Multistage stochastic capacity planning in networks

Anthony Downward
Joint work with Andy Philpott

Electric Power Optimization Centre
Engineering Science
University of Auckland

THE UNIVERSIT

Py AUCKLA

il e i vims

31st European Conference on Operational Research, 14 July 2021. Y e ena



Outline

Background
Multi-horizon stochastic programming
Applications for network models

Implementation and communication of policies
JuDGE: Julia-based Decomposition for General Expansion
Simple Capacity Planning Model
Implementation using JuDGE
Computational Benchmarks

Communication of JuDGE Solutions



Outline

Background
Multi-horizon stochastic programming
Applications for network models

Implementation and communication of policies



Background

Multi-horizon planning

The concept of multi-horizon modelling is the idea that you are planning for across
multiple time-horizons at once (short-term, medium-term, and long-term) and are
explicitly accounting for how strategic, tactical and operational decisions influence each

other.



Background

Multi-horizon planning

The concept of multi-horizon modelling is the idea that you are planning for across
multiple time-horizons at once (short-term, medium-term, and long-term) and are
explicitly accounting for how strategic, tactical and operational decisions influence each
other.

In this talk, we will be considering this type of problem in the context of stochastic
capacity expansion models.



Background

Multi-horizon planning

The concept of multi-horizon modelling is the idea that you are planning for across
multiple time-horizons at once (short-term, medium-term, and long-term) and are
explicitly accounting for how strategic, tactical and operational decisions influence each
other.

In this talk, we will be considering this type of problem in the context of stochastic
capacity expansion models.

In the short-term, we have operational decisions that result in immediate costs and
revenue; however, at the same time the decision maker is considering capacity
expansion decisions that will lead to lower operational costs, or higher revenue in the
future.
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Multi-horizon network models

A wide-range of network models can form the operational model for this class of
problem, enabling the consequences of long-term investment decisions to be
endogenously modelled.

— Water network planning for drought management: storage; water treatment;
desalination.

— Integration of renewables for electricity systems: transmission grid upgrades;
location of new generation.

— Electricity distribution network reliability: line upgrades; battery storage.

— Energy transition for industry: changes to the energy supply chain; plant
modifications.
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Background

Implementation and communication of policies

Stochastic programming has been promoted in academia for decades, but has only
recently been gaining traction in capacity planning settings within business.

In part, the delay in acceptance has been due to the limitations in the size of problems
that could be modelled, but more significantly the solution to a stochastic program is a
policy that adapts to information as it is revealed, and this has been difficult
communicate to decision makers.

The concept of Dynamic Adaptive Pathways has made in-roads in areas where there is
deep uncertainty, particularly climate change planning.? This, however, is typically
more qualitative than quantitative.

2M. Haasnoot, J.H. Kwakkel, W.E. Walker, J. ter Maat, Dynamic adaptive policy pathways: A
method for crafting robust decisions for a deeply uncertain world (2013).
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JuDGE Framework Overview

Implementation and communication of policies

In this talk, | will present JuDGE.jI3, a Julia package which

— allows users to easily implement multi-horizon optimization models using the
JuMP modelling language;

— applies Dantzig-Wolfe decomposition in order to solve large-scale models; and

— outputs an interactive view of the results over the scenario tree, enabling decision
makers explore the optimal policy.

JuDGE stands for Julia Decomposition for Generalized Expansion.

3A. Downward, R. Baucke, A.B. Philpott, JuDGE.jl: a Julia package for optimizing capacity
expansion (2020).
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JuDGE is a Julia/JuMP-based package that facilitates the modelling of multi-horizon
stochastic capacity expansion problems.

. . ) Extensive Form:
— N is the set of nodes in the scenario tree;

— ¢, the probability of the state of the world n min Z <Pn(CnTZn + CIIYn)

y.z

occurring; neN
— P, the set of nodes on the path to (and st. Anyn < b+D h;) zp, Vn €N,
including) node n; n
— m is the number of expansion variables; Yn € n, VneN,
z, € ZI1, VneN.

z, € Z'" are the variables for the expansions
made at node n;

¥n is the variable vector for stage-problem n;

— YV, is the stage-problem feasibility set.
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JuDGE Framework Overview
What type of problems can be modelled in JuDGE?

JuDGE is a Julia/JuMP-based package that facilitates the modelling of multi-horizon
stochastic capacity expansion problems.
Extensive Form:

JuDGE applies Dantzig-Wolfe decomposition to  min Z 4>n(c,,Tz,,+ a,) vn)

the problem by automatically constructing a mas- *"*  neN

ter problem that handles the investment decisions, s.t. A,y, < b+ D Z zp, Vne N,
and generates columns from the nodal subprob- heP,

lems. Yn € Y, Vne N,

, _ z, € ZM, VneN.
These columns’ costs are the operational costs of

the nodal subproblems, and the columns’ coeffi-
cients are the utilized investments.
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JuDGE Framework Overview
What type of problems can be modelled in JuDGE?

JuDGE is a Julia/JuMP-based package that facilitates the modelling of multi-horizon
stochastic capacity expansion problems.
Restricted Master Problem:

The columns are indexed j € J, for each node n, min Y ¢n(c, xa+ Y, Wiwd)

and added to the restricted master problem, with ’ neN Jj€Tn

cost Y}, and coefficients 2. st E 2wl < Z xp, ¥n e N,
Jj€In heP,

This p.ro'blcf:m seeks to choose mvestments X Z w{;: 1, VneN,

that minimize the total expected cost, given the jed,

columns that have been generated. (Additional
investments cannot decrease the set of feasible
columns.)

wi,x, >0, YneN,je T,



JuDGE Framework Overview
What type of problems can be modelled in JuDGE?

JuDGE is a Julia/JuMP-based package that facilitates the modelling of multi-horizon
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JuDGE Framework Overview
Elements of a JuDGE Model

JuDGE enables the formulation of multistage stochastic capacity management
problems leveraging the JuMP mathematical modelling language within Julia.
Modelling these problems consists of several elements:

— a tree with corresponding data and probabilities for each node;

— a subproblem defined as a JuMP model for each node in the tree; and

— expansion (and/or shutdown) decisions and costs.

Given these elements, JuDGE can automatically form the restricted master problem,
and provide the machinery necessary for the iterations of the Dantzig-Wolfe algorithm.

Various solvers can be specified for the different models that are being solved. The LP
relaxation of the restricted master problem is typically solved with an interior point
method, and the subproblems are solved as mixed-integer programs.

Alternatively, JuDGE can formulate the deterministic equivalent problem directly as a
JuMP model (mixed-integer program).
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Facility Expansion Planning Model
Defining the Subproblems

We will now consider a simple multistage facility expansion problem, and go through
the steps necessary to model this.

In our earlier formulation the nodal subproblem was simply written as: y, € Vp; let's
now define it fully for this example.
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Facility Expansion Planning Model
Defining the Subproblems

We will now consider a simple multistage facility expansion problem, and go through
the steps necessary to model this.

We have sets / indices:
— supplies i € §; demands j € D; and routes ij € S x D.

The variables are:
— f;  the flow on route ij; and

— Xx; the number of upgrades of supply i.

The parameters are:
— ¢jj  per-unit cost of flow on route ij;

— C; cost of increasing the capacity of supply /;
— s; initial capacity of supply /i; and

— S; increase in capacity of supply i for each upgrade.
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Facility Expansion Planning Model
Defining the Subproblems

Supply constraints:
PPY Zﬁj§5i+5ixi, VieS,

jeD
Demand constraints:
Y fi=d. V€D,
ieS
Binary expansions:
xi €2, VYieSs.
Objective function: )
) min Z C,'jf;'j + Z Cix;.

jeESXD ieS
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Implementation using JuDGE
Formulating the subproblems

The subproblems are implemented as JuMP models, with additional macros, which are
used to enable JuDGE to automatically formulate the master problem.

function sub_problems(node)
model = Model(JuDGE_SP_Solver)
ansion(model, @<=new_supply[supply nodes]<=1@, Int, lag=1)
@capitalcosts(model, sum(C(node)[i]*x[i] for i in supply_nodes))

iable(model, x[supply_nodes, demand_nodes] >= 0)

ive(model, Min,

sum(c[i, j]1 * x[i, j] for i in supply_nodes, j in demand_nodes))

raint(model, Supply[i in supply_nodes],
sum(x[i, j] for j in demand_nodes) <= s(node)[i] + S[i]*x[i])

@constraint(model, Demand[j in demand_nodes],
sum(x[i, j] for i in supply_nodes) == demand(node)[j])




Implementation using JuDGE
Formulating the subproblems

The subproblems are implemented as JuMP models, with additional macros, which are
used to enable JuDGE to automatically formulate the master problem.
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Implementation using JuDGE

Creating a JuDGE Scenario Tree

There are several ways that trees can be created for JuDGE including:
— from a list of leaf nodes;

— from a file that specifies nodes, each node’s parent and corresponding data;

— as a symmetric tree with constant depth and degree.

To create a tree with a depth 4 and degree 2: .<.<:
tree = narytree(4,2) o<:i:
e

«—°

o
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Creating a JuDGE Scenario Tree
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Implementation using JuDGE
Creating and solving the JuDGE Model

Once a tree has been created, and a function declared which defines the nodal

subproblems, we can create a JuDGEModel as follows:

model = JuDGEModel(tree, ConditionallyUniformProbabilities,
sub_problems,optimizer with attributes((method=GLPK.INTERIOR)
-> GLPK.Optimizer(), "msg lev" => 0, "mip_gap" => 0.0))
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Implementation using JuDGE
Creating and solving the JuDGE Model

Once a tree has been created, and a function declared which defines the nodal
subproblems, we can create a JuDGEModel as follows:

model = JuDGEModel(tree, ConditionallyUniformProbabilities,
sub_problems,optimizer with attributes((method=GLPK.INTERIOR)
-> GLPK.Optimizer(), "msg lev" => 0, "mip_gap" => 0.0))

If the model passes the in-built testing, ensuring that the JuMP models are set up
correctly, the model can be solved using the command:
JuDGE.solve(model, Termination = termination(reltol=le-4)

There are several additional termination conditions that can be included as optional
arguments: rlx_abstol; abstol; rlx._reltol; reltol; time_limit; max_iter.



Implementation using JuDGE
JuDGE lterations
As JuDGE solves the problem, it reports the objective + the lower- & upper bound:

Termination Absolute Relative
Binary/Integer: 1.0000e-10 1.0000e-10
Relaxation: 1.0000e-10 1.0000e-04

Integer tolerance: 1.0000e-09

Time-limit: Inf
Max iterations: Inf
Allow fractional: binary_solve

Relaxed Objval | Upper Bound Lower Bound | Absolute Diff Relative Diff | Fractional | Time Iter
Inf | Inf -Inf | Inf NaN | o | 0.304 1
1.253975e+06 | 1.253975e+06 -Inf | Inf NaN | o | 0.613 2
1.939722e+05 | 1.939722e+05 6.460694e+04 |  1.293653e+05 2.002343e+00 | o | 1.123 3
1.915015e+05 | 1.939722e+05 9.750023e+04 |  9.400132e+04 9.641138e-01 | 2 | 1.638 4
1.914004e+05 | 1.914004e+05 1.240748e+05 |  6.732559e+04 5.426211e-01 | e | 2.223 5
1.913624e+05 | 1.913624e+05 1.280194e+05 |  6.334291e+04 4.947914e-01 | e | 2.866 6
1.906704e+05 | 1.913624e+05 1.815446e+05 |  9.125788e+03 5.026748e-02 | 12 | 3.457 7
1.905671e+05 | 1.913624e+05 1.815446e+05 |  9.022535e+03 4.969873e-02 | 3 | 4.073 8
1.905649e+05 | 1.913624e+05 1.815446e+05 |  9.020318e+03 4.968652e-02 | 12 | 4.687 9
1.905557e+05 | 1.905557e+05 1.831433e+05 |  7.412418e+03 4.047332e-02 | o | 5.333 10
1.905556e+05 | 1.905556e+05 1.899303e+05 |  6.253313e+02 3.292425e-03 | e | 5.911 11
1.905425e+05 | 1.905556e+05 1.899303e+05 |  6.122061e+02 3.223320e-03 | 6 | 6.494 12
1.905425e+05 | 1.905556e+05 1.903193e+05 |  2.231239e+02 1.172366e-03 | 6 | 7.096 13
1.905423e+05 | 1.905423e+05 1.903193e+05 |  2.229904e+02 1.171665e-03 | e | 7.768 14
1.905423e+05 | 1.905423e+05 1.903262e+05 |  2.160559e+02 1.135187e-03 | e | 8.335 15
1.905423e+05 | 1.905423e+05 1.903263e+05 |  2.159938e+02 1.134860e-03 | e | 8.914 16
1.905423e+05 | 1.905423e+05 1.903267e+05 |  2.155513e+02 1.132533e-03 | 20 | 9.487 17
1.905423e+05 | 1.905423e+05 1.905423e+05 |  1.272894e-05 6.680375e-11 | 12 | 10.126 18
1.905423e+05 | 1.905423e+05 1.905423e+05 |  1.208854e-05 6.344281e-11 | o | 10.149 19%
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Computational Benchmarks

0.1% 1.0%

JuDGE DetEq JuDGE DetEq

Degree Depth | Seed | Nodes | Variables | Gurobi | GLPK | Gurobi | Gurobi | GLPK | Gurobi
3 2 1 15 2778 4.8s 3.9s 5.4s 0.3s 2.1s 0.4s
3 2 2 15 2778 4.7s 4.0s 5.0s 3.5s 2.8s 0.4s
3 2 3 15 2778 2.2s 2.2s 5.1s 1.8s 1.9s 0.8s
3 2 4 15 2778 3.9s 3.8s 15.5s 2.8s 2.8s 1.7s
3 2 5 15 2778 2.1s 2.0s 3.3s 1.3s 1.6s 0.3s
3 3 1 40 8547 22s| 28.90s| 485.72s 10s 15s 80s
3 3 2 40 8547 28s | 36.15s | 1049.62s 17s 29s 122s
3 3 3 40 8547 37s| 26.86s| 53.20s 26s 23s 35s
3 3 4 40 8547 20s | 23.77s 11.77s Ts 9s 2s
3 3 5 40 8547 23s | 24.06s 0.36% 13s 17s 223s
3 4 1 85 18169 49s | 41.44s 0.51% 21s 38s 116s
3 4 2 85 18169 82s| 83.7Ts 0.74% 38s 45s | 1855s
3 4 3 85 18169 102s |  91.32s 1.75% 48s 42s | 1.75%
3 4 4 85 18169 112s | 89.37s 0.58% 40s 69s 845s
3 4 5 85 18169 54s | 136.52s 0.29% 18s 22s 799s
4 4 1 341 72889 382s | 565.38s 0.35% 86s 100s 758s
4 4 2 341 72889 250s | 343.34s 0.32% 85s 94s 877s
4 4 3 341 72889 613s | 656.49s 0.30% 116s 165s 572s
4 4 4 341 72889 327s | 288.48s 0.34% 82s 104s 665s
4 4 5 341 72889 617s | 459.89s 0.23% 83s 132s 577s
4 5 1 781 166978 | 1710s | 1637.48s 0.96% 811s | 1059s | 5589s
4 5 2 781 166978 | 1906s | 2280.90s 0.73% 337s | 1165s 905s
4 5 3 781 166978 | 1429s | 1614.45s 0.51% 353s|  990s | 5265s
4 5 4 781 166978 | 1756s | 1637.31s 0.55% 559s | 471s| 3335s
4 5 5 781 166978 376s | 273.93s 0.18% 376s | 274s 641s
5 5 1 3906 | 835103 | 0.11% | 2247.03s 0.94% ] 6358s] 639s| 2840s
5 5 2 3906 | 835103 | 0.15% | 5407.42s 0.89% | 3438s| 753s| 3080s
5 5 3 3906 | 835103 | 0.26% | 3139.88s 0.90% | 4379s| T738s| 4848s
5 5 4 3906 | 835103 | 6740s | 2198.67s 0.39% | 3616s| 745s| 3152s
5 5 5 3906 | 835103 | 0.16% | 3049.85s 1.07% | 3688s| 753s| 1.07%
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Communication of JuDGE Solutions
Visualizing the policy

One of the challenges with stochastic multi-horizon optimization is the communication
of an optimal policy.

JuDGE provides a custom framework to interactively explore the policy, enabling users
to understand how the revelation of information influences the investment decisions,
but also how these, in turn, affect the operational decisions in the short-term.

This framework is built around html and javascript, and therefore is very flexible, with
the ability to integrate: maps, plots, svg graphics, or any other web-based visualization.



Installing and using JuDGE
Github Repository

€ Gt repahaucke/unGE | X
€5 C @ © @ hisygitubcomreganbaucke/uDGE "o
P master - | ¥ 3branches ©0tags Gotofie About
Aninterface for solving a stochastic
# 200u031 Minor comections o ttorials « bas on3Nov ©l62commits  capacity expansion problem via a
Dantzig-Wolfe decomposition
docs Minor corections to tutorils lestmonth | algorithm
examples Subprobems no longer use @sp objective macro to declare objective lstmonth | [ Readme
src Subprobems no longer us jective macro ‘ lstmonth | g I License
D trisymi fived compatabilty vith Julia 1.0 for docs 4 months ago
B ucense Subproblems o longer use @spobjective macro to declre objective lstmonth  Releases
O Projectiom! Subproblems o longer Use @sp.objective macro to declre objective tast month e i
B READMEMA ed Optimization Oniine ln to documentation tast month
Packages
READMEmd
Nopackages publshed
Contributors
3 agouon
J u D G E o
Languages
i 10005
JUDGE stands for: Julia Decomposition for Generalized Expansion. Functionally, it is a solver which leverages the
syntax of the JuMP modelling language to solve a particular class of capacity expansion problems.
Please see the documentation for details about installing JUDGE, and examples showing how to set up a
stachastic capacity example model using the JuDGE]l package.
For more details see our working paper: JUDGE:a Julia package for aptimizing capacity expansion.

https://github.com/reganbaucke/JuDGE. j1



Installing and using JuDGE
Installing the JuDGE Package

DGE - WDGE i Decompsic X
€ 5 C @ O @ nips/ireganbauckegithubio/luDGE | B - »
WDGES: i DecompriionorGoerrFrsion | JUDGE O EditonGitHub 8

JuDGE

o Problem Class /Decomposition

= uDGE

Tutorials

API Reference

JuDGE,jl

JUDGE stands for: Julia D Functionally, it
syntax of the elass of

For i JUDGE j:a Jul pans

Problem Class / Decomposition

JuDGE The user
must spe the problem, and at canbe

alinear or integer program. Further, the exp: t be declared.

JuDGE |
solution.

Requirements

JUDGE requires Julia-1.3+, JuMP and r academics, Gurobi / CPLEX p
licenses, otherwise, you can use CBC/Clp or GLPK.

Installation

JUDGE is installed by the Pkg p Julia. In the Julia REPL, simpl

1 add "https://github. con/ reganbaucke/JuDGE. j1"

Then, in your Julia script, use

using JuDGE




Installing and using JuDGE

Tutorials and Examples
<« G @ O @ hips/reganbauckegithubio/JuDGE /tutorials B « » =

WOGE - i Dncpeiion o GenersiedFponsion. | Tutorials © EditonGitHub ¢

bt Tutorials

o] Tutorial 1: A basic JuDGE model
© Ttortal £ Abasc JDGE model

« Ttortal 2 Formating outpue Problem description

< Tutoria 3 Ongoingcots

For our tutorial, i imizatic inimi astochastic
© Tutorial 4: Deterministc cquivalent

sequence
& - wesolvea H i 3 pand the
o i tain cost, Once 2
© Tutoria 7:Risk aversion Vol
© Tutorisl B Shutdown varisbies . i

n P psack,
o Tutorial 9:Side-constraints more into our knapsack. D

problem.

API Reference

Solving our problem using JuDGE

L need JuDGE models.

using JUDGE, JultP, GLPK

The lifecycle of a JubGEMadel is the following:

1. The definition of a Tree;
2.defining the subproblems of the JuDGEHodel;
3.building the JubGENodel;

4.5olving the JUDGEMHode1

The user's L and 2, while JuDf 2

ATree A the tree, and a st of al the
Thisis defined wi being Leaf nodes. Each subtree.

- i

Fornow, depth3, i narytree

mytree = narytree(2,2)

Subtree rooted at node 1 containing 7 nodes

mytreeisa ins 7 nodes, with depth 2, and d (Adepth of O, gives only a single leaf node) We

canvisualise the tree using
Version | docs 3




Thanks for your attention.

Any questions?

JuDGE. j1 Julia Library https://github.com/reganbaucke/JuDGE. j1

Contact me: a.downward@auckland.ac.nz


https://github.com/reganbaucke/JuDGE.jl
a.downward@auckland.ac.nz

	Background
	Multi-horizon stochastic programming
	Applications for network models
	Implementation and communication of policies

	JuDGE: Julia-based Decomposition for General Expansion
	Simple Capacity Planning Model
	Implementation using JuDGE
	Computational Benchmarks
	Communication of JuDGE Solutions

