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Abstract

Machine learning models continue to replace human decision making in high-stakes envi-

ronments. In �elds as diverse as healthcare, college acceptance and loan approval these

algorithms can have signi�cant e�ects on peoples lives. Privacy has long been a con-

cern when dealing with sensitive information. Recently, fairness in machine learning has

become a signi�cant concern as well. Previous research has established a well known trade-

o� between privacy and accuracy. More recently, research has investigated the trade-o�

between fairness and accuracy. The focus of this thesis is the interaction between these

two concepts. This is a recent �eld of study and most research focuses on the interaction

of an individual de-identi�cation mechanism and the subsequent bias mitigation methods

which follow a similar methodology.

In this thesis we investigate the complex interaction between privacy, fairness, and

accuracy through multiple de-identi�cation and bias mitigation mechanisms. As moti-

vating examples we address the general privacy cases as well as the healthcare �eld. We

consider a scenario where a company that has access to sensitive records, be they medical

or �nancial, would like to publish this data for users to analyse. The company operates

under a regulatory environment which requires them to de-identify the data to protect

the privacy of the individuals in the data. Additionally, the company would like to ensure

that the data is not biased towards any particular groups.

We �rst developed a technique to assess the level of fairness loss and accuracy loss

due to the de-identi�cation process. We developed two novel measures to assess this

loss. We applied this to multiple levels of de-identi�ed data to assess the impact that

de-identi�cation has on these measures. Following this we adapted this technique to

assess the fairness gain and the accuracy loss due to bias mitigation on the original and

de-identi�ed data. We adapted our novel measures to apply them to this comparison.

Finally, we adapted a bandit based hyper-parameter optimisation mechanism to assess

the hyper-parameters of the mitigation mechanisms and hyper-parameters to achieve a

good trade-o� between fairness and accuracy on de-identi�ed data.
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Glossary

Anoymization Field of research with techniques to prevent individuals who are the

subjects of the data from being identi�ed..

Fairness In the context of this work, the equal apportionment of positive and nega-

tive outcomes between privileged and unprivileged individuals in the protected at-

tributes..

Generalisation The consolidation of narrow values into broader categories in categorical

attributes or broader ranges in numeric data..

Perturbation The addition of noise to data values or values counts to produce uncer-

tainty as to the inclusion of individual records or not..

Privacy Guarantees that the individuals who are the subjects of the data cannot be

re-identi�ed..

Privileged Class The class or range in the protected attribute which receives higher

positive outcomes..

Protected Attribute Group The attribute(s) on which the user wants to achieve fair

outcomes..

Suppression The removal of records, attributes or values form a dataset..

Unprivileged Class The class or range in the protected attribute which receives lower

positive outcomes..
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1
Introduction

Privacy and fair decision making have become signi�cant concerns for all stakeholders

when dealing with sensitive data and implementing machine learning processes. Privacy

in machine learning broadly entails preventing data users from being able to identify indi-

viduals in the data. Fair decision making in machine learning is concerned with the even

or proportional distribution of perceived positive outcomes between individuals or groups.

Machine learning models by nature use a statistical distribution to discriminate between

outcomes. However, given historical biases or sampling biases, this discrimination can

cause disparities on Protected Attribute Group groups. This can result in undue advan-

tage to giving Privileged Class classes and disproportionate disadvantage to Unprivileged

Class classes. This unequal situation has lead to the establishment of laws such as the

General Data Protection Regulation (GDPR) or the inclusion of provisions into existing

laws such as the Health Insurance Portability Accountability Act (HIPAA), which govern

the use and distribution of sensitive personal information.

In the last couple of decades, a research community has developed around Privacy-

Preserving Data Mining/Publishing (PPDM/PPDP). The community aims to develop

algorithms that simultaneously preserve privacy and maximise accuracy. This commu-

nity has developed numerous mechanisms to preserve privacy during the publication and

analysis of sensitive data. Due to this body of work's enormity, this research limits its

scope to two main methods,k-anonymity Anoymization [75] and di�erential privacy [26].

Recently, there have been high pro�le examples of algorithms that are contain biases

1



2 Introduction

among certain demographic groups. These examples highlight the potential for algorithms

to be unfair. Fairness, however, is a complex subject as the concept of fairness can

vary from di�erent perspectives. The branch of machine learning research known as Fair

Machine Learning (Fair-ML) has developed to understand better and address this subject.

This branch of research aims to develop metrics to measure bias, and methods to correct

this bias while maintaining the predictive accuracy of the �nal model. This branch of

research has produced numerous methods for bias mitigation. This thesis focuses on

group fairness and the equality of positive outcomes between di�erent classes in various

demographic groups.

1.1 Motivation

For a long time, the issue of privacy has been a signi�cant concern in many human-centric

applications of machine learning due to the sensitive nature of the data involved [21]. This

thesis investigates the complex association and interaction between the processes designed

to preserve privacy and mitigate unwanted bias. The implications of this interaction can

a�ect any area which employs machine learning. Our motivating examples look at both

general and medical contexts.

Companies such involved in Health care management or �nancial management have

access to extensive patient or customer records, which include information such as di-

agnoses, comorbidities, or account balances and demographics. This aggregation of data

presents an enticing opportunity. Subsequently, machine learning processes can be applied

to this data in order to understand health implications of whole populations.

In most cases, laws regulate that these raw records are shared only with the particular

institutions which have a medical necessity to use them. These regulations create a need

for de-identi�cation. For healthcare management companies to release the data, they must

have some degree of certainty that the data they are releasing will not allow the users to

identify who the patients are and their diagnoses. Simultaneously, the publishers of the

data want to ensure the data they are releasing does not contain biases that will unfairly

disadvantage one class or another. Given that the de-identi�cation processes objective is

to make each individual indistinguishable from a set amount of other individuals in the

data set, class imbalance and minority populations can have a signi�cant e�ect on these

processes.

Additionally, certain conditions are statistically more prevalent in some attribute

classes than in others, which results in outcome disparities. For example, when assessing

the likelihood of sickle-cell disease, it is sensible to send populations of African descent for

further testing more often given that the disease is statistically more prevalent in those

communities.
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This discerning triage method aligns with the idea of maximising utility of medical

resources. The result though, is a trade-o� between attempting to catch all true positive

cases - to care for patients, and to avoid false negatives - to minimise unnecessary costs.

These goals lead to a question of equal balanced accuracy in disease detection rates

meaning equal true positive and true negative ratios between classes.

Figure 1.1: Schematic for application of bias estimation and mitigation.

This setting di�ers from general fairness domains such as housing loan approval or

college admittance. In these scenarios, the di�erent populations are presumed to have an

equal underlying target distribution. The goal would be to create equal proportions of

perceived positive outcomes.

1.2 Problem Statements

To assess the e�ects of de-identi�cation mechanisms on levels of unwanted bias and assist

data publishers in implementing e�ective mitigation mechanisms, we aim to answer the

following questions:

1. To what extent does the level of de-identi�cation and other data characteristics

a�ect the accuracy and fairness of predictive models? How can this be used to

maximise the utility of the data pre-processing pipeline?

2. How does the level of de-identi�cation and level of existing bias and class imbalance

a�ect the bias mitigation process? How can we use this information to inform the

bias mitigation method selection?
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3. Given the complexity of the interaction between di�erent data characteristics and

di�erent de-identi�cation and bias mitigation mechanisms, can we use hyper-parameter

optimisation to achieve the three-way compromise of privacy, fairness, and accuracy?

1.3 Objectives

The aims of our research are:

1. To develop a mechanism that can assess the level of bias introduced and loss to

accuracy resulting from the de-identi�cation process.

2. To develop a mechanism that can assess the improvement to bias and the loss to

accuracy resulting from bias mitigation processes.

3. To develop a bias mitigation optimisation mechanism that can determine the best

de-identi�cation and bias mitigation mechanism to achieve near optimal trade-o�

between fairness and accuracy on de-identi�ed data.

1.4 Contributions

The main contributions of our work are:

1. Understand the relationships between de-identi�cation and the fairness and accuracy

trade-o� and a framework to assess these e�ects.

2. Analyse the e�ects of mitigation on de-identi�ed data with di�erent characteristics

and a framework to assess these e�ects.

3. Develop a hyper-parameter optimisation mechanism that can e�ciently �nd a set

of hyper-parameters for a mitigation mechanism to achieve an e�ective trade-o�

between fairness and accuracy on de-identi�ed data.

1.5 Overview of Research

This thesis discusses the interaction of two broad topics, that of privacy and fairness.

Figure 1.2 illustrates the data processing pipeline and highlights where these two concepts

�t in. We outline the context of our motivation example in Figure 1.1.

The initial phase of the research investigated and compiled the related work on fair-

ness and privacy. We developed the bias assessment framework to be implemented on

data to which a company has access. This data will contain any inherent bias or sam-

pling bias, that are present from the collection phase. Additionally, the company can
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perform de-identi�cation to the extent that meets the privacy requirements set out by

their regulatory body. The company can apply this framework to the data before or after

de-identi�cation. This framework allows the company to determine the levels of unwanted

bias and determine the additional bias that has arisen through the de-identi�cation pro-

cess. This allows a decision to be made on the level of de-identi�cation to perform, if the

fairness lost is unacceptable.

Alternatively, the company can perform bias mitigation using the mitigation optimisa-

tion framework to address fairness. Then the company can use the mitigation assessment

framework to assess the mitigation process's e�ectiveness by assessing the level of fairness

and accuracy before and after the mitigation process.

Figure 1.2: Private, fairness aware data processing pipeline.

1.6 Structure of this Thesis

ˆ Chapter 2 provides a background on the concept of data privacy, the issues of bias

in machine learning, and recent work relating to data de-identi�cation and bias

mitigation.

ˆ Chapter 3 describes experiments conducted to assess the e�ects of de-identi�cation
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on the level of fairness and accuracy of models developed from this data. We devel-

oped this work into the bias assessment framework.

ˆ Chapter 4 describes experiments conducted to assess the e�ects of bias mitigation on

de-identi�ed data and the e�ects of data characteristics on the fairness and accuracy

of models developed from this data. These experiments inform the other part of the

bias assessment framework.

ˆ Chapter 5 introduces the bandit based mitigation hyper-parameter optimisation

mechanism (Mitiband). A mechanism for determining the optimal mitigation mech-

anism and hyper-parameters for trading-o� fairness and accuracy in de-identi�ed

data.

ˆ Chapter 6 concludes the thesis, points out future directions and adds some �nal

reections and remarks.

ˆ Appendix: this contain material for reproducability including: datasets, Python

�les, and Jupyter notebooks.



2
Background and Related Work

This chapter provides background and discusses the related work for this thesis. Sec-

tion 2.1 provides an overview of the premise of this research. Section 2.2 outlines some

of the sources of bias. Section 2.3 will discuss the rationale, mechanics, and e�ects of the

de-identi�cation process. Section 2.3.3 will discuss the trade-o� between privacy and util-

ity and the metrics used. Section 2.4 details the three primary de-identi�cation methods

and the e�ects on fairness. Furthermore, this section will describe some of the metrics

used for determining fairness. Section 2.5 outlines mitigation methods for dealing with

di�erent forms of bias. Section 2.7 discusses some of the open challenges in the area.

Finally, Section 2.8 will conclude this chapter.

2.1 Overview

Due to the increased scrutiny around data publishing and machine learning processes,

PPDM/PPDP and Fair-ML have become active areas of research [64, 12]. As research

into privacy preservation progressed, attackers exposed vulnerabilities in speci�c methods;

thus, numerous methods have been devised to address these issues [33]. These methods

fall into three main categories: Generalisation and Suppression, anatomisation and per-

mutation, and Perturbation and di�erential privacy.

The research community developed various metrics to assess the e�ects of these pro-

cedures. These metrics can measure the information lost in the de-identi�ed dataset or

7



8 Background and Related Work

compare the quality of models built using the original data with those built using the

de-identi�ed data. Although numerous metrics exist, they all focus on the quality of the

results over the whole dataset [64]. None of these metrics explicitly address the di�erential

loss in information, nor the di�erence in accuracy, between di�erent attributes classes in

the data.

This gap leads to the issues of fairness. Fairness in machine learning is concerned

with biases present in the data, the model, or the predicted outcomes. Early research

on biases was conducted for fraud detection and rare attribute detection. This research

aimed to improve the ability of models to detect target attributes on minority (low pro-

portion) classes [35]. More recently, work has gone into dealing with the issues of fairness

between groups and individuals. Numerous metrics and methods have been developed in

the Fair-ML community and tool-kits have been developed to implement these. For ex-

ample, Bellamy et al. [13] established a comprehensive tool-kit AIF360 of bias mitigation

processes focused on dealing with fairness in machine learning. This tool-kit included

numerous metrics and mitigation methods.

Figure 2.1: Map of bias sources.

2.2 Sources of Bias

The classes and types of bias that can arise during data processing are diverse, these are

categorised in Figure 2.1. Thus, bias is a broad term that varies from �eld to �eld and

applies to most aspects of research and industry. Additionally, the research around bias

in the �eld of machine learning and particularly the medical �eld has dissected bias into

many di�erent scenario-speci�c forms [19]. However, one fundamental way to de�ne bias

in a statistical sense is the persistent or systematic error expected to be made by a learning
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algorithm when trained on any given training set [24] error-bias. Alternatively, bias can

represent fairness. There are numerous ways to assess fairness in machine learning. How-

ever, for this survey, fairness refers to the di�erential bene�ts of outcomes that di�erent

attribute classes receive. This discussion will focus on �ve relevant types of bias. These

are: participation bias leading to class imbalance (Section 2.2.1), exclusion bias leading to

loss of patient class (Section 2.2.4), reporting and response bias (Section 2.2.3), detection

bias (Section 2.2.5), and omitted variable bias (Section 2.2.6). Finally, this section will

discuss the issues of fairness.

2.2.1 Participation Bias

Participation bias describes the disparity in relative number of individuals from di�erent

classes participating studies, recorded in analysed events, or featured in the data. This

bias can be prevalent in healthcare studies [82]. An example of this is that healthcare is

not universally accessible in all countries. Therefore, lower-income individuals may not

seek out a doctor in time to address and therefore record the progress of a particular

condition that can secondarily a�ect racial groups found in lower-income areas [82].

This disparity leads to class imbalance which is can be signi�cant particularly in re-

gards to its e�ect on the de-identi�cation process. As discussed in Section 2.3, some of the

de-identi�cation processes seek to anonymise individuals from a group through generalisa-

tion. Given a small sample size, a minority group may require a further generalisation of

other attributes that will diminish the data's predictive ability on those minority classes.

This di�erential generalisation results in an imbalance in terms of predictive ability to-

wards the majority classes as well. The disparity in detection ability of majority and

minority ethnicity individuals in facial recognition systems [42] is an example of this.

2.2.2 Detection Bias

Detection bias describes a scenario where the rates of detection for certain target outcomes

might be e�ected by certain other feature values or co-morbidities in the medical context.

This leads to either overestimation or underestimation. An example of this is the issue of

syndemics. Given the prevalence of diabetes among obese individuals, physicians may be

more inclined to test for diabetes on obese patients. This could over inate the statistics

for diabetes for obese people due to the greater likelihood of observing the condition

resulting form greater testing rates. Conversely, given a condition which is harder to

identify given another condition might underestimate the correlation between these to

conditions. An example of this is between obesity and prostate cancer, where the larger

size on the patients may make accurate biopsies harder to achieve thus underestimating

the diagnoses of prostate cancer [70].
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2.2.3 Reporting or Response Bias

In the machine learning context, reporting bias or response bias describes how there is a

general tendency for people to under-report negative or socially stigmatised behaviours

and over-report socially favourable activities [66]. An example of this would be for a

person at the doctor to report drinking less alcohol than they do and reporting exercising

more often than they do.

Reporting bias can cause overestimation or underestimation. These two terms describe

a situation where the relationship between the independent and dependent attributes are

systematically either above or below the real rates.

2.2.4 Exclusion Bias

The second signi�cant contributor to class imbalance is exclusion bias. This can result in

the loss of patient classes; this situation is similar to class imbalance, except the minority

class has been excluded entirely. Loss of patient class can arise from all the same issues

discussed that lead to class imbalance. This term can also vary from �eld to �eld. For

this discussion, exclusion bias relates to excluding individuals or classes from research or

removal from datasets before analysis. This type of bias can occur in both the collection

and processing phase and the analysis phase.

In the collection phase, exclusion bias can also be for strategic purposes or due to

oversight. To achieve speci�c results, researchers can use strategic exclusion. Clinical

studies are often highly selective on acceptance into trials to remove additional variables

from the study to derive more repeatable results, or for safety reasons like excluding

pregnant woman from studies [39]. Thus, particular populations or individuals may be

excluded from a study to achieve the desired outcome. Alternatively, exclusion can result

from other inherent biases that a�ect the researchers at the collection phase. Researchers'

own biases can a�ect how they conduct studies and the questions they want to answer.

This bias a�ects the scope of research towards answering questions that researchers would

like to know [80].

In the processing phase, speci�c issues can cause exclusion bias to arise. When dealing

with raw data, it is common to perform varied processes to clean the data. This process

can include removing outlier individuals and classes if they appear not to �t the model and

look like noise [65]. Therefore, they may be excluded to improve the model's predictive

ability on the remaining classes. However, depending on these outliers' nature, they may

represent real but rare pattern or attribute occurrence. Thus, the process creates a bias

against understanding the implications of rare attributes.

The issue of exclusion bias is indirect in regards to de-identi�cation. Suppose exclusion

bias occurs before the de-identi�cation phase. In that case, the datasets being de-identi�ed
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have no evidence that the class existed, and the de-identi�cation process will similarly

exclude those classes. This bias prevents the ability of members of this class to bene�t from

the research conducted. Alternatively, the research conducted cannot take the uniqueness

of those classes into account. Additionally, excluding these classes precludes the use of

many mitigation techniques due to the removal of all instances.

2.2.5 Detection Bias

The other inuential bias which also relates to overestimation and underestimation is

detection bias. The medical �eld has put much research into this type of bias. Detection

bias refers to a situation where the mechanism or impetus for investigation may dispro-

portionately fall on a particular group. De Jong et al. [22] provide an example of this

type of bias when analysing the correlation between diabetes and cancer. They found

that accounting for detection bias lowers this correlation, reducing overestimation.

The e�ect of overestimation and underestimation on the de-identi�cation process could

be inuential. The de-identi�cation process often amalgamates di�erent classes in the

independent variables together. This amalgamation could have unexpected results on the

proportions of the dependent variables.

2.2.6 Omitted Variable Bias (OVB)

OVB is the omission of variables relevant to the predictive ability of models derived

from its constituent data. OVB can arise in the collection phase due to several factors,

including lack of insight into dependency relationships or due to technical challenges and

lack of capability for detecting a speci�c variable [18]. OVB can be a�ected by the

processing phase in much the same way as exclusion bias. In thek-anonymity model,

when an attribute is generalised into a larger majority class, that attribute's e�ects must

be attributed to the majority class [73].

If the omitted variables are relevant to a particular population but not another, the

statistical signi�cance of that variable might be missed and the e�ect of that variable will

skew the results of other remaining variables and diminish the quality of analysis on that

particular attribute as well. Additionally, if there are multiple omitted variables, attempts

to account for one variable could increase bias since the di�erent omitted variables might

be counteracting each other [73].

2.3 Data Privacy

It is necessary to understand the de-identi�cation mechanics and bias types that can

arise to understand how biases a�ect the de-identi�cation process. This section will
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cover four main aspects: �rst, the rationale for the de-identi�cation process; second, the

privacy models and metrics used to assess the level of privacy and utility; third, the data

characteristic which leads to error-bias and loss of utility; fourth, the issues of fairness

and the metrics used to assess this.

2.3.1 Rationale for De-identi�cation

De-identi�cation is a process used to preserve privacy when publishing data either as

micro-data or as a statistical distribution. The de-identi�cation process takes the raw data

from a table, T, as input and outputs the de-identi�ed table, T0. There are numerous

methods to achieve this, and each method produces a di�erent output. However, the

inputs are generally similar; each table has a set of records representing individuals with

a set of attributes containing demographic and healthcare or other useful information.

In a table, if any row has the same value for all attributes then these individuals are

considered part of an equivalence class: given (r; r 0) 2 T if 8a 2 A | ra = r 0
a then r and

r 0 form an equivalence class.

There are four distinct categories into which these attributes fall. Firstly, direct-

identi�ers DIDs are attributes that are unique to each individual; these include Names,

Phone Numbers, and ID numbers. In Table 2.1, the attribute birth-date is a direct

identi�er. Secondly, quasi-identi�ers (QIDs) are attributes that can form a unique vector

to each individual. For example, in Table 1:< Gender, Postal-Code> is not a QID since

there are at least two individuals in each equivalence class. However,< Age, Postal-code>

forms a QID, since only one individual is 33 and one who is 60 with Postal code 0627.

Next, there are sensitive attributes. These are attributes which an individual may not

want to be publicly known in Table 2.1 diagnosis is the sensitive attribute. Finally, there

are non-sensitive attributes. In Table 2.1, blood pressure (BP) is a non-sensitive attribute

since it is not publicly available and is not common knowledge.

Table 2.1: Medical Record with Direct and Quasi Identi�ers
ID Name Date of Birth Gender Age Ethnicity Post-Code BP Diagnosis

001 Alice 25/12/1970 Female 50 European 1010 120/75 Heart Disease
002 Betty 05/05/1971 Female 50 European 1010 101/70 Alzheimer's
003 Charli 25/04/1998 Female 22 European 0627 150/90 Heart Disease
004 David 31/12/1919 Male 100 European 0627 85/50 Dementia
005 Emma 14/02/1998 Female 22 M�aori 0627 103/77 Flu
006 Fetu 01/01/1920 Male 100 Samoan 0627 110/70 Dementia
007 Gary 04/03/1987 Male 33 Chinese 0627 105/62 Flu
008 Han 02/01/1960 Male 60 Chinese 0627 75/50 Flu

Direct-identi�ers Quasi-identi�ers Non-sensitive Sensitive
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2.3.2 De-identi�cation - Privacy Models

It is important to understand the framework which guides these processes for preserving

privacy to understand the purpose of di�erent de-identi�cation techniques. The �rst met-

ric is k-anonymity [74]. There are further de�nitions which extendk-anonymity though

the original idea is the same; the metric sets out a minimum number of records that need to

be in each equivalence class. This metric protects against record linkage attacks, but not

attribute linkage attacks. These attacks focus on narrowing down the sensitive attributes

a record might have based on its equivalence class. Thel-diversity model answers this

problem and sets out the minimum number of unique sensitive attributes associated with

each equivalence class to prevent attribute linkage attacks [3]. When releasing statistical

distributions, attackers can infer whether an individual is in a class or not using a prob-

abilistic attack. This vulnerability led to the creation of the t-closeness metric [61]. The

metric sets out a minimum threshold by which the distribution on a sensitive attribute in

any equivalence class can di�er from that sensitive attribute's overall distribution.

2.3.3 E�ects of De-identi�cation on Utility

There is a well-established dilemma between privacy and utility see Section 2.3. As such,

these privacy models and de-identi�cation methods led to a multitude of di�erent metrics

designed to measure their e�ects. Multiple surveys of de-identi�cation processes have

found that in almost all cases, regardless of the metric or method used, some reduction

in the predictive quality of models will result when trained on the de-identi�ed datasets

[33, 30, 64]. It is, therefore, necessary to assess the frameworks used for evaluating the

utility of these de-identi�cation processes. There are two general categories; how the data

is a�ected (data-metrics) and how further analysis is a�ected (analysis-metrics).

Data Metrics

Data metrics measure changes to the dataset as a result of the de-identi�cation process.

The �rst two metrics do not take the distribution into account. Although they account

for all individual record generalisations, they treat them as equally signi�cant. This

equality among attributes is not likely to be the case given the number of attributes that

could exist. For example, when generalising from< lawyer> to professional would likely

have a lower impact than generalising from professional to< any-job> . However, both

previous metrics treated these the same. The issue of determining the di�erential cost of

generalising di�erent categorical attributes is an open question [30].

1. Minimal distortion (MD) [75] is a simple penalty-based system that increments a

distortion counter every time any value is generalised. This metric is essentially a
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taxonomy tree where each leaf in the tree represents an attribute value, and the

parent nodes are the combined terms of their child nodes.

2. Loss metric (LM) [44] which, given an attribute generalisation operation, gives a

ratio of how many other nodes a record value is indistinguishable from the original

number of leaf nodes that existed. All records with this attribute have this metric

applied; then, the LM metric is the average of all records. This method also applies

to numerical attributes and take the ratio of the new sub-domain to the previous

full domain. For example, with age, if the< Age> attribute is generalised from< 5>

to < 1-5> and the original domain is capped at 100, then the LM ratio would be

5/100.

3. Information Loss (i-Loss) is very similar to the LM metric in its analysis and the

result for each generalised value. However, this process assigns each attribute a

weighting. This weighting can mitigate the disadvantage of the generalisation for

the whole dataset. This procedure does not solve the issue of each generalisation

having di�erential cost, but the user can weight each attribute di�erently according

to the signi�cance the user places on it. As with LM, i-Loss takes the average of

the values of all records with the attribute-weightings accounted.

4. Classi�cation metric (CM) Iyengar et al. [44] was proposed to deal with the cost

of individual generalisation operations. The CM charges a penalty every time a

record value is generalised or suppressed into a group in which it is not the majority

class. Intuitively, this metric applies to classi�cation analysis in that the generalised

record from the minority class will be classi�ed with the majority class, resulting in

a classi�cation error.

5. Discernibly Metric (DM) [72] was an existing metric that dealt with the issue of dis-

tinguishing individual generalisation operations. To this end, DM charges a penalty

to each record based on the size of its generalised class at each operation. For exam-

ple, if the super-class is of sizec, then each record generalised into this super-class

will have a penalty ofc. This metric is a direct measure of the e�ects ofk-anonymity.

Trade-o� Metrics

Other metrics, when addressing only the utility gained, ignore the privacy loss. Thus, if

the operation that gains the most information also reduces the privacy so much so that

no further specialisation operation is possible, the �nal result may be sub-optimal from

a privacy perspective [33]. The trade-o� metrics compare each generalisation operation,

(s), individually as a relation between both sides, the utility gained, and the privacy

lost. Information Gain to Privacy Loss (IGPL) is an iterative specialisation example,
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where, starting with a fully generalised set, iteratively specialises general classes into

more speci�c classes. Each operation gains more speci�c information but will lose some

privacy. Conversely, the metric can be used in reverse as well for generalisation operations

(g) Information Loss to Privacy gain (ILPG) where each generalisation operation losses

information but gains privacy. [33]:

IGPL (s) =
IG (s)

PL(s) + 1
ILPG (g) =

IL (g)
PG(g) + 1

(2.1)

The ILPG function measures the quality of each iterative generalisation performed in

the k-anonymity process. The way to measure IG and IL, or PG and PL depends on

additional metrics used to determine the quality of the information.

Analysis metrics

The methods of determining utility through analysis are comparing the results of ana-

lytical processes on the original data and the de-identi�ed data. Di�erent data mining

techniques work better on di�erent types of data. Therefore, the composition of the input

data has a signi�cant impact on the quality of the analysis. As such, this should be taken

into account when performing the de-identi�cation process. This section illustrates these

metrics through comparison of data mining on the original and de-identi�ed data; three

di�erent data mining techniques; clustering, classi�cation, and association rule mining

provide the examples.

Clustering : metrics employ comparisons between the cluster created on the original

data to that created on the de-identi�ed data. Mis-classi�cation error can also be applied

to the clustering scenario, as shown in Equation 2. This metric measures the number of

data points k that were grouped in a di�erent cluster in the de-identi�ed set D 0, than

they were in the original setD; and takes this number over the number of over-all points

N .

ME =
1
n

x
kX

i =1

(jCluster i (D)j � j Cluster i (D 0)j) (2.2)

Many methods use statistical metrics which can rely on measuring false positives and

false negatives. Statistical metrics require reference to determine the accuracy of the

cluster. The user can create reference by removing a class attribute, then performing

the cluster and reassigning the class attribute. Subsequently, the majority class on that

attribute de�ne the cluster. If the record is not part of the majority class, it is considered

to be irrelevant. A reference point is deemed to be external to the process, so metrics

using this method are called external metrics. Examples of the metrics include the Rand

Index (RI), F-Measure, Silhouette co-e�cient, and Davies-Bauldin Index (BDI).

Classi�cation is a broad set of procedures used for predicting attribute values on
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future instances. Decision trees �lter records into partitions depending on their at-

tributes. Thus, it can determine which attributes are best at allocating records into

speci�c partitions. For example, taking Table 2.1, given a particular protected attribute

like < Diagnosis> the other attributes like Blood Pressure (BP), Age, and Gender form a

decision tree to determine the< Diagnosis> . To determine a diagnosis, attributes need to

have a boundary that di�erentiates their values for the target class. A binary class, like

< Gender> , is simple to split. However, other attributes require a decision as to where

the `splitting point' is located. There are numerous metrics to determine these criteria,

including Information Gain and Gini Index.

Since the primary objective, in this case, is predicting future occurrences or values,

one of the standard techniques for assessing a classi�er's quality is prediction accuracy.

E�ectively measuring the percentage of correctly predicted class values on future records,

or for testing values with their class attribute hidden. This metric can be inverted to

measure the number of incorrectly predicted class values, equating to the error rate.

Then the error rate on the de-identi�ed data can be compared with the error rate on the

original data. These metrics allow a more in-depth insight into the correlation between

particular attributes and the target attribute. This insight can indicate which attributes

can be generalised to a higher degree or even entirely removed while maintaining predictive

accuracy.

Association Rule Mining : For de-identi�cation Atallah et al. [7] proposed the As-

sociation Rule Hiding method, which mines the non-sensitive rules and hides the sensitive

rules. It achieves this aim by suppressing the item sets which generate the rules. However,

this process may hide non-sensitive rules at the same time. One metric used to assess the

e�ects of this process is the misses cost or Missed Pattern (MP) and the Artifact pattern

(AP).

MP =
# � Rp(D) � # � Rp(D 0)

# � Rp(d)
AP =

jP0j � j P \ P0j
jP0j

(2.3)

HereD represents a dataset, andD 0 is the de-identi�ed dataset. # � Rp(x) represents

how many non-sensitive patterns are found in the datasetx. The desire is to have all

non-sensitive patterns found and to haveMP = 0. Conversely, AP measures the number

of artifact patterns present in the de-identi�ed data that were not present in the original

data. HereP and P0 represent the set of patterns found inD and D 0. As with MP, the

desire is to haveAP = 0, meaning no false patterns have emerged.

This section covered the issues of error bias as it relates to the utility of the de-

identi�ed dataset. Given that the way utility is measured can di�er depending on the

situation or the desired outcome, the focus here was on the di�erent metrics used to

assess utility. These metrics can measure the data losses or the losses to speci�city on the

data, which result in reduced information available in the published data. Alternatively,
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classi�cation metrics measure the decreased accuracy or increased error rate that arises

from the analysis performed on the de-identi�ed data. Additionally, the trade-o� metrics

highlight the dilemma that arises between improving privacy and maximising utility.

2.4 Fairness in Machine Learning

As mentioned, the issue of data utility or error-bias is a well-established dilemma in the

de-identi�cation process. As discussed in Section 2.3, the de-identi�cation process requires

altering the data in some way, which results in a trade-o� between privacy and utility.

The same is valid for privacy and fairness. Additionally, this pursuit of fairness can also

be at odds with utility.

This section will �rst outline some of the metrics used to assess fairness. Then, the

discussion will cover the issues of bias that can arise from the most common types of de-

identi�cation. Additionally, we highlight how di�erent levels of privacy a�ect these biases.

To analyse fairness-bias, we divide the �eld into three categories. First, generalisation and

suppression reduce the uniqueness of a given entry in a table. Second, anatomisation and

permutation disassociate the QIDs from the sensitive attributes. Third, perturbation and

di�erential privacy only releases a statistical representation of the data and no micro-data.

2.4.1 Metrics to Assess Fairness

The challenge with establishing fairness metrics is that regardless of the metric used there

is almost no scenario in which the outcomes of any process could be entirely fair to all

attribute classes [13]. Bellamy et al. [13] recently published a comprehensive tool-kit with

a review of many metrics to assess fairness-bias.

1. Statistical Parity Di�erence: This metric assesses the outcome of decision rules

among sensitive attributes. This metric can be used for binary classi�cation or

multi-variate classi�cation as well [14].

2. Equal Opportunity Di�erence: This is a metric of the di�erence in the true posi-

tive rate among di�erent attributes classes usually described as the privileged and

unprivileged. This metric measures the bene�t that each attribute class receives; it

works on classi�cation tasks and can be used to compare the input and output data

[13].

3. Average Odds Di�erence This is another metric relating to true positives and take

the di�erence between the true positive rate and the false positive rate and compares

the privileged to the unprivileged classes [13].
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4. Disparate Impact This metric assesses the probability of receiving a favourable out-

come depending on the attribute class [11]. This metric can be applied to the input

data or the output data from a classi�er.

2.4.2 Generalisation and Suppression

Generalisation has the goal of reducing the speci�city of each record. Therefore, there is

an inherent loss involved in performing these processes. The issues arise when inherent

biases in the sampled data are either reected or exacerbated by the process of generali-

sation. To assess these processes, there are many di�erent methods, implementations and

metrics by which to accomplish the generalisation and thus it is necessary to understand

the complex interaction that occurs between these implementation metrics, attribute hi-

erarchies, utility goals, and fairness goals.

E�ects due to class imbalance

One of the critical aspects a�ecting fairness is class imbalance. Whether this results from

natural di�erences in population proportions or the result of biases that a�ect the sampling

process, class imbalance can have a sizeable impact on fairness. When the intention is

to make all individuals in a dataset anonymous, the process di�ers depending on class

proportions and can result in di�erent generalisation levels for particular populations.

Table 2.2: Medical Record with Quasi Identi�ers
Gender Age Ethnicity Postal-Code Diagnosis

Female 50 European 1010 Heart Disease
Female 50 European 1010 Alzheimer's
Female 22 European 0627 Heart Disease
Male 100 European 0627 Dementia

Female 22 M�aori 0627 Flu
Male 100 Samoan 0627 Dementia

Female 33 Chinese 0627 Flu
Male 60 Chinese 0627 Flu

The procedure for generalisation involves taking attributes of the QID and removing

some level of detail. Taking a single attribute speci�cally, imagining a situation where all

values in an attribute are the same, would require no generalisation. Conversely, if each

value was unique from all other values, some generalisation would need to be performed

on each attribute. Given both these cases have equal application of generalisation across

the individuals in this attribute, there would be no explicit fairness-bias. However, this is

likely not the case. If there is an attribute class, for example,< Ethnicity > in Table 2.2,

with eight records and there are two minority classes (M�aori) and (Samoan) each with
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1
8 of the group. Additionally, there is (Chinese), which has2

8 while the majority class

(European) has4
8 . Here the majority class may meet the privacy threshold ofk while the

minority class does not. While the majority class can remain un-generalised since both

(M�aori) and (Samoan) are unique values. It would be necessary for them to be generalised

into a larger group for example (M�aori and Pasi�ka), thus meeting the threshold. At the

same time, the value (Chinese) may or may not meet the privacy threshold ofk depending

on whetherk = 2 or k > 2. When published, this modi�ed data set would lack the detail

to perform group-speci�c analysis on M�aori or Samoan individuals. While European and

Chinese individuals would retain attribute speci�c analysis.

E�ects due to attribute correlation

Despite this potential for fairness-bias to arise, the issues of class imbalance and di�eren-

tial generalisation of majority and minority groups in an attribute class may not always

have a substantial impact on the outcome bene�t or cost. Another crucial factor that

must be present, the attribute that is being generalised must correlate to the target at-

tribute, and the values in the sensitive attribute must di�er. If the attribute has little

correlation or no di�erence on the target attribute, the fairness-bias resulting from dif-

ferential generalisation should have little added e�ect on the predictive ability of models

trained on a dataset produced from such a generalisation.

Table 2.2 provides a small example. If the objective is to predict the rate of (Dementia)

across the< Ethnicity > ; the rate of dementia for (European) is1
4 , for (Chinese) it is 0

2 ,

and for (M�aori) 0
1 while for (Samoan) it is 1

1 . Among the (M�aori) and (Chinese) records,

none have a diagnosis of (Dementia). At the same time, (Dementia) does appear in other

< Ethnicity > groupings. Thus< Ethnicity > may have an impact on rates of (Dementia).

Thus, generalising (M�aori/Chinese) together will retain the same predictive rates for

(Dementia). On the other hand, going back to the previous example where (M�aori)

and (Samoan) are grouped into (Maroi/Pasi�ka), the new dementia rate would be1
2

overestimating the rate for (M�aori) by 50% and underestimating the rate for (Samoan)

by 50%. These di�erentials represent measurement errors in the predictive ability of each

group.

E�ects of k-anonymity

The next issue that a�ects fairness-bias is the level of privacy that is required. Usingk-

anonymity if the value of k us set tok = 1, there is no need to generalise at all. Then the

process introduces no additional bias. Using the data and scenario of detecting (Dementia)

as the previous example, ifk = 2 then values for (M�aori) are overestimated, and the

values for (Samoan) are underestimated. However, if the value ofk is increased tok = 3,
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then one possible grouping would be (European) with a (Dementia) rate of1
4 and (Non-

European) with a (Dementia) rate of1
4 . This grouping would produce accurate predictions

of 1/4 for (Europeans). Meanwhile, both (Chinese and M�aori) are overestimated by 25%

while (Samoan) is underestimated by 75%. Compare this to the previous example where

again k = 2 it can be seen that the underestimation for the (Samoan) group increased.

However, this reduces the overestimation for the (M�aori) group. The �nal result here is:

for 2 groups or 3 records they are overestimated by 25%, and for 1 group or 1 record it is

underestimated by 75%. For an overall distortion shown by the added average error rate

in Equation 2:4.

(0:25� (3) + 0 :75� (1))=4 = 0:375 (2.4)

(0:15� (4) + 0 :6 � (1))=5 = 0:24 (2.5)

An alternative grouping for k = 3 would be to group (European/Samoan) giving a

(Dementia) rate of 2
5 and (M�aori/Chinese) with a (Dementia) rate of 0

3 . This grouping

still ful�ls k = 3 anonymity; however, the target attribute distortions are very di�erent.

For (M�aori/Chinese), the results have no distortion. For (European/Samoan) There are

four records or 1 class that is overestimated by 15% and one record and one class under-

estimated by 60%. Using overall distortion as a metric, shown in Equation 2:5. Also, this

alternate grouping produces a lower maximum distortion experienced by any particular

group 60% as opposed to 75%

In addition to k-anonymity, there are additional anonymity metrics that set stricter

conditions, which meet higher levels of privacy to address di�erent kinds of attacks. At-

tribute attacks are where an attacker does not determine who an individual record is but

can infer the value of a sensitive attribute based on the group that their victim is a part

of, and the proportions of the sensitive attributes. For example, if an attacker knows their

victim is European, then from Table 1: the attribute < European> indicates only three

possible conditions (Heart Disease, Obesity, Dementia). This situation can remain even

after generalisation; for example, in the (M�aori/Chinese) group, all individuals would

have (Flu) for < diagnosis> . Thus the attacker would know the diagnosis for all three

individuals.

E�ects of l-diversity

To address this, Machanavajjhala et al. [62] proposed thel-diversity model. This model

ensures that there are at leastl distinct well-represented values in the sensitive attribute

for each group, so the attacker cannot infer with a high likelihood that their victim has

any particular condition. This metric is directly working against the predictive ability of

a model. If there is a group at high risk of dementia, so high that all individuals in the
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category have dementia, this would imply a strong correlation between the attribute and

the target attribute. However, this would not meet even the lowestl-diversity condition

l = 2. Thus, the class would need to be split up and mixed with di�erent values on the

sensitive attribute, thus losing this strong association.

Additionally, this further favours the majority classes since the majority class is larger

and more likely to have a su�cient diversity of values in the sensitive attribute �eld. While

the minority class, which have already been generalised to meetk-anonymity may, need

to be further generalised. Take the example of generalising to (European/Samoan) and

(M�aori/Chinese). This example exhibits less overall and less group-speci�c distortion.

However, the sensitive value for (M�aori/Chinese) are all the same; thus, it would no

longer be an acceptable generalisation. This situation creates a need to resort back to

the (European) and (Non-European) grouping, which has a more signi�cant overall and

group-speci�c distortion.

One approach proposed to decide the level ofl is to set l = k, thus matching the

level of anonymity achieved by the anonymisation operations. This approach can have

limitations, though, speci�cally for binary classi�ers when only two values are possible.

A compromise metric (c � l)-diversity sets the maximum and minimum threshold for the

most common and least common values, respectively.

As mentioned l-diversity has limitations in that it does not take the distribution of

sensitive attributes into account. For example, if the objective is to classify dementia again

using a simple binary classi�er of YES or NO for an attribute< Dementia> , Imagine a

table with 1000 records with a QID set of< Age, Gender, Ethnicity> . Assuming dementia

occurs at a rate of 50 in 1000 but has a negligible occurrence under 50 and has a continually

higher percentage as age increases. Presume ages are divided by ten-year increments, and

for ages (50-59) dementia has a rate10
100 and for (60-69) a rate of20

40. If the groups are split

along ten-year increments, then an attacker could infer that an individual in their 60's has

a 50% likelihood of having dementia. This scenario shows how the original assumption

an attacker would have is that there is a1
20 chance an individual has dementia. However,

given the distribution, they can see that the probability reduces to1
2 .

E�ects of t-closeness

Li et al. [61] proposedt-closeness to address this issue. This metric sets out a threshold

t by which the proportion of a sensitive attribute in any equivalence class can di�er

from the overall distribution. This condition sets out limits to the composition of each

equivalence class but also depending on the occurrence rate of a rare sensitive attribute

could limit the number of equivalence classes due to limited instances of values to split

among di�erent equivalence classes, further distorting the results. The value oft could

be determined in many ways; Li et al. proposed the Earth Mover Distance (EMD). For
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a simple explanation, assume a ratio of 4 : 1, meaning the proportion in a class can be

no more than 4 times greater than in the overall population, settingt = 4 8a < 0.

For example, in the previous situation attempting to determine rates of dementia, if the

overall rate of dementia in the population is 5% witht = 4 then the rate of dementia in an

equivalence class must be less than 20%. From this, the equivalence class for (60-69) does

not meet this requirement. One method to deal with this is to adjust the partitioning. If

\under 60" rates are lower and \over 70" rates taper o�, the partitions could be shifted to

split up this group which contains the highest likelihood of dementia. Instead, having (55-

64) with a rate of 14% and (65-74) with a rate of 20%. If this method was not su�cient

to reach t-closeness, then the< Age> might have to be generalised further by possibly

including all ages above (60) or by suppressing the attribute. This scenario could result

in a further increase in the error rate for the more generalised class.

This metric focuses directly on speci�c groups, not the population as a whole; thus,

this method can disadvantage minority groups, including age brackets prone to rare con-

ditions or even common conditions distributed unevenly. Another example, predicting the

occurrence of a condition like sickle-cell anemia, the condition is most prominent among

people of African descent [38]. Suppose this research were performed where people of

African descent are a minority group. In that case, this method could preclude discover-

ing such explicit correlation as having the condition solely found in one equivalence class

would violate the t-closeness principle.

E�ects of an attribute hierarchy

These simplistic examples explain how the interaction of class imbalance, correlation,

and privacy level a�ect fairness. However, for a realistic example, it is necessary to

understand these examples with more numerous QID sets. Instead of working on a singular

attribute, all of these aspects need to be addressed on sets of attributes with di�ering class

imbalances and di�ering correlation levels. This challenge is where the idea of attribute

hierarchies comes in.

One way to achieve this is to use metrics that favour one group or another during the

generalisation process creating a hierarchy that determines the order in which attributes

will be generalised. This process could entail determining that it is preferable to suppress

< Ethnicity > before< Age> when determining the likelihood of dementia, this may result

in an improvement in predictive ability as the data would indicate dementia correlates

to a high degree with particular age groups. However, if there is also a correlation,

though not as strong, with< Ethnicity > , this might be lost if the < Ethnicity > attribute is

preferentially generalised. This default generalisation would favour the majority ethnicity

as their instances would be more prominent in the training data.

Additionally, di�erent diagnoses or conditions would likely see other correlations among
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di�erent attributes meaning the metrics and attribute hierarchy for researching di�erent

conditions would di�er. Furthermore, if the �nal analytical work is unknown, then there

is no de�nitive way to determine which is the best hierarchy. Suppose the objective is to

reduce bias to marginalised populations. In that case, the setting up of a hierarchy is like

using a biased metric to guide the algorithm to counteract the natural algorithmic bias

against minority populations.

2.4.3 Anatomisation and Permutation Methods

The methodology of anatomisation proposed by Tao et al. [76] and permutation proposed

by [87] both involve separating QIDs from the sensitive attributes. Anatomisation releases

the data in separate tables; one with QIDs (QIT) and the other with sensitive attributes

(ST). Both tables also contain a special attribute called GroupID. This attribute is what

links feature attribute groups to target attribute groups. All records in a single group in

the QID will have a GroupID which matches a GroupID in ST with a corresponding set

of attributes. Going back to the idea ofl-diversity, if the GroupID in ST has l distinct

values, then the likelihood of matching a record in QIT to a sensitive attribute in ST is

1=l. To adjust the privacy level, GroupID can be expanded in QIT and therefore expanded

in ST, resulting in a greaterl .

The process starts with a table of patient records and diagnoses, then entails parti-

tioning the QID groups from the patient records so that no more than 1=l records has

the same diagnosis for each group. Then remove all sensitive attributes and replace them

with a GroupID. Then, create a second table ST with two columns GroupID and diagno-

sis count, which contains the number of instances of each diagnosis in the corresponding

QID. Since this does not involve changing the QIDs or the sensitive attributes in any

way, there are fewer opportunities to introduce fairness-bias directly. Xiao et al. [84]

showed that this method could produce better results for aggregate queries. Intuitively

this method retains more speci�c domain values. However, the method requires a process

similar to generalisation, which partitions the QIDs into groups.

The algorithm Anatomise [84] takes in a table of micro-data and an operator chosen

parameterl de�ned similarly to l-diversity. First, we hash all record-tuples in the original

table into buckets based on their diagnosis. It starts an iterative process of making

groupings from the buckets; each iteration results in a new QID-group. While there are

at least l non-empty buckets, the algorithm selects a random tuple from thel buckets

with the most tuples. The process assigns the tuples from all buckets until there are less

than l non-empty buckets. If there are remaining tuples, those tuples are assigned to

previously created groups that do not include that tuple's sensitive attribute.

Since this method always groups together the most common conditions, it cannot

guarantee an equitable distribution. Consider a table of 1,000 micro-data health records
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Table 2.3: Example of Anatomisation

(a) Diagnosis Bucket

Diagnosis Count QID Tuples

Flu 300 (T1:::T300)
Indigestion 250 (T1:::T250)
Insomnia 200 (T1:::T200)

Heart Disease 145 (T1:::T145)
Dementia 50 (T1:::T50)

Alzheimer's 45 (T1:::T45)
Sickle-Cell A. 10 (T1:::T10)

(b) Iteration 1

Diagnosis Count QID Tuples

Flu 100 (T1:::T300)
Indigestion 50 (T1:::T250)
Insomnia 0 (T1:::T200)

Heart Disease 145 (T1:::T145)
Dementia 50 (T1:::T50)

Alzheimer's 45 (T1:::T45)
Sickle-Cell A. 10 (T1:::T10)

(c) Iteration 2

Diagnosis Count QID Tuples

Flu 50 (T1:::T300)
Indigestion 0 (T1:::T250)
Insomnia 0 (T1:::T200)

Heart Disease 95 (T1:::T145)
Dementia 50 (T1:::T50)

Alzheimer's 45 (T1:::T45)
Sickle-Cell A. 10 (T1:::T10)

(d) Iteration 3

Diagnosis Count QID Tuples

Flu 0 (T1:::T300)
Indigestion 0 (T1:::T250)
Insomnia 0 (T1:::T200)

Heart Disease 45 (T1:::T145)
Dementia 0 (T1:::T50)

Alzheimer's 45 (T1:::T45)
Sickle-Cell A. 10 (T1:::T10)

(e) Iteration 4

Diagnosis Count QID Tuples

Flu 0 (T1:::T300)
Indigestion 0 (T1:::T250)
Insomnia 0 (T1:::T200)

Heart Disease 35 (T1:::T145)
Dementia 0 (T1:::T50)

Alzheimer's 35 (T1:::T45)
Sickle-Cell A. 0 (T1:::T10)

(f) Sensitive Attribute

GroupID Diagnosis Count

Group1 (Flu Indigestion Insomnia Heart Disease) 635
Group2 (Flu Indigestion Heart Disease) 150
Group3 (Flu Heart Disease, Dementia, Alzheimer's) 185
Group4 (Heart Disease Alzheimer's Sickle-Cell A.) 30

with QID of < Age, Sex, Ethnicity> and the sensitive attribute as< Diagnosis> . First

performing the bucketisation step with diversity set tol = 3 gives Table 2.3(a). Then

iteratively assigning the record-tuples into groups would proceed as follows. In the �rst

iteration, there are 200 sets of 3 individuals that can have (Flu Indigestion Insomnia).

Removing these would result in Table 2.3(b). In the second iteration, there are 50 sets

of 3 individuals that can have (Flu Indigestion Heart Disease), this would result in
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Table 2.3(c). In the third iteration, there are 50 sets of 3 individuals that can have (Flu

Heart Disease, Dementia) and leaves Table 2.3(d). In the fourth iteration, there are 10

sets of 3 individuals that can have (Heart Disease Alzheimer's Sickle-Cell A.), which

results in Table 2.3(e). This instantiation leaves two diagnosis buckets remaining, each

with 35 individuals. Then the process places these into QID groups that do not contain

their diagnosis. In this example, the (Heart Disease) records are added to Group1, and

the (Alzheimer's) records are added to Group3, as shown in Table 2.3(f).

This example demonstrates that this method would place all the instances with the

rare disease sickle-cell anemia in one category. Since this condition is a�ected by the

< Ethnicity > attribute, grouping should have a corresponding change in the proportions of

values on the< Ethnicity > attribute, thus, retaining the correlation. If the rare-condition

remains after the last iteration, all these instances will be allocated to the same group.

This situation may not always be the case. If there were many rare conditions, it might

result in the splitting up of the groups. Since the method retains all QID information,

checking if a rare condition is positively correlated to a speci�c trait in the QID set,

for example,< Ethnicity > or < Age> , then the user could create a threshold to leave all

rare conditions below a certain point. This threshold would ensure they end up grouped

to retain that correlation. This scenario shows that in some cases, this method of de-

identi�cation could be less biased against rare conditions than generalisation.

They also show that there is an eligibility condition that needs to be met: at most

n=l tuples may be associated with the same sensitive attribute wheren is the size of

the table at any stage in the iteration process. This condition could present issues when

dealing with common diagnoses like u or cold. Furthermore, this example presupposes a

single diagnosis, where there might be multiple diagnoses for an individual, which might

have predictive factors that this particular scenario does not consider. Additionally, the

separation of QIDs and sensitive attributes into di�erent tables presents challenges for

many standard statistical analysis approaches that prevents this technique's broader ap-

plicability.

2.4.4 Perturbation Di�erential Privacy

The perturbation method adds noise by replacing values in the data, resulting in a dataset

that no longer represents real individuals but should retain the statistical information.

Expressly, the data publisher only retains the statistical properties they desire. Ex-

plicit altering the data and preserving speci�c correlations leaves open the possibility for

fairness-bias to arise. Similarly, di�erential privacy produces a statistical distribution of

the original data.
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Perturbation

One perturbation method uses additive noise. This method involves manipulating sensi-

tive attribute values s by adding r a random value selected from a chosen distribution [1].

Additionally, Fuller [32] demonstrated how the process could retain some statistical in-

formation like means and correlations. However, Kargupta [52] noted that when the

correlation is high and low noise is added, then it is possible to make close estimations

to the actual values. This limitation indicates that in scenarios with high correlation, the

noise would have to be increased to meet the same privacy threshold. This added noise

would have the e�ect of averaging out the correlation between classes. Thus, reducing the

predictive ability of the models on groups which have a high correlation to a particular

condition.

In synthetic data generation, this method requires building a statistical model of the

data and then sampling points to generate new data points for publication. Alterna-

tively, Aggarwal et al. [4] proposed a method called condensation. This method involves

condensing the records into groups while maintaining the mean and correlations for the

attributes. Then extracting statistical information from these groups to generate data

points that can be published. The need to choose methods for grouping results is another

opportunity for bias to arise and results in the same issues as the grouping phase in the

anatomisation approach.

Data swapping is virtually the same process as permutation, where the values are non-

synthetic. The process simply swaps the sensitive attributes for the QIDs. Vigneswari

et al. [78] showed that in some instances, non-synthetic perturbation not only provides

better privacy but also results in fewer lost rules when performing association rule mining.

Di�erential Privacy

Di�erential privacy publishes statistical information about a dataset. The novel insight

is to look at the distributions and distort the data so that an attacker could not be sure

if any individual were in the data set or not [26]. Di�erential privacy uses a perturbation

method to account for shortcomings of the perturbation methods as found by Agrawal

et al. [5]. They found that general perturbation methods do not consider the underlying

knowledge an adversary might have or what an adversary might be able to infer.

This metric for establishing privacy involves calibrating noise according to the sen-

sitivity of the distribution to an individual record. With more massive data sets, each

individual will contribute less and less to the statistical distribution that will be pub-

lished. Therefore the process can add less noise. However, in the case of a rare condition

which is more common in minority populations, preserving correlations would be di�cult

since the instances of these rare conditions would contribute more to the statistical dis-



2.5 Bias Mitigation Strategies 27

tribution. Therefore, the process must add more noise to ensure that these individuals

do not uniquely contribute to a particular distribution. Thus, this process would result

in fairness-bias against minority populations with rare conditions.

This section covered the varied e�ects that three fundamental approaches to de-

identi�cation have on fairness-bias. Each of these approaches also has multiple implemen-

tations, which vary in the way in which they perform operations. Additionally, various

algorithms use heuristics to guide these algorithms; they can use many di�erent metrics to

determine these heuristics. These factors and the various privacy levels required interact

to make assessing bias a complex problem.

2.5 Bias Mitigation Strategies

Figure 2.2: Bias mitigation techniques by phase.

The methods for bias mitigation are best explained based on the phases where bias

arises. This discussion splits this into �ve sections: the collection phase, the pre-processing

phase, the de-identi�cation phase, the processing/analysis phase, and the post-processing

phase.

2.5.1 Mitigating Bias in Collection Phase

In the collection phase, the main concern is class imbalance. Two general techniques ad-

dress this issue: under-sampling and over-sampling. Under-sampling can then be divided

into two methods again. This sampling is achieved by preferentially selecting individuals
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in the minority class over the majority class. Alternatively, replicating instances from

the minority class which generates synthetic data. The former method has the bene�t of

maintaining only real instances, yet only works when su�cient examples of the minority

class exist [58]. The latter method, which includes Synthetic Minority Over Sampling

(SMOTE) works even with small sample sizes but involves duplicating examples or cre-

ating synthetic examples which are not real individuals. This synthesised data can pose

challenges in some research where records must represent actual people [33].

Alternatively, under-sampling involves removing majority class examples to balance

out the proportions in the collected data. This procedure is similar to algorithmic over-

sampling, where it is e�ective only if su�cient examples of minority and majority classes

exist. It only alters the distributions and does not require synthetic data; thus, it retains

only real examples [58]. However, these results in regards to mitigation performance are

not universally e�ective to all methods of analysis. Japkowicz et al. [47] found that over-

sampling was more e�ective than under-sampling for C5.0, but the over-or-under-sampling

were equally e�ective for MLP and SVM techniques. Additionally, general methods for

improving model performance, like feature selection, can also help to mitigate the e�ects

of class imbalance [58].

2.5.2 Mitigating Bias in Pre-Processing

There are four main techniques used in the pre-processing step [13]. First, learning fair

representations [85] the user de�nes the protected attributes. The process involves en-

coding the data in a way that obfuscates the protected attribute while still creating a

suitable encoding. Second, optimised pre-processing [16] can take in metrics like group

fairness, and individual distortion and create a probabilistic transformation that modi�es

the data to be more fair based on the metrics chosen. Third, disparate impact remover

[29] is similar in that it modi�es the feature values, but it maintains a rank-ordering of

the attributes. Fourth, re-weighting [49] assigns di�erent weights to attributes to achieve

fairness.

2.5.3 Mitigating Bias in the De-identi�cation Process

Fung et al. [33] mention there are examples of instances in the de-identi�cation process

where generalisation can improve the accuracy of a model by generalising away some noise.

The example given is where the suppression of< birth-date> and replacement with just

< age> can reduce the noise in the data. Given a su�cient understanding of the dataset

would enable the data publisher to utilise an attribute hierarchy to generalise the more

noisy attributes �rst. Additionally, this attribute hierarchy provides a method to address

fairness-bias issues as well by preferentially generalising majority classes �rst. However,
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this might conict with generalising the noisiest �rst.

The discussion on fairness Section 2.4 also mentioned that many de-identi�cation

processes could utilise heuristics to guide the algorithms. Heuristics provide another

method similar to attribute hierarchy to determine the order for attribute generalisation.

A biased metric could be used to mitigate the inherent bias that exists in a given dataset.

However, this method could conict with utility in some cases when the metric that

favours fairness does not favour overall utility.

2.5.4 Mitigation Bias in Processing/Analysis Phase

In the analysis phase, a broad array of methods can be used to mitigate bias. In re-

gards to class imbalance, the �eld of imbalanced class learning includes methods such as

cost-sensitive learning, hybrid and ensemble approaches. Cost-sensitive approaches use

a method of assigning di�erent weights to the event of misclassi�cation on the class of

interest. This method can also be used as part of an ensemble or hybrid approach which

combines multiple classi�ers built on the one data set [58]. Examples of these ensemble

approaches include bagging and boosting. Bagging creates multiple learners based on

di�erent sample feature groupings; then they create a complete classi�er. Alternatively,

boosting uses multiple training sample sets and iteratively chooses di�erent weights for

the classi�ers. The user can combined these methods with data sampling methods, and

tailor these hybrid approaches to improve the classi�cation for minority classes [58].

Recent work by Krasanakis et al. [56] establishes a framework of types of unfairness

and set up metrics by which to assess this bias and apply this framework to the process of

adaptive sensitive re-weighting. This approach is similar to the hybrid and ensemble ap-

proaches just mentioned. However, instead of determining the biases that need addressing

on the sample proportions, it then uses the derived framework to guide the interactive

re-weighting approach.

There have been approaches using re-weighting of training samples and recently ap-

proaches using adversarial learning methods when addressing misclassi�caiton. Adver-

sarial learning has become a popular �eld of research and has also been applied to bias

mitigation [86, 81]. These approaches address bias in models where there is a known or

suspected bias against a particular attribute. The model predictor is trained to learn the

target attribute while the adversary is trained to learn the protected attribute, which has

the known or suspected bias. The objective here is to maximise the predictor's ability to

determine the target attribute and minimise adversary's ability to predict the protected

attribute. Zhang [86] found this approach produced a provably less biased model and still

maintained e�ectiveness on the primary prediction task. Additionally, this work covered

both simplistic and complex models and found that the simplistic adversary was e�ective

in both scenarios.
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2.5.5 Mitigation in Post-Processing

There are three primary post-processing mitigation techniques: equalised odds post-

processing [36], calibrated equalised odds post-processing [68] and reject option classi-

�cation. Equalised odds post-processing makes the probability of a positive outcome

fairer. This process adjusts labels on the output data using derived probabilities to de-

termine the changes. Calibrated equalised odds addresses the tension between fairness

and utility. This method relaxes the conditions of fairness, only addressing one metric at

a time, for instance, creating equal true positives or equal true negatives. Reject option

classi�cation addresses the distribution of the target attribute on the protected attribute.

It then adds favourable outcomes (e.g. credit approval) to the disadvantaged class and

unfavourable outcomes (e.g. credit denial) to the advantaged class, for example, within a

band around the decision boundary.

2.5.6 Bias Detection and Mitigation Tool-kit

Many of the current tool-kits deal only with bias detection and provide no techniques for

mitigating such bias. In comparison, other tool-kits address both bias detection and bias

mitigation. This section discusses both types of tool-kits.

Bias Detection Tool-kit

First, this section will discuss some well-known bias detection mechanisms. FairML [2]

is as an auditing tool for predictive models by quantifying the relative e�ects of various

inputs on a model's predictions. FairTest [77], on the other hand, approaches the task

of detecting biases in a dataset by checking for associations between predicted labels

and protected attributes. This methodology also provides a way to identify the input

space regions where an algorithm might incur unusually high errors. Aequitas [71] is an

open-source bias and fairness audit tool-kit. This tool-kit enables users to seamlessly test

models for several bias and fairness metrics on multiple population sub-groups. Aequitas

looks for biased actions or outcomes that are based on false or skewed assumptions about

various demographic groups.

Bias detection and bias mitigation tool-kit

Some tool-kits can address both bias detection and bias mitigation. Themis-ML [10]

is a repository that provides a few fairness metrics, such as mean di�erence, and some

bias mitigation algorithms [49, 50]. Fairness Comparison [31] is one of the more extensive

libraries. This tool-kit includes several bias detection metrics and bias mitigation methods

[29, 51, 15]. Fairness comparison is a test-bed to allow di�erent bias metrics and algorithms
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to be compared in a consistent way; it also allows the addition of additional algorithms

and datasets. AI Fairness 360 (AIF360) [13] is a tool-kit designed to help facilitate the

transition of fairness research algorithms for use in an industrial setting and to provide

a common framework for fairness researchers to share and evaluate algorithms. The

AIF360 Python package implements techniques from 8 published papers from the broader

algorithm community. This package includes over 71 bias detection metrics and 9 bias

mitigation algorithms.

2.6 Datasets and Metrics

This section covers aspects of the experimentation used throughout the other chapters.

First, we detail the datasets on which the experiments are performed. Second, we discuss

the various metrics used in the course of our experimentation and analysis.

2.6.1 Datasets

Adult [54]

The (Adult) Census Income dataset was extracted from the 1994 US Census. There

are 48842 records, some values are missing, and with removal of records with missing

values there are 45222 records. There are 14 attributes. The attribute chosen for fairness

comparison was gender. The privileged class is the (male) values which make up 67% of

the records the other 33% are (female) values the unprivileged class. The imbalance ratio

is 2 : 1 for the favoured class. The target for classi�cation tasks is a binary value indicating

whether the individual makes over$50,000 per year. Over$50,000 is the positive outcome

and makes up 24% of the records. Under$50,000 is the negative outcome and makes up

76% of the records. We use processed version of this dataset for all of our experiments,

which employs four of the attributes along with the target. The four attributes are:

ˆ Age: continuous variable between 16 and 100. This was binned to 10 year brackets:

eg. (0-9) , (20-29).

ˆ Gender: binary variable (male) or (female).

ˆ Ethnicity: categorical variable with �ve value, binarised to (white), (non-white).

ˆ Education-num: continuous, trimmed to 6, . . . , 12 and greater than 12 or less than

6.

ˆ Income-per-year (target): this is a binarised values indicating whether the individual

makes more than$50,000 pre year.
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German [25]

The Statlog (German) Credit Scoring dataset is commonly used for tests involving im-

balanced class learning. There are 1000 credit application records with no missing values.

There are 20 attributes. The attribute chosen for the fairness comparison was gender.

The privileged class is the (male) value and makes up 69% of the records. The unprivi-

leged class is the (female) value and makes up 31% of the records creating an imbalance

of close to 2 : 1 for the favoured class. The target of the binary classi�cation task is to

determine whether the person is worthy of credit. The positive outcome is an approval

of credit, making up 70% of the target outcomes. The negative outcome is a decline

of credit, making up 30% of the target outcomes. All of our experiments use the same

pre-processing as in AIF360 [12]. Five attributes are used:

ˆ Age: a continuous variable binarised to (under 25) or (25 and over).

ˆ Gender: a binary variable male or female.

ˆ Credit history: a binary variable either delayed payments or no history/paid debts.

ˆ Savings: a categorical variable (greater than 500), (500 or less), or (unknown).

ˆ Employment: a categorical variable (4 years or less), (more than 4 years)

ˆ Credit (target): binary variable either credit (approval) or (denial).

COMPAS [6]

The Correctional O�ender Management Pro�ling for Alternative Sanctions (COMPAS)

two year recidivism scores is a popular dataset for bias and fairness in machine learning

research. This dataset contains the criminal history, jail and prison time and demo-

graphics and a two year follow up of whether the defendant re-o�ended. There are 7214

records. There are missing values, with incomplete records removed, there were 6167

records. There are 52 attributes. The attribute chosen for the fairness comparison was

ethnicity. The privileged class is the (white) value and makes up 40% of the records. The

unprivileged class is the (non-white) value and makes up 60% of the records creating an

imbalance of 2 : 3 for the favoured class. The target of the binary classi�cation task is to

predict whether an inmate is going to re-o�end. The positive outcome negative predic-

tion making up 53% of the predictions. The negative outcome is a positive prediction to

re-o�end. These make up 47% of the predictions. All of our experiments use the same

pre-processing as in AIF360 [12]. We utilise 5 of the 52 features:

ˆ Age: a continuous variable. This variable was binned to three values (< 25), (25-45)

and (> 45).
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ˆ Gender: a binary variable (male) or (female).

ˆ Ethnicity: a categorical variable with �ve values, binarised to (white), (non-white).

ˆ Number of priors: a categorical variable (0), (1-3), (> 3)

ˆ Charge degree: a binary variable (felony) or (misdemeanour)

ˆ Recidivism (target): a binary variable of whether the defendant re-o�ended

MEPS [25]

3 sets The Medical Expenditure Panel Survey (MEPS) dataset is used for a real-world

medical data case study. The 2015 �le contains data from rounds 3,4,5 of panel 19 (2014)

and rounds 1,2,3 of panel 20 (2015). The 2016 �le contains data from rounds 3,4,5 of panel

20 (2015) and rounds 1,2,3 of panel 21 (2016). This dataset contains 15830 patient records

from hospital stays with no missing values. There are 139 attributes in the pre-processed

data with some values already onehot encoded. The attribute chosen for the fairness

comparison was ethnicity which is a composite attribute. The privileged class is the

(white) value which indicates white and non-Hispanic and makes up 36% of the records.

The unprivileged class is the (non-white) value and makes up 64% of the records creating

an imbalance of close to 1 : 2 for the favoured class. The target of the binary classi�cation

task is to predict whether a patient will have high healthcare utilisation which indicates

any type of treatment provided, including o�ce visits, outpatient visits, emergency room

visits, inpatient nights, and home health visits. This value has an average of roughly

10 for the surveyed population. The positive outcome is a negative prediction for high

utilisation, and these make up 87% of predictions. The negative outcome is a positive

prediction for high utilisation. These predictions make up 17% of the predictions. All of

our experiments use the same pre-processing as in AIF360 [12]. We utilise all attributes

in this dataset to mimic a real-world scenario. These attributes are onehot encoded and

represent two aspects, �rst the household portion (demographic attributes) including:

ˆ Age: a continuous variable measured in years.

ˆ Gender: a binary variable (male) or (female).

ˆ Ethnicity: a binary variable (white), (non-white).

ˆ Region: a categorical variable with four values indicating in which geographic region

the patient lives.

ˆ Marry: a categorical variable indicating the patient's marital status.
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ˆ Hon-discharge: a categorical variable indicating the circumstance of the patient's

discharge from the military.

ˆ Employment: a categorical variable indicating the patient's employment status.

ˆ Utilisation (target): a continuous variable made from a composite of healthcare

utilisation values.

Additionally, the insurance portion of the data details the presence or degree of medical

conditions such as diabetes, asthma, and mental health etc. This is a comprehensive list

of medical conditions and degrees of symptoms.

2.6.2 Metrics

Here we detail all standard metrics used in all chapters. We utilise three accuracy metrics:

1. Accuracy: simply the percent of labels correctly predicted.

2. Balanced accuracy: 0.5*(True positive rate + True negative rate).

3. True-positive-rate: percent of correct predictions on the positive labels.

We utilised two fairness metrics: disparate impact, and TP-ratio.

1. Disparate Impact: this is a measure of the percent predicted positive of the unpriv-

ileged class / the percent predicted positive in the privileged class. Values between

[0; 1] indicate the severity of bias towards the privileged group, between [1; 1 ] in-

dicate unprivileged group's level of bias.

2. TP-ratio: similar to the Average odds di�erence but is a ratio di�erence instead.

Lastly, we employed two e�ciency metrics:

1. Percent-positive-outcomes: this is simply the number of positive outcomes / the

number of overall predictions. In the context of a medical diagnosis, this metric

implies the cost in terms of additional procedures or tests performed.

2. Run-time: is the di�erence between the cpu clock-time at the beginning and end

of all necessary procedures being measured. This was used primarily to compare

Mitiband to Random Search and Grid Search.
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2.7 Challenges and Opportunities

There are several remaining challenges to be addressed in the bias literature. Among

them are:

ˆ Codifying de�nitions of fairness. There are numerous proposed de�nitions of what

constitute bias and fairness from a machine learning perspective. Because of this,

it is nearly impossible to understand how one bias mitigation technique would fare

under a di�erent de�nition of bias. Standardising the ability to mitigate bias in a

particular manner remains a complex and open problem.

ˆ From utility to fairness. There is often a trade-o� between utility and fairness.

Understanding the tension between the two factors is crucial. Operationalising the

trade-o� between the factors when dealing with de-identi�cation remains an exciting

future direction.

ˆ End-to-end bias mitigation tool. A rich area for future research is the development

of processes and tools for bias mitigation. Current tools focus heavily on the de-

velopment of algorithmic methods to assess and mitigate biases in individual ML

models. The compounding e�ects of utilising de-identi�cation alongside an ML

model require a rethink of applying bias mitigation techniques more e�ectively in

the broader system design.

ˆ De-identi�cation method guide. In addition to the concept of end-to-end bias miti-

gation for de-identi�cation, a vital aspect of this could incorporate a method guide

that could help determine which de-identi�cation approach and method would be

most appropriate. Given the type and nature of the input data and the set of

criteria, for example, privacy level and bias mitigation objectives, knowing which

techniques are best suited would be bene�cial. This guide would create a simpli�ed

procedure to guide data publishers in meeting or weighing up varied privacy, utility

and fairness objectives.

2.8 Summary

Although the development of big data presents excellent research opportunities, there are

limitations to utilising many types of data. De-identi�cation provides a way to address

privacy concerns, however, it comes with challenges as well. This survey covered the

two major concerns arising from the de-identi�cation process: maintaining utility and

ensuring fairness. The �rst section reviewed the types of error-bias and the issues that

lead to fairness-bias. The second and third section catalogued the fundamental types
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of de-identi�cation|this covered speci�c methods showing how they lead to error-bias

and showed the metrics used to assess utility. The fourth section discussed how these

same processes could result in unfair or inequitable outcomes and the metrics used to

measure fairness. This section used extensive scenarios utilising di�erent methods. This

section showed that the di�erent methods have di�erent levels of fairness-bias depending

on the level of privacy, and the correlation between the feature and target attributes.

Finally, the �fth section detailed some speci�c mitigation techniques to deal with bias in

the collection, processing and analysis phase.

Whenever there is a choice about how to alter data, there is a potential for bias. De-

identi�cation inevitably requires altering the data in some way. Thus, the issues of bias

will continue to arise when intending to publish sensitive data. Privacy protection has

seen increased concern in the public consciousness, and legislation has begun to address

some of these circumstances. Fairness has also become an issue of public concern, and

there are beginning to be initiatives to address this issue. Both privacy and fairness are

essential issues to address to make better use of the data that is becoming available.



3
Bias Assessment

This chapter explains the bias assessment framework and utilises this to investigate bias

on various data. Section 3.1 discusses the motivation for this line of research. Sec-

tion 3.2 discusses the methodology in developing the framework to assess the e�ects of

de-identi�cation on accuracy and fairness. Section 3.3 outlines the algorithmic procedures

in the bias assessment framework. Section 3.4 outlines the datasets, and the experiments.

Section 3.5 discusses the results. We summarise this chapter in Section 3.6.

The objective of this chapter was to investigate the e�ects of de-identi�cation on bias

and fairness. We developed a bias assessment framework to analyse the level of fairness

and accuracy in original and de-identi�ed data. We utilised this framework to experiments

with three real-world datasets as well as arti�cial data. We employed various metrics and

developed two novel measures to compare the results of these tests.

3.1 Motivation

Previous research has analysed the e�ects of de-identi�cation in the privacy and utility

trade-o�; this work focused on tuning the noise applied in the di�erential private algo-

rithm [34]. Our objective is to investigate the privacy fairness trade-o�. Additionally,

we assess this trade-o� on both a di�erentially private and a generalisation/suppression

method.

The contributions of this chapter are three-fold. First, we develop a framework for

37
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Figure 3.1: Data analysis pipeline.

analysing the e�ects of de-identi�cation on bias; we developed two novel measures for

this. Second, we investigate how issues that a�ect the accuracy and fairness of models in

general will a�ect models created from de-identi�ed data. To this end, experiments were

run on data with di�ering levels of: class imbalance, positive target outcomes, and target

outcome imbalance. Third, we assess the e�ects of de-identi�cation on three real-world

datasets.

Figure 3.1 displays our data analysis pipeline. We highlight where the bias assessment

framework can be used for bias assessment. We place this bias assessment process at a

stage where we can use the results of the assessment to guide the following steps.

3.2 Bias Assessment Framework

This section discusses the methodology used to develop the bias assessment framework.

Additionally, we outline the assessment measures we employ. Our objective was to mea-

sure the fairness and utility loss as a result of the de-identi�cation process.

3.2.1 Methodology

Formally, we start with an initial dataset D. This dataset contains a protected classC

and remaining attributes X . There is a binary targetY described in Equation 3.2. The

target Y is either a positive outcomeY + � Y or a negative outcomeY � � Y and the

protected classC is either unprivilegedC0 � C or privilegedC1 � C. This framework can

be extended trivially to assess bias across multi-variate protected class (C1; : : : ; Cn ) and
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can be extended to include a continuous target, provided there is a user-de�ned threshold

� such that: 8 y � � : y 2 Y + .

D = ( C; X; Y ) (3.1)

The original dataset might have some level of bias against the unprivileged class, for

instance:

bias(D) =
Pr(y 2 Y + jc 2 C0)
P r(y 2 Y + jc 2 C1)

� 1 (3.2)

In the de-identi�cation pre-processing framework the data is then de-identi�ed. This

step is skipped when performing in-processing de-identi�cation. This step creates a new

dataset �D which contains a transformation of the attributes �X and for the purposes

of analysis must contain the original attribute C. Depending on the de-identi�cation

methodology the target may remain unaltered leavingY or it may result in altered �Y:

�D = ( C; �X; �Y) (3.3)

If Y is transformed to �Y this may lead to a di�erent level of bias de�ned by:

bias( �D) 2
Pr(�y 2 �Y + j �c 2 �C0)
P r(�y 2 �Y + j �c 2 �C1)

(3.4)

The di�erence betweenbias(D) and bias( �D) is the original change in fairness which

may increase or decrease the bias. However, The change in fairness in the training data

will also a�ect models created using the new data. Thus, this framework applies pre-

processing and model creation to assess this change. The data pre-processing is performed

to prepare it for creating a model. The pre-processing is applied to both the original and

de-identi�ed data according to the users speci�cations; we model ours as in AIF360 [12].

In the pre-processing de-identi�cation framework Figure 3.2(a) two models are created

using a classi�er. One is trained on the processed original data, and the other is trained

on the processed de-identi�ed data. Using the in-processing de-identi�cation framework

Figure 3.2(b) two models are created using a classi�er. Both models are trained on the

processed original data. However, one is trained using a standard classi�cation model,

while the other is trained using the private classi�cation model. In our case, we use a

di�erentially private classi�er. Both the pre-processing and in-processing de-identi�cation

frameworks create two models, an original modelM and a de-identi�ed model �M .

The original and de-identi�ed classi�ers are then tested using a test set from either

the original or de-identi�ed data respectively. This produces two sets of predictionsP

with ( P+ ; P � � P) and P � with ( P � + ; P �� � P � ).

We can apply extensive metrics to these results. We �rst measure accuracy described
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(a) Pre-Processing De-identi�cation (b) In-Processing De-identi�cation

Figure 3.2: Bias assessment framework for pre-processing and in-processing de-identi�cation
methodologies.

in Chapter 2. We also develop two novel measures to assess privacy fairness loss described

in Section 3.2.2, and privacy utility loss described in Section 3.2.3.

3.2.2 Privacy-Fairness Loss Measure

The set of equations from Equation 3.5 to Equation 3.7 measures the increase in bias that

arises as a result of the de-identi�cation process. First, we assess the predictions from

the original processed dataset with predictionsP. We measure� , which is the percentage

of outcomes predicted as positive. Then� is the percentage of positive outcomes in the

ground truth. Therefore, � gives the ratio of positive outcomes lost between the predicted

and the actual positive outcomes.

� = �=� : � =
jP+ j
jP j

: 8p 2 P; c 2 C; � =
jY + j
jY j

: 8p 2 P; c 2 C (3.5)

We can then measure the� 0 for the unprivileged class and� 1 for the privileged class.
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The di�erence between these � is the fairness lost on that set of predictions.

� P = � 0 � � 1 j � 0 � � : c 2 C0; � 1 � � : c 2 C1 (3.6)

This same formula is then applied to the de-identi�ed processed dataset using pre-

dictions P � to derive � P �
. These values can be compared directly as in the plots in our

experiments or we can derive a single privacy-fairness-loss value:

privacy-fairness-loss = � P �
� � P (3.7)

For example, the test set could have a rate of 40% positive outcome on the privileged

class and 20% positive outcome on the unprivileged class. However, the predicted positive

rate for the privileged class is 30% and the predicted positive rate for the unprivileged is

5%. Thus, the percent of positives predicted for the original data is:

� P = � 0 � � 1 = � 0:5 : � 0 =
� 0

� 0
=

0:05
0:20

= 0:25; � 1 =
� 1

� 1
=

0:30
0:40

= 0:75: (3.8)

where as the percent positives predicted for the de-identi�ed data is:

� P � = � 0� � � 1� = � 0:46 : � 0 =
� 0�

� 0�
=

0:03
0:15

= 0:20; � 1 =
� 1�

� 1�
=

0:20
0:30

= 0:66: (3.9)

Thus, privacy-fairness-loss =� 0:46 � (� 0:5) = +0 :04 and the fairness di�erence has

reduced slightly from the original predictions to the de-identi�ed predictions. However,

the overall positive predictions are lower for both the privileged and unprivileged classes.

3.2.3 Privacy-Utility Loss Measure

To determine the speci�c e�ect that increased privacy has on overall utility, we use accu-

racy, and measure the relative error rate. We measured the loss to account for the loss

which arises as the privacy increases. This metric is measured as area between the overall

accuracy on the original data and accuracy of de-identi�ed data, denoted as Privacy-

Utility loss.

aoverall � adeid (3.10)

where aoverall is the accuracy before de-identi�cation andadeid is the accuracy after de-

identi�cation process. If it is 0, then there is no loss in the de-identi�cation process.

We applied this measure to both the privileged and unprivileged classes to indicate the

di�erential e�ects.
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3.3 Algorithm Discussion

This section �rst discusses the methodology of the algorithmic processes used in our

algorithm. Then we discuss Algorithm 1 which displays the full process and outlines the

order of procedures in this implementation. The order and inclusion of certain procedures

varies depending on the speci�c use case.

We built upon methods in the AIF360 package and developed a framework to assess the

level of bias arising from the de-identi�cation process. Additionally, we assessed various

de-identi�cation methods and selected Mondrian [59] and IBM Di�erential Privacy [40]

for testing. We applied de-identi�cation in two manners. With the Mondrian method, the

data set is de-identi�ed at the beginning of the bias assessment framework. Alternatively,

with the IBM di�erential privacy, the de-identi�cation process is part of the classi�er and

is applied during the classi�cation stage of the bias assessment framework.

This framework employs �ve standard packages. These were Numpy [37], Pandas

[83], Scikit-learn [67], Sci-py [79], and Matplotlib [41]. The framework utilises a series of

procedures displayed in two stages and the overall process is described in Algorithm 1.

Additionally, the privileged and unprivileged classes values and the positive and negative

label values are inputs.

We use three generic procedures in the framework: re-runget dataframes once us-

ing arguments orig loc to get the original dataframe df deid0 zero indication no de-

identi�cation. Then we run the procedure k times using deidk loc to get df deidk for

each de-identi�cation level in K . Additionally, the argument feature names de�nes the

features to keep for all dataframes. These dataframes are added toall dfs .

Next we iterate though all df k 2 all dfs . For eachdf , the split data procedure splits

the data into train and test sets using the Sklearn split function. The size of the test set

is test size. The target argument is used to ensure the proportions of the target in the

training and test set are close.

The procedurescalenumeric scales the numeric data for the training and test sets

using either the StandardScaler or MinMaxScaler. This function takes in the dataframe

df , then scales the numeric attributesnumeric using the scaler typescaler. The deid

variable is a ag to run the process for de-identi�ed data, and if there is a hierarchy

key hk this can be applied. This procedure produces and producesX train scaledand

X test scaled.

Then we employ a custom procedure for the categorical attributes of the scaled training

and testing data X train scaledand X test scaled. The procedureonehotencodeuses

Pandas performs the pre-processing on categorical attributescategoricalof the dataframe

df . This process includes label binarisation, feature selection, and one hot encoding. We

performed this process in the manner described in AIF360 [12]. However, de-identi�ed
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data is agged with deid. If the values have no hierarchy keyhk, and are generalised

into a selection of possible classes,e.g., (a; b; d), a novel multi-hot encoding is performed

to assign a 1 to each column fora, b, and d. This procedure producesX train enc and

X test enc.

Following this, the classi�cation task is performed using aclassif ier on processed data.

This process trains a model with the training setX train enc and y train . The model

is tested with x test enc and creates predictionsdf pred. This framework uses Sklearn.

Thus, any classi�er in Sklearn can be used to compare the original and pre-processed de-

identi�ed dataset. However, with model-based de-identi�cation (IBM di�erential privacy),

for comparison on the same model, the framework is limited to those models design for

de-identi�cation methods.

Then get metrics takes in the dataframe with predictiondf pred and the set of pro-

tected attributes protect dict and the set of metricsmetdict . This procedure runs through

all the protected attributes and the metrics, then returns a dictionary,resultsk , of all val-

ues of the metrics. This dictionary is �nally added to the set of dictionaries,results, for

all de-identi�cation levels.

Following this the plot metrics procedure can be used to plot the results using the

Matplotlib library. This procedure takes in the dictionary of results from the original

data results, the dictionary of protected attributes protect dict, and the dictionary of

metrics met dict. The procedure plots all the metrics for all the protected attributes of

the original and k de-identi�ed data so that the user can compare these results.

3.4 Experiments

In this section, we discuss the datasets used and the experimental setup. The objective

of experiments is two-fold. First, we explored the e�ects of data characteristics on bias

in de-identi�ed data. This included class imbalance, the ratio of positive outcomes for

both the privileged, and ratio of positive outcomes for the unprivileged classes. Second,

we investigated the e�ects of de-identi�cation on bias in real-world datasets. To assess

the e�ects of in these experiments, we used four metrics accuracy, disparate impact as

described in Chapter 2, and the two novel measures described in Section 3.2.

3.4.1 Datasets

The datasets we used for these experiments were theAdult dataset and theGerman

dataset described in Chapter 2. Additionally, for the medical data case study we utilised

the Medical Expenditure Panel Survey (MEPS) dataset described in Chapter 2.

To investigate the e�ects of imbalanced classes, we designed a synthetic dataset gen-
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Algorithm 1 Bias assessment algorithm
1: Input: orig loc - �le location of original data, deidk loc - �le location of de-identi�ed

data, features - features to keep,target - target attribute, C1, C0, Y + , Y � , test size
- size of test set,numeric - numeric attributes, scaler - type of scaler,categorical
- categorical attributes, classif ier - type of classi�er, protect dict - dictionary of
protected classes,met dict - dictionary of metrics

2: Output: dictionary of metrics (plot)
3: df deid0  get dataframes(dforig location, features) all
4: all dfs.add(df deid0)
5: for k 2 K do
6: df deidk  get dataframes(deidk loc, features)
7: all dfs.add(df deidk)
8: end for
9: for dfk 2 all dfs: k = de-identi�cation level do

10: X train, X test, y train, y test  split data((dfk , test size)
11: X train scaled scalenumeric(X train, numeric, scaler, isdeid, hashk)
12: X train enc  onehot encode(Xtrain scaled, categorical, isdeid, hashk)
13: X test scaled scalenumeric(X test, numeric, scaler, isdeid, hashk)
14: X test enc  onehot encode(Xtest scaled, categorical, isdeid, hashk)
15: df pred  run classi�er(X train enc, X test enc, y train, y test, target, classi�er)
16: resultsk  get metrics(df pred, protect dict, met dict)
17: results.add(resultsk)
18: end for
19: plot  plot metrics(results, protectdict, met dict

erator to manipulate the Adult dataset. Synthetic Data Generator. The synthetic

data generator creates datasets through the selective sampling of the Adult dataset. The

samples represent di�erent class imbalance levels between the privileged and unprivileged

class and di�erent levels of fairness. This distribution is achieved by selectively sampling

the positive outcome percentage for the privileged and unprivileged classes. This process

allowed us to control the dataset generated and systematically investigate the e�ects of

class imbalance and pre-existing disparities in positive outcomes. In the dataset gener-

ated, we sub-sample 8,000 rows from the original Adult dataset. For class imbalance, we

started at no imbalance 1 : 1, up to 1 : 100. Our positive outcome ratio is set between

50% to 1%.

3.4.2 Experimental Setup

Both experimental procedures use the Mondriank-anonymity algorithm [59] and the IBM

di�erential privacy approach [26, 40], as the underlying de-identi�cation techniques.

Setup using k-anonymity. The Mondrian k-anonymity method [59] is a top-down

approach that iteratively partitions the dataset into smaller partitions provided they

are larger than sizek. This method can accept a hierarchy key that determines the
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broader categories into which the values are generalised. For example, the attribute

values unmarried and divorced could both be mapped to unmarried. No hierarchy key

was used for these tests as there is no de�ned hierarchy prescribed for these datasets. The

result of the generalisation process is creating a partition in which each attribute can be

any value within a given range or set. All possible values were then multi-hot encoded

for each member of that partition.

We used this pre-processing procedure on the original dataset as well. Then, to deter-

mine the e�ects of k-anonymity and model the relationship between the de-identi�cation

level with accuracy and fairness, we performed the Mondrian algorithm choosingk = 4,

k = 8, and k = 16. This set gives a range for possible privacy levels required. We trained

our models on each of these datasets, using Gaussian na•�ve Bayes. Initially, we evaluated

it against synthetic datasets with varying imbalance ratio and positive outcome ratios.

We then evaluated the model's performance on the real-world data and in the medical

data case study.

Setup using Di�erential Privacy. To assess the di�erential privacy method, we

used the method devised in [40]. This is an open-source python package. We employed

the di�erentially private na•�ve Bayes function to compare these results against those of

the same classi�er used on thek-anonymity private models. We �rst performed the pre-

processing procedures on the original dataset and then chose� at 0:1; 1:0; 5:0; 10. The

selection of� is an open area of research [55], thus, we selected the set to evaluate the

e�ects given several possible levels of de-identi�cation.

3.5 Results

We discuss the results in two sections based on the research aims. First, we investi-

gated the a�ects of data characteristics on bias levels in de-identi�ed data. Second, we

investigated the e�ects of de-identi�cation on bias using real-world datasets.

3.5.1 E�ects of Data Characteristics on de-identi�cation.

Figure 3.3 shows the results of using k-anonymity to de-identify data and produce a na•�ve

Bayes model. Figure 3.4 shows the results of using a di�erential privacy method to de-

identify the data and produce a na•�ve Bayes model. In the �gures �rst column, we show the

accuracy and disparate impact of the results based on imbalance ratio, privileged positive,

and privileged class. The graphs in the second column of the �gure show the privacy-

utility loss, and the third column shows the privacy-fairness loss. The standard deviations

of the results are reasonably small. For readability purposes, we have not included it in the

graphs below. We provide the full results along with standard deviations and signi�cance
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test in the following link: https://github.com/andrewj-rc/Balancing-Utility-and-Fairness-

Against-Privacy-in-Medical-Data.

From Figure 3.3 we observed that when usingk-anonymity, the accuracy deteriorates

with higher k and that the e�ects are more pronounced on the unprivileged class. This

observation is true for higher imbalance, as well as lower unprivileged and privileged

positive outcomes. We observed that the utility loss is higher for the unprivileged than the

privileged class for all three parameters. There is a greater di�erential observed between

the privileged and unprivileged classes with lower positive outcomes for unprivileged and

privileged with this data. On the fairness measure we observed a high prediction rate

for positive outcomes for both privileged and unprivileged. This tendency decreases with

higher class imbalance and higher unprivileged and privileged positive outcomes.

Figure 3.4 shows that using di�erential privacy, the accuracy for the privileged class

has a decreasing trend. Whereas the unprivileged class has an increasing trend with

a higher imbalance ratio. Similarly, we observe that both privileged and unprivileged

accuracy tend to decrease with a high percent of privileged and unprivileged positive

outcomes. The utility for the privileged class shows a tendency to be higher than that of

the unprivileged class regardless of the imbalance or privileged and unprivileged positive

percentages. For the fairness measure, we observed that in this data, the unprivileged

class has a higher fairness measure than the privileged class.

3.5.2 E�ects of de-identi�cation on bias.

Tables 3.1, 3.2, and 3.3 present the results of the test on the real-world datasets. The

�rst column indicates the data on which we tested the model, either original data (not de-

identi�ed) or de-identi�ed and the de-identi�cation methodology. The proceeding columns

present accuracy, disparate impact, and fairness and utility measures.

Table 3.2 presents the German dataset results. As the de-identi�cation level increases,

we observed a loss in accuracy when tested on the original data for both de-identi�cation

methodologies. At the same time, the disparate impact tends to increase with higher

levels of de-identi�cation for both. With the Fairness Loss metrics for both privileged

and unprivileged, initially the rates are positive. However, they both have a decreasing

positive rate. For the utility loss with the privileged class, the trend is decreasing for

higher k-anon and increasing for lower� . Conversely, with the unprivileged class, the

level of loss has an increasing trend for both methods with highk. When testing against

de-identi�ed data, we observe an increase in utility with higherk. However, for the

unprivileged class, this trend is not seen.

Table 3.1 presents the Adult dataset results. Firstly, assessing the accuracy; for k-

anonymity, when using the original test data, we observed a drop in accuracy from the

original data at all levels ofk. This trend is not seen when tested on the de-identi�ed data.
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