in the probability of being reencountered-gl conditional on presence at both occasions.

Alternatively

Hi: there is a difference in the probability of benegncountered &t1 between those

encountered and not encountered at occasionditional on presence at both occasions.

For both tests, the usuagf® statistic is obtained as:

X2t = Z(Ojk —€)

K
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where o, is the observed value corresponding to thejket the 2x2 contingency table of
observed values ana, the expected value corresponding to the gellin the 2x2

contingency table of expected values.

Under H, the x?(t) follows a y*distribution with 1 degree of freedom. Here those
two tests were used to investigate possible sowtésas in the population size estimates.
Even though trap response is believed not to besare in humpback whale studies, the data

were checked for this.

5.4. Results

5.4.1. Survey effort

Over the 7 years of the survey in the South lag@80)poat trips were carried out and
a total of 331 whales have been sampled in appmbeiyn 2138hours of navigation. Year
2002 was a “bad” year for field work, due to weatbenditions, with not as many days at sea
as the other years and 2004 had very few dayserStuth lagoon because field work was
conducted in another part of New Caledonia for nmbghe season. Table 5shows details

of the effort deployed per year.
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Table 5-4- Sampling effort in the South lagoon of New Caleddnétween 1999 and 2005.

Y ear 1999 2000 2001 2002 2003 2004 2005
Number of days at sea 46 50 62 36 42 11 43
Number of hours at sea 308h05 356h21 487h25 265h08 326h58 77h34 317h
Number of nautical miles 2581 2661 3717 2109 2316 567 2492
Number of individual whales photographed 21 38 72 2 2 48 36 63
Year-to-year resights with photo-identification 4 8 6 3 4 6
Number of individual whales photographed underQi@& protocol 19 35 64 22 43 32 46
Year-to-year resights with photo-identification endhe QC protocdl 4 8 5 3 4 3
Number of individual whales genotyped 27 46 88 33 3 6 39 84
Year-to-year resights with genetic 3 7 5 3 2 4

D5
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5.4.2. Abundance

Results based on photographic catalogues

a) Under the photographic ranking protocol: QC photaghs only

As shown in Table 5-5, for the period 1999-2005,0ag1the multiple-occasion
closed-population models, the dMhocn gave the smallest estimate and standard error
(402+ 39) and the Mchao and M, the largest estimates and standard-errors (respBcti
646+ 112 and 62% 102 which was consistent with the removal of negatas resulting
from heterogeneity. It resulted that the largesttiple-occasion closed-population estimate
(Mnchag Was larger that the smallest onedMocn by a factor 1.6, leading to a wide range of
estimates with the closed-population models. Whthgresent dataset, the two approaches for
model M (Darroch and Chao) and MiChao and jackknife) also gave results that disabre
within each model, with the approach of Chao alwéading to larger estimates and

standard-errors: 1.37 greater than the other apprima model Mand 1.12 for model M

With the Chapman modified Lincoln-Petersen (Tabl) and the JS estimator (Table
5-7), based on this QC photographic catalogue Z@@%, the whale population was
estimated to be respectively 1437 and 15k 50 in 2000. In 2004, the estimators were far
from agreeing: the population was down tat7B with the JS estimator and up to 28903
with the Chapman modified Lincoln-Petersen estimaiwhile the Chapman modified
Lincoln-Petersen estimator seemed to underlineasigeonstant increase of the population
from 1999 to 2005, the JS estimator showed a éifffiepattern with an increase until 2002
and then a decrease. Up to 2002, the abundanceaéstand the growth rate were similar to
those of the Chapman modified Lincoln-PetersennThath the JS estimator, the population
declined by half every year but increased with@h@pman modified Lincoln-Petersen with a

growth rate also increasing every year from £0%51in 2003 to 1.34 0.72in 2005.

b) With all photographs: catalogue 1999-2005

Compared to the results based on the photograptadogue 1999-2005 with only
good-quality photos (Table 5-5), i.e. under the tpgmphic QC protocol, the results
produced by the same multiple-occasion closed-@tijounl estimators on a dataset including
all quality photographs always appeared larger IEr&b8): only by a factor 1.04 for model

Miparroch Which encountered the smallest increase and by foB3nodel Mchao Which
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displayed the largest increase. The only similabgtween the results based on the two
photographic catalogues was thabMochalso gave the smallest estimate and standardserror
(419+ 36) and the Mchaoand the M, the largest ones (respectively 85860 and 80& 129).
However, with the photographic catalogue 1999-20@8 all photographs, the Mhao
estimate was larger than thegyhochone by a factor 2.05 whereas it was only largantthe
Miparroch €Stimate by a factor 1.61 with the QC catalogu@9i2005. Moreover, the hao
estimate was larger than the,Munite €Stimate and had a larger standard-error whilh thie
photographic QC protocol catalogue 1999-2005, the.dylestimate was smaller than the
Mhjackknife €Stimate but still had a larger standard-errorreHes with the photographic
catalogue 1999-2005 under the photographic QC pogtthe two approaches for model M
and M, gave very different estimates within each kindnoddels (M or M), with the
approach of Chao always leading to larger estimat@® greater than the other approach for
model M and 1.27 for model M

As shown in Table 5-10, except in 2002 and 2004 Jh estimator gave very similar
results as those based on the catalogue 1999-2@¥5 the photographic QC protocol. The
population started at 16660 and was estimated in 2004 at 2837. Here the growth rate
was, however, more stable and did not show an appdecline from 2002 as did the growth
rate with the photographic catalogue 1999-2005 utitke photographic QC protocol. Here
the growth rate fluctuated and the increase wasdksar than with the previous results with
the Chapman modified Lincoln-Petersen estimatorboth photographic cataloguehe
yearly JS estimates were below those of the Chapnuaiified Lincoln-Petersen estimator by
a factor 0.98 (in 2000) to 0.59 (in 2002) (Tabl®)5-The growth rate varied with the same

trend for both models (population size increasezepkin 2002 wheregl <1) with the increase

being greater with the JS estimator in 2003 and200

The Chapman modified Lincoln-Petersen estimator wassistent with both
photographic catalogues leading to similar result&e population was estimated to be
171+ 58in 2000 reaching 337102in 2005.
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Results based on the genetic data

As shown in Table 5-11, the estimates based ogehetic dataset were ranked in the
same order as the photographic catalogue 1999-2M5only good-quality photographs
(under the photographic QC protocol) (Table 5-5) &ppeared more than twice larger than
those based on both photographic catalogues (EableTable 5-8), ranging from 84788
with model Mparrochto 1592+ 285 with the Mychao

With the Chapman modified Lincoln-Petersen estimdte situation was the same as
with the multiple-occasion closed-population mogdelgh results based on the genetic (Table
5-12) twice as large as the population size givethe photographic data: from 32830in
2000 to 67% 252in 2005. With the Chapman modified Lincoln-Petarsstimator, though
photographic and genetic datasets did not agre¢henestimates, they both showed an
increase of the population size, except in 200 a@bheugh this decrease was only really

noticeable for the photographic catalogue witrpatbtographs.

When using the classical Jolly-Seber model sepsratethe three datasets (the two
photo-identification ones (Table 5-7, Table 5-1@)dahe genetic one (Table 5-13)), the
population size obtained using the genetic dataakaays larger than its photo-identification
counterpart for the same year, agreeing with allgrevious results with other models for the
discrepancy between the size given by the geneticthe photo-id database. In 2002 and
2004, the genetic dataset indicated a populatiocetas large as that produced by the photo-
identification data with all photographs (respeetyv315+ 80 and 55% 153). The standard
error produced with the genetic dataset was asaketys larger than the photo-identification
one. Except in 2003 with the photographic data 12®® with all photographs and in 2002
with the QC photographic data 1999-2005 (undempthetographic QC protocol), the growth
rate estimated from the genetic data (Table 5-183 always larger than its photographic
counterpart (Table 5-7, Table 5-10).

The JS estimates with the genetic dataset (Taldld)Swvere again smaller than the
Chapman modified Lincoln-Petersen estimator (Tabl) by a factor 0.54 (in 2003) to 0.81
and than all closed-population estimates for tmeesdataset (Table 5-11) by a factor as high
as 3. However, growth rates from the JS model \Wager than with the Chapman modified
Lincoln-Petersen estimator in 2001 and 2004 whéey talmost reached a value of 2

(respectively 1.9%¢ 1.16and 1.9 0.48), being the largest rates of increase so far.
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Results based on combined datasets

The TSJS model (Table 5-16, Table 5-17) seemeddduge estimates that were a
intermediate among all the estimates based on Hwographic data and genetic data
separately but the two-source, Estimator gave two of the largest estimates (TaHl8). As
expected, the weighted mean of the Jolly-Sebemastir (Table 5-14, Table 5-15) gave
intermediate estimates between the estimates fnenphotographic and the genetic datasets

separately and smaller standard errors.

Compared to the results given by the JS and th@mGhaa modified Lincoln-Petersen
estimators for the genetic and the photographia daparately, the TSJS estimates were
closer to the ones provided by the genetic da@sdtle 5-12, Table 5-13): estimates varied,
with dataset 1999-2005 with all photographs (Tabig7), between 22268 in 2000 and
445+ 103 in 2004. However, the weighted estimates (Tablel5Table 5-15) were always
closer to the photographic ones following the trefthe photographic estimates (Table 5-7,
Table 5-10) but roughly consistent in 2000, 20081 @003 whether the complete or QC
photographic dataset was used. The TSJS estimaesalso consistent in 2000, 2001 and
2003 between the combined data with all photogr#phble 5-17) and the one under the QC
protocol (Table 5-16). In 2002, however, the TSSBreatesvaried between the datasets by a
factor 1.42: being 41297 for the dataset under the QC protocol and 288 for the one
with all photographs. In 2004 the situation wasersed, the estimate with the dataset under
the QC protocol being 0.59 smaller than the onedymed with the dataset with all
photographs (respectively 26270 and 445 103). Concerning the standard errors, the order
of magnitude was equivalent between the two contbid@tasetsand the standard errors
produced with the TSJS estimator fell between thadard errors of the JS estimates given
by the photographic data (Table 5-7, Table 5-1@) #re ones given by the genetic data
(Table 5-13).

For the data 1999-2005 with all photographs, trewgn rate in 2001 for the TSJS
model (Table 5-17) was equal to that for the JSehwadth the genetic data (Table 5-13). The
growth rates for the TSJS were very close to thweeided by the Chapman’s estimator on
the photographic dataset 1999-2005 with all phatplgs (Table 5-9). For the Chapman
modified Lincoln-Petersen model, the growth ratdicated, in 2002, a slight decrease of the
population with the two photographic and the gendatasets (Table 5-6, Table 5-9, Table
5-12). With the combined dataset under the QC podtdTable 5-16), however, the

population estimates from the TSJS showed an appaonstant decline since 2001 which
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was also found with the JS estimator on the phapgc data 1999-2005 under the QC
protocol (Table 5-14) and on the weighted mean hd S estimates from the QC
photographic data and the genetic data (Table 5-14)

Compared to the results of the multiple-occasioosedl-population models, the
abundance given by the TSJS estimator (Table SFable 5-17) and the weighted mean of
the JS model (Table 5-14, Table 5-15) were genesaftaller than any closed-population
estimate for the same data, except for the estangieen by the Maroch ON both
photographic catalogues (Table 5-5, Table 5-8). e estimates produced by the two-
source M estimator (Table 5-18) on the combined dataseith @{ photographs and under
the QC protocol) were consistent, respectively #1281 and 123& 274, and the largest
estimates after the estimates based on thg.Mhe M,craoand the My, models on the genetic
dataset 1999-2005 (Table 5-11). The associatediatarerrors produced by the two-source
My estimator on the combined datasets were also ashtimg largest ones. Contrary to these
closed-population models giving very different leswlepending on the dataset, the TSJS
estimator and the two-sourceoMstimator appeared fairly consistent over theedkffit

datasets available.

Generally there was no major difference between dlassical approximate 95%

confidence intervals and the log-normal ones.
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Table 5-5- Population size, associated standard error anddasde intervals (nominal and log-normal) for
closed population models based on the 1999-2005l@®graphic catalogue.

Nominal Nominal Log-normal Log-normal
Model N se lower CI  Upper ClI  lower CI upper Cl
Mt Chao 551 88 379 723 401 757
Mt Darroch 402 39 325 479 331 488
Mh jackknife 576 44 490 662 495 671
Mh Chao 646 112 426 866 458 912
Mth 625 102 425 825 452 863

Table 5-6- Population size, associated standard error, camfiléntervals (nominal and log-normal), growth
rate and associated standard error with the Chapnemtimator based on the 1999-2005 QC photographic
catalogue.

year 2000 2001 2002 2003 2004 2004
,\] 143 259 248 252 289 387
se 47 66 77 98 103 155
Nominal 50 129 97 60 88 82
lower ClI
Nominal 236 389 399 444 491 692
upper CI
Log-normal 75 157 135 119 145 179
lower ClI
Log-normal | 272 428 455 534 576 839
upper CI
)Al 1.81 0.96 1.02 1.15 1.34
se(;l) 0.75 0.38 0.51 0.6 0.72

Table 5-7- Population size, associated standard error, camd&léntervals (nominal and log-normal), growth
rate and associated standard error with the JSlmadae QC photographic catalogue 1999-2005.

year 2000 2001 2002 2003 2004
N 151 246 264 134 76
se 50 93 59 38 18
Nominal 53 63 149 60 40
lower ClI
Nominal 249 429 379 208 111
upper CI
Log-normal 79 118 170 77 48
lower ClI
Log-normal| 288 512 409 233 121
upper CI
j 1.63 1.07 0.51 0.56
se(/i) 0.82 0.47 0.18 0.21
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Table 5-8- Population size, associated standard error anddesrde intervals (nominal and log-normal) for
closed population models based on the complete-2008 photographic catalogue.

Nominal Nominal Log-normal Log-normal
model |\] se lower ClI  upper Cl  lower CI  upper ClI
Mt Chao 721 125 476 966 511 1017
Mt Darroch 419 36 349 489 354 496
Mh jackknife 676 46 585 767 589 775
Mh Chao 858 160 544 1172 592 1243
Mth 806 129 553 1059 587 1107

Table 5-9- Population size, associated standard error, camfiléntervals (nominal and log-normal), growth
rate and associated standard error with the Chapraatimator based on the complete 1999-2005 phapbic
catalogue.

year 2000 2001 2002 2003 2004 2004
N 171 315 239 281 362 337

se 58 82 67 110 130 102

Nominal 58 154 107 66 106 138
lower ClI

Nominal 283 476 371 498 617 536
upper CI

Log-normal 89 189 138 132 180 187
lower ClI

Log-normal | 329 526 415 597 728 608
upper CI

)Al 1.85 0.75 1.18 1.29 0.93

se(;l) 0.79 0.29 0.57 0.68 0.44

Table 5-10- JS estimates, associated standard error, conéidatervals (nominal and log-normal), growth rate
and associated standard error based on the coni§ie82005 photographic catalogue.

year 2000 2001 2002 2003 2004
N 166 299 141 182 281
se 50 104 24 47 67
Nominal 69 95 95 90 151
lower ClI
Nominal 264 503 187 274 412
upper CI
Log-normal 92 152 101 110 176
lower ClI
Log-normal| 298 588 196 302 448
upper CI
/i 1.8 0.47 1.29 1.55
se(;l) 0.83 0.18 0.4 0.54
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Table 5-11- Population size, associated standard error anddeorde intervals (nominal and log-normal) for
closed population models based on the 1999-2006&tigestataset.

Nominal Nominal Log-normal Log-normal
model N se lower CI  upper Cl  lower CI upper Cl
Mt Chao 1338 266 816 1860 902 1985
Mt Darroch 847 88 674 1020 688 1042
Mh jackknife 1018 57 907 1128 911 1138
Mh Chao 1592 285 1033 2150 1116 2271
Mth 1519 248 1033 2005 1098 2102

Table 5-12- Population size, associated standard error, candelentervals (nominal and log-normal), growth
rate and associated standard error with the Chapreatimator based on the 1999-2005 genetic dataset

year 2000 2001 2002 2003 2004 2004
N 328 522 503 543 852 679
se 130 151 24 221 401 252
Nominal 73 225 176 109 67 185
lower CI
Nominal 583 819 831 977 1638 1173
upper CI
Log-normal 153 296 458 248 349 381
lower CI
Log-normal| 705 922 552 1189 2083 1212
upper CI
j 1.59 0.96 1.08 1.57 1.26
se(/i) 0.78 0.28 0.44 0.98 0.48

Table 5-13- JS estimates, associated standard error, confideteceals (nominal and log-normal), growth rate
and associated standard error based on the 19%¢RP@tic dataset.

year 2000 2001 2002 2003 2004
N 211 420 315 294 559

se 82 181 80 93 153

Nominal 50 65 158 112 260
lower ClI

Nominal 372 774 471 476 859
upper CI

Log-normal| 100 184 191 159 327
lower ClI

Log-normal| 447 958 519 544 956
upper CI

/i 1.99 0.75 0.93 1.9

se(j) 1.16 0.38 0.8 0.48
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Table 5-14- Population size, associated standard error, cand@léntervals (nominal and log-normal), growth
rate and associated standard error with the wedgimtean of the JS model on the QC photographic amaial
and the genetic dataset 1999-2005.

year 2000 2001 2002 2003 2004
N 167 283 282 157 83
se 43 83 47 35 18
Nominal 83 120 189 88 48
lower ClI
Nominal 251 446 375 226 118
upper CI
Log-normal| 101 159 202 101 55
lower CI
Log-normal| 276 502 393 244 125
upper CI
j 1.69 1 0.56 0.53
Se(j) 0.66 0.34 0.15 0.16

Table 5-15- Population size, associated standard error, camd@éntervals (nominal and log-normal), growth
rate and associated standard error with the waighiean of the JS model on the complete photographic
catalogue and the genetic dataset 1999-2005.

year 2000 2001 2002 2003 2004
N 178 329 141 205 325
se 43 90 23 42 61
Nominal 95 152 97 123 205
lower ClI
Nominal 261 506 185 287 445
upper CI
Log-normal| 111 192 103 137 224
lower ClI
Log-normal| 285 564 193 307 472
upper CI
j 1.85 0.43 1.45 1.56
se(/i) 0.67 0.14 0.38 0.44
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Table 5-16- TSJS estimates, associated standard error, conédetervals (nominal and log-normal), growth
rate and associated standard error between 19920f&dwith the combined dataset under the phottira@C

protocol.
year 2000 2001 2002 2003 2004
N 222 421 412 366 262
se 76 160 97 104 70
Nominal 74 107 222 161 125
lower ClI
Nominal 371 735 602 570 398
upper CI
Log-normal| 114 202 259 206 155
lower ClI
Log-normal| 432 878 655 631 442
upper CI
)Al 1.89 0.98 0.89 0.72
se(/i) 0.97 0.44 0.33 0.28

Table 5-17- TSJS estimates, associated standard error, conéidetervals (nominal and log-normal), growth
rate and associated standard error between 199208%dwith the combined dataset with all the phapgs.

year 2000 2001 2002 2003 2004
N 222 442 289 338 445
se 68 151 58 87 103
Nominal 88 145 177 168 243
lower ClI
Nominal 355 738 402 507 648
upper CI
Log-normal| 122 227 195 204 281
lower CI
Log-normal| 405 859 429 559 704
upper CI
j 1.99 0.66 1.17 1.32
Se(j) 0.91 0.26 0.38 0.46

Table 5-18- Two-source N estimates, associated standard errors, confidate®als (nominal and log-normal)
and capture probabilities between 1999 and 2005 thié combined datasets with all photographs aniéuthne
photographic QC protocol.

Combined Nominal Nominal Log- Log- Capture probability

Dataset N se lower upper normal normal

1999-2005 Cl Cl lower —upper | p se(p) § se@) a se(@)

Cl Cl

With all

photographg 1116 231 663 1569 740 1681 | 0.03 0.01 0.04 0.01 085 0.02
With good

photographg 1238 274 701 1775 799 1917 | 0.03 0.01 0.04 0.01 0.87 0.02
only

P = probability of capture by photo-identificatio = probability of capture by geneticg = probability of
capture by genetics given a capture by photo-itleation on the same occasion.
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5.4.3. Model selection for closed-population models

In all three datasets (photographic catalogues -P@@% with all photographs and
under the QC protocol, and the genetic data 199%R@he test for heterogeneity in capture
probabilities in population for model Mand for time specific variation in capture
probabilities for model Mwere both significant (p-value<<0.05). Thus, natpsisingly, for
the three datasets, the linear classifier from @aog CAPTURE systematically selected

model My, as the most appropriate model.

Goodness-of-fit tests in program CAPTURE consisyergjected the null hypothesis
when testing the fit of model Mand M. However, there is no goodness-of-fit available in
program CAPTURE for model M

5.4.4. Capture probability

Estimation using photographic data

The CJS mode{ pt,qq} and the three other models possible with timesddpncy

{p.o}. {p.o}. {p.g}) were run on the photographic catalogue 1999-2045 all

photographs and under QC protocol. Results ardagisp in Table 5-19. For the dataset
1999-2005 with all photographs, from the AIC, 3 malsdwere similarly supported by the
data and two out of the three modefp (@}, {p.@}) seemed to demonstrate that capture

probability was constant and did not depend on :tiomeler the best modép,qa}, capture
probability was estimated to be 048.03 Models with constant surviva{,¢}, {p,.®})
were better than models with time-specific surviifad, @}, {p.@}): under modefp , »}
survival was estimated to be 0:68.11and under moddlp, ,»} to be 0.6& 0.12

The quality-control protocol procedure applied tve photographic data 1999-2005
resulted in a more ambiguous situation for the wapprobability and survival with the two

best models disagreeing: one in favour of captuobabilities depending on time (Fig.5-3)

and constant survival, i.e. modfp,¢} and the other one in favour of a constant capture
probability and time-specific survivelp,@}. The survival estimated under modgd,, ¢}

was 0.92 0.09], greater and with a smaller standard error thawvipusly reported by this

model with the dataset with all photographs. Wite second best modép,g} capture
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probability was estimated to be &B.04 which was very close to the best model with the
dataset with all photographs. Survival under m({dlgqu} varied between 0.340.16and 1,

showing the unreliability of the estimation as sudmriation for survival (even though

apparent survival) is unlikely to occur in the metscase.

Capture probabilities based on the best model ftbendataset under the quality-
control protocol { p,,#} and second best for the complete dataset 1999-266%p,,¢} are

shown in Fig.5-3. Capture probabilities were velyse except in 2005 where the capture
probability given by the dataset with all photodrapvas more than four times higher than the
one provided by the data under the quality-confnaltocol, respectively 0.10.06 and
0.04+£0.02 A glance at table 5-4 shows that this is mostljikdue to the QC protocol
excluding half the resighted animals in that yghgugh in most years no resightings are

excluded.

04 -
0,35

0.3 —m— Capture probability from data
0,25 1999-2005

0,2 1 -

—e— capture probahility from data

0,15 1999-2005 with selected

0,1+ photos only
0,05

O T T T T T 1

Fig.5-3- Capture probability estimates and standard errora fnodel{ P ,qa} for complete photographic data
1999-2005 and for QC-photographic data 1999-2005.

Given the present results with both photographiaskds, it was not clear whether
capture probability was dependent on time. Howethere were two “abnormal” years (2002
and 2004: resulting from a shorter field work segsa the data always displaying smaller
capture probabilities, and | suspected these vatuég the origin of time-dependent capture
probability. Hence, | removed those two years freath dataset and re-ran the models as
shown in Table 5-19. Without those two years, frira AIC with the dataset under the

guality-control protocol, three models demonstradesimilar adequacy to the data and two
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out of the three modelfp,,@} and{p,.@} seemed to indicate that capture probability was

still dependent on time and it was unclear whethersurvival depended on time, although it
is unlikely here. On the other hand, without thae® years, with the dataset with all

photographs, the two best modefp (¢}, {p,@}) agreed on constant capture probability but

still disagreed on the survival. So, from the plgoaphic data, it was not clear whether there
was temporal heterogeneity in capture probabiRgmoving 2002 and 2004 from the dataset
had an opposite effect depending on the dataseh iVe dataset with all the photographs,
survival was increased (0.2®.11under modefp @} and 0.8& 0.13under moddp,,¢})

while survival estimates were lesser with the datasth QC photographs: 0.80.17 under

model {p,,¢} and 0.620.11 under modeKp,¢}. Under mode{p,g} with the dataset

under the quality-control protocol, survival estiem varied between 0.@8.05 and
0.97+ 0.26 The first important thing to note about theseyv@nall survival rates is that with
the CJS model the parameter of survival actuallyesiitwo processes: true survival and
permanent (or at least long term) emigration. Tloeeg if an estimate of 0.480.11 seems
small for a whale, it may actually underline thatigration is important and not that true
survival is low. However, under the CJS model, atineate of 0.0& 0.05 for apparent
survival for humpback whales simply seems unrefiadold most likely indicates difficulties
for the model to estimate this parameter with valery close to the boundaries.

Table 5-19- AIC for the CJS and related models for photographialogues 1999-2005 under the QC protocol
(“Selected 1999-2005"), 1999-2005 with all photqara (“All 1999-2005") and both without 2002/2004.

Selected | Selected 1999-2005 without 2AO|OCZ All All 1999-2005 without 2002 and
Model 1999-2005 and 2004 1999-2005 2004
P, A 379.63 202.59 473.9 288.52
P, @ 376.33 202.74 467.91 286.42
P.4 378.67 202.07 469.66 285.25
P.® 387.23 219.92 467.75 283.04
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Estimation using genetic data

A deeper analysis was possible with the genetia datause it includes information
about the sex of the individuals. From the gendditabase 1999-2005, of the 308 animals that
were sexed, 129 were females and 179 males. lippassible to model survival and capture
probability with separate parameters for each tamé group (females or males) denotgd
in Table 5-20 which presents the 6 first best m®determs of AIC.

| disregarded further time-dependent survival medea such models previously gave
inconsistent and unreliable estimation of surviead always had bigger AIC than time-

constant survival models with the genetic data.

For the genetic data 1999-2005, two models withstaont survival, based on the AIC,

seemed appropriate: the best model was mdgelp} where capture probability only
depended on time and second best model was n{cpnggl,qa} where capture probabilities

were group and time-dependent. Under the later meddach may have more biological
relevance in the context of humpback whales (Gaerigt al., 2004; Smith et al., 1999), males
and females had different capture probabilities #iso varied with time and equal survival

probabilities. Estimates of capture probabilitiesder model{pt+g,qz_)} are displayed in
Fig.5-4. Under modefp,,¢} and {p,., ¢}, survival was estimated to be respectively

0.68+0.12 and 0.6& 0.13 Again these low values for survival with the Cd®del may
indicate that emigration from this population is anportant process of loss for this
population.

0,3+

0,25 -

0,27 —a— Capture probabilty for

fermeles
—e— Capture probability for males

0,15

0,1 -

0,05

2000 2001 2002 2003 2004 2005

Fig.5-4- Capture probability estimates for males and feméiem model{ pHg,(Q} using genetic data in 1999-
2005.
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Under this model, males had systematically higlagture probabilities than females,
usually above 0.1. Given the fact that years 2042 2004 again gave very small estimates
compared to the other years, | again removed thwsecapture occasions and re-ran all
models to check whether the temporal variationaptare probabilities was still holding. As
found with the photographic data, once those twaryavere removed, the best model did not
include time-dependent capture probabilities. kdtethe best model was either model

{p.@} where survival and capture probability were comstver time; or modetp,, ¢}

where survival was constant over time and captubability depended on the sex; or model

{p.,qog} where survival depended on sex and capture pritlyabas constant. Under model
{p.,qo_} and {p.,qog}, the capture probability was estimated to bet@PD6 and model
{pg,(p_}, males had again a higher capture probability28.@07 against 0.1& 0.06 for the
females.

Constant survival was estimated to be @6511 and 0.66 0.11 under respectively
model {p.,qa} and{pg,qa}. Under model{p.,qog}, males had a higher survival probability:
0.69+ 0.12against 0.52 0.13for females. This discrepancy between males amdles may

suggest two things: either the females have a Idwer survival rate or they have a higher

chance of leaving the population permanently (otdag periods).

Table 5-20- AIC for the CJS and related models for genetic d880-2005 and 1999-2005 without 2002/2004.

Model 1999-20005 15?9&2005 without 02 & 04
P.@ 451.06 272.54

Py, @ 452.45 273.47

P. % 453,05 273.88

P ¢ 447.82 277.95
Preg @ 449.09 278.93

Py: %, 455.37 275.46

The capture probabilities estimated with the twarse My model applied to the
photographic data in Table 5-18 appeared very sooalipared to the corresponding capture
probabilities estimated with the CJS model, althowgry close to the estimated capture
probability in 2005 with the photographic data and2002 and 2004 with the genetic data:
the probability p and g that a whale was sampled respectively by phototifieation and
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genetics on any occasion was estimated to be+®D0BL and 0.04: 0.01. However, the
probabilitiesa that a whale was sampled by photo-identificatioregiit has been sampled
by genetics on the same occasion were very hig@5+10.02 and 0.8 0.02 with

respectively the combined dataset with all photplgsaand under the quality-control protocol.

Information provided by the analysis with the Cd&fework on capture probabilities
from photographic and genetic data with singleestapen-population models led to four

conclusions:

1) there might be a small heterogeneity in cappuobability among individuals of the
population, that could be based on sex, althouglether source of heterogeneity could be

tested,

2) there might be temporal heterogeneity in capprobabilities, most likely arising

from an heterogeneous sampling effort,

3) estimated capture probabilities in geneticssdightly smaller than those obtained

with photo-identification, and

4) capture probabilities for marked individuale around 0.05-0.26 within both

sampling methods.

5.4.5. Two-set estimation of Survival

In the previous section, capture probabilities apgarent survival probabilities were
estimated using CJS-class of models run separattetite genetic and photographic data and
estimates of survival based on the genetic daenddppeared lower than those based on
photographic data. As described earlier, in secttoB.5, the approximation with the
multiplication of the likelihoods of the CJS models both sampling methods allowed the
comparison between models where the parameterpafrapt survival was constrained to be
the same across the two sampling methods (denptexhd those where it varied with the
sampling methods¢g). As capture probabilities surely cannot be thmedetween the two
sampling methods, only models where capture prdibebidiffered between the methods,

I.e. Py s Pret» Were considered.

First of all, as shown in Table 5-21 and Table 5 @®gram MARK often returned a

survival estimate of 1 with a corresponding staddaror of O (more precisely in the order of
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107) in models where survival varied with time, i.eodels (p..,@ ) (Pv.@). (Prs @)
and (P« @ )- Such values for the SEs could be caused by sopeetasof the data which
prevented the parameter from being estimated. ©hdi@n would be to use the option of
profile likelihood CI available in MARK. Unfortunaly, the software systematically returned
an error message when using this option. Moreaviéh, models(p,.. ,@ )and (P, @) »
program MARK returned small estimates with unrdkalstandard errors for year 2004

probably due sparse data. Therefore, as in thequgsection, models where survival varied
with time are not discussed further and four modetse retained for comparison: models

(P @)+ (P @) s (Pore s ) @NA (Pree @ )-

Models were classified based on the AICc: modpl..,# was the best model

(respectively with all photographs and selectedt@imaphs, AlCc= 924.11 or 833.03)
followed by model (p,. @, ) (AICc=926.12 or 834.57). Under the best model, ehod
(P, ), the apparent survival was estimated to be 8@B5with the genetic dataset and
the dataset including all photographs (Table 5&21) 0.8 0.06 with the genetic dataset and
the dataset under the QC protocol (Table 5-22). ddntie second best model, model
(P, ®,) Which supports the inference of a different appairvival between the two
sampling methods, the apparent survival was esunti be: 0.83 0.08 with the genetic
sampling (Table 5-21 and Table 5-22), t8¥.07 and 0.92 0.09 with the photographic
sampling based respectively on all photographslérat21) and selected photographs (Table
5-22). These values for the survival were highemtthose found in the previous section
(Section 5.4.4) and standard errors smaller, fah bloe genetic data and the photographic
data with all photographs: previously, with the tbesdels for the genetic data, models

{pt,w} and{pt+g w} the apparent survival was estimated to be resedet0.68+ 0.12 and
0.68+ 0.13 and previously, with the best models for the cletgophotographic data, models
{p.p} and{p,,@}, the apparent survival was estimated to be reisjeyt0.65+ 0.11 and
0.68+ 0.12(Table 5-24).

The value of apparent survival with the approximatdf the CJS based on the genetic
and the QC photographic datasets for the photbgrapethod under mod€lp,., ., Wwas,

however, exactly the same as previously reportetl thie QC photographic method alone
(Table 5-24) with modefp,, ¢} .i.e. 0.92+ 0.09
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Table 5-21- “Approximated” two-set CJS models and correspondiige of AICc and survival estimates with
standard error and 95% CI lower and upper bountstive genetic dataset and the dataset with atioginaphs.

Model AlICc | Year| Survival for photographic data Sual for genetic data
Estimate se 95% ClI 95% CI | Estimate se 95% ClI 95% CI
lower upper lower upper

(P @) 924.11| NA | 0.85 0.05 0.73 0.93 0.85 0.05 0.73 0.93

(P, A) 924.3 | 1999 0.93 0.17 0.07 1 0.93 0.17 0.07 1
2000( 1 0 1 1 1 0 1 1
2001 0.62 0.08 0.44 0.76 0.62 0.08 0.44 0.76
2002 1 0 1 1 1 0 1 1
2003| 0.64 0.1 0.43 0.81 0.64 0.1 0.43 0.81
2004( 1 0 1 1 1 0 1 1

(pm*t ¢.) 926.12| NA | 0.87 0.07 0.68 0.95 0.83 0.08 0.63 0.94
O Tm

(p..,®) 926.86| NA | 0.85 0.04 0.75 0.92 0.85 0.04 0.75 0.92

m’ 7

(P @) 928.89| NA | 0.85 0.06 0.7 0.93 0.86 0.07 0.67 0.95

(Poer 1 @) 931.03| 1999 0.9 0.19 0.12 1 0.9 0.19 0.12 1
2000| 0.97 019 O 1 0.97 019 O 1
2001( 0.66 0.15 0.35 0.88 0.66 0.15 0.35 0.88
2002| 0.95 026 O 1 0.95 026 O 1
2003| 0.91 032 0 1 0.91 032 0 1
2004| 0.24 33.68 0 1 0.24 33.68 0 1

(Pr» &t 936 1999 1 0 1 1 0.76 0.24 0.19 0.98
2000( 1 0 1 1 1 0 1 1
2001| 0.62 0.11 04 0.81 0.61 0.13 0.35 0.82
2002 1 0 1 1 1 0 1 1
2003 0.62 0.13 0.35 0.83 0.66 0.16 0.33 0.88
2004 1 0 1 1 1 0 1 1

(Prets Eoret) 940.5 | 1999 1 0 1 1 0.68 0.26 0.17 0.96
2000| 0.99 023 O 1 0.98 0.3 0 1
2001 0.63 0.15 0.32 0.86 0.73 0.26 0.16 0.97
2002 1 0 1 1 0.85 0.34 0.03 1
2003| 0.79 0.33 0.07 0.99 1 0 1 1
2004| 0.41 177.1 O 1 0.34 60.53 0 1

NA=not applicable
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Table 5-22- “Approximated” two-set CJS models and correspondialgie of AICc and survival estimates with
standard error and 95% CI lower and upper boundk thie genetic dataset and the dataset with sdlecte
photographs (QC protocol).

Model AlCc | Year| Survival for photographic data Sual for genetic data
Estimate se 95% ClI 95% CI | Estimate se 95% ClI 95% CI
lower upper lower upper
(Pore @) 833.03| NA | 0.87 0.06 0.71 0.95 0.87 0.06 0.71 0.95
(Pori @) 834.57| NA | 0.92 0.09 0.49 0.99 0.83 0.08 0.63 0.94
(Pore &) 839.76| 1999 0.95 0.2 0 1 0.95 02 O 1
2000| 0.96 019 O 1 0.96 019 O 1
2001| 0.95 026 O 1 0.95 026 O
2002| 0.65 0.21 0.22 0.92 0.65 0.21 0.22 0.92
2003| 0.8 0.34 0.06 1 0.8 0.34 0.06
2004| 0.51 77.29 0 1 0.51 7729 0 1
(p,.. @) 843.82| 1999 1 0 0 1 1 0 0 1
2000( 1 0 1 1 1 0 1 1
2001 0.68 0.1 0.46 0.84 0.68 0.1 0.46 0.84
2002 1 0 1 1 1 0 1 1
2003| 0.52 0.1 0.33 0.71 0.52 0.1 033 0.71
2004| 0.92 0.21 0.07 1 0.92 0.21 0.07 1
(P> vt 845.06| 1999 1 0 1 1 0.76 0.24 0.19 0.98
2000( 1 0 1 1 1 0 1 1
2001| 0.72 0.14 0.39 0.91 0.61 0.13 0.35 0.82
2002 1 0 1 1 1 0 1 1
2003 0.46 0.14 0.22 0.72 0.66 0.16 0.33 0.88
2004| 0.35 0.16 0.11 0.69 1 0 1 1
(Pt » @rrt) 846.32| 1999 1 0 1 1 0.68 0.26 0.17 0.96
2000( 1 0 1 1 0.98 03 O 1
2001 1 0 1 1 0.73 0.26 0.16 0.97
2002| 0.61 0.23 0.19 0.91 0.85 0.34 0.03 1
2003| 0.35 0.23 0.07 0.79 1 0 1 1
2004| 0.31 57.84 0 1 0.34 60.53 0 1
(P, ®) 846.64| NA | 0.83 0.05 0.71 0.9 0.83 0.05 0.71 0.9
(P, &) 848.37| NA | 0.8 0.07 0.64 0.9 0.86 0.07 0.67 0.95

NA=not applicable
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So the approximation with the multiplication of thkelihoods based on the two
sampling methods usually led to greater estimatespparent survival than those from the
separate models based on each type of data (phptagror genetic). This may be due to
many individuals appearing in both datasets. Whertwo-set model with the approximation
indicated that the apparent survival was not timeshetween the two sampling methods, the
estimate based on the genetic data was, as prévieported, smaller than the estimate
based on the photographic data. This probably sigdethat the loss of animals by
emigration was more easily detected with the genstimpling than it was with the

photographic sampling.

Corrected estimates for survivqﬂ could also be obtained with the TSJS model as

shown in chapter one. Except in 2003, the sunegtimates reported in Table 5-23 were very
similar whether they were based on the combineaseaatwith all photographs or with
selected photographs. These survival estimates algoeof the same order as those reported
previously with the approximation of the CJS model, greater than 0.8. However, standard
errors of the TSJS estimates of survival were Idrge2), generally at least 3 times greater
than those obtained with the approximation of thkS @nodel. This is consistent with the
approximation of the CJS model using data whereesomdividuals are counted twice and
therefore using more data than it should be wliike TSJS model corrects for duplicated
animals and therefore have larger confidence iaterv

In the case of whales, it is reasonable to asdhiatesurvival is independent of time
and to use a straight arithmetic mean of the estisnaf survival (Buckland, 1990). Buckland
(1990) also showed that survival estimates cormedipg to the last few occasions of
sampling can be smaller than earlier estimateshé pgresence of heterogeneous capture
probabilities which was likely to be the case hdiréhe unreasonable estimate of 2003 was
deleted, the annual survival rate, i.e. mean(2)s estimated to be 0.88.05 (combined
dataset with genetic and all photographs) and D@63 (combined dataset with genetic and
selected photographs). These estimates might becep to be underestimates of the true
survival although the confidence intervals includedst of the estimates found in the
literature for humpback whales (Buckland, 1990;ttborough, 1965; Gabriele et al., 2001,
Mizroch et al., 2004). But, as explained beforesthparameters are really estimating loss to
the population.
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Table 5-23- Survival estimates and corresponding standard éejrand 95% CI lower and upper bounds under
the TSJS model for the combined datasets 1999-2@8mll photographs and selected photographs.

Dataset genetic and all photographs genetic aedteel photographs

Year - se 95% Cl 95% Cl - se 95% Cl 95% Cl
@ lower upper @ lower upper

1999 0.84 0.22 0.4 1 0.86 0.23 0.41 1
2000 0.93 0.23 0.49 1 0.9 0.23 0.45 1
2001 0.85 0.24 0.38 1 0.86 0.32 0.23 1
2002 0.84 0.3 0.25 1 0.83 0.42 0.01 1
2003 0.44 0.21 0.03 0.85 0.42 0.29 0 0.99
Mean 0.78 0.19 0.41 1 0.77 0.2 0.38 1

Mean(2) 0.86 0.05 0.76 0.96 0.86 0.03 0.8 0.92

Finally, Table 5-24 summarizes the survival estesagiven by the best models (based
on the AIC or the AICc) under the CJS, TSJS (ignpr2003) and two-set CJS approaches,
highlighting the broad range of values and the mststency between the different

approaches.

Table 5-24-Survival estimates or range of survival estimate$ @rresponding standard error with the best
model(s) under the CJS, TSJS and two-set CJS agmeavith the different datasets 1999-2005

All photographs Selected | Genetic genetic and all genetic and selected

Dataset - photo- photographs photographs
Approach graphs
CJS 0.65(0.11)-0.68(0.12 | 0.92(0.09 | 0.68(0.12 - -
TSJS - - - | 0.84(0.3-0.93(0.23 | 0.83(0.42-0.9(0.23
two-set - - -1 0.62(0.089-1 0.83(0.08-0.92(0.09
CJS

5.4.6. Temporary emigration

Multistate models give an opportunity to investegéctors controlling, in particular,
the process of movement of humpback whales betwesading grounds in the South Pacific.
Using the multi-site capture history dataset 19004 (where the sites are New Caledonia,
French Polynesia, Tonga and Cook Island) modelg Wweilt and run in M-SURGE. The six
best models based on the AIC are displayed in Tal@® wherd- is the true survivaly is
the transition probability,p is the capture probability. Different subscripte ased here to
parameterizé=, (¢, andp: “from” indicates a variation in the parameter degent on the
previous region the animal was, “to” a variatiorpeledent on the current region where the
individual is, “time” a time-dependent variationw® operators can be used to combine the
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effect of previous region, current region and timéuild more complex models: “*” denotes

an interaction between factors and “+” a linear boration of the effects.

Table 5-25- AIC for multistate models using multi-site captimistory data of Humpback whales between 1999
and 2004.

Number of

Model parameters AlIC
Fo fometor Proriime 28 824.3
F.¥i0r Pirometortime 25 829.95

F o trometovtimer Prromtortime 32 830
F o rom Prromtotime 25 831.12
Firometo & fromsto+ Piromtortime 35 834.11
F &0+ Prromstime 9 839.69

Based on the AIC, the best model was the CAS m{iélﬁ,l/fmmm, pto*time} for which

the true survival was constant over the years ahdat depend on the site of departure or the

site of arrival F =0.99+0.00, the transition depended on the combination o¢ sif

departure with site of arrival and the probabildf capture depended on the interaction
between the site of arrival and on the year. Tlobabilities of interchange from one breeding
ground to another are displayed in Table 5-26. diagonal corresponds to the site fidelity. In
the case of New Caledonia, there seemed to beclvatiege only with Tonga. Then, a whale
first sighted in New Caledonia had a probability0od5+ 0.03 of being seen again there, of
0.05+ 0.01 of being seen in Tonga afterwards and of & 0101 of having been seen before

in Tonga.

Table 5-26- Estimates of the probabilities of transition of lpback whales between breeding grounds in the
South Pacific, between 1999 and 2004, from the @mﬁel{F,lﬂfmmﬂo, pto*ﬁme}.

from/to NC Tg FP Cl
NC 0.95 (se=.03) 0.05 (se=.03) 0 0
Tg 0.01 (se=.01) 0.83 (se=.15) 0.03 (se=.02) 0.13 (se=.15)
FP 0 0 1 0
Cl 0 0.31 (se=.43) 0 0.69 (se=.43)

NC = New Caledonia; Tg = Tonga; FP = French Polime3l = Cook Island.
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5.4.7. Transience and trap-dependence

The test 3.SR provided by U-CARE on the combinedo{p and genetic) dataset
1999-2005 revealed a transience problem (2-sidetd pevalue<< 0.000): some individuals
passed through New Caledonia once with a very lmability of being captured again on a

subsequent occasion.

Two separate datasets being available, it wasastieg to see whether it was an issue
with the genetic or the photo-identification datanath both or if this transience problem in
the combined data was the result of many indivislugbpearing twice in the combined
dataset. Test 3.SR run on the photographic catal@g§99-2005 and on the genetic database
1999-2005 separately showed that the transienddgmowas present for both kinds of data
(p-value<<0.05). Within the genetic dataset it wlaswever, possible to go deeper in the
analysis of the transience: two groups (males amoafes) could be distinguished and test
3.SR was run on each group separately. From thests, tit appeared that the transient
individuals were the males (p-value<<0.05), whike tgroup of females did not show a

detectable issue with transience (2-sided testiyew0.25).

As expected, trap-response was not a significatife of the data from test 2.CT run
on the combined data (2-sided test: p-value=0.2), biopsy sampling does not seem to
detectably affect recapture.
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5.5. Discussion

Several population size estimates have, in the pasin produced for the humpback
population of New Caledonia using photo-identificat or genetic data (Garrigue et al.,
2004). While genetic and photographic data have lmedlected consistently since 1999, no
attempt has been made yet to combine them in @apdgapture models to produce
population size estimates. However, the need togend&oth sources of data to estimate
population was emphasized in Garrigue et al. (2@0d4), from this example, questions arise
in the absence of a way to use both datasets ialmmedance model: which dataset to use and
which model to believe? Would an average value éiet? Average between sampling
methods? Average between models for the same sampkthod?

Investigations in the thesis have shown that bo#imporal variability and
heterogeneity among individuals in capture proligbippear to be present in the data,
therefore violating the assumption of the JS andST$odels of homogeneous capture
probability among individuals and over time. Someltiroccasion closed population models
have the advantage of handling heterogeneity. Hengever, the closure assumption is most
likely violated given the length of the study (7ay®) and the migratory behavior of the
animals. Therefore, the problem in this analysisimilar to the question investigated in
chapter four: does the violation of the assumpitidnclosure have more impact on the
population size estimates of the closed-populatiodels than the violation of the assumption

of homogeneous capture probability on the TSJ$estis?

The TSJS does not handle a high degree of hetegitgemong individuals in capture
probability (see chapter three) but is more roliah the closed population estimators when
this kind of heterogeneity in capture probabilgysimall or the capture probability high (see
chapter four). In the case of the humpback popadatn New Caledonia, heterogeneity
among individuals in capture probability is certgia factor to take into account but the
degree is not known. Previous studies showed #rables tend to have a lower capture
probability than males on breeding ground, and thatnumber of individuals genotyped is
biased towards males and that individuals are lsualequally available for the two
sampling methods (Garrigue et al., 2004; Smith let 2899). For the structure of the

heterogeneity in capture probability, investigaiguggest that males tend to have a higher

192



5. Analysis of the abundance of the New Caledohianpback whale population

capture probability than females, especially inpsipsampling (Garrigue et al., 2004; Smith
et al., 1999). However, the discrepancy betweetucagprobabilities of males and females is
not large, which could give evidence towards a bmeamoderate heterogeneity in capture
probability. Moreover, capture probabilities of rked individuals are estimated around 0.05-
0.26 in both datasets and the average capture lphtpaised in chapter four falls in this
interval, even though the capture probabilitiesnested with the CJS should be taken with
caution as the extrapolation is valid only if tharked individuals are representative of the
whole population. Thus, unless there are uncatehapimals, an issue that should be
minimized by the double-sampling design, the situain the data could be extrapolated from
the results of the CJS model to be close to thelsimon structure in chapter four in case 1, 2
or 3 under heterogeneity in capture probability andqual sampling probability for the TSJS
model: in such a case the TSJS estimator appeab® ta fairly good estimator and to
underestimate the abundance on average (possinty Irto 18% of the true population size
but a greater underestimation is probably to beeetqul as the simulation results were based
on a 10-occasion experiment and here the studyowais7 occasions). Moreover, the TSJS
model assumes that the probability of capture & same across sampling methods and
differences in capture by each sampling methodahg dealt with in the estimation of thg
parameter. So heterogeneity is to be expectedeiT 8IS model since the sampling methods
will usually be different. However, with an appr@te rate of simultaneous capture (see

chapters two and three), this heterogeneity is llednay the TSJS model.

Given the present evidence of temporal variationapture probability probably due
to the small sampling effort in 2002 and 2004 coraegato the other years, it might be
advisable to ignore estimates from 2002 and 2004hé open-population and Chapman
modified Lincoln-Petersen estimators or to intergheem with caution. My results suggest
that the temporal heterogeneity in capture prolighiiay not be due to any biological reason
but due to the sampling effort that varied yeaferefore, standardizing sampling effort

over years in future work would be desirable.

Speculation about the kind of heterogeneity in wapprobabilities forces us to run at
least 5 closed-population models for both sampimeghods (the genetic and the photographic

data) and thus give a variety of estimates thatekearcher has to choose from. Indeed these
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estimators are not MLEs so the classic model gelecapproach with the Akaike’s
Information Criterion is therefore not possible. eThlassifier from program CAPTURE
selected model M as the most appropriate given the present datashwh not surprising
given the evidence of a temporal and individualialality in capture probability found by
other methods. As mentioned in Otis (1978), thdulisess of such a classifier declines with
the capture probability: here evidence shows that data could be of medium quality
(following the Otis data qualifier) with an approxate average of capture probability of
approximately 0.2. There is, thus, considerablys leBance that the program selects an
inappropriate model compared to the situation witlor data (average capture probability
around 0.05) where it can select 34.7% of the @meodel which is only appropriate 12.5%
of the time as stated in Otis (1978). Mods}, Bbuld be the most suitable in the present case.
Furthermore, with the three datasets available,aetsdd, by Chao and Musing the Jackknife
method may not perform well, as the tests in CAPEUWRggested. Generally, heterogeneity
in capture probability results in negatively-biasestimates and, as shown in chapter four,
closed population models perform well in some situs and poorly in others. The sample
coverage approach developed by Chagcyd is usually biased downward when there is
heterogeneity in capture probability among the memnof the population (Chao and Lee,
1992), which is the case here. Mode] Ming the Jackknife method performs poorly and can
exhibit negative bias when data are sparse, atisituam which model M by Chao performs
better, or when some individuals are not catchébtes et al., 1978), which is most likely the
case here as well, as it appears that many indilsdare catchable only by biopsy or only by
photo-identification. However, the latter issue psobably only of concern for the
photographic data, as there are considerably ledwiduals catchable only by photo-
identification than there are by genetics alone. tBa other hand, model jMusing the
Jackknife method can overestimate the populatipe wihen almost all the individuals have
been caught (Amstrup et al., 2005), which | dothotk is likely here. Model M seems to be
able to handle a greater degree of heterogenettpdtween the three datasets available for
multiple-occasion closed-population models, model, Bupposedly the most suitable of the
closed population ones using the classifier fromgmm CAPTURE, gave very different
results: firstly between the two photographic acagaks with estimates apart by a factor 1.29
and then between genetic and photographic datag#tspopulation size greater for the
genetic dataset by a factor 1.88 to 2.43. Moreawechapter four, model Mwas never the
best model in the 6 cases of heterogeneity in cagitobability. Consequently, | would not

consider model | as reliable in the present analysis. The two-solg model leads to
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results very similar to the results with model Mo very high compared to the results with
the TSJS model. Under the two-source iodel, the probability of being sampled by both
methods is very high and it was shown, in chapier,fthat the two-source (Mnodel leads to
highly positively biased results when there is tmjeneity and a high average capture
probability (cases 6 and 7, see chapter four),emhié TSJIS estimator gave very good results
in such cases. Results from simulation in chapter suggest that model (Mby Darroch
performs well in the presence of a small heteroggrend this model appeared fairly
consistent through the simulation study. Thereformeguld consider model Moy Darroch as

a good candidate among the closed-population mod@@hslly, the modified Chapman’s
estimator seems to also greatly depend on theidedased on and like the other models
based on one type of data, the inconsistency betwee two photographic catalogues and
with the genetic data, along with the extraordinayge of estimates, can only confuse the

ecologist.

The violation of the closure assumption leads ftificdities in interpreting closed-
population model estimates and such estimates dl@utegarded as estimators for an entire
superpopulation whose members move in and outeotady area (Kendall, 1999). In this
study the assumption of closure is violated botbggaphically and demographically. The
demographic non-closure, here through the procésdeath and birth, is similar to the
scenario of “one entry and one exit” during thersewf the experiment, therefore leading to
biased closed-population estimates (Kendall, 199®lation of the geographical closure
assumption has also been brought to light by thdeege of interchange between New
Caledonia and neighboring breeding grounds showthig chapter: this study is the first
attempt to understand the stock structure of hulptadoales in the South Pacific and has not
been published at the time of the writing of thegent thesis. The interchange probabilities
could be larger than the ones provided here. Intleee@ is variation among the study areas in
sampling effort, size of the area, geographic abaisy. Despite those sampling difficulties,
it is clear that interchange, hence temporal ertigraexists and should not be ignored in the
discussion of assumption violations. However, in@ known whether this emigration is
completely at random, Markovian, or driven by cltrogpseudocycles like the ENSO. The
consequences of the violation of the geographitteauce assumption for closed-population
models depend on the nature of the movement prodesise emigration movement is

random, unless there is heterogeneity among ingildin capture probability, there should
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be no bias in closed-population estimators (Kend&B9). Finally, results on the apparent
survival estimated with the CJS model could alsghlght geographic openness of the
population. Since it is almost certain that theetawrvival is high (also highlighted by the
CAS model where true survival was estimated as)@®@%he humpbacks, the relatively low
apparent survival would reflect a probable higle rat permanent or long term emigration
during the course of this study (again in the farfifione exit”, therefore leading to bias in the
closed-population estimates). Therefore, the ap@at@pclosed-population estimates here are
most-likely positively biased by the violation dfet assumption of closure, with a presumably
larger overestimation than the overestimation foumdhapter four since the population here
seems more open than the simulated population. TB#S model is certainly negatively

biased by the violation of the assumption of honmegeis capture probability.

Combining the photographic and the genetic soutsasg the approximated CJS
models or the corrected TSJS estimates of surgeaérally led to smaller survival estimates
than those found in the literature (Buckland, 19@®ijttleborough, 1965; Gabriele et al.,
2001; Mizroch et al., 2004). However, Buckland (@pgecommended, for reliable survival
estimation, capture probabilities higher than h&r¢ capture probabilities were estimated
around 0.05-0.26) and ideally at least 10 yearsnointensive research program (here only 7
years were available, with two years, 2002 and 206 a small sampling effort). Results
on the apparent survival suggested that estimafiesedl between the genetic sampling and
the photographic sampling, with an apparent sulvprabability always greater with the
photographic sampling than with the genetic sangplihis unlikely that, for a species such as
humpback whale, the true survival differed betwdentwo sampling methods because that
would mean that these sampling methods sampledptwpalations with different survival
rates. However, it is possible that this discregabetween apparent survival estimates
indicated that the loss of animals through permaeangration was higher with the genetic
sampling and that there was a portion of the pdjmnahat were transient individuals more
likely to be sampled by the genetic sampling. Ishsaase, a combined analysis where the
survival is constrained to be the same across dngpking methods leads to the loss of

valuable information.
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One of the assumptions of the model is that captare independent of one another.
This suggests that individuals should be independéneach other. However, even in
remotely sociable species, there is always someedegf relationship between individuals
that begets the violation of this assumption. Thenpback whale is no exception.
Associations between adults are known to be temypdrat mother and calf association on
breeding grounds are stable throughout the sedasms. it might be advisable to ignore calves
for the purpose of population size estimation witle TSJS model, even though the

consequences of keeping them in the datasets knewn.

Among the possible violation of assumptions of T®JS model, the misreading of
tags is believed to be negligible in both the gerstd photographic data thanks to a rigorous
laboratory protocol and to the experience of tlantén matching. However, if misreading of
tags is technically inevitable, researchers shoalk@ their results with caution as this may
lead to overestimated population sizes along witbsa in precision in the estimation and
therefore potentially affect conclusions and midleasearchers. In the case of the New
Caledonian humpback whale population, estimatianguall the photographs does not lead to
a clear trend in the population dynamics. Howea#rppen population models (JS, weighted
JS and TSJS models) using the photographic da&al lmasthe most rigorous protocol (i.e. the
QC protocol, therefore removing the chance of nadrags with the photographic data) agree
on the fact that, since 2001 or 2002, the sampdgailation is declining.

With the evidence provided by the present TSJS mathe humpback whale
population of New Caledonia was estimated at leas 600 individuals in 2004 and may be
declining. In addition, the population size betwd®95 and 2001 was estimated by Garrigue
et al. (2004) using two closed-population modéige: weighted mean of the Petersen model
and the Chapman’s modification of the Petersenn2pga model. With the former, the
abundance was 533 (CV=0.15) with the genetic datd 327 (CV=0.11) with the
photographic data, and with the later 643 (CV=0.48) 574 (CV=0.18), respectively. So,
even though the estimation using the TSJS modeprabably negatively biased by
heterogeneity in capture probability among indialdy these new results emphasize the
potential vulnerability of the New Caledonian hurapk whale population and the need for a

longer and rigorous monitoring study. Future workthis region would benefit from a
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different sampling design. A robust-design typeeaperiment (Pollock, 1982) would be
especially recommended here as in the long termdpalation is open but during the capture
occasions that usually take place over a periodwof months, the demographic closure
assumption holds. The robust design could help gmizong and measuring temporary
immigration that is suspected in the humpback wpajgaulation in New Caledonia and would
allow the estimation of more population parametkan the present study design reasonably
permits. Then the estimation of population sizeeath secondary period with closed-
population models could be faithfully compared bh® tabundance given on the primary
periods by open-population estimators such as S#&STestimator. Capture probabilities for
primary periods should increase resulting in maeeige estimates and better discrimination
among models. A pitfall of the robust design is &x¢ra sampling effort compared to a JS
experiment because the design implies samplingtt primary and secondary time scales

but in this case, it is being done anyway.
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CONCLUSIONS

The aim of the present thesis is to provide a goiuto the extremely difficult task
associated with the estimation of abundance wiitbrg another difficulty to it with the use
of two partially-overlapping sources of informatio®ne objective was to emphasize to
researchers the potential benefits of combiningcssuof information (Barker, 1997; Barker
et al., 2004; Barker and White, 2001; Forcada anbdifson, 2006; Salewski et al., 2007)
versus the traditional approaches based on oneesolrr this context, a new assessment
methodology for the estimation of abundance cowddubkeful for many species that are
sampled by different methods: birds (ringing anduestics) (Laiolo et al., 2007; Salewski et
al., 2007), bats (ringing and genetics) (Riveralgt2005; Senior et al., 2005), whales (photo-
identification and genetics) (Garrigue et al., 20®kals (tagging and photo-identification)
(Forcada and Robinson, 2006). The novel approamhoged here, the two-source Jolly-Seber
(TSJS) model, is an extension of the classic J8diper model and is therefore relevant to
open population and to long-term monitoring studieslong-lived animals for which the
classic JS model is often used.

Although mathematical models inevitably simplify ethbiological complexity
characterizing these animal populations, one hasldntify the goal to pursue in order to
choose which of the multiple approaches availatdiay to use. Do we wish to obtain the size
of the population at specific times? Do we wisltémpare the actual abundance with the one
of 10 years ago? Do we want to monitor a populatiear a period of time? And so on. In
many cases even answering these questions to némewhoice of models still leads to a
broad list of possible methods. And the multiplairses of uncertainty about biological
process describing these animal populations dohelg identifying the optimal approach.
Nevertheless, | attempted here to provide anotrethoa to answer a relatively-new situation
in population size assessment: when two datasstdban two different sampling methods
are available for the same population, which ormukhwe use to estimate the size of this

population? | suggest a sensible solution is thataurces of information should be used to
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make inference on abundance. Moreover, double sagniglan efficient approach to increase

the sample size without increasing the length efedperiment.

This estimation method using the original Jolly-&elmoment estimator in which the
liq parameter is plugged-in is a simple modificationaofvell accepted and widely used
method and may not face the usual reluctance omdhieof the field ecologists. It avoids
intensive computer work and provides simple calouhs that can even be checked by hand.
However, | am aware that such a method does no¢ riudlkuse of the modern statistical tools
available (Bayesian framework (Brooks et al., 20Qi41g and Brooks, 2001; Schofield and
Barker, 2008), more sophisticated likelihood-basedthods (Barker and White, 2004,
Schwarz and Arnason, 1996)...). Nevertheless, | cheile the present method, to match the
complexity of the model with the intended use teate a model no more complex than
necessary. | also show how survival and recruitnem be estimated using the TSJS

approach, therefore extending the use of the ntodalore than just abundance estimation.

In the present thesis, the verification of the sihass of the method to departure from
the underlying assumptions was done using a spegiifinulation structure. This particular
simulation structure is, however, relevant to aadreange of populations, i.e. relatively long-
lived, slow-reproducing with short sampling freqagmelative to longevity. It is always hard
to generalize results when it comes to heterogenieit capture probabilities. Ideally
simulations matching as closely as possible thein should be run to test the population
size estimators and the aim here was to be aldattapolate (while being careful with the
extrapolation) the results found in the simulatiothe case study in chapter five.

Unbiased estimates were obtained through the stionlatudy when all assumptions
of the TSJS model held, for a range of parametlerega However, a researcher will be more
interested in the validity of the method when uhdieg assumptions are violated, often the
case in ecological studies. Interpretation of thalgtical results depends on the validity of the
underlying assumptions. For the TSJS model, theunagtsons are: (1) the capture
probabilities are the same over time and acrossithhls within each capture method, (2) all
animals have the same probability of survival betweccasiont and occasiori+1, (3)
marked animals do not lose their mark and marksatreverlooked, (4) sampling periods are
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short enough to avoid death during the samplingoger5) emigration is permanent, (6)
capture probabilities are independent of each pffiga sampling period can include multiple
capture occasions: in this case only one evemtcsrded, the others ignored. If the individual
is available by both methods and is captured &t leace, then it should be captured by both
simultaneously at least once during this sampliewgogal, (8) having a capture by one method
in the capture history does not depend on whethaobthe animal has been captured by any
other method.

Studies have shown the limits of the robustnesbeflolly-Seber estimator due to the
failure of assumption (1) (Carothers, 1973; Gilp&#&73) and simulation studies on the TSJS
estimator showed similar limitations. This assumptis the most likely to be violated and
therefore the validity of the TSJS model was thgtdy checked with departure from this
assumption. The TSJS model proves to be relateiigient when heterogeneity is small or
when the average capture probability is high (>(5Bg chapter three). When heterogeneity in
capture probability among individuals is expecteduspected, researchers should be aware
that the population size will be underestimatedhwét degree depending on the degree of
heterogeneity. There are two sources of heterotyemecapture probabilities (Crespin et al.,
2008). The first source is the extrinsic heteroggrtbat results from the design experiment.
For example, bear studies where grid-samplingesl usually exhibits an edge effect (Jensen,
1975): bears whose home ranges are entirely ogrttieare at a higher risk of capture than
those whose home ranges straddle the grid (Boulagigal., 2004b). A sampling design
where some regions (or habitats) are more extdyssaenpled than others and where data are
pooled at a regional or habitat level will also essarily display extrinsic heterogeneity
(Mizroch et al., 2004; Thompson, 2004). Care shduddgiven to the sampling design to
decrease extrinsic heterogeneity. For instanceban studies, effort should be made to
construct an appropriate sample frame which mat@seslosely as possible the target
population (Thompson, 2004); in bear studies, ghasign should take into account the
topography and the number of bears expected (Bgetagt al., 2002). The second source of
heterogeneity in capture probability is the intiineeterogeneity which conveys biological
information and depends on observable charactsjsuch as gender, colours (Pradel et al.,
1997), and on less obvious features such as socie¢productive status (Summerlin and
Wolfe, 1973). In chapter four, | show that usingleaype of data separately could be less

efficient, in terms of both precision and bias,nthhe combined approach developed here. |
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show that the underestimation with the TSJS modklalways be lesser than the one with
the classic JS model on just one source of infaomawhen the capture probabilities vary
among individuals. Results of chapter four also destrate that, for closed-population
estimators, the balance of the underestimationtdube heterogeneous capture probability
and the overestimation expected due to the viglaiicdhe closure assumption (of the form of
one entry and one exit during the study period, &gndall, 1999)) falls in favour of an
overall overestimation. Therefore, with an opengapon with a high survival rate and
exhibiting heterogeneous capture probabilities anondividuals, closed-population
estimators are likely to overestimate the populatize at that site. The calculated value
should be interpreted as a superpopulation estinf@taillanger and McLellan, 2001,
Boulanger et al., 2002; Kendall, 1999).

The use of multiple sampling methods is therefooéemtially a good approach in
sampling design to maximize effectively the numbeicatchable animals, thus decreasing
heterogeneity in capture probabilities and ensuttirag marked and unmarked animals in the
sampled population have similar probabilities afeeing the sample, without having to dilute
the sampling effort over a large area. And as iinigortant to control variation in a sampling
design, this methodology could provide a useful w@yeduce variation by increasing the
sample size and, hence, to increase the estimagoisn.

Assumption (2) concerns the survival that is assuewal among individuals. While
violation of this assumption should not bias theuydation size estimate and was not explored
in the present thesis, survival is an importantapeater in population dynamics that can
increase understanding of causes of variation ipuladion size and therefore requires
consideration. With two overlapping sources of dtare are, at present, two ways survival
can be estimated: using the approach of the TSI&Inbhased on the ad hoc JS model (see
p.34) and using an approximation based on the @¥sefvork (see p.160). The first approach
uses the probabilistic framework with theparameter to correct the classic JS estimates for
overlap. The second approach is based on a moiibl@dramework, allowing both capture
probabilities and survival to be modeled as fundiof external covariates but ignores the
potential overlapping between the two sources td.deherefore, | would not recommend the
survival to be estimated this way. Moreover, resirtchapter five highlight that a combined

analysis, like the TSJS method, where the survs/alonstrained to be the same across the

202



sampling method could lead to the loss of valuati@ermation on the characteristics of the
populations sampled by the two sampling methoderdfbre, researchers should combine

data with caution in survival analysis.

Assumptions (3) can be violated in various casestudies using photographic tags of
natural marks (Karanth and Nichols, 1998; Meekaal.et2006), marks can be unrecognized
because of a natural change of patterns or becaluse human matching mistake. The
violation of this assumption in such studies caardfore be minimized by a rigorous
matching protocol involving at least two experieth@gorkers and by using only good quality
photographs (Stevick et al.,, 2001). Studies witkual recaptures, e.g. visual recapture of
seals (Schwarz and Stobo, 1999) or visual recaptulerd ringing studies will tend to be
more prone to violation of this assumption thantpgmaphic tagging. In genetic studies,
misidentification will be most likely of the formfdalse negative error and result in the
creation of new “ghost” individuals (Stevick et,&001). Misidentification that results in the
creation of new individuals will result in an ovstienation of the population size (Stevick et
al., 2001; Yoshizaki et al., 2009). In chapters¢hand four, | show that the TSJS model is
relatively efficient in handling such misidentifican as long as the misidentification is
homogeneous within the population. This is not ssimy because the TSJS model is prone
to an underestimation of the population size whidn be counterbalanced by the
overestimation due to tag misreading. Therefore, phesence of a small homogeneous
misidentification rate (<5%) in the data should het an issue with the TSJS approach,
similar to what was found for JS estimates (Arnagod Mills, 1981) as long as researchers
are aware of it. In the specific case of the Newe@anian humpback whale study,
photographic matching involves a minimum of two esx@nced researchers so mismatch is
unlikely. Concerning the genetic data, the fieldtpcol provides good-quality DNA (i.e. skin

biopsy) and re-run of problematic samples is syatemnso mismatch is also unlikely.

The TSJS model allows for an entry and one exihftbe study area during the length
of the experiment and therefore assumption (5) bellviolated in studies where temporary
emigration is present, i.e. individuals enter ari #e study sites several times (Kendall and
Bjorkland, 2001). This temporary emigration can éaan ecologically meaningful
interpretation, e.g. home range of individuals edteg outside the study area (Boulanger et

al., 2002), being a temporary emigrant is equiviatenbeing a non-breeder in bird studies
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(Pradel and Lebreton, 1999). Concerning the caghy $h the present thesis, some individuals
have been sighted in other grounds in the Southfi€aslthough the mechanism of the

interchange between neighboring breeding groundsjust started to be studied, it seems
unlikely that emigration is permanent. Howeversthieeds to be confirmed and a similar
sampling effort should be undertaken in each bregdround not to minimize this possible

issue.

Assumption (6) requires independence of the indiaigl for capture. Surely this
assumption can rarely hold for social species livatin groups, e.g., gorillas, elephants,
wolves. This assumption can also be violated toesertent in species that display temporary

associations.

Non-violation of assumption (7) is directly conterg on the sampling protocol used
in the field and is at risk of violation when thampary sampling occasions include several
secondary sampling occasions, such as in a rolassgyrd experiment, or/and when several

“teams” survey simultaneously the same area,lieesame population.

Assumption (8) will inevitably be at risk in studierhere animals are likely to become
trap-shy or trap-happy after a capture. Behavicgaponse can be a problematic source of
variation and there is often no way to fully elimie the response: prebaiting (placing traps
few days prior to the actual trap is set) can h&lgucing the trap-happy behavior or
minimizing trap-shy behaviour can be accomplished rbducing the handling time.
Nevertheless, if trap-shy/happy behavior is suggk(®.g number of captures decreases with
time, number of captures increases with time) ie ohthe two sampling methods or in both,
| would not recommend the use of the TSJS modehuss; in many studies, behavioral
response will not be the only source of variatiod @eneral patterns in the bias in the
abundance estimates with multiple sources of vanaire extremely difficult to predict.

There are therefore a large number of ways in wkiehTSJS can become biased.
However, this is true of all the methods curreratisailable. The case study on humpback

whales in chapter five shows this clearly. Howevkere is here a consistent disagreement
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between datasets, between closed population maddlbetween open and closed population
models. These differences may suggest that thenmoe than just an issue with the

estimation method: does this suggest two populatairwhales, a change in whale behavior,
or an unknown bias in the genetic data? This casdy sshows the consequences of the
peculiarities of the situation being investigatead ashows that, without a lot of extra

information and simulations, the researchers magjlye@nd up undecided as to what is
happening.

I have shown through simulation studies, that the of two sources of information
rather than a single one can enhance the preatdidine population size estimation. | also
provide a comparison of the estimator with the yd8kber model and closed-population
methods and highlight the difficulty in comparingsults coming from two approaches, i.e.
open and closed population methodology. Matchingpdimg design with study goals is
therefore essential for the validity of the datalgsis and interpretation of the results. For
monitoring purposes, the proposed method providegficient alternative to the existing
approaches to deal with multiple sources of datastonate abundance. At present, however,
there is no way to evaluate the goodness-of-fithef TSJS model. Therefore, a productive
direction for future work would be the developmefita goodness-of-fit procedure for the
TSJS model in order to see if the model providesdgadequacy in characterizing the field
data. Future research on combining overlappingcesuof information should also focus on
the Crosbie-Manly-Arnason-Schwarz framework (Cresand Manly, 1985; Schwarz and
Arnason, 1996) to develop a likelihood that woulldva@ a more parsimonious modeling of
population parameters than the TSJS model permitsvauld allow researchers to base their

inference not only on the best model but on a setanlels that seem to well fit the data.

However, ultimately, workers are at the mercy o¢ithdata. For example if the
methods sample different populations then combitiiegwo makes no sense. Similarly, long
term studies for which open population methodsagmeropriate are vulnerable to changes in
personnel, technology and the behavior of aninaler{ the effects of climate change on the
sampling environment) that can lead to misleadmctusions, unless these are recorded and
explicitly included in the analysis. It may be soree before methods have evolved
sufficiently to accommodate all the things that ganvrong in a long term study — even if the
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information is available, for the entire study peli to model them. Until then, results from

such studies must be interpreted with great caution

A user’s guide with R-codes implementing the tworse Jolly-Seber and the two-

source M models is available in Appendix 9.
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Appendix 1

Variances for Jolly-Seber paramet$ﬁ$, ég ét andp, .
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Appendix 2

R codes simulating the Venn diagram in Fig.1-1 @eaddulating the approximation of the
proportion of individuals in F (Fig.1-1).
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The following R code produces capture historiesllastrated in the Venn diagram

Fig.1-1 and the calculation of the approximationtlué proportion of individuals in F (see

Fig.1-1):

out=NULL

histories=NULL

T=10 #NUMBER OF CAPTURE OCCASIONS

p=c(0.1, 0.1, 0.15) #INSERT OCCASION-SPECIFIC CAPTURE PROBS HERE
respectively: prob getting a “1”, prob getting &,“Brob getting a “3” on each
capture occasion

for (ind in 1:10000¢% NUMBER OF DETECTED INDIVIDUALS during the
experiment

{

r=runif(T)

c=(r<p[1])*1

d=((r>p[1])&(r<sum(p[1:2])))*2

e= ((r>sum(p[1:2]))&(r<sum(p[1:3])))*3

f=c+d+e

histories=rbind(histories,f)

if (any(f==3) & lany(f==2) & lany(f==1)) {aa="A"} dse
if (any(f==3) & lany(f==2) & any(f==1)) {aa="B"} ete
if (any(f==3) & any(f==2) & lany(f==1)) {aa="C"} ede
if (lany(f==3) & any(f==2) & lany(f==1)) {aa="D"} dse
if (any(f==3) & any(f==2) & any(f==1)) {aa="E"} ele

if (lany(f==3) & any(f==2) & any(f==1)) {aa="F"} ede
if (lany(f==3) & lany(f==2) & any(f==1)) {aa="G"}
out=append(out,aa)

}

#GET THE TABLE OF FREQUENCIES OFATO G
tt=table(out)

dd=rep(0,7)

names(dd)=c("A","B","C","D","E","F","G")

dd[match(names(tt),names(dd))]=tt

tt=dd#MAKING SURE THAT ANY ZERO OCCURRENCES ARE PUT IN>
THAT ATO G ARE ALL THERE

zz1=sum(tt[c(2,5,6,7)])/ sum(tt) #P1=B+E+F+G

zz2=sum(tt[c(3:6)])/ sum(tt) #P2=C+D+E+F

zz3=sum(tt[c(1,2,3,5)])/sum(tt) #P3=A+B+C+E

#Get true F by subtraction
pp=tt/sum(tt¥GET PROBS OF A TO G

pp
#Get F by P1P2(1-P3)
z271*272*(1-223)

#REAL VALUE

PP6]
print("ratio of estimated to true value of F")
zz1*z272*(1-2z23)/pp[6]

#histories[1:10,]
P=(1-(1-p)*10)/(1-(1-sum(p))*10)
round(P,digits=3)
round(c(zz1,zz2,zz3), digits=3)
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Appendix 3

A linear model showing the effect Bf, P,, P; on the approximation of the proportion of
individuals in F (Fig.1-1).
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The effect of the probabilitieB;, P,, P; on the adequacy of the approximation can be
highlighted by fitting a simple linear model (to athis clearly non-linear, but apparently

monotonic):

Xi=htB(R+PR) + 5P+ (a)

where X, is the proportion of individuals in F,
B, is the intercept,
B, is the regression coefficient associated W&k P,),
B, is the regression coefficient associated ®jth

& is the error term.

N.B.: P; andP, are summed because they are interchangeable @stineator.

Results in Table A and Table B show thg has the greatest effect on the
approximation of the proportion of unidentified olag@: as the value oP; increases, the
value of the approximation of the proportion ofiinduals in F decreases, therefore leading
to an increase of the value of thegparameter. This effect does not seem much affdotede
number of capture occasions in the experiment. Wewes the number of capture occasions

increases, the positive effect @8 + P,) increases, counterbalancing the negative effeg of

on the approximation of the proportion of unidaetifoverlap.

Table A- Results of the simple linear model (a) for a 5-stma experiment.

|Estimate Std. Error t value Pr(>|t))
(Intercept) 1.06028 0.07915  13.396 2.25E-09**
sum(P1+P2) 0.09652 0.0384 2.513  0.0248
P3 -0.57812 0.07275  -7.947 1.48E-06**

Table B- Results of the simple linear model (a) for a 10asicn experiment.

|Estimate Std. Error tvalue Pr(>|t))
(Intercept) 0.96062 0.10405 9.232 4.51E-07**
Sum(P1+P2) 0.22375 0.03766 5.941 4.90E-05**
P3 -0.54728 0.09352  -5.852 5.67E-05**
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Appendix 4

Additional 2D views for figures 2-4, 2-5, 2-7, 2810, 2-11, 2-12 and 2-15.
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Fig.C- Additional 2D views for figure 2-9.
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Fig.D- Additional 2D views for figure 2-10.
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Fig.F- Additional 2D views for figure 2-12.
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Appendix5

MRE, RMSRE, mean estimate and true value of theljadipn size over the simulation runs,

and standard errors, normal and log-normal Cl ayerates of the estimated values, at each

capture occasion of a 10-year study for differapttare probabilities with scenario 50-25-25
and a starting population of 500 individuals.
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Capture Mean Mean True MRE Mean RMSRE Nominal Log-
probability Estimate Value estimated 95% ClI normal ClI
SE coverage coverage
rate (%) rate (%)
P(c)=0.05
A 474 627 -0.24 246 0.59 62 7
2
N 671 655 0.02 322 0.78 77 g
3
N 720 694 0.04 352 0.86 75 g
4
N 873 720 0.21 359 1.05 79 8
5
N 819 746 0.1 385 0.68 80 8
6
N 876 763 0.15 371 1.29 84 g
;
N 906 795 0.14 369 1.07 79 8
8
N 768 831 -0.08 335 0.73 67 7
9
P(c)=0.075
N 637 627 0.02 219 0.74 64 72
2
N 767 654 0.17 236 0.66 78 g
3
N 753 69 0.09 222 0.53 86 8
4
N 804 718 0.12 235 0.56 85 g
5
N 822 744 0.1 237 0.46 86 8
6
N 873 762 0.15 250 0.61 84 g
;
N 873 794 0.1 247 0.8 80 8
8
N 993 827 0.2 281 1.1 71 7
9
P(c)=0.1
N 64 626 0.03 157 0.54 71 75
2
N 711 654 0.09 157 0.47 76 7
3
N 760 691 0.1 162 0.45 81 8
4
N 779 717 0.09 165 0.3 91 g
5
N 832 743 0.12 17 0.34 88 8
6
N 808 760 0.06 168 0.31 87 g
7
N 873 792 0.1 183 0.41 81 8
8
N 927 826 0.12 194 0.49 73 7
9
P()=0.2
N 690 627 0.1 65 0.26 69 65
2
N 693 656 0.06 61 0.18 71 1
3
N 746 696 0.07 67 0.16 84 8
4
N 773 720 0.07 71 0.15 83 8
5
N 790 746 0.06 72 0.14 86 8
6
N 816 765 0.07 75 0.15 83 8

~
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Capture Mean Mean True MRE Mean RMSRE Nominal Log-
probability Estimate Value estimated 95% ClI normal ClI
SE coverage coverage
rate (%) rate (%)
N 834 797 0.05 78 0.14 84 8
8
N 896 834 0.07 86 0.23 67 6
9
P()=0.3
N 655 627 0.04 32 0.14 61 60
2
N 684 653 0.05 33 0.1 65 6
3
N 731 695 0.05 38 0.1 74 7
4
N 752 719 0.04 40 0.08 83 8
5
N 781 745 0.05 43 0.09 83 8
6
N 799 763 0.05 44 0.09 82 8
;
N 833 795 0.05 48 0.1 79 8
8
N 880 830 0.06 52 0.13 69 6
9
P()=0.4
N 646 626 0.03 19 0.09 52 52
2
N 679 653 0.04 20 0.07 58 5
3
N 716 691 0.04 24 0.07 73 1
4
N 747 717 0.04 26 0.06 77 1
5
N 770 742 0.04 28 0.06 81 8
6
N 791 760 0.04 30 0.06 80 1
;
N 819 793 0.03 32 0.06 82 8
8
N 853 827 0.03 35 0.08 73 1
9
P(c)=0.5
N 648 627 0.03 11 0.07 38 38
2
N 669 653 0.03 13 0.04 64 6
3
N 717 694 0.03 16 0.05 61 6
4
N 740 718 0.03 18 0.04 73 1
5
N 767 744 0.03 20 0.04 77 1
6
N 781 761 0.03 21 0.04 85 8
;
N 814 794 0.03 23 0.04 85 8
8
N 850 828 0.03 26 0.06 77 1
9
P(c)=0.6
N 638 626 0.02 6 0.04 31 32
2
N 669 655 0.02 8 0.03 50 5
3
N 709 694 0.02 11 0.03 64 6
4
N 732 719 0.02 12 0.03 77 1
5
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Capture Mean Mean True MRE Mean RMSRE Nominal Log-
probability Estimate Value estimated 95% ClI normal ClI
SE coverage coverage
rate (%) rate (%)
[\“l 763 746 0.02 14 0.03 80 8
6
[\“l 779 764 0.02 15 0.03 88 8
;
N 812 797 0.02 18 0.03 88 8
8
N 847 831 0.02 20 0.04 78 1
9
P(c)=0.8
N 632 626 0.01 1 0.02 14 14
2
N 659 653 0.01 3 0.01 36 3
3
N 699 693 0.01 5 0.01 64 6
4
N 725 719 0.01 6 0.01 73 7
5
[\“l 750 744 0.01 7 0.01 85 8
6
N 769 763 0.01 8 0.01 93 9
;
N 802 795 0.01 10 0.01 92 g
8
[\“l 838 830 0.01 12 0.02 88 8
9
NZ, Ngzpopulation size estimate at time 2, ..., 9.
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Appendix 6

MRE, RMSRE, mean estimate and true value of theljadipn size over the simulation runs,
and standard errors, normal and log-normal Cl ayerates of the estimated values, at each
capture occasion of a 10-occasion study with artsgeading rate of 50%, homogeneous

within the population and a starting populatiorb60 individuals.
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Case Mean Mean True MRE Mean RMSRE Nominal Log-
Estimate Value estimated 95% ClI normal ClI
SE coverage coverage
rate (%) rate (%)
Case 1
20-40-40
P()=0.2
N 617 640 -0.03 79 0.35 51 56
2
N 689 693 0 84 0.28 68 7
3
N 757 757 0 93 0.26 69 8
4
N 821 804 0.02 102 0.27 69 g
5
,\“l 883 852 0.03 110 0.26 69 9
6
,\“l 933 888 0.04 118 0.29 64 g
;
N 997 943 0.05 128 0.31 60 86
8
N 1053 1006 0.04 137 0.34 59
9
Case 2
20-40-40
P(c)=0.5
N 559 640 -0.13 12 0.14 11 11
2
N 620 693 -0.11 16 0.12 15 16
3
N 693 757 -0.08 22 0.1 29 3
4
N 736 804 -0.08 25 0.1 28 3
5
,\“l 786 849 -0.07 28 0.09 41 4
6
,\“l 816 886 -0.08 31 0.09 37 4
;
N 857 941 -0.09 34 0.11 35 3
8
N 888 1002 -0.1 37 0.13 28 2
9
Case 3
50-25-25
P(c)=0.2
N 690 626 0.1 71 0.27 59 58
2
N 725 653 0.11 70 0.22 71 6
3
N 749 693 0.08 73 0.18 80 1
4
N 792 717 0.1 77 0.2 86 8
5
,\“l 836 744 0.12 82 0.2 84 8
6
,\“l 861 762 0.13 85 0.21 78 1
;
N 901 794 0.14 90 0.21 70 6
8
N 951 829 0.15 97 0.27 68 6
9
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Case Mean Mean True MRE Mean RMSRE Nominal Log-
Estimate Value estimated 95% Cl normal ClI
SE coverage coverage
rate (%) rate (%)
Case 4
50-25-25
P()=0.5
N 648 627 0.03 14 0.07 42 43
2
N 683 653 0.05 16 0.06 50 4
3
N 741 693 0.07 19 0.08 51 5
4
N 768 717 0.07 21 0.08 38 3
5
N 803 743 0.08 23 0.09 32 3
6
N 831 760 0.09 25 0.1 24 2
7
N 880 792 0.11 28 0.12 23 2
8
N 918 826 0.11 31 0.13 29 2
9
Nz, N9=population size estimate at time 2, ..., 9.
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Appendix 7

Simulation results for the two-source)khodel (200 simulation runs).
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Number True Mean Mean Mean Mean Normal True Estimated
of abundance estimate estimated MRE RMSRE ClI Cl Cl capture probabilities capture probabilities argk
capture N N SE lower upper coverage
occ_zil_smns bound bound rate p g a f)i se g + se 4+ se
10 500 502 19 0 0 491 514 100 0.25 0.12 0.20.25%+ 0.01 0.12+0.01 0.19+0.01
10 50 49 2 0 0 44 53 100 0.25 0.12 0.20.23+0.02 0.11+0.02 0.12+ 0.03
5 500 482 16 -0.03 0.04 452 514 100 0.25 0.12 0.20.27+0.01 0.12+0.01 0.2+ 0.02

10 500 476 133 -0.05 0.05 278 815 100 0.05 0.01 2950.00.04+0.02 0.008+ 0.003 0.017+0.01




Appendix 8

Sample of values of the two simulated JS estimatescorresponding weighted means under
heterogeneity case 1, with scenario 20-40-40 astdréing population of 500 individuals.
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The table below displays the three first valuesh&# 1600 simulated estimates of

population size obtained with the Jolly-Seber eatonon each of the two datasets available

(dataset 1 from sampling method 1 and dataset 2 8ampling method 2) from &10-

occasion capture-recapture experiment repeatedi@@3 and the variance-weighted means

of each pair of the JS estimates. Each of the thﬁtgg presented below is the variance-

weighted mean of the:Ing and NJSZ obtained on the same occasion and same run of the

simulation, i.e. on capture occasion 2 and runimukation 1, 2, 3. The table below shows

that, despite the fact that ea&%s falls between the value of the correspondlﬁggl and

N 152 It is possible that the arithmetic mean of ﬂﬁ%s does not fall between the arithmetic

means of theN,y and N, .

Capture occasion JS model on JS model on Variance
2 dataset 1 dataset 2 weighted mean

Run of simulation NJSl se NJsz se NWJS se

1 311 50 345 60 325 38

2 345 52 694 120 401 48

3 896 171 336 55 388 52

Arithmetic mean 517 91 458 78 371 46

242



Appendix 9

A USER'’S GUIDE to the TWO-SOURCE JOLLY-SEBER MODBhd MODEL TWO-
SOURCE M.
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Permission is granted to copy this document, athawge and in its entirety, provided
that the copies are not used for commercial adgentand that the source is cited. The
manual is available upon request in an electrammét from the author.

STEP 1

Download and install the software R availablétap://www.r-project.org/

Manuals are also available on this website fotirinformation on the software.

STEP 2

Create the table to be used in the analysis:

* It must be a “.csv” file

* It must only contain one spreadsheet

* The table must contain no raw or column label

» Start the table in the Al cell

» Write capture histories on raw, columns represapture occasion

» A capture by method 1 (i.e. photo-id) = “4”

* A capture by method 2 (i.e. skin sampling) = “5”

» A simultaneous double capture = “8”

* Not captured = “0”

* Multiple captures on a capture occasion are todmored: only 1
capture per capture occasion allowed

STEP 3

Copy and past the following codes in the R-comnspate:

data.csv=function(data=data)(data=read.csv2(file.choose(),header=F))
target=data.csv()

STEP 4

Select the “.csv” file to be analyzed
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STEP 5

Replace the x in the following code by the numlderapture occasions in the study,
copy and paste the updated code:

T<-x

STEP 6

Copy and paste the following codes (this will ghe tlata in the appropriate format for the
TSJS and the two-sourceplivhodel):

# Formatting the data for the two-sourcerivbdel
# First separate matrix into 3 matrices: creataflat

newtargetP=target

for(min 1:T) {
for(z in 1:nrow(newtargetP)) {

x=newtargetP[z,]

if(x[m]==5) { newtargetP[z,m]=0}
1
for(min 1:T){
for(z in 1:nrow(newtargetP)) {

x=newtargetP[z,]

if((sum(x[1:T]==8)!=0)&(x[m]==4)) {newtargetP[z,m]=0}}}
for(min 1:T) {
for(z in 1:nrow(newtargetP)) {

x=newtargetP[z,]
if(x[m]==8) {newtargetP[z,m]=0}}}

#to remove histories when whales had not beenhtaurge to get the

matrix to be analyzed
sortout <- function(object)

{

condition <- function(row)

return(all(row==0))

}

rowindicator <- apply(object,1,condition)
return(object[!rowindicator,])

sortout(newtargetP)
dataP<- sortout(newtargetP)
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# separate matrix into 3 matrices: create dataG
newtargetG=target
for(min 1:T){
for(z in 1:nrow(newtargetG)) {

x=newtargetG|z,]
if(x[m]==4) { newtargetG[z,m]=0}
1
for(min 1:T) {
for(z in 1:nrow(newtargetG)) {

x=newtargetG|z,]
if((sum(x[1:T]==8)!=0)&(x[m]==5)) {newtargetG[z,m]=0}}}
for(min 1:T){

for(z in 1:nrow(newtargetG)) {

x=newtargetG|z,]
if(x[m]==8) {newtargetG[z,m]=0}}}

#to remove histories when whales had not beenhtaurge to get the

matrix to be analyzed
sortout <- function(object)

{
condition <- function(row)
return(all(row==0))
}
rowindicator <- apply(object,1,condition)
return(object[!rowindicator,])

sortout(newtargetG)
dataG<- sortout(newtargetG)

# separate matrix into 3 matrices: create dataB
newtargetB=target
for(min 1:T){
for(z in 1:nrow(newtargetB)) {
x=newtargetB|z,]
if((sum(x[1:T]==8)==0)&(x[m]==4)) {newtargetB[z,m]=0}

if((sum(x[1:T]==8)==0)&(x[m]==5)) {newtargetB[z,m]=0}
B
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#to remove histories when whales had not beenhtaurge to get the

matrix to be analyzed
sortout <- function(object)

{

condition <- function(row)

return(all(row==0))
}
rowindicator <- apply(object,1,condition)
return(object[!rowindicator,])

sortout(newtargetB)
dataB<- sortout(newtargetB)

dB2<-as.matrix(dataB)
dB<-as.vector(dB2)

dP2<-as.matrix(dataP)
dP<-as.vector(dP2)

dG2<-as.matrix(dataG)
dG<-as.vector(dG2)

opensim<-
list(B=structure(dB,.Dim=as.integer(c(nrow(dB2),ncol(dB2)))),P=structure(dP,.Dim=as.integer(c(nrow(
dP2),ncol(dP2)))),G=structure(dG,.Dim=as.integer(c(nrow(dG2),ncol(dG2)))),.Names=c("B","P","G"))

# Formatting the data for the TSJS model

for(y in 1.T) {
for(z in L:nrow(target)) {
w= target [z,]

#at time 1
if(yzzl) {
if((wly]==4)&(sum(w[(y+1):T]==8)==0)){ target[z,y]=1}
if(wWly]==5)&(sum(w[(y+1):T]==8)==0)){ target([z,y]=2}
if(Wy]==5)&(sum(w[(y+1):T]==8)!=0)){target[z,y]=11}
if(wWly]==4)&(sum(w[(y+1):T]==8)!=0)){target[z,y]=10}
if(w[y]==8){ target[z,y]=9}

#at subsequent occasion

else{

#if((sum(w[1:(y-1)])==0)&(wly]== 4)) { target[z,y]= 1}
if((sum(w[1:(y-1)]==4)==0)&(W[y]== 4)&(sum(w[1:(y-1)]==1)==0)&(sum(w[1:(y-

1)]==8)==0)&(sum(w[1:(y-1)]==9)==0)) { target|z,y]= 1}
if((sum(w[1:(y-1)]==5)==0)&(sum(w[1:(y-1)]==2)==0)&(sum(w[1:(y-

1)]==8)==0)&(sum(w[1:(y-1)]==9)==0)&(w[y]== 5)) { target[z,y]= 2}
if((sum(w[1:(y-1)]==9)==0)& (sum(w[1:(y-1)]==10)==0)& (sum(w[1:(y-1)]==11)==0)

i&(w[y]== 8)) { target[z,y]= 9}

}
}
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for(min 1:T){
for(z in 1:nrow(target)) {
x=target[z,]

if((sum(x[1:(m-1)]==9)==1)&(x[m]==4)) { target[z,m]=6}
if((sum(x[1:(m-1)]==9)==1)&(x[m]==5)) {target[z,m]=7}
if(X[m]==1)&(sum(x[m:T]==9)!=0)){target[z,m]=10}
if(X[m]==2)&(sum(x[m:T]==9)!=0)){target[z,m]=11}
if((X[m]==9)&(sum(x[1:T]==10)!=0)){target[z,m]=14}
if((X[m]==8)&(sum(x[1:T]==10)!=0)){target[z,m]=14}
if(X[m]==9)&(sum(x[1:T]==11)!=0)){target[z,m]=14}
if(X[m]==8)&(sum(x[1:T]==11)!=0)){target[z,m]=14}

for(min 2:T) {
for(z in 1:nrow(target)) {
x=target[z,]

if((sum(x[1:(m-1)]==9)==1)&(x[m]==9)) { target[z,m]=8}
if((sum(x[1:(m-1)]==10)==1)& (sum(x[1:(m-1)]==14)!=0) &(x[m]==9)) { target[z,m]=19}
if((sum(x[1:(m-1)]==11)==1)& (sum(x[1:(m-1)]==14)==0)& (x[m]==9)) { target[z,m]=14}
if((sum(x[1:(m-1)]==10)==1)& (sum(x[1:(m-1)]==14)!=0)&(x[m]==8)) { target[z,m]=19}
if((sum(x[1:(m-1)]==11)==1)& (sum(x[1:(m-1)]==14)==0)&(x[m]==8)) { target[z,m]=14}

if((sum(x[1:(m-1)]==10)==1)& (sum(x[1:(m-1)]==14)!=0)&(x[m]==14)) { target[z,m]=19}
if((sum(x[1:(m-1)]==11)==1)& (sum(x[1:(m-1)]==14)!=0)&(x[m]==14)) { target[z,m]=19}

if((sum(x[1:(m-1)]==11)==1)& (sum(x[1:(m-1)]==15)==0) &(x[m]==10)) { target[z,m]=15}
if((sum(x[1:(m-1)]==11)==1)& (sum(x[1:(m-1)]==15)!=0) &(x[m]==10)) { target[z,m]=12}
if((sum(x[1:(m-1)]==11)==1)&(x[m]==11)) { target[z,m]=13}
if((sum(x[1:(m-1)]==11)==1)& (sum(x[1:(m-1)]==15)==0) &(x[m]==1)) { target[z,m]=15}
if((sum(x[1:(m-1)]==11)==1)& (sum(x[1:(m-1)]==15)!=0) &(x[m]==1)) { target[z,m]=12}
if((sum(x[1:(m-1)]==11)==1)& (sum(x[1:(m-1)]==15)==0) &(x[m]==4)) { target[z,m]=15}
if((sum(x[1:(m-1)]==11)==1)& (sum(x[1:(m-1)]==15)!=0) &(x[m]==4)) { target[z,m]=12}
if((sum(x[1:(m-1)]==11)==1)& (sum(x[1:(m-1)]==15)==0) &(x[m]==6)) { target[z,m]=15}
if((sum(x[1:(m-1)]==11)==1)& (sum(x[1:(m-1)]==15)!=0) &(x[m]==6)) { target[z,m]=12}

if((sum(x[1:(m-1)]==10)==1)& (sum(x[1:(m-1)]==16)==0) &(x[m]==11)) { target[z,m]=16}
if((sum(x[1:(m-1)]==10)==1)& (sum(x[1:(m-1)]==16)!=0) &(x[m]==11)) { target[z,m]=13}
if((sum(x[1:(m-1)]==10)==1)& (sum(x[1:(m-1)]==16)==0) &(x[m]==2)) { target[z,m]=16}
if((sum(x[1:(m-1)]==10)==1)& (sum(x[1:(m-1)]==16)!=0) &(x[m]==2)) { target[z,m]=13}
if((sum(x[1:(m-1)]==10)==1)& (sum(x[1:(m-1)]==16)==0) &(x[m]==5)) { target[z,m]=16}
if((sum(x[1:(m-1)]==10)==1)& (sum(x[1:(m-1)]==16)!=0) &(x[m]==5)) { target[z,m]=13}
if((sum(x[1:(m-1)]==10)==1)& (sum(x[1:(m-1)]==16)==0) &(x[m]==7)) { target[z,m]=16}
if((sum(x[1:(m-1)]==10)==1)& (sum(x[1:(m-1)]==16)!=0) &(x[m]==7)) { target[z,m]=13}

if((sum(x[1:(m-1)]==10)==1)&(x[m]==10)) { target[z,m]=12}
if((sum(x[1:(m-1)]==10)==1)&(x[m]==1)) { target[z,m]=12}
if((sum(x[1:(m-1)]==11)==1)&(x[m]==11)) { target[z,m]=13}
if((sum(x[1:(m-1)]==11)==1)&(x[m]==2)) { target[z,m]=13}
if((sum(x[1:(m-1)]==11)==1)&(x[m]==5)) { target[z,m]=13}
if((sum(x[1:(m-1)]==10)==1)&(x[m]==4)) { target[z,m]=12}
if((sum(x[1:(m-1)]==11)==1)&(x[m]==7)) { target[z,m]=13}
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if((sum(x[1:(m-1)]==10)==1)&(x[m]==6)) { target[z,m]=12}

if((sum(x[1:(m-1)]==7)==1)&(x[m]==7)) { target[z,m]=17}
if((sum(x[1:(m-1)]==6)==1)&(x[m]==6)) { target[z,m]=18}

}
}

newtarget=target

STEP 7
Copy and paste the following codes to run the neodel

# to run the TSJS model

#calcul of probabilities
Pp<-(sum(newtarget[,]==1)+ sum(newtarget[,]==10)+ sum(newtarget[,]==6)+
sum(newtarget[,]==15))/nrow(newtarget)
Pg<- (sum(newtarget[,]==2)+ sum(newtarget[,]==11)+ sum(newtarget[,]==7)+
sum(newtarget[,]==16))/nrow(newtarget)
Ppgtheo<-Pp*Pg
Ppgdata<- (sum(newtarget[,]==9)+sum(newtarget[,]==14))/nrow(newtarget)

#calcul of identity rate
f=
function(l, Ppgtheo, Ppgdata)
1 - (Ppgtheo/I"2 - Ppgtheo*Ppgdata/I*3)

g =

function(l, Ppgtheo, Ppgdata)

1 - (Ppgtheo/I"2 - Ppgtheo*Ppgdata/I*3) - |
plot(x, g(x, Ppgtheo, Ppgdata), type ="I", ylim = c(-1, 1))
abline(h = 0)

uniroot(g, ¢(.001, .999), Ppgtheo = Ppgtheo, Ppgdata = Ppgdata)

I<- uniroot(g, c(.001, .999), Ppgtheo = Ppgtheo, Ppgdata = Ppgdata)$root

#calcul pop size
m<-rep(0,T)
mP<-rep(0,T)
mG<-rep(0,T)

R<-rep(0,T)
RP<-rep(0,T)
RG<-rep(0,T)

n<-rep(0,T)
nP<-rep(0,T)
nG<-rep(0,T)

M<-rep(0,T)

MP<-rep(0,T)
MG<-rep(0,T)
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N<-rep(0,T)
NP<-rep(0,T)
NG<-rep(0,T)

z<-rep(0,T)
zp<-rep(0,T)
zg<-rep(0,T)
zpg<-rep(0,T)
r<-rep(0,T)
rp<-rep(0,T)
rg<-rep(0,T)
rpg<-rep(0,T)
zP<-rep(0,T)
zG<-rep(0,T)
zPc<-rep(0,T)
zGc<-rep(0,T)

rP<-rep(0,T)
rG<-rep(0,T)

rPc<-rep(0,T)
rGe<-rep(0,T)

sum14Pfirst<-rep(0,T)
sum14Gfirst<-rep(0,T)
suml4Precapt<-rep(0,T)
suml14Grecapt<-rep(0,T)

sum15Pfirst<-rep(0,T)
sum16Gfirst<-rep(0,T)
sum15Precapt<-rep(0,T)
sum16Grecapt<-rep(0,T)

for(iin 2:(T-1)) {
for(j in 1:nrow(newtarget)) {
v=newtarget[j,]
if((V[[]==0)&(sum(v[1:(i-1)]==2)!=0)&(sum(v[(i+1):T]==5)!=0))
{zgli]=zg[i]+1}

if((V[i]==0)&(sum(v[1:(i-1)]==6)!=0) &
(sum(v[(i+1):T]==8)==0)&(sum(V[(i+1):T]==18)!=0)) {zPc[i]=zPc[i]+1}
if((v[i]==0)&(sum(v[1:(i-1)]==10)!=0)&(sum(Vv[(i+1):T]==12)!=0)) {zPcli]=zPc[i]+1}
if((v[i]==0)&(sum(v[1:(i-1)]==14)!=0)&
(sum(v[(i+1):T]==12)==0)&(sum(v[(i+1):T]==19)!=0)) {zPc[i]=zPc[i]+1}
if((v[i]==0)&(sum(v[1:(i-1)]==15)!=0)&(sum(Vv[(i+1):T]==12)!=0)) {zPcli]=zPc[i]+1}
if((v[i]==0)&(sum(v[1:(i-1)]==9)!=0)&(sum(v[(i+1):T]==8)!=0)) {zPc[i]=zPc[i]+1}
if((v[i]==0)&(sum(v[1:(i-1)]==9)!=0)&
(sum(v[(i+1):T]==8)==0)&(sum(Vv[(i+1):T]==6)!=0)) {zPcJi]=zPc]i]+1}
if((V[i]==0)&(sum(v[1:(i-1)]==10)!=0)&
(sum(v[(i+1):T]==12)==0)&(sum(v[(i+1):T]==14)!=0)) {zPc[i]=zPc[i]+1}
if((V[i]==0)&(sum(v[1:(i-1)]==14)!=0)&

(sum(v[(i+1):T]==19)==0)&(sum(v[(i+1): T]==15)!=0)) {zPc[i]=zPc[i]+1}

if((v[i]==0)&(sum(v[1:(i-1)]==7)!=0) &
(sum(v[(i+1):T]==8)==0)&(sum(v[(i+1):T]==17)!=0)) {zGc]Ji]=zGc[i]+1}
if((V[i(]==0)&(sum(v[1:(i-1)]==11)!=0)&(sum(v[(i+1):T]==13)!=0)) {zGc[i]=zGc[i]+1}
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if((v[i]==0)&(sum(v[1:(i-1)]==14)!=0)&
(sum(v[(i+1):T]==13)==0)&(sum(v[(i+1):T]==19)!=0)) {zGc][i]=zGc][i]+1}
if((V[(]==0)&(sum(v[1:(i-1)]==16)!=0)&(sum(v[(i+1):T]==13)!=0)) {zGc[i]=zGc[i]+1}
if((V[i(]==0)&(sum(v[1:(i-1)]==9)!=0)&(sum(v[(i+1):T]==8)!=0)) {zGc[i]=zGc[i]+1}
if((V[i]==0)&(sum(v[1:(i-1)]==9)!=0)&
(sum(v[(i+1):T]==8)==0)&(sum(Vv[(i+1):T]==7)!=0)) {zGc]i]=zGc[i]+1}
if((v[i]==0)&(sum(v[1:(i-1)]==11)!=0)&
(sum(v[(i+1):T]==13)==0)&(sum(v[(i+1):T]==14)!=0)) {zGcli]=zGc[i]+1}
if((v[i]==0)&(sum(v[1:(i-1)]==14)!=0)&
(sum(v[(i+1):T]==19)==0)&(sum(v[(i+1):T]==16)!=0)) {zGcli]=zGc[i]+1}

if((V[(]==0)&(sum(v[1:(i-1)]==1)!=0)&(sum(v[(i+1):T]==4)!=0))
{zpli]=zpl[i]+1}

if((V[[]==0)&(sum(v[1:(i-1)]==9)!=0)&(sum(v[(i+1):T])!=0))
{zpgli]=zpg[i]+1}
if((V[i]==0)&(sum(v[1:(i-1)]==10)!=0)&(sum(v[(i+1):T])!=0)) {zpg[il=zpg[i] +1}
if((V[i]==0)&(sum(v[1:(i-1)]==11)!=0)&(sum(v[(i+1):T])!=0)) {zpg[il=zpg[i] +1}

}

z[i]= zg[i]*I+ zp[i]*I+ zpg[i]
zPJ[i]= zpli]+zPcJi]
zG[i]= zg[i]+zGc[i]

}

for(i in 1:(T-1)) {
for(j in 1:nrow(newtarget)) {
w=newtarget][j,]
if(w[i]==10)
{rpglil=rpgl[i]+1}
if(w[i]==11)
{rpgli]=rpg[i]+1}
if((W[i]==9)&(sum(w][(i+1):T])!=0))
{rpglil=rpg[i]+1}
if(W[i]==12)&(sum(w[(i+1):T])!=0))
{rpgli]=rpg[i]+1}
if(W[i]==13)&(sum(w[(i+1):T])!=0))
{rpglil=rpgl[i]+1}
if(Wli]==14)&(sum(w[(i+1):T])!=0))
{rpglil=rpgl[i]+1}
if(W[i]==7)&(sum(w[(i+1):T])!=0))
{rpglil=rpg[i]+1}
if((W[i]==6)&(sum(w[(i+1):T])!=0))
{rpgli]=rpg[i]+1}
if((W[i]==8)&(sum(w][(i+1):T])!=0))
{rpgli]=rpg[i]+1}
if(W[i]==15)&(sum(w[(i+1):T])!=0))
{rpgli]=rpg[i]+1}
if(W[i]==16)&(sum(w[(i+1):T])!=0))
{rpglil=rpg[i]+1}
if(W[i]==17)&(sum(w[(i+1):T])!=0))
{rpglil=rpgl[i]+1}

if((W[i]==18)&(sum(w](i+1):T])!=0))

{rpgli]=rpg[i]+1}
if((W[i]==19)&(sum(w[(i+1):T])!=0))
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{rpgli]=rpg[i]+1}

if((W[i]==1)&(sum(w[(i+1):T])!=0))
{rp[i]=rp[i]+1}

if((W[i]==2)&(sum(w[(i+1):T])!=0))
{rg[i]=rg[i]+1}

if((w[i]==9)&(sum(w[(i+1):T]==6)!=0))

{rPcli]=rPc][i]+1}
if((w[i]==9)&(sum(w[(i+1):T]==6)==0)&(sum(w[(i+1):T]==8)!=0))

{rPcli]=rPc][i]+1}
if((w[i]==8)&(sum(w[(i+1):T]==8)!=0))

{rPcli]=rPc][i]+1}
if((w[i]==14)&(sum(w[(i+1):T]==19)!=0))

{rPcli]=rPc]i]+1}
if((w[i]==19)&(sum(w[(i+1):T]==19)!=0))

{rPcli]=rPc][i]+1}
if((w[i]==10)& (sum(w[(i+1):T]==12)==0) &(sum(w[(i+1):T]==14)!=0))

{rPcli]=rPc][i]+1}
if((w[i]==12)&(sum(w[(i+1):T]==12)!=0))

{rPcli]=rPc][i]+1}
if((w[i]==12)&(sum(w[(i+1): T]==12)==0) &(sum(w[(i+1):T]==19)!=0))

{rPcli]=rPc][i]+1}
if(W[i]==12)&(sum(w[(i+1):T]==12)==0) &(sum(w[(i+1):T]==19)==0)
&(sum(w[(i+1):T]==14)!=0))

{rPcli]=rPc][i]+1}

if((W[i]==6)&(sum(w[(i+1):T]==18)!=0))
{rPcli]=rPc][i]+1}
if((W[i]==6)&(sum(w[(i+1):T]==18)==0)& (sum(w[(i+1):T]==8)!=0))
{rPcli]=rPc][i]+1}

if((w[i]==18)&(sum(w[(i+1):T]==18)!=0))
{rPcli]=rPc][i]+1}

if((w[i]==9)&(sum(w[(i+1):T]==7)!=0))

{rGcJi]=rGc[i]+1}
if(W[i]==9)&(sum(w[(i+1):T]==7)==0)&(sum(w[(i+1):T]==8)!=0))

{rGcJi]=rGc[i]+1}
if((w[i]==8)&(sum(w][(i+1):T]==8)!=0))

{rGcJi]=rGc[i]+1}
if((w[i]==14)&(sum(w[(i+1):T]==19)!=0))

{rGcJi]=rGc[i]+1}
if((w[i]==19)&(sum(w[(i+1):T]==19)!=0))

{rGcJi]=rGc[i]+1}
if(W[i]==11)& (sum(w[(i+1):T]==13)==0)&(sum(w[(i+1):T]==14)!=0))

{rGcJi]=rGcli]+1}
if((w[i]==13)&(sum(w[(i+1):T]==13)!=0))

{rGcJi]=rGcli]+1}
if(W[i]==13)&(sum(w[(i+1):T]==13)==0) &(sum(w][(i+1):T]==19)!=0))

{rGcJi]=rGcli]+1}
if((w[i]==13)&(sum(w[(i+1):T]==13)==0) &(sum(w[(i+1):T]==19)==0)
&(sum(w[(i+1):T]==14)!=0))

{rGcJi]=rGc[i]+1}

if((W[i]==7)&(sum(w[(i+1):T]==17)!=0))
{rGcJi]=rGc[i]+1}
if((W[i]==7)&(sum(w[(i+1):T]==17)==0) &(sum(w[(i+1):T]==8)!=0))
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{rGcJi]=rGc[i]+1}

if((W[i]==17)&(sum(w[(i+1):T]==17)!=0))
{rGcJi]=rGcli]+1}

if((W[i][==19) & (sum(w[(i+1):T]==19)==0)&(sum(w][(i+1):T]==16)!=0))
{rGcJi]=rGc[i]+1}

if((w[i]==19)& (sum(w[(i+1):T]==19)==0)&(sum(w[(i+1):T]==15)!=0))
{rPcli]=rPc][i]+1}

if((w[i]==14) & (sum(w[(i+1):T]==19)==0)&(sum(w[(i+1):T]==16)!=0))
{rGcJi]=rGc[i]+1}
if((w[i][==14) & (sum(w[(i+1):T]==19)==0)&(sum(w][(i+1):T]==15)!=0))
{rPcli]=rPc]i]+1}
if((W[i][==14) & (sum(w[(i+1):T]==19)==0)& (sum(w[(i+1):T]==16)==0)&
(sum(w[(i+1):T]==13)!=0))
{rGcJi]=rGc[i]+1}
if((w[i]==14) & (sum(w[(i+1):T]==19)==0)& (sum(w[(i+1):T]==15)==0)&
(sum(w[(i+1):T]==12)!=0))
{rPcli]=rPc][i]+1}

if((w[i]==10)&(sum(w[(i+1):T]==12)!=0))
{rPcli]=rPc][i]+1}
if((w[i]==11)&(sum(w[(i+1):T]==13)!=0))
{rGcJi]=rGc[i]+1}
if((w[i]==15)&(sum(w[(i+1):T]==12)!=0))
{rPcli]=rPc][i]+1}
if((w[i]==16)&(sum(w[(i+1):T]==13)!=0))
{rGcJi]=rGc[i]+1}

if((W[i]==15) & (sum(w[(i+1):T]==12)==0)&(sum(w[(i+1):T]==14)!=0))
{rPcli]=rPc][i]+1}

if(W[i]==16) & (sum(w[(i+1):T]==13)==0)&(sum(w[(i+1):T]==14)!=0))
{rGcJi]=rGc[i]+1}

if(W[i]==8) & (sum(w[(i+1):T]==8)==0)&(sum(w[(i+1):T]==6)!=0))
{rPcli]=rPc]i]+1}

if(W[i]==8) & (sum(w[(i+1):T]==8)==0)&(sum(w[(i+1):T]==7)!=0))
{rGcJi]=rGc[i]+1}

if(W[i]==8) & (sum(w[(i+1):T]==8)==0)& (sum(w[(i+1):T]==6)==0)&
(sum(wl[(i+1):T]==18)!=0))
{rPcli]=rPc][i]+1}
if(W[i]==8) & (sum(w[(i+1):T]==8)==0)& (sum(w[(i+1):T]==8)==0)&
(sum(w[(i+1):T]==7)==0)& (sum(w[(i+1):T]==17)!=0))
{rGcJi]=rGcli]+1}

if((W[i]==4)&(sum(w[(i+1):T])!=0))

{rp[i]=rp[i]+1}
if((W[i]==5)&(sum(w[(i+1):T])!=0))

{rolil=rg[i]+1}

rli]= rg[i]*I+ rp[i]*1+ rpgli]
rP[i]= rp[i]+rPci]
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rG[i]= rg[i]+rGcli]

}
for(iin 1:T) {
for(j in 1:nrow(newtarget)) {
w=newtarget][j,]

if((w[i]==14)&(sum(w[1:i]==10)==0))

{sum14Pfirst[il=sum14Pfirst[i]+1}
if((w[i]==14)&(sum(w[1:i]==10)!=0))

{suml14Precapt[i]l=suml4Precapt[i]+1}

if((w[i]==14)&(sum(w[1:i]==11)==0))
{sum14Gfirst[i]l=sum14Gfirst[i]+1}

if((w[i]==14)&(sum(w[1:i]==11)!=0))
{suml14Grecapt[i]l=sum14Grecapt[i]+1}

}
}

for(iin 1:T) {
for(j in 1:nrow(newtarget)) {
w=newtarget[j,]
if((w[i]==15)&(sum(w[1:i]==14)==0))
{sum15Pfirst[i]l=sum15Pfirst[i]+1}
if((w[i]==15)&(sum(w[1:i]==14)!=0))
{sum15Precapt[i]l=suml15Precapt[i]+1}

if((W[i]==16)&(sum(w[1:i]==14)==0))
{sum16Gfirst[i]l=sum16Gfirst[i]+1}

if((w[i]==16)&(sum(w[1:i]==14)!=0))
{sum16Grecapt[i]l=sum16Grecapt[i]+1}

}

for(iin 2:(T-1)) {
if (i==2)

R[i-1]=sum(newtarget[,i-1]==9)+ sum(newtarget[,i-1]==10)+
sum(newtarget[,i-1]==11)+sum(newtarget[,i-1]==1)*I+sum(newtarget[i-1]==2)*I;
RP[i-1]= sum(newtarget[,i-1]==1)+ sum(newtarget[,i-1]==10)+ sum(newtarget[,i-
1]==9)+ sum14Pfirst[i-1];

RG[i-1]= sum(newtarget][,i-1]==2)+ sum(newtarget[,i-1]==11)+ sum(newtarget][,i-
1]==9)+ sum14Gfirst[i-1];

m[i]=sum(newtarget[,i]==6)+sum(newtarget[,i]==4)*I+sum(newtarget[,i]==5)*1+sum(
newtarget[,i]==8)+sum(newtarget[,i]==7)+ sum(newtarget[,i]==12)+
sum(newtarget[,i]l==13)+ sum(newtarget[,i]l==14)+ sum(newtarget[,i]==15)+
sum(newtarget[,i]l==16)+ sum(newtarget[,i]l==17)+ sum(newtarget[,i]==18)+
sum(newtarget[,i]==19);

mP[i]= sum(newtarget[,i]==4)+ sum(newtarget[,i]==12)+ sum(newtarget[,i]==18)+
sum(newtarget[,i]==8)+ sum(newtarget[,i]==19)+ sum(newtarget[,i]==6)+
suml14Precapt[i]+ sum15Precapt][i];

mG[i]= sum(newtarget[,i]==5)+ sum(newtarget[,i]l==13)+ sum(newtarget[,i]==17)+
sum(newtarget[,i]==8)+ sum(newtarget[,i]l==19)+sum(newtarget[,i]==7)+
sum14Grecapt[i]+ sum16Grecapt]i;
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R[i]l=sum(newtarget[,i]==9)+
sum(newtarget[,i]l==10)+sum(newtarget[,i]l==11)+sum(newtarget[,i]==1)*I+sum(new
target[,i]==2)*1;

RP[i]= sum(newtarget[,i]==1)+ sum(newtarget[,i]l==10)+
sum(newtarget[,i]==9)+sum14Pfirst[i]+ sum15Pfirst[i];
RG[i]= sum(newtarget[,i]==2)+ sum(newtarget[,i]==11)+
sum(newtarget[,i]==9)+sum14Gfirst[i]+ sum16Gfirst]i];

}

else{

m[i]=sum(newtarget[,i]==6)+sum(newtarget[,i]l==4)*I+sum(newtarget[,i]==5)*I+su
m(newtargetl,i]==8)+sum(newtarget[,i]==7)+sum(newtarget[,i]==12)+
sum(newtarget[,i]l==13)+ sum(newtarget[,i]l==14) + sum(newtarget[,i]==15)+
sum(newtarget[,i]==16)+ sum(newtarget[,i]l==17)+ sum(newtarget[,i]==18)+
sum(newtarget[,i]==19);

R[i]=sum(newtarget[,i]==9)+

sum(newtarget[,i]l==10)+sum(newtarget[,i]l==11)+sum(newtarget[,i]==1)*I+sum(new
target[,i]==2)*l;

mP[i]= sum(newtarget[,i]==4)+ sum(newtarget[,i]l==12)+ sum(newtarget[,i]==18)+
sum(newtarget[,i]==8)+ sum(newtarget[,i]l==19)+ sum(newtarget[,i]==6)+
suml14Precapt[i]+ sum15Precapt[i];

mG[i]= sum(newtarget[,i]==5)+ sum(newtarget[,i]l==13)+ sum(newtarget[,i]==17)+
sum(newtarget[,i]==8)+ sum(newtarget[,i]==19)+sum(newtarget[,i]==7)+
sum14Grecapt[i]+ sum16Grecapt]i;

RP[i]= sum(newtarget[,i]==1)+ sum(newtarget[,i]==10)+
sum(newtarget[,i]==9)+sum14Pfirst[i]+ sum15Pfirst[i];
RG[i]= sum(newtarget[,i]==2)+ sum(newtarget[,i]==11)+
sum(newtarget[,i]==9)+sum14Gfirst[i]+ sum16Gfirst]i];

}

n[i]l= m[i]+ R[i]
nP[i]= mPJ[i]+ RPJi]
nGJi]= mGJ[i]+ RGJi]

Mi]=(z[i]*(n[i]+1))/(r{i]+1)+m(i]
N[i]=(n[il+1)*M[i}/(m[i]+1)

MP[i]=(zP[i]*(nP[i]+1))/(rP[i]+1)+mPl[i]
NP[i]=(nP[i]+1)*MPI[i}/(mP[i]+1)

MG[il=(zG[i]*(nG[i]+1))/(rGJi]+1)+mGJi]
NG[i]=(nG[i]+1)*MGJi}/(mG[i]+1) }
# Variance of Ni

nl=n[-1]
n2=n1[-(T-1)]
ml=m[-1]
m2=m1[-(T-1)]
ri=r[-T]
meanni=mean(n2)
meanmi=mean(mz2)
meanri=mean(rl)
varNi=rep(0,T)
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seNi=rep(0,T)

for (iin 2:(T-1)) {
varNi[i]=N[i]*(N[i]-meanni)*((M[i]-meanmi+nl[i])/M[i])*(1/meanri-1/n[i])+((N[i]-
M[i])/(N[i]*meanmi))

seNi[i]=sqrt(varNil[i])

}

# Variance of NPi

nP1=nP[-1]
nP2=nP1[-(T-1)]
mP1=mP[-1]
mP2=mP1[-(T-1)]
rP1=rP[-T]
meannPi=mean(nP2)
meanmPi=mean(mP2)
meanrPi=mean(rP1)
varNPi=rep(0,T)
seNPi=rep(0,T)

for (iin 2:(T-1)) {
varNPIi[i]=NP[i]*(NP[i]-meannPi)*((MP[i]-meanmPi+nP[i])/MP[i])*(1/meanrPi-
1/nP[i)+((NP[i]-MP[i))/(NP[i]*meanmPi))

seNPi[i]=sqgrt(varNPi[i])

}

# Variance of NGi

nG1l=nGJ[-1]
nG2=nG1[-(T-1)]
MmG1l=mGJ-1]
MG2=mG1[-(T-1)]
rG1l=rG[-T]
meannGi=mean(nG2)
meanmGi=mean(mG2)
meanrGi=mean(rG1)
varNGi=rep(0,T)
seNGi=rep(0,T)

for (iin 2:(T-1)) {
varNGI[i]=NGJi]*(NG[i]-meannGi)*((MG[i]-meanmGi+nG[i])/MGJi])*(1/meanrGi-
1/nG[i)+((NGIi]-MG[i])/(NG[i]*meanmGi))

seNGi[i]=sqrt(varNGi[i])

}

taillepop<-N[-c(1,T)]
taillepopP<-NP[-c(1,T)]
taillepopG<-NG[-c(1,T)]
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# to run the two-source jMmnodel

est.func<-function(dat, start.vec=missing())

{

k <- ncol(dat$P)

Pdat.tab <- table(dat$P)
Gdat.tab <- table(dat$G)
Bdat.tab <- table(dat$B)

nB.0 <- Bdat.tab["0"]
nB.1 <- Bdat.tab["1"]
nB.2 <- Bdat.tab["2"]
nB.3 <- Bdat.tab["3"]
if(is.na(nB.0)) nB.0 <- 0
if(is.na(nB.1)) nB.1 <- 0
if(is.na(nB.2)) nB.2 <- 0

nP.0 <- Pdat.tab["0"]
nP.1 <- Pdat.tab["1"]
if(is.na(nP.0)) NnP.0 <- 0

nG.0 <- Gdat.tab["0"]
nG.2 <- Gdat.tab["2"]
if(is.na(nG.0)) nG.0 <- 0

hvec <- unlist(lapply(dat, nrow))
hb <- hvec["B"]
hp <- hvec["P"]
hg <- hvec['G"]

nllike.func <- function(pars)
{
p <- pars[1]
g <- pars[2]
phi <- pars[3]
N <- pars[4]
prob.inP <- (1 - phi * p)*k - (1 - p)*k
pP.0 <- ((2 - p) * ((1 - phi * p)k - 1) - (1 - p)*Kk - 1)))/prob.inP
pP.1<-1-pP.0

loglik.P <- nP.0 * log(pP.0) + nP.1 * log(pP.1)

prob.inG <- (1 - phi * p)*k - (1 - g)"k
pG.0<-((1-9)*((1-phi*p)Mk-1)-(1-g)k-1))/prob.inG
pG.2<-1-pG.0

loglik.G <- nG.0 * log(pG.0) + nG.2 * log(pG.2)
bk <-1- (1 - phi* p)*k

bkml <- 1 - (1 - phi * p)Mk - 1)

pB.0 <- (bkm1 * (1 - p - g + phi * p))/bk

pB.1 <- (bkm1 * (1 - phi) * p)/bk

pB.2 <- (bkm1 * (g - phi * p))/bk

pB.3 <- (phi * p)/bk

loglik.B <- nB.0 * log(pB.0) + nB.1 * log(pB.1) + nB.2 * log(
pB.2) + nB.3 * log(pB.3)

loglik.H <- log(histories.func(hB = hb, hP = hp, hG = hg, ps =
P, gs = g, phis = phi, Nwh = N, ks = k))
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negloglik <- ( - loglik.H - loglik.B - loglik.P - loglik.G)
negloglik
}
test.nll <- 0
if('missing(start.vec)){
test.nll <- nllike.func(start.vec)
catline("Start.vec supplied:")
print(c(start.vec, test.nll))
}
if(missing(start.vec) | test.nll==Inf){
catline("Warning: start.vec missing or gives likelihood=0. Using ad-hoc start vector.")

start.p <- (nP.1 - hp)/(length(dat$P) - hp) + 0.01
start.g <- (nG.2 - hg)/(length(dat$G) - hg) + 0.01
start.phi <- 0.5 * min(c(start.g/start.p, 1))

start.N <- 20 + hb/(1 - (1 - start.phi*start.p)"k)
start.vec <- c(start.p, start.g, start.phi, start.N)
names(start.vec) <- c("start.p", "start.g", "start.phi", "start.N")
catline("New start.vec:")

print(start.vec)

}

Nmin <- hvec['B"] + max(c(hvec['P"], hvec['G"]))

MLE <- niminb(start = start.vec, objective = nllike.func, control =
list(iter.max = 2000, eval.max = 5000), lower = ¢(
0, 0, 0, Nmin), upper = c(1, 1, 1, Inf))

MLE.params <- MLE$par

phat <- MLE.params[1]

ghat <- MLE.params|2]

phihat <- MLE.params|3]

Nhat <- MLE.params[4]

msgmax <- MLE$convergence
if(MLES$objective==Inf) msgmax <- "Inf"
ests <- ¢(MLE.params, msgmax)

names(ests) <- c¢("phat", "ghat”, "phihat", "Nhat", "conv.0.good")

catline("

catline("nlminb completed successfully: estimates are")
print(ests)

catline(" "

nim.hess.res <- nim(f=nllike.func, p = MLE.params, iterlim = 2000,
stepmax = 5000, hessian=T)

nim.params <- nim.hess.res$estimate

hess.warn <- 0

if((any(abs(MLE.params[1:3]-nim.params[1:3])>0.001)) |
abs(MLE.params[4]-nim.params[4])>0.1) hess.warn <- 1

nim.infmat <- solve(nim.hess.res$hessian)

est.var.vec <- diag(nim.infmat)

names(est.var.vec) <- c("varhat.p", "varhat.g", "varhat.phi", "varhat.N")

varhat.Nhat <- est.var.vec["varhat.N"]

Ci.C <- exp(1.959964 * sqrt(log(1 + varhat.Nhat / Nhat"2)))

ci.lower <- Nhat / ci.C

ci.upper <- Nhat * ci.C

ci.vec <- c(ci.lower, ci.upper)

names(ci.vec) <- c("ciN.low", "ciN.hi")

res.all <- c(ests, est.var.vec, ci.vec, hess.warn=hess.warn)

print(res.all)
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res.all

STEP 8

To get the results for the population size, copy jpaste the following codes:

#The population size given by the two-source Jolly-Seber model is estimated to be
from time 2 to (T-1):
taillepop

To get the associated standard error, copy ané:past

#The standard error given by the two-source Jolly-Seber model is estimated to be
from time 2 to (T-1):
seNi

From the present codes, it is also possible tohgeestimates provided by the classical Jolly-
Seber on each of the 2 separate datasets.

To get the results of the JS using the data agsdda method 1, copy and paste:

#The population size given by the JS model with data from method 1 is estimated
to be from time 2 to (T-1):
taillepopP

To get the associated standard errors:

#The standard error given by the JS model with data from method 1 is estimated to
be from time 2 to (T-1):
seNPi

To get the results of the JS using the data agsdda method 2, copy and paste:

#The population size given by the JS model with data from method 2 is estimated
to be from time 2 to (T-1):
taillepopG

To get the associated standard errors, copy arid:pas

#The standard error given by the JS model with data from method 2 is estimated to
be from time 2 to (T-1):
seNGi

259



STEP 9

To get the population size, standard error, cagitwbabilities with the two-source gvhodel,
copy and paste:

#The results with the two-source My model are:
est.func(opensim)
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