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ABSTRACT

Aluminium alloys are materials of huge practical importance. However their use is
dependent on surface oxides and hydroxides which are critical in protecting the highly
reactive underlying metal. The stability and integrity of the oxides and hydroxides are
also crucial in finishing and bonding applications. Better understanding of these

surfaces has significant implications in enhancing their application.

LM6 and LM25 aluminium-silicon casting alloys were studied as these materials
show a particularly inhomogeneous phase structure and complex surface behaviour.
This complexity is of fundamental interest and leads to considerable practical
difficulties, especially in surface finishing. The surfaces were characterised, subjected
to thermal treatments and modified with Ion Assisted Deposition coatings of TiN. A
characterisation method for these surfaces was also developed based around the

layered structure of aluminium hydroxides.

It was observed that the thermally induced surface segregation of minor elements,
such as Mg and Na, is availability-limited. Surface concentrations of these elements
are determined by the net effect of enriching via surface segregation and depleting
through surface evaporation. The inhomogeneous phase structure of the alloys used
in this study enables the observation of two migration processes driven by different
forces. Below the oxide dominated surface layer, the migration of Mg is driven by
chemical potential gradient and is primarily perpendicular to the surface. Closer to

the surface, concentration driven horizontal diffusion of the element occurs.

The deposition of a thin TiN layer has been used to probe the interface. While the
deposition conditions of TiN coatings affect the chemistry of the coatings, substrate
surface conditions determine how well bonding is achieved between the film and
substrate. The height difference between silicon particles in the eutectic phase and the
primary aluminium phase of the casting alloys provides surface roughening and
optimal adhesion through mechanical interlocking with the coating. This height
difference is achieved by preferentially removing the surface exposed primary

aluminium phases with ion bombardment.
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The nature of surface aluminium oxides and hydroxides and their modification, has
been further probed by studying how repeating fragments in TOF-SIMS spectra of
these compounds originate. Gibbsite powder and a bayerite layer on a metal surface
have been examined, before and after intercalation into their layered structure. This
suggests that the weak interlayer bonding can be manipulated and allows cleavage of
the outermost octahedral layers under bombardment by energetic particles. This
phenomenon provides a new and particularly sensitive characterisation method, using

the relative intensities of the repeating fragments in the TOF-SIMS spectra.
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