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Abstract

More than 21 000 objects fly in outer space and are exposed to the
harsh space environment. The size of space objects considerably varies.
Our research focuses on small satellites, such as CubeSats, which have
to respect time, spatial and energy constraints. To tackle this issue, this
paper presents and evaluates two fault tolerant online scheduling algo-
rithms: the algorithm scheduling all tasks as aperiodic (called OneOff)
and the algorithm placing arriving tasks as aperiodic or periodic tasks
(called OneOff&Cyclic). Based on several scenarios, the results show
that the performance of ordering policies are influenced by the system load
and the proportions of simple and double tasks to all tasks to be executed.
The ”Earliest Deadline” and ”Earliest Arrival Time” ordering policies for
OneOff or the ”Minimum Slack” ordering policy for OneOff&Cyclic
reject the least tasks in all tested scenarios. The paper also deals with the
analysis of scheduling time to evaluate real-time performance of ordering
policies and shows that OneOff requires less time to find a new schedule
than OneOff&Cyclic. Finally, it was found that the studied algorithms
perform well also in a harsh environment and provide the same reliability
level as systems based on triple modular redundancy with very much less
system power consumption.

1 Introduction

The website https://www.n2yo.com/ tracks objects that fly in outer space. As
of October 28, 2020, its database counts 21676 objects. The size of space objects
ranges from the International Space Station (ISS), through the Hubble Space
Telescope to very small satellites. Such very small satellites can be classified
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according to their weights into different categories. One possible classification
distinguishes: minisatellite (100 kg to 180 kg), microsatellite (10 kg to 100 kg),
nanosatellite (1 kg to 10 kg), picosatellite (0.01 kg to 1 kg) and femtosatellite
(0.001 kg to 0.01 kg) [23].

In order to visualise the difference in weight and size, Figure 1 depicts the
mass of a satellite as a function of its volume for several satellites. In this
figure, we also plot three ellipses encompassing different implementations of
fault tolerance.
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Figure 1: Comparison of satellites

The satellites situated within the green ellipse have no significant con-
straints on space and weight. Consequently, the fault tolerance can be put into
practice by using hardware redundancy in space, i.e. the components are for ex-
ample triplicated, their outputs are compared and the majority result is chosen,
which is the principle of the well-known triple modular redundancy (TMR).

The yellow ellipse incorporates tiny satellites, such as KickSats or Chip-
Sats. These satellites are printed circuit boards having several square centime-
tres. Due to the restricted size and limited energy harvesting, hardware space
redundancy is not feasible. If the fault tolerance is considered at all, it can be
thereby implemented in software.

The red ellipse includes the satellites that are bigger and heavier than
KickSats but smaller and lighter than microsatellites. A typical example of this
category is a CubeSat, which will be described in the next section. These satel-
lites still have space and weight constraints and consequently hardware space
redundancy is not possible. Nevertheless, since they are bigger than KickSats,
the fault tolerance can be put into practice at the software level.
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Regarding this trade-off between physical aspects (weight, size and energy)
and fault tolerance, CubeSats are in the centre of our interest. Taking into
account all constraints, such as time, reliability or energy, the mapping and
scheduling of tasks or applications to be executed on such devices represent a
challenging problem.

Last but not least, technology has been progressively under development and,
as the author of [20] suggests, it might be better to make use of one state-of-
the-art integrated commercial off-the-shelf (COTS) chip, especially for missions
with limited budget. In fact, it can take advantage of redundancy thanks to its
several processors and function better than one outdated single processor chip
even if it was designed for space missions.

1.1 CubeSats

The idea of CubeSats dates back to 1999 and its aim was to provide affordable
access to space by defining standard dimensions to reduce costs and time [22].
At present, CubeSats become more and more popular, their number of launches
increases and they are built not only at universities but also by companies and
space agencies [12].

CubeSats are small satellites consisting of several units (e.g. 1U, 2U, 3U or
6U) where each unit (1U) is a 10 cm cube, which can weigh up to 1.3 kg [22].
CubeSats are composed of several systems, such as on-board computer, electri-
cal power system, attitude determination and control system, communication
system, and payload. Their missions are aimed at scientific investigations, like
studying urban heat islands [1] or polar auroras and airglow [7].

CubeSats operate in the harsh space environment, where they are exposed to
charged particles and radiations. These phenomena cause both transient effects,
such as single event upsets, and long-term effects, e.g. total ionising dose [18].
Consequently, it is necessary for CubeSats to be robust against faults to achieve
their mission.

1.2 Proposed Solution

Our aim is to provide CubeSats with fault tolerance. As there are several
systems aboard CubeSats and most of them has its own processor, we present
a solution gathering all processors on one board. This modification will reduce
space and weight and improve the system resilience. First, a shielding against
radiation will be easier to put into practice [2]. Second, a CubeSat will remain
operational even in case of a permanent processor failure because processors are
not dedicated to one system (as it is done aboard current CubeSats) and each
processor can execute any task. Although this implementation choice may seem
considerable, it was successfully realised on board of ArduSat, which counts 17
processors on one board [15].

Once all processors are gathered on one board, we intend to use the proposed
scheduling algorithms dealing with all tasks (no matter the system) on board of
any CubeSat or any small satellite. These algorithms schedule all types of tasks
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(periodic, sporadic and aperiodic), detect faults and take appropriate measures
to provide correct results. They are executed online in order to promptly man-
age occurring faults and respect real-time constraints. They are mainly meant
for CubeSats based on commercial-off-the-shelf processors, which are not neces-
sarily designed to be used in space applications and therefore more vulnerable
to faults than radiation hardened processors [26].

1.3 Our Contributions and Paper Organisation

The contributions of this paper are as follows:

• we analyse the data from two real CubeSats in terms of the workload;

• we assess the algorithm performance using the rejection rate (which rep-
resents the ratio of rejected tasks to all arriving tasks and which we try to
minimise) for different scenarios; whenever possible the results are com-
pared to the optimal solution provided by CPLEX solver;

• we analyse the scheduling time of ordering policies for two studied algo-
rithms;

• we evaluate how the algorithms deal with faults;

• we assess the use of buffer to reduce the number of scheduling searches;

• we compare the system performance of the proposed solution with the one
of a system without any fault tolerance and the one of a system using the
triple modular redundancy;

• based on the algorithm performance, we suggest which algorithm should
be used on board of the CubeSat.

The remainder of this paper is organised as follows. Section 2 sums up the
related work on fault tolerance in CubeSats and Section 3 presents our system,
task and fault models. The algorithms are described in Section 4. Section 5 then
introduces the experimental framework and the results are analysed in Section
6. Section 7 concludes this paper.

2 Fault Tolerance in CubeSats

This section summarises how the fault tolerance is put into practice on board
of CubeSats.

First of all, we stress that not all CubeSats are fault tolerant mainly due to
financial or time constraints [14]. If a CubeSat is made more robust, the fault
tolerance is implemented rather in hardware than in software. Though, a usual
hardware technique is redundancy of several or all components [19], 43% of
CubeSats do not use any redundancy due to budget, time or space constraints
[13]. Actually, the triple modular redundancy (TMR) is a standard aboard
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aircraft or bigger satellites [11] but it has a significant system overheads [26]
that makes it unsuitable for small satellites such as CubeSats.

Other fault tolerant techniques aboard CubeSats are for example watchdog
timers [28] or data protection techniques [6]. It is also possible to analyse error
reports, scan important parameters, like power consumption or temperature, in
order to detect abnormal behaviour and send appropriate commands if necessary
[19, 6, 5].

Cerrolaza et al. presented a survey on multi-core devices for safety-critical
systems [4]. This thorough survey considers several device levels (nanoscale,
component and device) and it also overviews avionics and space domains.

Even though software techniques are not common in CubeSats, they are
widely used in other applications, e.g. creation of several task copies [16, 27] or
task rescheduling [21] or regular checkpointing [25].

3 System, Fault and Task Models

Similarly to the model in [9], the studied system consists of P interconnected
identical processors1. It handles all tasks on board of the CubeSat. These tasks
are mostly related to housekeeping (like sensor measurements), communication
with ground station and storing or reading data from memory.

The task model distinguishes aperiodic and periodic tasks. An aperiodic
task, depicted in Figure 2, is characterised by arrival time ai, execution time
eti, deadline di and task type tti, which will be defined in the next paragraph.
A periodic task, represented in Figure 3, has several instances and has four
attributes: φi (which is the arrival time of the first instance), execution time
eti, period Ti and task type tti. We consider that the relative deadline equals
the period. For both aperiodic and periodic tasks, a task must be executed
before deadline or beginning of the next period, respectively.

As for the fault model, it considers both transient and permanent faults and
it distinguishes two task types: simple (S) and double (D) tasks depending on
the fault detection. For both task types, we differentiate two types of task copies:
primary copy (PC) and backup copy (BC). The former copies are necessary
for task execution in a fault-free environment. If a primary copy is faulty, the
corresponding backup copy is scheduled. Simple tasks have only one PC because
a fault is detected by timeout, no received acknowledgment or failure of data
checks. By contrast, the fault detection for double tasks requires the execution
of two PCs2 and then their comparison because fault detection techniques for
simple tasks may not be sufficient to detect a fault. We consider that a scheduler
is robust, e.g. data related to scheduling, such as task queues, are duplicated in
memory or the system has a spare one if necessary.

1To simplify, a system presented in this paper is composed of homogeneous processors
sharing the same memory. Nevertheless, this model can be easily extended to a system with
heterogeneous processors, like in [29].

2Two task copies of the same task ti can overlap each other on different processors but it
is not necessary. However, they must not be executed on one processor in order to be able to
detect a faulty processor.
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Figure 2: Model of aperiodic task ti
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Figure 3: Model of periodic task τi [3]

Our objective is to minimise the task rejection rate subject to real-time
and reliability constraints, which means maximising the number of tasks being
correctly executed before deadline even if a fault occurs.

4 Presentation of Algorithms

This section describes two algorithms meant for global scheduling on multipro-
cessor systems. First of all, it starts with several general principles applicable
for both of them.

All tasks arriving to the system are ordered in a task queue using different
policies. The policies for aperiodic tasks are as follows: Random, Minimum
Slack (MS) first, Highest ratio of eti to (di-t) first, Lowest ratio of eti to (di-t)
first, Longest Execution Time (LET) first, Shortest Execution Time (SET) first,
Earliest Arrival Time (EAT) first and Earliest Deadline (ED) first; and the ones
for periodic tasks are as reads: Random, Minimum Slack (MS) first, Longest Ex-
ecution Time (LET) first, Shortest Execution Time (SET) first, Earliest Phase
(EP) first and Rate Monotonic (RM).

A preemption is not authorised but the task rejection is allowed. A task ti
is rejected at time t and removed from the task queue if its task copies do not
meet its deadline, i.e. t+ eti > di for the aperiodic task or t+ eti > φi + k · Ti

for the kth instance of periodic task. We remind the reader that a simple task
ti has one PC (denoted by PCi), whereas a double task ti has two PCs (labeled
respectively PCi,1 and PCi,2) in a fault-free environment.

As Figure 4 shows, all primary copies are scheduled as soon as possible to
avoid idle processors just after the task arrival and possible high processor load
later. As our goal is to minimise the task rejection, the algorithm reserves a
certain time of the task window to place a backup copy if the PC execution is
faulty. The end of the PC scheduling window is defined as di − α · eti for the
aperiodic task and φi + k · Ti −α · eti for the kth instance of periodic task (with
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execution time

start time
(ai or φi + (k − 1) · Ti)

deadline - α · eti deadline
(di or φi + k · Ti)

Figure 4: Principle of scheduling task copies

α > 1). In this paper, we consider without lost of generality that α = 1. If a
primary copy is found out faulty, the corresponding backup copy is scheduled
and can start its execution immediately, i.e. even during the PC scheduling
window, because its results are necessary.

As for the processor allocation, we call a slot, a time interval on processor
schedule. The algorithm starts to check the first free slot on each processor and
then, if a solution was not found, it continues with next slots (second, third,
...) until a solution is obtained or all free slots on all processors are tested. The
principle of the search is illustrated in Figure 5, where xCi stands for primary
or backup copy of task ti. We chose this processor allocation policy because the
analysis in [8] showed that this policy is the best when scheduling a task copy
on a multiprocessor system.

Figure 5: Principle of algorithm search for a free slot

4.1 Mathematical Programming Formulation

We define the mathematical programming formulation of the studied scheduling
problem as follows:
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For simple tasks: PCi ∈ Px ⇒ BCi /∈ Px

For double tasks: PCi,1 ∈ Px ⇒ (PCi,2 /∈ Px and

BCi /∈ Px) and PCi,2 ∈ Py ⇒ BCi /∈ Py

3) (xCi and xCj) ∈ Px ⇒

end(xCi) 6 start(xCj) or end(xCj) 6 start(xCi)

4) For double tasks: PCi,1 scheduled ⇔ PCi,2 scheduled

The objective function is to maximise the number of accepted tasks, which
is equivalent to minimise the task rejection rate. The first constraint is related
to the PC scheduling window depicted in Figure 4 and the second one forbids
task copies of the same task to be scheduled on the same processor. The third
constraint stands for no overlap among task copies xC (i.e. PC or BC) on one
processor, i.e. only one task copy can be scheduled per processor at the same
time. The last constraint requires that both primary copies of double tasks are
scheduled.

4.2 Online Scheduling Algorithm for All Tasks Scheduled
as Aperiodic Tasks (OneOff)

The online algorithm scheduling arriving tasks as aperiodic ones is called One-
Off in this paper. When it is used, all tasks are considered as aperiodic, which
means that each instance of periodic task is transformed into an aperiodic task3.

The principle of OneOff is summarised in Algorithm 1.
First (Line 1), the algorithm is triggered if (i) a processor becomes idle, (ii)

a processor is idle and a task arrives, or (iii) a fault occurs.
If there is neither task arrival nor fault occurrence and a processor be-

comes/is idle (i.e. Case (i)), a new search for a schedule is not necessary and
task copies are committed using an already defined schedule (Lines 2-6).

Otherwise (Lines 7-19), new task copies (PC(s) for new task and BC for
task impacted by fault) are added to the task queue. Then, the algorithm
removes all task copies that have not yet started their execution, it orders tasks
in the queue using the chosen ordering policy and it searches for a new schedule.
Finally (Lines 16-19), the task copies starting at time t are committed.

The complexity for one search for a schedule where N is the number of
tasks in the task queue and P is the number of processors is as follows. The

3The arrival time ai equals φi + (k − 1) · Ti and the deadline di is computed as ai + Ti.
The execution time eti and the task type tti are not modified.
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Algorithm 1 Principle of online algorithm scheduling all tasks as aperiodic
tasks (OneOff)

Input: Mapping and scheduling of already scheduled tasks, (task ti)
Output: Updated mapping and scheduling
1: if there is a scheduling trigger at time t then

2: if a processor becomes idle and there is neither task arrival nor fault
occurrence then

3: if an already scheduled task copy starts at time t then

4: Commit this task copy
5: else

6: Nothing to do

7: else ⊲ processor is idle and task arrives and/or fault occurs
8: if a (simple or double) task ti arrives then
9: Add one or two PCi to the task queue

10: if a fault occurs during the task tk then

11: Add BCk to the task queue

12: Remove task copies having not yet started their execution
13: Order the task queue
14: for each task in the task queue do

15: Map and schedule its task copies (PC(s) or BC)

16: if an already scheduled task copy starts at time t then

17: Commit this task copy
18: else

19: Nothing to do

complexity to order a task queue is O (N log(N)) and the one to add a task in
an already ordered queue is O (N). Then, it takes O (P ·N · (# task copies)) to
map and schedule tasks from the task queue and O (1) to commit a task copy.
If we consider that the task queue is always ordered, the overall worst-case
complexity is as follows:

O (N + P ·N · (# task copies)+ 1) (1)

4.3 Method to Reduce the Number of Scheduling Searches

If there is at least one processor available, OneOff carries out a new search
for a schedule at every task arrival, which may cause rather high number of
scheduling searches. The maximum theoretical number of scheduling searches
can be computed as the sum of the number of tasks at the system input and
the number of task copies.

In order to reduce this number, we present a method making use of a buffer,
which is a commonly used technique in scheduling [10, 17]. It computes the
slack for every task ti and checks whether or not a search for a new schedule
can be postponed. The slack stands for the remaining time between the current
time and the task deadline. The slack is called short if

di − current time− eti 6 K · eti where K ∈ N (2)
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otherwise, it is called large.
The principle of the method is illustrated in Figure 6. The highlighted

background shows the part that is added to the baseline version. To enter it,
the algorithm checks the slack using Formula 2 where K = β and the current
time equals the task arrival time. If the computed slack is large, the task is put
into the buffer. Otherwise, it is scheduled as usual.

The tasks stored in the buffer of length L are scheduled if the buffer is full.
In order to regularly check slacks of tasks queuing in the buffer, a verification
(with K = γ) is carried out if a new task arrives in the buffer or a processor
becomes idle. If any task has a short slack, the buffer is emptied and all tasks
are scheduled.

Figure 6: Principle of the method to reduce the number of scheduling searches

4.4 Online Scheduling Algorithm for All Tasks Scheduled
as Aperiodic or Periodic Tasks (OneOff&Cyclic)

The online algorithm scheduling arriving tasks as aperiodic or periodic tasks is
called OneOff&Cyclic. It is aware that there are not only aperiodic tasks
but also periodic ones. Therefore, there are two task sets: one for periodic tasks
and one for aperiodic ones.

The principle of OneOff&Cyclic is summed up in Algorithm 2.
First (Line 1), the algorithm is triggered (i) if a processor becomes idle,

and/or if there is (ii) an arrival of aperiodic task(s), (iii) an arrival/withdrawal4

of periodic task(s), or (iv) a fault during task execution.

4A possibility to add and withdraw a periodic task from the task set allows us to model
sporadic tasks related to the communication between a CubeSat and a ground station. More
details are presented in Section 5.
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Algorithm 2 Principle of online algorithm scheduling all tasks as periodic or
aperiodic tasks (OneOff&Cyclic)

Input: Mapping and scheduling of already scheduled tasks, (task ti)
Output: Updated mapping and scheduling
1: if there is a scheduling trigger at time t then

2: if a processor becomes idle and there is neither
arrival/withdrawal of periodic task nor arrival of aperiodic task nor fault

occurrence then

3: if an already scheduled task copy starts at time t then

4: Commit this task copy
5: else

6: Nothing to do

7: else⊲ processor is idle and there is a change in set of periodic or aperiodic
tasks and/or a fault occurs

8: if a periodic task ti arrives or is withdrawn then

9: Add/withdraw one or two PCi to/from the queue of periodic
tasks

10: if an aperiodic task ti arrives then
11: Add one or two PCi to the queue of aperiodic tasks

12: if a fault occurs during the task tk then

13: Add BCk to the queue of aperiodic tasks

14: Remove task copies having not yet started their execution
15: Order the task queues
16: for each task in the task queue of aperiodic tasks do
17: Map and schedule its task copies (PC(s) or BC)

18: for each task in the task queue of periodic tasks do
19: Map and schedule its task copies (PC(s) or BC)

20: if an already scheduled task copy starts at time t then

21: Commit this task copy
22: else

23: Nothing to do

In the case a processor becomes/is idle (Case (i)), a new search for a sched-
ule is not carried out and task copies are committed using an already defined
schedule (Lines 2-6). As there is no modification in task sets, the schedule of
one hyperperiod, which is the least common multiple of task periods, is repeated
until one of Cases (ii)-(iv) happens.

Otherwise (Lines 7-23), the task sets of periodic and aperiodic tasks are
updated and all task copies that have not yet started their execution are removed
from the former schedule. Afterwards (Lines 15-19), tasks are ordered and the
algorithm schedules aperiodic tasks and periodic ones. Finally (Lines 20-23),
the task copies starting at time t are committed.

Similarly to OneOff, we denote Naper as the number of aperiodic task in
the task queue and Nper as the number of task instances per hyperperiod of
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periodic tasks in the task queue. The overall worst-case complexity is as reads:

O(Naper + P ·Naper · (# task copies)

+Nper + P ·Nper · (# task copies)+ 1) (3)

5 Experimental Framework

When a CubeSat orbits the Earth, two main phases can be identified from
the scheduling point of view: communication and no-communication phases.
During the no-communication phase (marked by red dashed line in Figure 7),
there is no communication between a CubeSat and a ground station and the
CubeSat mainly executes periodic tasks associated with for example telemetry,
reading/storing data or checks. If there is an interrupt due to an unexpected
or asynchronous event, it is considered as an aperiodic task. When a communi-
cation with a ground station is possible, i.e. during the communication phase,
periodic tasks related to the communication are executed in addition to the
previously mentioned tasks.

One CubeSat orbit around the Earth generally lasts for about 95 minutes
and the duration of communication between a CubeSat and a ground station
takes roughly 10 minutes per one orbit. Nonetheless, it may also happen that
there is no communication due to CubeSat trajectory.

Y
Communication duration:

about 10 min

One orbit duration around the Earth:
about 95 min

Figure 7: Communication phase (green dot-and-dash line) and no-
communication phase (red dashed line)

The data used in our experimental framework are based on real CubeSat
data provided by the Auckland Program for Space Systems (APSS)5, based on
Cortex-M3 processors, and by the Space Systems Design Lab (SSDL)6, using
Atmel AVR32 microcontrollers. These data were gathered by functionality and
generalised in order to generate more data for our simulations. They are respec-
tively called Scenario APSS and Scenario RANGE and summarised in Tables 1
and 2, where U denotes a uniform distribution and one hyperperiod is the least
common multiple of task periods.

In order to further analyse the algorithm performance (see Section 6), we also
modified Scenario APSS. This scenario is called Scenario APSS-modified. Its
tasks are the same as for Scenario APSS but the periods of 500ms were prolonged

5https://space.auckland.ac.nz/auckland-program-for-space-systems-apss/
6http://www.ssdl.gatech.edu/
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Table 1: Set of tasks for Scenario APSS

Periodic tasks

Function
Task

type

Phase

φi

Period

Ti

Execution

time eti

#

of

tasks

CommunicationD
U(0;
T )

500 ms U(1ms; 10ms) 2

Reading
data

S
U(0;
T )

1000 ms
U(100ms;
500ms)

10

Telemetry D
U(0;
T )

5000 ms U(1ms; 10ms) 2

Storing
data

S
U(0;
T )

10000
ms

U(100ms;
500ms)

7

Readings D
U(0;
T )

60000
ms

U(1ms; 10ms) 2

Sporadic tasks related to communication

Function
Task

type

Phase

φi

Period

Ti

Execution

time eti

#

of

tasks

CommunicationS
U(0;
T )

500 ms U(1ms; 10ms) 46

Aperiodic tasks

Function Task type Arrival time ai Execution time eti # of tasks

Interrupts D U(0; 100000ms) U(1ms; 10ms) 1

Table 2: Set of tasks for Scenario RANGE

Periodic tasks

Function
Task

type

Phase

φi

Period

Ti

Execution

time eti

#

of

tasks

Kalman filter D
U(0;
T )

100 ms U(1ms; 30ms) 1

Attitude
control

D
U(0;
T )

100 ms
U(10ms;
30ms)

1

Sensor polling D
U(0;
T )

100 ms U(1ms; 5ms) 5

Telemetry

gathering
S

U(0;
T )

20000
ms

U(100ms;
500ms)

1

Telemetry

beaconing
S

U(0;
T )

30000
ms

U(10ms;
100ms)

2

Self-check D
U(0;
T )

30000
ms

U(1ms; 10ms) 5

Sporadic tasks related to communication

Function
Task

type

Phase

φi

Period

Ti

Execution

time eti

#

of

tasks

Communication S
U(0;
T )

500 ms U(1ms; 10ms) 10

Aperiodic tasks

Function Task type Arrival time ai Exec. time eti # of tasks

Interrupts, GPS D U(0; 10000ms) U(1ms; 50ms) 10

to 1000ms and periods longer than 5000ms were shortened to 5000ms. The
number of tasks, whose periods were modified, per period were computed pro
rata. Thus, the system load and the proportion of simple and double tasks for
Scenarios APSS and APSS-modified are the same.
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To model dynamic aspect, although task sets are defined in advance for
simulations, they are unknown to the algorithms until discrete simulation time
equals the arrival time (for aperiodic tasks) or phase (for periodic and sporadic
tasks).

To evaluate the algorithms, 20 simulations of 2 hyperperiods were realised
and the obtained values were averaged.

To compare our results, resolutions carried out in CPLEX solver7 (described
in Section 4.1) were computed based on the same data set. To model real-time
aspect (i.e. dynamic task arrival) in CPLEX solver, at each task arrival, the
main function updates data (arrival/withdrawal of periodic task and/or ar-
rival of aperiodic task) and launches a new resolution using the current data
set. Due to computational time constraints in this case, only results for One-
Off&Cyclic were obtained and no fault was injected.

For simulations with fault injection, we take into account that the worst
estimated fault rate in the real space environment is 10−5 fault/ms [24]. There-
fore, we inject faults at the level of task copies with fault rate for each processor
between 1 · 10−5 and 1 · 10−3 fault/ms in order to assess algorithm performance
not only using the real fault rate but also its higher values. For the sake of
simplicity, we consider only transient faults and that one fault can impact at
most one task copy.

Regarding the metrics, we make use of the rejection rate, which is the ratio
of rejected tasks to all arriving tasks, and the system throughput, which counts
the number of correctly executed tasks. In a fault-free environment, this met-
ric is equal to the number of tasks minus the number of rejected tasks. The
task queue length stands for the number of tasks in the task queue, which are
about to be ordered and scheduled. The algorithm run-time is measured by the
scheduling time, which is the time elapsed during one scheduling search. Finally,
we evaluate the number of scheduling searches, i.e. how many times a search for
a new schedule was carried out.

6 Results

In this section, firstly, we analyse the data sets based on two real CubeSats. Sec-
ondly, we compare the rejection rate for both algorithms. Thirdly, we evaluate
the buffer to reduce the number of scheduling searches. Fourthly, we analyse the
scheduling time of each ordering policy for both algorithms. Fifthly, we evaluate
the algorithm performance in the presence of faults. Sixthly, we compare our
proposed solution with a system without any fault tolerance, as it is currently
done in CubeSats, and a system using the triple modular redundancy (TMR),
as it is usually implemented as a standard in bigger satellites.

7https://www.ibm.com/analytics/cplex-optimizer
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6.1 Preliminary Analysis

Before analysing separately the performance of OneOff andOneOff&Cyclic,
we focus on the system load and task proportions for each scenario in a fault-free
environment.

Based on Tables 1 and 2, we computed the theoretical processor load when
considering both maximum and mean execution times of each task. We remind
the reader that a simple task has one primary copy and a double task has two
primary copies. The results are depicted in Figure 8 representing the processor
load respectively for both communication phases as a function of the number of
processors.
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Figure 8: Theoretical processor load when considering maximum and mean
execution times (et) of each task

Scenario RANGE has lower theoretical processor load than other two scenar-
ios no matter the communication phase. Theoretically, it means that all tasks
for Scenario RANGE can be scheduled (maximum theoretical processor load is
between 22% for 10-processor systems and 82% for 3-processor systems) while
it is not always possible for Scenarios APSS and APSS-modified because the
maximum theoretical processor load exceeds 100% when a CubeSat has only a
few processors.

Regarding the proportion of simple and double tasks, they are represented in
Figure 9. It can be observed that during the communication phase the percent-
age of double tasks for Scenarios APSS and APSS-modified is low (about 4%)
while the task set for Scenario RANGE consists of 78% double tasks. During
the no-communication phase, the percentage of simple tasks is almost negligible
(0.02%) for Scenario RANGE and it is about 30% for other two scenarios.

To conclude, our experimental framework makes use of two very different
sets of scenarios. On the one hand, Scenarios APSS and APSS-modified have
high system load and high proportion of simple tasks compared to double tasks.
On the other hand, Scenario RANGE contains mainly double tasks and has
lower system load.

6.2 Rejection Rate of OneOff and OneOff&Cyclic

We compare different ordering policies for three scenarios to choose which policy
is the best in terms of the rejection rate.
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Figure 9: Proportions of simple and double tasks

6.2.1 Analysis of OneOff

Figure 10 shows the rejection rate of Scenarios APSS and APSS-modified for
both communication phases as a function of the number of processors. Scenario
RANGE is not presented because the rejection rate is 0 regardless of ordering
policy and communication phase. This is due to the task data set, which has
rather low system load. We notice that the ”Earliest Deadline” or ”Earliest
Arrival Time” techniques overall reject the least tasks.
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Figure 10: Rejection rate of OneOff as a function of the number of processors

6.2.2 Analysis of OneOff&Cyclic
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Figure 11: Rejection rate of OneOff&Cyclic as a function of the number of
processors

Figure 11 depicts the rejection rate of Scenarios APSS and APSS-modified

16



for both communication phases as a function of the number of processors. In
these figures, we plot not only studied ordering policies but also a curve present-
ing the optimal solution provided by CPLEX solver. In general, the algorithm
using the ordering policy achieving the lowest rejection rate has its competitive
ratio of 2 or 3, which are rather good results taking into account that our search
is not exhaustive compared to the search for optimal solution.

Scenario RANGE is again not presented because the rejection rate of all or-
dering policies no matter communication phase is close or equal to 0 (in general
the rejection rate is less than 1%) due to lower system load. As for depicted
scenarios, it is not so straightforward to determine one policy, which always
performs well. A reasonable choice is the ”Minimum Slack” or ”Earliest Phase”
during the communication phase and the ”Minimum Slack” or ”Longest Exe-
cution Time” during the no-communication phase. Altogether, the ”Minimum
Slack” policy performs well regardless of communication phase. Nevertheless,
the rejection rate of OneOff&Cyclic is in general higher than the one of
OneOff.

6.2.3 Comparison of Different Scenarios

The performance of a given ordering policy are influenced by the system load
and the task proportions. The influence of the former factor is illustrated by
Scenario RANGE, which has much lower (or none) rejection rate than other two
scenarios. The impact of the latter factor is demonstrated by the difference in
the rejection rate for Scenarios APSS and APSS-modified. For several ordering
policies, the rejection rate is higher during the no-communication phase than
during the communication one despite the fact that there are less tasks during
the no-communication phase. Actually, there are 29.4% double tasks during the
no-communication phase against 4.2% double tasks during the communication
phase. To illustrate this difference, Figure 12 shows the proportion of simple
and double tasks against the rejection rate for Scenario APSS as a function of
the number of processors for both communication phases when OneOff using
the ”Earliest Deadline” policy is put into practice.
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Figure 12: Proportion of simple and double tasks against the rejection rate as
a function of the number of processors (OneOff using the ”Earliest Deadline”
policy; Scenario APSS)
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In order not to oversize the system, it is useless to consider more than 6
processors because, when an ordering policy is well chosen, no task is rejected.

6.3 Evaluation of the Buffer for OneOff

In Section 4.3, we presented a method to reduce the number of scheduling
searches. This method is now assessed in terms of the number of scheduling
searches and rejection rate depicted in Figure 13 for Scenario APSS during
the communication phase. The algorithm makes use of the ”Earliest Deadline”
policy. We consider that the slack constants β and γ are equal and set at 2.
The buffer length L varies in the range from 1 to 10. When L = 1, the proposed
method is not considered and the algorithm runs as OneOff.
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Figure 13: System performance as a function of the number of processors
(OneOff using the ”Earliest Deadline” policy; Scenario APSS; communica-
tion phase)

Figure 13a shows that the use of buffer is helpful to reduce the number of
scheduling searches. If we take a 6-processor system as an example, the buffer
length L = 2 reduces the number of scheduling searches by 45%. Longer buffers
reduce it even more but at the cost of higher rejection rate, which is depicted
in Figure 13b. The longer the buffer, the more tasks rejected but when the
buffer length L = 2 or L = 3, the increase in the rejection rate is negligible. In
general, when a task is put into the buffer, processors may be idle while it is
in the buffer. Later, the processors may not be able to accommodate all tasks,
which need to be scheduled.

Next, the detailed analysis (figures not presented in this paper) was carried
out in order to find values of the buffer length L and the slack constants β and
γ. We found out that these values mainly depend on an application. In general,
if the buffer is shorter, there are more scheduling searches because the buffer
cannot accommodate more tasks. By contrast, if it is longer, there are several
tasks in the buffer having short slack so the buffer needs to be emptied.

Although the idea to set a limitation on the number of scheduling searches
is interesting (for example, when the buffer length L = 2 or L = 3, the increase
in the rejection rate is negligible but the decrease in the number of scheduling is
significant), the user should be aware of two possible issues. Firstly, a limitation
increases the rejection rate, which is the metric one usually wants to minimise.
Secondly, when setting the values of β and γ, the algorithm is not general any
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more because the choice of the values would be probably application-dependent.

6.4 Comparison of Scheduling Time

In this section, we compare the scheduling time of OneOff andOneOff&Cyclic
when the algorithm executes on 2 Intel Xeon Processors E5640 running up to
2.67 GHz. In order to show the data corresponding to the rejection rate pre-
sented in Section 6.2, we do not make use of the buffer. First, we will analyse
Scenario APSS and then Scenario APSS-modified. Scenario RANGE is not
presented because the results of OneOff&Cyclic are qualitatively similar to
the ones of Scenario APSS. As for the results of OneOff, there are several
variations since the task queue length does not have significant differences for
different ordering policies as for Scenario APSS.
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Figure 14: Scheduling time as a function of the number of processors (Scenario
APSS; communication phase)

Figure 14 represents the scheduling time of Scenario APSS for OneOff
and OneOff&Cyclic during the communication phase as a function of the
number of processors. The scheduling time during the no-communication phase
is qualitatively similar to the one in Figure 14 but approximately 4 times shorter
for OneOff&Cyclic and 2 times shorter for OneOff (when there is less than
5 processors). The communication phase takes more time to find a schedule
than the no-communication phase because there are more tasks.

Moreover, there is no significant difference among ordering policies for One-
Off while there is one forOneOff&Cyclic. The ordering policies that achieve
the lowest scheduling time for OneOff are the ”Shortest Execution Time”,
”Lowest ratio of et/(d− t)” and ”Earliest Deadline”. As for OneOff&Cyclic,
we point out the ”Longest Execution Time”, ”Minimum Slack” and ”Highest
ratio of et/(d − t)” techniques as the best ordering policies and the ”Shortest
Execution Time” and ”Rate Monotonic” techniques as the worst ones in terms
of the scheduling time. To demonstrate the gap, we consider a 3-processor
system during the communication phase: the ”Shortest Execution Time” tech-
nique needs 536 s, which is roughly double than the ”Longest Execution Time”
technique requiring 260 s.

The scheduling time is related to the algorithm complexity, which is defined
in Sections 4.2 and 4.4 forOneOff andOneOff&Cyclic, respectively. One of
the terms standing for the complexity is the number of tasks in the task queue.
To show the trend of the task queue length, Figure 15 depicts the mean value
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Figure 15: Mean value of the task queue length with standard deviations as a
function of the number of processors (OneOff; Scenario APSS)

of the task queue length with standard deviations during both communication
phases forOneOff and Scenario APSS. We notice that the higher the number of
processors, the shorter the task queue and that ordering policies have significant
differences in the number of tasks in the task queue when a system has a low
number of processors. As an example, we compare the ”Shortest Execution
Time” technique with the ”Longest Execution Time” technique. The former
technique has shorter task queue than the latter one because shorter tasks are
scheduled first, which implies more scheduling triggers and subsequently more
searches for a new schedule.

Consequently, the scheduling time of OneOff decreases with the higher
number of processors because the task queue is shorter owing to more scheduling
triggers. Regarding the scheduling time of OneOff&Cyclic, it raises when
the number of processors increases even though the number of tasks is almost
constant (the set of periodic tasks remains the same for a given phase and there
is only one arrival of aperiodic task). The increase is due to more possibilities
to be tested when a system has more processors.

Nonetheless, as the results are based on simulations (since real experiments
are not easily feasible), the scheduling time in our experiments does not signif-
icantly change as the task queue length could foresee. This difference is due
to the additional complexity related to our simulation framework (handling of
arrays in time standing for schedules on processors), which will not be present
in reality and the real scheduling time will be shorter.

Finally, the scheduling time of OneOff&Cyclic is roughly 5 orders of
magnitude greater than the one of OneOff. This huge gap is mainly due to
the significant difference in task periods: between 500 ms and 60000 ms. To
better evaluate this impact on scheduling time, we modified Scenario APSS to
Scenario APSS-modified, as described in Section 5.

Figure 16 represents the scheduling time of Scenario APSS-modified for
OneOff and OneOff&Cyclic during the communication phase as a func-
tion of the number of processors. The trend of scheduling time during the
no-communication phase is again similar to the one in Figure 16 and the values
are divided by a number within the range from 5 to 10 for OneOff&Cyclic
and by 2 for OneOff (when a system has less than 6 processors).
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Figure 16: Scheduling time as a function of the number of processors (Scenario
APSS-modified; communication phase)

The scheduling time of OneOff&Cyclic is roughly 3 orders of magnitude
greater than the one of OneOff. We conclude that the idea to reduce the sub-
stantial difference in the task periods accelerates the scheduling time. Therefore,
we suggest to teams building CubeSats to avoid tasks with very short and very
long periods to be scheduled together.

6.5 Fault Injection

In this section, we evaluate the fault tolerance of both algorithms for Scenario
APSS. We consider the ”Earliest Deadline” policy for OneOff and the ”Mini-
mum Slack” policy for OneOff&Cyclic.
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Figure 17: Number of faults (injected with fault rate 1·10−5 fault/ms) and their
proportion respectively impacting simple and double tasks (OneOff using the
”Earliest Deadline” policy; Scenario APSS)

Figure 17 represents the number of faults (injected with fault rate 1·10−5 fault/ms,
which corresponds to the worst estimated fault rate in the real space environ-
ment [24]) and their proportion respectively impacting simple and double tasks
as a function of the number of processors. Albeit only values for OneOff are
shown, the ones for OneOff&Cyclic are similar. We remind the reader that
presented results were computed as an average of 20 simulations and thereby
they may not be integers.

The number of impacted tasks remains almost constant and there is no sig-
nificant difference between two algorithms nor between communication phases.
Furthermore, double tasks are rarely impacted, which is due to their shorter
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execution time when compared with simple tasks. We also studied other fault
rates (graphs not shown in this paper). As expected, the higher the fault rate,
the more faults. Nonetheless, the proportions of impacted simple and double
tasks remain the same.
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Figure 18: System performance at different fault injection rates as a function
of the number of processors (OneOff using the ”Earliest Deadline” policy;
Scenario APSS; communication phase)

Figure 18 depicts the rejection rate, system throughput and processor load
for communication phase as a function of the number of processors. Qualita-
tively similar results were obtained for OneOff during the no-communication
phase and for both phases of OneOff&Cyclic. The figure representing the
system throughput includes a black dashed line corresponding to the case when
no task is rejected and all tasks are correctly executed. Regarding the figure
plotting the processor load, it also shows a black dashed line, which denotes the
maximum processor load. This maximum value is computed as the sum of all
execution times of tasks at the input (in a fault-free environment) divided by
the simulation duration.

The higher the number of processors, the lower the rejection rate and the
higher the system throughput because the number of tasks to be executed
aboard the CubeSat is always the same for a given phase. The rejection rate
stands for the schedulability as described in Section 4, i.e. if a fault occurs
during a PC execution, the corresponding backup copy is scheduled. Nonethe-
less, a backup copy may be impacted by a fault too. Since such a task was not
correctly executed, it does not contribute to the system throughput.

Moreover, the higher the fault rate, the higher the rejection rate and pro-
cessor load and the lower the system throughput because the backup copies are
executed and not deallocated, which increases the system load. The processor
load can be even higher than its maximum theoretical value computed in a
fault-free environment because the backup copies need to be executed if a fault
occurs during the execution of the corresponding primary copies. Furthermore,
we notice that the studied metrics do not change significantly up to 1 · 10−4

fault/ms, which is higher than the worst estimated fault rate in the real space
environment (10−5 fault/ms [24]). The same conclusions were made for other
two scenarios (RANGE and APSS-modified) as well.

Although only transient faults were studied, the CubeSat performance after
an occurrence of permanent fault can be foreseen. If a permanent fault occurs
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causing a processor failure, a CubeSat loses one processor. Since we consider
that there are no dedicated processor(s) to each CubeSat system, any processor
can execute any task, as described in Section 1. Therefore, a permanent fault
would not be a problem because there are still enough computational resources,
which is an advantage of the proposed solution. Furthermore, the fault rate of
permanent faults is lower than the one of transient faults. For example, the fault
rate of permanent hardware faults in a multicore chip is 10−5/h and the fault
rate of non-permanent hardware faults in each core during non-bursty period is
10−4/h [24].

6.6 Comparison of the Proposed Solution with No-Fault
Tolerant and TMR Systems

3 4 5 6 7 8 9 10
Number of processors

0.00

0.02

0.04

0.06

0.08

Re
je
ct
io
n 
ra
te

(a) Rejection rate

3 4 5 6 7 8 9 10
Number of processors

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pr
oc
es
so
r l
oa

d

(b) Processor load

3 4 5 6 7 8 9 10
Number of processors

5000

10000

15000

20000

25000

30000

Nu
m
be

r o
f s

ch
ed

ul
in
g

(c) Number of schedul-
ing searches

3 4 5 6 7 8 9 10
Number of processors

0

20

40

60

80

100

M
ea

n 
of
 ta

sk
 q
ue

ue
 le

ng
th

(d) Mean value of the
task queue length with
standard deviations

Figure 19: System performance for three systems with different level of fault
tolerance as a function of the number of processors (OneOff using the ”Earliest
Deadline” policy; Scenario APSS; communication phase)

We compare the system performance of the proposed solution with the one
of a system without any fault tolerance and the one of a system using the triple
modular redundancy (TMR). The system based on the TMR always schedules
three identical task copies for each task between the task arrival time and task
deadline and the no-fault tolerant system considers only one task copy for each
task. No backup copies are considered for these two systems. Our proposed
solution distinguishes simple and double tasks depending on fault detection, as
explained in Section 3, and schedules backup copies only if a fault occurs.

Figure 19 depicts the rejection rate, processor load, number of scheduling
searches and mean value of the task queue length with standard deviations as
a function of the number of processors for the workload aboard APSS CubeSat
during the communication phase.
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While the rejection rate of our proposed system (without or with a short
buffer L = 2) is only slightly higher when compared to the rejection rate of a
system without any redundancy, the rejection rate of a system based on the
TMR is significantly higher. For example, a 6-processor system rejects 0.093%
(system without any redundancy), 0.21% (proposed system without buffer),
0.50% (proposed system with buffer L = 2) and 4.05% (system with TMR).
The thorough analysis shows (graph not presented in this paper) that, in order
to schedule (almost) all tasks aboard APSS CubeSat, the system using the TMR
should have at least 12 processors, i.e. 6 processors more than the system taking
advantage of our proposed solution for the same reliability level.

When the rejection rate is 0, Figure 19b shows that our proposed solutions
without and with a short buffer has similar values of the processor load as
the system without any redundancy. The system using the TMR has higher
processor load than the other systems because all tasks have three task copies.
For instance, the processor load of 8-processor system is 44.6% (system without
any redundancy), 44.8% (proposed system without buffer), 43.9% (proposed
system with buffer L = 2) and 94.5% (system with TMR). The analysis for more
than 10 processors (graph not presented in this paper) shows that the processor
load of the system using the TMR decreases and that it is roughly three times
higher than a system without any redundancy. Since the power consumption is
related to the system load, the power consumption of the system with TMR is
higher and the one of the system making use of our solution is similar to the
system without any redundancy.

Besides higher processor load, the system based on TMR presents other
inconveniences. Its number of scheduling searches is higher when compared to
other systems, as depicted in Figure 19c. For example, the number of scheduling
searches for a 8-processor system is 12258 (system without any redundancy),
12161 (proposed system without buffer), 6477 (proposed system with buffer
L = 2) and 28478 (system with TMR). The reason why the number of scheduling
searches decreases when the number of processors is a multiple of three, which
corresponds to the number of task copies, remains unknown. Therefore, the
scheduler of the system with TMR carries out many searches for a new schedule
which is not very suitable for embedded systems aboard CubeSats due to limited
power resources. Our proposed solutions, especially the ones making use of the
buffer, are well suited to such applications.

Furthermore, the tasks queue of the system with TMR is longer than for
other systems, as shown in Figure 19d. Since the task queue length is related
to the algorithm complexity, as explained in Section 6.4, the complexity of the
system based on the TMR is higher when compared to other systems. Again,
although the task queue length of our proposed systems is slightly higher than
for a system without any redundancy, our proposed system offers an interesting
solution subject to trade-off between the number of scheduling searches and the
task queue length.
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7 Conclusion

This paper evaluated the performance of two online algorithms meant for Cube-
Sats, which operate in the harsh space environment and are vulnerable to faults.
To make CubeSats fault tolerant, these algorithms schedule all tasks aboard the
CubeSat, detect faults and take appropriate measures in order to deliver correct
results.

While the first algorithm (called OneOff) considers all tasks as aperiodic
tasks, the second one (named OneOff&Cyclic) distinguishes aperiodic and
periodic tasks when searching for a new schedule. Each algorithm can use
different ordering policies to sort a task queue. The presented results based on
two real CubeSat scenarios show that it is useless to consider systems with more
than six processors and that OneOff performs better than OneOff&Cyclic
in terms of the rejection rate and the scheduling time. OneOff&Cyclic can
be more efficient in applications where there are only a few changes in the set of
periodic tasks. Therefore, we suggest that teams, which design their CubeSats
gathering all processors together on one board, put into practice ratherOneOff
and use a short buffer to reduce the number of scheduling searches.

Last but not least, the results show that fault rates up to 1 · 10−4 fault/ms,
which is higher than the worst estimated fault rate in the real space environ-
ment, have minimal impact on performance of both algorithms. Moreover,
our proposed solution provides the same reliability level as a system with triple
modular redundancy (TMR) but without significantly increasing processor load.
Therefore, the power consumption of our system remains similar to the system
without any redundancy and is significantly lower than for a system based on the
TMR. This is achieved by distinguishing the simple and double tasks requiring
a re-execution only if a fault occurs.

All in all, the results show that a proposed solution based on a multiprocessor
system is well suited to CubeSats in order to improve their fault tolerance taking
into account their constraints.

As our future work, we are about to further evaluate energy constraints,
which play an important role to ensure real-time execution of tasks because a
CubeSat spends one third of its orbit in the eclipse with limited power supply.
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zorla, K. Grüttner, I. Agirre, H. Ahmadian, and I. Allende,
Multi-Core Devices for Safety-Critical Systems: A Survey, in ACM Com-
puting Surveys, vol. 53, New York, NY, USA, 2020, Association for Com-
puting Machinery.

[5] L.-W. Chen, T.-C. Huang, and J.-C. Juang,
Implementation of the Fault Tolerance Module in PHOENIX CubeSat.
Presentation at 10th IAA Symposium on Small Satellites for Earth
Observation, 2015. https://www.dlr.de/iaa.symp/Portaldata/49/

Resources/dokumente/archiv10/pdf/0604_IAA-Li-Wei-Chen.pdf.

[6] T. B. Clausen et al., Designing On Board Computer and Payload for the AAU CubeSat.
http://www.crn.inpe.br/conasat1/projetos_cubesat/projetos/

AAUSAT-AalborgUniversity-Denmark/AAUSAT-OBC-report.pdf.

[7] C. S. U. de Grenoble, ATISE project: Auroral Thermosphere Ionosphere Spectrometer Experiment.
https://www.csug.fr/main-menu/projects/atise-project/.
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