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Background
Multi-horizon planning

The concept of multi-horizon modelling is the idea that you are planning for across
multiple time-horizons at once (short-term, medium-term, and long-term) and are
explicitly accounting for how strategic, tactical and operational decisions influence each
other.

In this talk, we will be considering this type of problem in the context of stochastic
capacity expansion models.

In the short-term, we have operational decisions that result in immediate costs and
revenue; however, at the same time the decision maker is considering capacity
expansion decisions that will lead to lower operational costs, or higher revenue in the
future.
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Background
Multi-horizon network models

A wide-range of network models can form the operational model for this class of
problem, enabling the consequences of long-term investment decisions to be
endogenously modelled.

– Water network planning for drought management: storage; water treatment;
desalination.

– Integration of renewables for electricity systems: transmission grid upgrades;
location of new generation.

– Electricity distribution network reliability: line upgrades; battery storage.

– Energy transition for industry: changes to the energy supply chain; plant
modifications.
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Background
Implementation and communication of policies

Stochastic programming has been promoted in academia for decades, but has only
recently been gaining traction in capacity planning settings within business.

In part, the delay in acceptance has been due to the limitations in the size of problems
that could be modelled, but more significantly the solution to a stochastic program is a
policy that adapts to information as it is revealed, and this has been difficult
communicate to decision makers.

The concept of Dynamic Adaptive Pathways has made in-roads in areas where there is
deep uncertainty, particularly climate change planning.2 This, however, is typically
more qualitative than quantitative.

2M. Haasnoot, J.H. Kwakkel, W.E. Walker, J. ter Maat, Dynamic adaptive policy pathways: A
method for crafting robust decisions for a deeply uncertain world (2013).
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JuDGE Framework Overview
Implementation and communication of policies

In this talk, I will present JuDGE.jl3, a Julia package which

– allows users to easily implement multi-horizon optimization models using the
JuMP modelling language;

– applies Dantzig-Wolfe decomposition in order to solve large-scale models; and

– outputs an interactive view of the results over the scenario tree, enabling decision
makers explore the optimal policy.

JuDGE stands for Julia Decomposition for Generalized Expansion.

3A. Downward, R. Baucke, A.B. Philpott, JuDGE.jl: a Julia package for optimizing capacity
expansion (2020).
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JuDGE Framework Overview
What type of problems can be modelled in JuDGE?

JuDGE is a Julia/JuMP-based package that facilitates the modelling of multi-horizon
stochastic capacity expansion problems.

Extensive Form:

min
y ,z

∑
n∈N

φn(c
>
n zn + q>n yn)

s.t. Anyn ≤ b+D ∑
h∈Pn

zh, ∀n ∈ N ,

yn ∈ Yn, ∀n ∈ N ,

zn ∈ Zm
+ , ∀n ∈ N .
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– φn the probability of the state of the world n
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including) node n;
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Figure 1 A scenario tree with nodes N = {1,2, . . . ,18}, and T = 4
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JuDGE is a Julia/JuMP-based package that facilitates the modelling of multi-horizon
stochastic capacity expansion problems.

JuDGE applies Dantzig-Wolfe decomposition to
the problem by automatically constructing a mas-
ter problem that handles the investment decisions,
and generates columns from the nodal subprob-
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These columns’ costs are the operational costs of
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cients are the utilized investments.
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The columns are indexed j ∈ Jn for each node n,
and added to the restricted master problem, with
cost ψj

n and coefficients ẑ jn.

This problem seeks to choose investments x
that minimize the total expected cost, given the
columns that have been generated.
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This problem seeks to choose investments x
that minimize the total expected cost, given the
columns that have been generated.

Restricted Master Problem:

min
x ,w

∑
n∈N

φn(c
>
n xn + ∑

j∈Jn
ψj
nw

j
n)

s.t. ∑
j∈Jn
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This problem is solved without any integer variable
restrictions, since dual variables are needed for the
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JuDGE supports both MIP solves for the master,
and branch-and-price to find integer feasible solu-
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JuDGE Framework Overview
Elements of a JuDGE Model

JuDGE enables the formulation of multistage stochastic capacity management
problems leveraging the JuMP mathematical modelling language within Julia.

Modelling these problems consists of several elements:

– a tree with corresponding data and probabilities for each node;

– a subproblem defined as a JuMP model for each node in the tree; and

– expansion (and/or shutdown) decisions and costs.

Given these elements, JuDGE can automatically form the restricted master problem,
and provide the machinery necessary for the iterations of the Dantzig-Wolfe algorithm.

Various solvers can be specified for the different models that are being solved. The LP
relaxation of the restricted master problem is typically solved with an interior point
method, and the subproblems are solved as mixed-integer programs.

Alternatively, JuDGE can formulate the deterministic equivalent problem directly as a
JuMP model (mixed-integer program).
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Facility Expansion Planning Model
Defining the Subproblems

We will now consider a simple multistage facility expansion problem, and go through
the steps necessary to model this.

In our earlier formulation the nodal subproblem was simply written as: yn ∈ Yn; let’s
now define it fully for this example.

We have sets / indices:

– supplies i ∈ S ; demands j ∈ D; and routes ij ∈ S ×D.

The variables are:

– fij the flow on route ij ; and

– xi the number of upgrades of supply i .

The parameters are:

– cij per-unit cost of flow on route ij ;

– Ci cost of increasing the capacity of supply i ;

– si initial capacity of supply i ; and

– Si increase in capacity of supply i for each upgrade.
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Facility Expansion Planning Model
Defining the Subproblems

Supply constraints:
∑
j∈D

fij ≤ si + Sixi , ∀i ∈ S ,

Demand constraints:
∑
i∈S

fij = dj , ∀j ∈ D,

Binary expansions:

xi ∈ Z+ ∀i ∈ S .

Objective function:
min ∑

ij∈S×D
cij fij + ∑

i∈S
Cixi .
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Implementation using JuDGE
Formulating the subproblems

The subproblems are implemented as JuMP models, with additional macros, which are
used to enable JuDGE to automatically formulate the master problem.
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Implementation using JuDGE
Creating a JuDGE Scenario Tree

There are several ways that trees can be created for JuDGE including:

– from a list of leaf nodes;

– from a file that specifies nodes, each node’s parent and corresponding data;

– as a symmetric tree with constant depth and degree.

To create a tree with a depth 4 and degree 2:

tree = narytree(4,2)
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Implementation using JuDGE
Creating and solving the JuDGE Model

Once a tree has been created, and a function declared which defines the nodal
subproblems, we can create a JuDGEModel as follows:

model = JuDGEModel(tree, ConditionallyUniformProbabilities,

sub problems,optimizer with attributes((method=GLPK.INTERIOR)

-> GLPK.Optimizer(), "msg lev" => 0, "mip gap" => 0.0))

If the model passes the in-built testing, ensuring that the JuMP models are set up
correctly, the model can be solved using the command:
JuDGE.solve(model, Termination = termination(reltol=1e-4)

There are several additional termination conditions that can be included as optional
arguments: rlx abstol; abstol; rlx reltol; reltol; time limit; max iter.
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Implementation using JuDGE
JuDGE Iterations

As JuDGE solves the problem, it reports the objective + the lower- & upper bound:
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Computational Benchmarks
Downward, Baucke, and Philpott: JuDGE.jl

22 Article submitted to INFORMS Journal on Computing; manuscript no.

0.1% 1.0%
JuDGE DetEq JuDGE DetEq

Degree Depth Seed Nodes Variables Gurobi GLPK Gurobi Gurobi GLPK Gurobi
3 2 1 15 2778 4.8s 3.9s 5.4s 0.3s 2.1s 0.4s
3 2 2 15 2778 4.7s 4.0s 5.0s 3.5s 2.8s 0.4s
3 2 3 15 2778 2.2s 2.2s 5.1s 1.8s 1.9s 0.8s
3 2 4 15 2778 3.9s 3.8s 15.5s 2.8s 2.8s 1.7s
3 2 5 15 2778 2.1s 2.0s 3.3s 1.3s 1.6s 0.3s
3 3 1 40 8547 22s 28.90s 485.72s 10s 15s 80s
3 3 2 40 8547 28s 36.15s 1049.62s 17s 29s 122s
3 3 3 40 8547 37s 26.86s 53.20s 26s 23s 35s
3 3 4 40 8547 20s 23.77s 11.77s 7s 9s 2s
3 3 5 40 8547 23s 24.06s 0.36% 13s 17s 223s
3 4 1 85 18169 49s 41.44s 0.51% 21s 38s 116s
3 4 2 85 18169 82s 83.77s 0.74% 38s 45s 1855s
3 4 3 85 18169 102s 91.32s 1.75% 48s 42s 1.75%
3 4 4 85 18169 112s 89.37s 0.58% 40s 69s 845s
3 4 5 85 18169 54s 136.52s 0.29% 18s 22s 799s
4 4 1 341 72889 382s 565.38s 0.35% 86s 100s 758s
4 4 2 341 72889 250s 343.34s 0.32% 85s 94s 877s
4 4 3 341 72889 613s 656.49s 0.30% 116s 165s 572s
4 4 4 341 72889 327s 288.48s 0.34% 82s 104s 665s
4 4 5 341 72889 617s 459.89s 0.23% 83s 132s 577s
4 5 1 781 166978 1710s 1637.48s 0.96% 811s 1059s 5589s
4 5 2 781 166978 1906s 2280.90s 0.73% 337s 1165s 905s
4 5 3 781 166978 1429s 1614.45s 0.51% 353s 990s 5265s
4 5 4 781 166978 1756s 1637.31s 0.55% 559s 471s 3335s
4 5 5 781 166978 376s 273.93s 0.18% 376s 274s 641s
5 5 1 3906 835103 0.11% 2247.03s 0.94% 6358s 639s 2840s
5 5 2 3906 835103 0.15% 5407.42s 0.89% 3438s 753s 3080s
5 5 3 3906 835103 0.26% 3139.88s 0.90% 4379s 738s 4848s
5 5 4 3906 835103 6740s 2198.67s 0.39% 3616s 745s 3152s
5 5 5 3906 835103 0.16% 3049.85s 1.07% 3688s 753s 1.07%

to derive the necessary non-anticipativity constraints to model the uncertainty, nor create

a bespoke decomposition implementation.
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Communication of JuDGE Solutions
Visualizing the policy

One of the challenges with stochastic multi-horizon optimization is the communication
of an optimal policy.

JuDGE provides a custom framework to interactively explore the policy, enabling users
to understand how the revelation of information influences the investment decisions,
but also how these, in turn, affect the operational decisions in the short-term.

This framework is built around html and javascript, and therefore is very flexible, with
the ability to integrate: maps, plots, svg graphics, or any other web-based visualization.
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Installing and using JuDGE
Github Repository

https://github.com/reganbaucke/JuDGE.jl



Installing and using JuDGE
Installing the JuDGE Package



Installing and using JuDGE
Tutorials and Examples



Thanks for your attention.

Any questions?

JuDGE.jl Julia Library https://github.com/reganbaucke/JuDGE.jl

Contact me: a.downward@auckland.ac.nz

https://github.com/reganbaucke/JuDGE.jl
a.downward@auckland.ac.nz
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