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Abstract

The NP-hard problem of task scheduling with communication delays
(Plprec, ¢;j|Cmax) is often tackled using approximate methods, but guarantees
on the quality of these heuristic solutions are hard to come by. Optimal sched-
ules are therefore invaluable for properly evaluating these heuristics, as well
as being very useful for applications in time critical systems. Optimal solving
using branch-and-bound algorithms like A* has been shown to be promising
in the past, with a state-space model we refer to as exhaustive list scheduling
(ELS). The obvious weakness of this model is that it leads to the production of
large numbers of duplicate states during a search, requiring special techniques
to mitigate this which cost additional time and memory. In this paper we de-
fine a new state-space model (AO) in which we divide the problem into two
distinct sub-problems: first we decide the allocations of all tasks to processors,
and then we order the tasks on their allocated processors in order to produce
a complete schedule. This two-phase state-space model offers no potential for
the production of duplicates. We also describe how the pruning techniques and
optimisations developed for the ELS model were adapted or made obsolete by
the AO model. An experimental evaluation shows that the use of this new
state-space model leads to a significant increase in the number of task graphs
able to be scheduled within a feasible time-frame, particularly for task graphs
with a high communication-to-computation ratio. Finally, some advanced lower
bound heuristics are proposed for the AO model, and evaluation demonstrates
that significant gains can be achieved from the consideration of necessary idle
time.

Keywords: parallel computing; task scheduling; discrete optimisation;
branch-and-bound; state-space search; pruning.

1. Introduction

In order to use the full potential of a multiprocessor system in speeding
up task execution, efficient schedules are required. In this work, we address
the classic problem of task scheduling with communication delays, known as
Plprec, ¢;;j|Cmax using the «|B]y notation [1]. The problem involves a set of
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tasks, with associated precedence constraints and communication delays, which
must be scheduled such that the overall finish time (schedule length) is min-
imised. The optimal solving of this problem is well known to be NP-hard [2], so
that the amount of work required grows exponentially as the number of tasks
is increased. For this reason, many heuristic approaches have been developed,
trading solution quality for reduced computation time [3, 4, 5, 6]. Unfortunately,
the relative quality of these approximate solutions cannot be guaranteed, as no
a-approximation scheme for the problem is known [7].

Although the NP-hardness of the problem usually discourages optimal solv-
ing, an optimal schedule can give a significant advantage in time critical systems
or applications where a single schedule is reused many times. Optimal solutions
are also necessary in order to evaluate the effectiveness of a heuristic scheduling
method. Branch-and-bound algorithms have previously shown promise in effi-
ciently finding optimal solutions to this problem [8], but the state-space model
used, exhaustive list scheduling (ELS), was prone to the production of duplicate
states.

This paper presents a new state-space model in which the task scheduling
problem is tackled in two distinct phases: first allocation, and then ordering.
The two-phase state-space model (abbreviated AO) does not allow for the pos-
sibility of duplicate states. We give a detailed explanation of the algorithms and
heuristics used to explore the AO state space and discuss its theoretical benefits
over ELS, as well as its limitations. We describe the algorithms necessary to
guarantee that all valid states can be produced, and that invalid states cannot.
Previous research demonstrated that the ELS model benefited immensely from
the application of pruning techniques such as processor normalisation and iden-
tical task pruning. The benefit is such that effective pruning would seem to be
a necessity in order for another model to be competitive. We therefore describe
these techniques and explain the changes needed to adapt them from the ELS
model to the AO model. An experimental evaluation is used to compare the
performance of the two state-space models. We then propose further advances
to lower bound heuristics for AO, and evaluate these. This paper expands on
preliminary work, which featured a promising evaluation using only small task
graphs [9].

In Section 2, background information is given, including an explanation of
the task scheduling model, an overview of branch-and-bound algorithms, and
a description of the ELS model. Section 3 describes the new AO model, and
how a branch-and-bound search is conducted through it. Section 4 proposes
a technique to avoid searching invalid states in the ordering phase. Section 5
explains the pruning techniques used with ELS, and their adaptation to the AO
model. Section 6 explains how the new model was evaluated by comparison
with the old one, and presents the results. Section 7 describes novel and more
complex lower bound heuristics for the AO model, and an evaluation of their
effect. Finally, Section 9 gives the conclusions of the paper and outlines possible
further avenues of study.



Figure 1: A simple task graph.

2. Background and Related Work

2.1. Task Scheduling Model

The specific problem that we address here is the scheduling of a task graph
G ={V,E,w,c} on a set of processors P. G is a directed acyclic graph wherein
each node n € V represents a task, and each edge e;; € E represents a required
communication from task n; to task n;. Figure 1 shows an example of a task
graph. The computation cost of a task n € V is given by its positive weight
w(n), and the communication cost of an edge e;; € E is given by the non-
negative weight c(e;;). The target parallel system for our schedule consists of
a finite number of homogeneous processors, represented by P. Each processor
is dedicated, meaning that no executing task may be preempted. We assume
a fully connected communication subsystem, such that each pair of processors
pi,pj € P is connected by an identical communication link. Communications are
performed concurrently and without contention. Local communication (from p;
to p;) is assumed to take place in the memory shared by the tasks on the same
processor and is therefore assumed to have zero cost.

Our aim is to produce a schedule S = {proc,ts}, where proc(n) allocates
the task to a processor in P, and ts(n) assigns it a start time on this processor.
For a schedule to be valid, it must fulfill two conditions for all tasks in G. The
Processor Constraint requires that only one task is executed by a processor at
any one time. The Precedence Constraint requires that a task n may only be
executed once all of its predecessors have finished execution, and all required
data has been communicated to proc(n). Figure 2 illustrates a valid schedule
for the task graph in Figure 1. The goal of optimal task scheduling is to find
such a schedule S for which the total execution time or schedule length sI(.S) is
the lowest possible.

It is useful to define the concept of node levels for a task graph [6]. For a
task n, the top level tl(n) is the length of the longest path in the task graph that
ends with n. This does not include the weight of n, or any communication costs.



P Ps

0

— A

— B

C

5 —

— D

\

time

Figure 2: A valid schedule for the simple task graph of Fig..
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Figure 3: Example of simple task graph structures

Similarly, the bottom level bl(n) is the length of the longest path beginning with
n, excluding communication costs. The weight of n is included in bl(n). The
allocated top and bottom levels tl,(n) and bl,(n) incorporate communication
costs, once the allocation of a parent and child task to different processors
confirms that the edge between them will be incurred.

Task graphs can be categorised into a number of different structures, which
often have distinct properties and associated difficulties when solving. Figure 3
shows examples of some of the simplest structures.

2.2. Branch-and-Bound

The term branch-and-bound refers to a family of search algorithms which
are widely used for the solving of combinatorial optimisation problems. They do
this by implicitly enumerating all solutions to a problem, simultaneously finding
an optimal solution and proving its optimality [10]. A search tree is constructed
in which each node (usually referred to as a state) represents a partial solution
to the problem. From the partial solution represented by a state s, some set
of operations is applied to produce new partial solutions which are closer to a
complete solution. In this way we define the children of s, and thereby branch.
Each state must also be bounded: we evaluate each state s using a cost function
f, such that f(s) is a lower bound on the cost of any solution that can be reached
from s. Using these bounds, we can guide our search away from unpromising
partial solutions and therefore remove large subsets of the potential solutions
from the need to be fully examined.
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Figure 4: Branching in the ELS state space.

A* is a particularly popular variant of branch-and-bound which uses a best-
first search approach [11]. A* has the interesting property that it is optimally
efficient; using the same cost function f, no search algorithm could find an
optimal solution while examining fewer states, if states with f-value equal to
the optimal are ignored. To achieve this property, it is necessary that the
cost function f provides an underestimate. That is, it must be the case that
f(s) < f*(s), where f*(s) is the true lowest cost of a complete solution in the
sub-tree rooted at s. A cost function with this property is said to be admissable.

2.3. Ezhaustive List Scheduling

Previous branch-and-bound approaches to optimal task scheduling have used
a state-space model that is inspired by list scheduling algorithms [8]. States are
partial schedules in which some subset of the tasks in the problem instance have
been assigned to a processor and given a start time. At each branching step,
successors are created by putting every possible ready task (tasks for which
all parents are already scheduled) on every possible processor at the earliest
possible start time. In this way, the search space demonstrates every possible
sequence of decisions that a list scheduling algorithm could make. This branch-
and-bound strategy can therefore be described as exhaustive list scheduling.
Figure 4 demonstrates how four possible child states can be reached from a
partial schedule with two ready tasks and two processors.

Unfortunately, the ELS strategy creates a lot of potential for redundant work
to be performed, such that the same or equivalent states are considered multiple
times [12]. This stems from two main sources:

Isomorphic States

Firstly, since the processors are homogeneous, any permutation of the proces-
sors in a schedule represents an entirely equivalent schedule. For example, Fig-
ure 5 shows two partial schedules which are identical aside from the labelling of



>

\/ \

Figure 5: Processor permutation duplicates.

the processors. This means that for each truly unique complete schedule, there
will be |P|! equivalent complete schedules in the state space. In this situation,
partial solutions which are isomorphic to each other are encoded differently by
the state-space model, and therefore considered as distinct states. This problem
is usually dealt with through the use of pruning techniques. Although processor
permutation is the most critical, there are several other such symmetries present
in the ELS model, and pruning techniques have been proposed to address many
of them [12].

Duplicate States

The other source of redundant work is more difficult to deal with. Branch-
and-bound works most efficiently when the sub-trees produced when branching
are entirely disjoint. Another way of stating this is that there is only one possible
path from the root of the tree to any given state, and therefore there is only
one way in which a search can create this state. When this is not the case, a
large amount of work can be wasted: the same state could be expanded, and its
sub-tree subsequently explored, multiple times. On the second and subsequent
times that a particular state is considered by the search algorithm, it is called a
duplicate. Avoiding this situation requires doing work to detect duplicate states,
such as keeping a set of already created states with which all new states must
be compared. This process increases the algorithm’s need for both time and
memory.

When tasks are independent of each other, the order in which they are
selected for scheduling can be changed without affecting the resulting schedule.
This means there is more than one path to the corresponding state, and therefore
a potential duplicate. Figure 6 demonstrates how multiple paths can lead to the
same state. The only way to avoid these duplicates is to enforce a particular
sequence onto these scheduling decisions. Under the ELS strategy, however,
no method is apparent in which this could be achieved while also allowing all
possible legitimate schedules to be produced.

2.4. Related Work

Although the task scheduling model presented here can be applied to the par-
allelisation of any arbitrary program, one specific area to which task scheduling
has been practically applied in recent years is in the implementation of linear
algebra solvers. Software packages such as SuperMatrix [13] and PLASMA [14]
represent linear algebra algorithms as DAGs, decomposing the steps required
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Figure 6: Independent decision duplicates.

into tasks, and use a variety of methods to schedule these graphs. They do not,
however, attempt to find optimal schedules, although this could be helpful in
some specific circumstances.

Due to the NP-hard nature of the task scheduling problem, the majority of
efforts have gone towards developing polynomial-time heuristic solutions, pro-
ducing schedules which are “good enough” for most applications. The two
major categories of approximation algorithms are list scheduling and clustering
[6]. List scheduling algorithms generally proceed in two phases: first, all of the
tasks are placed into an ordered list, according to some priority scheme. Sec-
ond, the tasks are removed from the list one by one, in order, and scheduled.
That is, they are assigned to a processor, and usually given a start time as
early as possible after the tasks previously assigned to that processor have com-
pleted. Notable list scheduling variants include MCP [15] and HLFET [16]. In a
clustering algorithm, tasks are grouped together in clusters, with the intention
that if two tasks belong to the same cluster then it is likely to be beneficial for
them to be assigned to the same processor. Technically, a clustering algorithm
is only concerned with suggesting a processor allocation for the tasks, with a
subsequent process similar to list scheduling usually required in order to pro-
duce an actual schedule. Notable clustering variants include DCP [17] and DSC
[18]. While the ELS model resembles a generalised version of the list scheduling
approach (hence its name), the new AO model more closely resembles a clus-
tering approach. Without access to optimal schedules, experimental evaluation
of heuristic algorithms requires comparison of their performance either relative
to each other or relative to some lower bound [19]. As the performance of an
algorithm and the accuracy of a bound are both likely to fluctuate across the
range of problem instances in an experiment, determining the cause of a vary-
ing difference between these values is difficult. Optimal solutions, on the other
hand, provide an absolute baseline for comparison.



The task scheduling problem is theoretically susceptible to many combina-
torial optimisation techniques. A*, the popular branch-and-bound search al-
gorithm, has been successfully applied to the optimal solving of small problem
instances through the ELS model [8] and earlier attempts [20]. Another combi-
natorial optimisation technique which has been applied to this task scheduling
problem is integer linear programming (ILP). This involves formulating the
problem instance as a linear program, a series of simultaneous linear equations,
where the variables are constrained to integer values. A number of possible ILP
formulations of the P|prec, ¢;;j|Cmax problem have been proposed [21, 22, 23],
with similarly promising results as branch-and-bound. Also proposed recently
was the use of a closely related technique known as satisfiability modulo theory
(SMT) solving, in which a problem instance is formulated as a set of logical
propositions [24]. None of these techniques has been shown to have a large ad-
vantage over another in terms of the size of task scheduling problem that they
can solve practically. Most widely used ILP solvers are mature, highly opti-
mised, proprietary software packages. This optimisation means they are very
likely to have a built-in advantage in terms of speed when compared to a custom
implementation of state-space search. On the other hand, their complexity and
proprietary nature make them somewhat of a “black box”. A custom imple-
mentation makes it easier to gain potentially critical insight into the behaviour
of the solver. Additionally, it is often easier to map domain-specific knowledge
directly into a state-space model than into an ILP formulation.

Many combinatorial optimisation problems can be naturally expressed as
permutation problems, meaning that the set of solutions consists of all possible
arrangements or orderings of some set of objects. In the most famous of these,
the travelling salesperson problem (TSP), the goal is to plan a trip which visits
a number of cities such that the total distance travelled between the cities is
minimised [25]. Evidently, each possible ordering of the cities represents a valid
solution, and the optimal solution can be found by iterating over these permuta-
tions. Other classic permutation problems include the assignment problem [26]
and the MAX-SAT problem [27]. Another class of combinatorial optimisation
problem can be thought of as a distribution or allocation problem, in which a
set of objects must be divided among a number of possible groups. Examples
include the graph colouring problem [28], and the problem of task scheduling
with independent tasks [6].

The problem of task scheduling with communication delays is interesting
in that it can be considered as the composition of a distribution problem with
a permutation problem, as the tasks must both be optimally divided among
the processors and ordered optimally on each processor. A “colored traveling
salesman problem” which could be decomposed into two distinct permutation
problems (TSP and the assignment problem) has been used to model problems
such as scheduling of multi-bridge machining systems, and solved using heuris-
tic methods [29]. A similar problem is that of minimizing part programs for
numerical control punch presses. A proposed algorithm for this problem iter-
ated between these two sub-problems, using heuristic approaches to solve each
[30]. To the best of our knowledge, our proposed model is the first to attempt



optimal solving by branch-and-bound through separating two subproblems into
distinct phases, which are combined into one overall solution space.

When using branch-and-bound to solve a problem, an obvious concern is
attempting to perform as little redundant work as possible. Pruning techniques
are considered to be a fundamental aspect of branch-and-bound search, as they
have the potential to greatly limit the number of states that need to be evalu-
ated by removing isomorphic states from consideration [31]. Work on pruning
techniques for the ELS model demonstrated that they had a dramatic impact on
its performance [12]. For some other problems, isomorph-free state-space mod-
els have been proposed [32]. These eliminate isomorphic states produced by
previous models by analysing the symmetries involved and proposing methods
of branching which avoid them.

The benefit of a state-space without duplicates is well recognised, and at-
tempting to ensure that the set of solutions represented by each child of a state
are mutually exclusive is a general principle of state-space design [33, 34]. When
this is the case, the state-space will be a tree. There are many problems for
which branch-and-bound (particularly A*) is commonly used in which it is nat-
ural for the state-space to take the form of a more general graph - for example,
pathfinding problems or the n-puzzle [35]. For these problems, rather than a
node itself representing a fixed partial solution, it is the particular path taken
between the nodes of the state-space which represents a partial solution - “du-
plicate detection” is therefore used not to avoid duplicate partial solutions, but
to avoid considering solutions which include cycles. Task scheduling does not fit
into this category of problem, but the state-space produced by the ELS model
takes the form of a graph. A state-space tree would be preferable.

3. Duplicate-Free State-Space Model

The potential for duplicate states can be eliminated by adopting a new state-
space model (AO), in which the two dimensions of task scheduling are dealt
with separately. Rather than making all decisions about a task’s placement
simultaneously, the search proceeds in two stages. In the first stage, we decide
for each task the processor to which it will be assigned. We refer to this as the
allocation phase. The method used has the additional benefit of not allowing
the production of states which are isomorphic through processor permutation,
eliminating the need for a relevant pruning technique. The second stage of
the search, beginning after all tasks are allocated, decides the start time of
each task. Given that each processor has a known set of tasks allocated to
it, this is equivalent to deciding on an ordering for each set. Therefore, we
refer to this as the ordering phase. Once the allocation phase has determined
the tasks’ positions in space, and the ordering phase has determined the tasks’
positions in time, a complete schedule is produced. Essentially, we divide the
problem of task scheduling into two distinct sub-problems, each of which can
be solved separately using distinct methods. However, while we distinguish the
two phases, we combine them into a single state-space, making this a powerful
approach.



3.1. Allocation

In the allocation phase, we wish to allocate each task to a processor. Since
the processors in our task scheduling problem are homogeneous, the exact pro-
cessor on which a task is placed is unimportant. What matters is the way the
tasks are grouped on the processors. The problem of task allocation is therefore
equivalent to the problem of producing a partition of a set. A partition of a set
X is a set of non-overlapping subsets of X, such that the union of the subsets is
equal to X. In other words, the set of all partitions of X represents all possible
ways of grouping the elements of X. Applying this to our task scheduling prob-
lem, we find all possible ways in which tasks could be grouped on processors.
In the allocation phase, we are therefore searching for a partition of the set V'
that can lead to an optimal schedule, consisting of all tasks in our task graph.
Figure 7 shows different possible partitions of a set of tasks.

The search is conducted by constructing a series of partial partitions of V. A
partial partition A of V' is defined as a partition of a set V', V! C V [36]. At each
level of the search we expand the subset V’ by adding one additional task n € V,
until V/ =V and all tasks are allocated. At each stage, the task n selected can
be placed into any existing part a € A , or alternatively, a new part can be
added to A containing only n. In our implementation we build an allocation by
adding tasks in a topological order, but any pre-defined order suffices. As we are
allocating tasks to a finite number of processors |P|, we simply limit the number
of parts allowed in a partial partition to the same number. This has no effect
other than to reduce the search space by disregarding partitions consisting of a
larger number of sets. A partial allocation A will have |A| children again of size
|A] and one child of size |A| 4+ 1. Therefore, as the number of parts in a partial
allocation is non-decreasing as we move deeper in the search tree, disregarding
partial allocations such that |A| > |P| cannot prevent valid allocations where
|A] < |P| from being discovered. Figure 8 illustrates how child states are derived
from a partial partition: the new task D can be added to either of the existing
parts. If scheduling with three or more processors, it could be placed in a new
part by itself, but for this example we limit the allocation to two processors.

Lemma 1. The allocation phase of the AO model can produce all pos-
sible partitions of tasks and there is only one unique sequence that
produces each possible paritition.

Proof. We show how any given allocation Ag, which is a complete partition of
V', is constructed with the proposed allocation procedure and that there is only
one possible choice at each step. We begin with an empty partial allocation
A = {}, and are presented with the tasks in V in a fixed order n, na, ... |-
We must always begin by placing ny into a new part, so that A = {{n1}}. Now
we must place no. If n; and ns belong to the same part in Ag, they must also be
placed in the same part in A, and so we must have A = {{n1,ns}}. Conversely,
if n; and no belong to different parts in Ag, the same must be true in A, and
we make A = {{n1}, {n2}}. For each subsequent task n;, if n; in Ag belongs
to the same part as any of tasks nj to n;_1, we must place it in the same part

10
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Figure 7: Partitions of tasks, equivalent to processor allocations.

in A. If n; does not share a part in Ag with any task n; to n;_1, it must be
placed in a new part by itself. At each step, there is exactly one possible move
that can be taken in order to keep A consistent with Ag. Since there is always
at least one move, it is possible to produce any partition of V' in this fashion,
and because there is always at most one move, there is only one path that will
produce a given partition. Since each distinct allocation can only be produced
with one unique sequence of moves, duplicate allocations are not possible. [

By Lemma 1, we have removed the first source of duplicates: there is no
possibility of producing allocations that differ from each other only by the per-
mutation of processors.

In a naive approach to allocation, in which we simply assign each task in
V to an arbitrary processor in P without considering their homogeneity, there
are |P|IVI possible outcomes. The number of possible complete allocations in

this state space is given by the formula ‘kill {|Z|}, where {Z} represents

the number of distinct ways to divide a set of size n into k subsets (this being
known as a Stirling number of the second kind) [37]. In the worst case, where the
number of available processors is equal to the number of tasks, the formula gives
us what is known as a Bell number: the total number of possible partitions of a
set with size n. Bell numbers are known to be asymptotically bounded such that
B, < ( lg‘(?f_’f))” [38]. This bound demonstrates that, although the number of
allocations still grows exponentially, it is an exponential function of significantly
lower order than the naive |P|!V! approach.

8.1.1. Allocation Cost Function

For branch-and-bound search using our AO state-space model to be effective,
we need an admissable heuristic to determine our cost function f, such that f(s)
gives a lower bound for the minimum length of any schedule resulting from the

11
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Algorithm 1 Defining children of an allocation state.

Require: A, is a partial partition of V'
function EXPAND-ALLOC-STATE(s, V, | P|)
unallocated < V' \ J,c4. @
nextTask < Mminy,cunaliocateatopo-order(n, G)
childreng < ()
for all a € A, do
schild < a copy of s
achild < the set in A hild which is equal to a
achild < achild U {nextTask}
childrens < childrens U {s hild}
end for
if |As| < |P| then
schild < a copy of s
anew — {nextTask}
Achild + A hild U {a,ew}
childrens < childrens U {s hild}
end ifreturn childreng
end function

partial partition A at state s. The efficiency of a branch-and-bound search can
be defined by the number of states in the state-space that need to be examined
before a provably optimal solution can be found [39]. To prove that a solution
is optimal, all states in the state-space with a lower f-value must be examined
and shown to not be solutions themselves. Such states are said to be ’critical’
[40]. A tighter bound can make the search more efficient, while a looser bound
may make the search less efficient. This is because a tighter bound is likely to
increase the f-value of some states, possibly making them no longer critical,
while a looser bound can do the opposite.

In the case of allocation, there are two crucial types of information we can
obtain from a partial partition A, which allow us to determine a lower bound
for the length of a resulting schedule. The first, and simplest, is how well the
computational load is balanced between the different groupings of tasks. In an
ideal case, with no gaps in execution, a processor assigned a grouping a € A will

12



still require time equal to the sum of the computational weights w(n) of the tasks
n € a,ie Y ., w(n),inorder to finish. The overall schedule length is therefore
bounded by the total weight of the most heavily loaded grouping in A. We
improve this bound further by considering the time at which execution can start
on each processor. The earliest possible start time for a task n is given by its
allocated top level ¢l (n). The earliest that a processor can begin executing tasks
can therefore be determined by finding the minimum allocated top level among
its assigned tasks n € a. Similarly, the minimum bottom level (disregarding
the weight of the first task in the level path) among the grouping tells us the
minimum amount of time required to reach the end of the schedule once all
tasks on this processor have finished execution. We therefore add the minimum
allocated top level and minimum bottom level (disregarding (disregarding the
weight of first task in the level path) to each grouping’s computational load to
obtain our first bound.

fi0aa(s) = maxaeA{minneatla (n)+ Y w(n)

nea

- minnca(bla(n) — w(n))} W

The second bound derives from our knowledge of which communication costs
must be incurred, and is obtained from the length of the allocated critical path
of the task graph; that is, the longest path through the task graph given the
particular set of allocations. It is usual when finding a critical path for a task
graph to ignore the edge weights, as in an ideal case no communication costs
would need to be incurred. However, if two tasks i, j € V have been assigned to
different groupings in A, and an edge e;; exists between them, we now know that
the communication represented by that edge must take place. Such edges can
therefore be included when determining the critical path, and may increase its
length. As all computations and communications in the allocated critical path
must be completed in sequence, the overall schedule must be at least as long,
and this gives us our second bound. Figure 9 shows an example of an allocated
critical path. In practise, it is helpful to consider the allocated top and bottom
levels of the tasks when determining the allocated critical path, since we use
those values for several other calculations. The length of the longest path in a
task graph which includes a task n can be found by adding the top and bottom
levels of n. It follows that the length of the allocated critical path is the greatest
value for tl,(n) + bly(n) among all n € V.

facp(s) = maxX,ey’ {tla(n) + bla(n)} (2)

Since we want the tightest bound possible, the maximum of these two bounds
is taken as the final f-value.

falloc(s) = maX{fload(S)y facp(s)} (3)

13



Figure 9: The allocated critical path heuristic.

By their nature, these two bounds oppose each other; lowering one is likely to
increase the other. The shortest possible allocated critical path can be trivially
obtained simply by allocating all tasks to the same processor, but this will cause
the total computational weight of that processor to be the maximum possible.
Likewise, the lowest possible computational weight on a single processor can be
achieved simply by allocating each task to a different processor, but this means
that all communication costs will be incurred and therefore the allocated critical
path will be the longest possible. Combining these two bounds guides the search
to find the best possible compromise between computational load-balancing and
the elimination of communication costs.

3.2. Ordering

In the ordering phase, we begin with a complete allocation, and our aim is
to produce a complete schedule S. After giving an arbitrary ordering to both
the sets in A and the processors in P, we can define the processor allocation in
S such that n € a; = proc(n) = p;. The remaining step is to determine the
optimal start time for each task. Given a particular ordering of the tasks n € p;,
the best start time for each task is trivial to obtain, as it is simply the earliest
it is possible for that task to start, considering the availability of the processor
and the precedence constraints induced by the incoming edges. To complete our
schedule we therefore only need to determine an ordering for each set of tasks
a; € A. Our search could proceed by enumerating all possible permutations of
the tasks within their processors. However, it is likely that many of the possible
permutations do not describe a valid schedule. This will occur if any task is
placed in order after one of its descendants (or before one of its ancestors).

In order to produce only valid orderings, an approach inspired by list schedul-
ing is taken. In this variant, however, each processor p; is considered separately,
with a local ready list R(p;). Initially, a task n € p; is said to be locally ready
if it has no predecessors also on p;. At each step we can select a task n € R(p;)
and place it next in order on p;. Those tasks which have been selected and
placed in order are called ordered, while those which have not are called un-
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Figure 10: A single state in the ordering state space.

ordered. A simple definition of the local ready list states that a task n € p;
belongs to R(p;) if it has no unordered predecessors also on p;. Unfortunately,
this formulation allows invalid states to be reached by the search, as seemingly
valid local orders may combine to produce a schedule with an invalid global
ordering. The simple definition still guarantees that all valid schedules can be
produced, and invalid branches of the state-space can easily be removed from
consideration: the f-value of certain invalid states is undefined, and in calculca-
tion will increase indefinitely. However, an indeterminate amount of work may
be wasted in exploring these invalid states. A correct formulation of the local
ready list requires that any task n; which is ordered on p; must be subsequently
considered to be a predecessor of any task n; on p; which is still unordered.
This more complex ready condition is explained in detail in Section 4.

After a task n has been ordered, each of its descendants on p; must be checked
to see if the ready condition has now been met, in which case they will be added
to R(p;). Following this process to the end, we can produce any possible valid
ordering of the tasks on p;. Figure 10 illustrates a single state in an ordering
state-space, and shows the options for branching which are available. In this
example, several tasks have already been ordered on processor P1, and it has
again been selected for consideration. Since they have no unordered predecessors
also on P1, tasks e and f are both ready to be ordered. There are therefore two
possible children of this state, one in which each of these ready tasks is placed
next in order on P1. Note that f is ready to be ordered despite the fact that its
parent, d, has not been ordered. Since d is allocated to a different processor, it is
not considered when determining the readiness of f. Neither is its own parent,
a, which would necessarily have been the very first task scheduled under the
ELS model.
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Producing a full schedule requires that this process be completed for all
processors in P. At each level of the search, we can select a processor p; € P
and order one of its tasks. The order in which processors are selected can be
decided arbitrarily; however, in order to avoid duplication, it must be fixed by
some scheme such that the processor selected can be determined solely by the
depth of the current state. The simplest method to achieve this is to proceed
through the processors in order: first order all the tasks on p;, then all the
tasks on po, and so on to p,. Another method is to alternate between the
processors in a round-robin fashion. Unlike in exhaustive list scheduling, tasks
are not guaranteed to be placed into the schedule in topological order. When
a task is ordered, its predecessors on other processors may still be unordered,
and therefore their start times may not be known. During the ordering pro-
cess, therefore, a task m may only be given an estimated earliest start time
eest(n). For all unordered tasks, eest(n) = tl,(n), its allocated top level. For
ordered tasks, we first define prev(n) as the task ordered immediately before
n on the same processor proc(n). We also define the estimated data ready
time edrt(n;) = Maxy, cparents(n,) 1€€5t(n:) +w(n;) + c(ei;)}. Where prev(n)
does not exist, eest(n) = edrt(n). Otherwise, eest(n) = max(eest(prev(n)) +
w(prev(n)), edrt(n)). These are the same as the conditions for determining the
earliest start time of a task in ELS whose ancestors have already been scheduled,
but replacing the fixed, known start times of these ancestors with estimated ear-
liest start times in each instance.

The complexity of the ordering phase in terms of the number of states is
determined by the number of possible orderings of tasks. For a given allocation
A, there is some number of possible orderings for the tasks in each part a;.
The exact number will depend greatly on the details of the task graph and
dependencies between tasks, as well as the decided allocation. The worst case
will be a graph where all tasks are independent, as this gives no constraints
on the ordering. In this case, for a given allocation A, the size of the ordering

sub-tree is bounded by:
o ( 11 |ai|!>
a;EA

Note that the total derived from this formula becomes lower as the number
of parts used by the allocation increases, and as tasks are spread more evenly
between the parts. The potential advantage of this is that in problem instances
where load balancing is the most important factor in deciding a good allocation
(i.e. a task graph with low CCR) there will be fewer options to explore once
the ordering phase is reached.

In our implementation, the changes in estimated earliest start times caused
by the ordering of each new task na are propagated recursively. First, eest(na)
is calculated based on the EEST of the parents of na, and the EEST of the
task immediately preceding it on its processor proc(na). The algorithm then
proceeds to update the EEST of all ordered tasks whose start times depend on
na - any of its children which, being allocated to a different processor, may have
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Figure 11: Updating estimated earliest start times after ordering a new task.

already been ordered. Once the EEST of all these tasks has been recalculated,
we continue propagating to any previously ordered tasks which depend on them,
and so on. In this case, dependent tasks include not only children, but also tasks
which may be scheduled immediately after them on their respective processor.
The red arrows in figure 11 show how the EEST updates are propogated after
the ordering of task a, both through the original communication dependencies in
the task graph and the new dependencies determined by the previously decided
ordering.

In this way, we have solved the problem of duplicates arising from making
the same decisions in a different order. By allocating each task to a processor
ahead of time, and enforcing a strict order on the processors, it is no longer
possible for these situations to arise. Where before we might have placed task
ny on po and then task n; on p;, we now must always place task n; on p; and
then task ny on po.

Lemma 2. The ordering phase of the AO model can produce all pos-
sible valid orderings of tasks and there is only one unique sequence
that produces each possible ordering.

Proof. This proof is similar to that of Lemma 1. We show how any given com-
plete valid schedule Sq, which implies the complete allocation A,, is constructed
with the proposed ordering procedure and that there is only one possible choice
at each step. Consider the sequence of moves required to replicate Sqp. We
begin with an empty schedule S, and then select processors for consideration
in a fixed and deterministic order (e.g. round robin). Say that we select p;. In
schedule Sgq, there is a task n, which is next in order on p;. Since Sq is a valid
schedule consistent with A, n, must belong to the current ready queue for p;.
Since n, is next in order in Sq, it must be selected to be ordered next in S.
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At each step, there is exactly one possible move that can be taken in order to
keep S consistent with Sq. Since there is always at least one move, it is possible
to produce any schedule consistent with A, in this fashion, and because there
is always at most one move, there is only one path that will produce a given
schedule. Since each distinct schedule can only be produced with one unique
sequence of moves, duplicate schedules are not possible. O

Please note that this lemma is not ruling out the creation of invalid orderings.
How they are avoided is discussed in 4.

Ordering Cost Function

The heuristic for determining f-values in the ordering stage follows a similar
pattern to that for allocation. The difference lies in the fact that independent
tasks allocated to the same processor can now delay one another. During the
allocation phase, our critical path heuristic assumes that every task begins as
early as it theoretically could on the processor it is assigned to, only based on
the allocated top-level. Another way of looking at this is that we assume that
every task will be first in order (and that this is also true for all ancestors).
Clearly this is not the case, and as we decide the actual order of the tasks on
a processor p, the tasks which are placed earlier in the order are likely to push
back the start times of the tasks placed later in the order, as they must wait
to be executed. Communications from other processors can also introduce idle
times, during which the processor does nothing as the data required for the task
next in order is not yet ready. The eest of a task takes both of these factors
into account. For each state s, the current estimated finish time of a processor
p; is the latest estimated finish time of any task n € V' : proc(n) = p; which
has so far been ordered. This estimated finish time must include both the full
computation time of each task already ordered on p;, as well as any idle time
incurred between tasks.

With this in mind, we define our two bounds like so: first, the latest esti-
mated start time of any task already ordered, plus the allocated bottom level
of that task. We refer to this as the partially scheduled critical path, as it
corresponds to the allocated critical path through our task graph, but with the
addition of the now known idle times and intra-processor communication delays.

fSCP(S) = MaXpcordered(s) {eeSt(n) + bly (n)} (4)

Second, the latest finish time of any processor in the partial schedule, plus
the total computational weight of all tasks allocated to that processor which are
not yet scheduled.

fordered—load(s) == maXpEP tf(p) + Z w(n) (5)

nepNunordered(s)

Again, this corresponds to the total computational load on a processor with
the addition of now known idle times and intra-processor delays. To obtain
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the tightest possible bound, the maximum of these bounds is taken as the final
f-value.

forder(s) = max{fscp(s)a fordered—load(s)} (6)

8.8. Combined State-Space

Solving a task scheduling problem instance requires both the allocation and
ordering sub-problems to be solved in conjunction. To produce a combined
state-space, we begin with the allocation search tree, Sa. The leaves of this
tree represent every possible distinct allocation of tasks in G to processors in P.
Say that leaf [; represents allocation A;. We produce the ordering search tree
So, using A;. The leaves of So, represent every distinct complete schedule of
GG which is consistent with A;. If we take each leaf [; in S4 and set the root of
tree So, as its child, the result is the combined tree Sao, the leaves of which
represent every distinct complete schedule of G on the processors in P. Figure
12 demonstrates how all of the ordering sub-trees in S40 sprout from the leaves
of the allocation tree above them.

Figure 12: A possible search path through the combined state space.

A branch-and-bound search conducted on this state-space will begin by
searching the allocation state-space. Each allocation state representing a com-
plete allocation has one child state, which is an initial ordering state with this
allocation. When considering the allocation sub-problem in isolation, we define
the optimal allocation as that which has the smallest possible lower bound on
the length of a schedule resulting from it. Unfortunately, these lower bounds
cannot be tight and therefore it is not guaranteed that the allocation with the
smallest lower bound will actually produce the shortest possible schedule. This
means generally that in the combined state-space, a number of complete alloca-
tions are investigated by the search and have their possible orderings evaluated,
as represented by the red arrow in figure 12. The tighter the bound which can
be calculated, the more quickly the search is likely to be guided toward a truly
optimal allocation.

4. Avoiding Invalid States

The simple definition of a ready list as described in Section 3.2 enforces
valid local orders for all processors, but in same cases their combination can be
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Figure 13: A minimal example of a cycle created by ordering edges.

an invalid global ordering. To explain why this happens, we model a partial
schedule as a graph showing all of the dependencies between tasks. For a task
graph G, a partial schedule S’ can be represented by augmenting G to produce
a partial schedule graph Gg/. We begin with the graph G. Say that in S’, a task
ny is ordered on processor pi, and a task ns is also ordered on pq, but later in the
sequence. We check for the edge e in the task graph. If e;o ¢ F, we add e
to E. This new edge represents that, according to the ordering defined by our
partial schedule, nomust begin after n;. This can be considered as a new type
of dependency, which we call an ordering dependency, as opposed to the original
communication dependencies in G. Once edges have been added corresponding
to all ordered tasks in S’, we have our graph Gg.. The presence of a cycle in
this graph indicates that the ordering is invalid, as a cycle of dependencies is
unsatisfiable. Since the graph G is acyclic, and if n; is an ancestor of n; in G
then the ordering edge ej; cannot be created, it is necessary that any cycle in
G s will contain at least two ordering edges. Figure 13 shows a minimal example
of such a cycle, with ordering edges marked by dashed lines.

In our preliminary work in [9], such states were removed from consideration
during the search as their cyclic nature made their f-values increase infinitely
during calculation, until they passed an upper bound for the schedule length
and it was clear they could be ignored. However, it is possible for a state to
exist in which no cycle yet exists, but for which it is inevitable that a cycle
will be created as the ordering process continues. Say, for example, that the
introduction of edge e;; would create a cycle in Gg/, but in S’ the task n; has
already been ordered while n; has not. In order for the schedule to be completed,
n; must eventually be ordered, at which point a cycle will be formed. Here,
S’represents an entire subtree of states from which no valid schedule can be
reached. None of these states can be selected as the optimal solution, so this
does not present a threat to the accuracy of the search process. However, it
does represent a potentially substantial amount of wasted work performed by
the search algorithm. Ideally the formulation of the AO model would be such
that it allows the creation of any valid solution, and only valid solutions.
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The key to avoiding this unnecessary work is the observation that, given
that n; has been ordered and n; has not, it is inevitable that n; must even-
tually be ordered later than n;. Therefore, for all descendents of this partial
schedule in which n; is ordered, the ordering edge e;; must be in Gsr. We can
therefore define a more useful augmented task graph, G%,, which ’looks ahead’
to determine cycles that must inevitably occur. In this graph, the ordering edge
e;; exists if proc(n;) = proc(nj) and either n; is ordered later than n;, or n; has
been ordered and n; has not.

To avoid these cycles, we propose a modification to the condition we use to
determine if a task is free to be ordered. The new condition is this: a task n; on
processor p; is free to be ordered if it has no ancestors in graph G, which are
also on p; and have not already been ordered in S’. In the original formulation of
AOQ, this condition used only the graph G. However, the ordering edges specific
to the partial solution S’ must be considered equally with the communication
edges that are common to all partial solutions. The creation of a cycle in G,
requires that an ordering edge is introduced from a task n; to task n;, where n;
was already reachable from n; using at least one ordering edge. By definition,
this means that n; is the ancestor of n; in G%,. Therefore, according to the new
condition, n; cannot be considered free until n; has been ordered, meaning that
the edge e;; can never be introduced and the cycle can never be formed. By
treating the ordering dependencies created during the ordering process in the
same way as the original communication dependencies, we ensure that states
with an invalid global ordering cannot be reached.

We implement this more precise definition of a free task by maintaining
a record of G, with each state in the form of a transitive closure matrix.
Whenever a new task is ordered, the transitive closure is updated to reflect the
new ordering dependencies. We can then use this matrix to determine which
tasks are free when creating the children of a state.

4.1. Fvaluation

Use of the simpler definition of the ready list as in Section 3.2 does not
produce incorrect results; invalid states eventually have their f-values escalate
indefinitely, and hence are quickly removed from consideration. An indetermi-
nate amount of work was wasted before reaching and removing these obviously
wrong states, however. We therefore find it necessary to evaluate whether the
work saved by avoiding invalid states outweighs the additional algorithmic over-
head necessary to do so. To determine experimentally the impact of this, we
performed A* searches on a set of task graphs using versions of the model
both with invalid state avoidance and without. The details of this data set
are discussed in detail in Section 6. Task graphs were chosen corresponding
to a wide variety of program structures. Approximately 270 graphs with 21
tasks were selected. These graphs were a mix of the following DAG structure
types: Independent, Fork, Join, Fork-Join, Out-Tree, In-Tree, Pipeline, Ran-
dom, Series-Parallel, and Stencil. We attempted to find an optimal schedule
using both 2 and 4 processors, once each for both versions of AO, giving a total
of over 1000 trials. All tests were run on a Linux machine with 4 Intel Xeon
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Figure 14: Comparing the performance of AO with and without invalid states.

ET7-4830 v3 @2.1GHz processors. The tests were single-threaded, so they would
only have gained marginal benefit from the multi-core system. The tests were
allowed a time limit of 2 minutes to complete. For all tests, the JVM was given a
maximum heap size of 96 GB. A new JVM instance was started for every search,
to minimise the possibility of previous searches influencing the performance of
later searches due to garbage collection and JIT compilation.

Figure 14 shows the results of these tests. We use a form of plot known as
a performance profile: the z-axis shows time elapsed, while the y-axis shows
the cumulative percentage of problem instances which were successfully solved
by this time. Both versions of AO were able to solve approximately 70% of
the problem instances within 2 minutes, with a slight advantage for invalid
state avoidance. This suggests that the presence of invalid states does not have
too much of a negative impact on average. It also suggests, however, that the
addition of the transitive closure and associated operations does not significantly
slow down the implementation of the AO formulation.

5. Pruning Techniques and Optimisations

Now that the novel AO model and the search through its solution space
have been proposed, it is important to investigate pruning techniques and other
optimisations which can be used with it. A search of the AO state-space model is
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theoretically able to benefit from several pruning techniques and optimisations
already developed for ELS. Namely, these are identical task pruning, fixed order
pruning and a heuristic upper bound [12, 8]. We discuss them in the following,
see which have become obsolete and then propose a new additional pruning
technique.

5.1. Adapted from ELS
Identical Task

Two tasks A and B are considered identical if they are indistinguishable
from each other in any way except by their name [41]. This means they have
the same weight, same children, same parents, and same communication costs
to and from those respectively. If tasks are identical, then their positions in any
schedule can be freely swapped without any effect on the rest of the schedule.
Therefore, the relative ordering of a set of such tasks, I, does not matter. We
only need to consider one such order for our search.

To do this in ELS, we augment the task graph by creating a chain of “virtual
edges” linking tasks in I. A virtual edge from task A to task B prevents B
from being considered for scheduling before A, but does not imply any other
dependency. It has no weight, and A does not have to finish before B can be
started. Virtual edges, therefore, only have an impact on deciding which tasks
belong to the current ready list. B cannot be added to the ready list until A is
scheduled. In this way it is ensured that only one order for the identical tasks
in I is allowed.

In AO, this pruning can also be applied, but we need to distinguish the
allocation (A) and the ordering (O) phase. In the allocation phase we take
advantage of identical tasks to provide additional pruning . Not only does the
ordering of identical tasks not matter, a task A on processor p; can be swapped
with its identical task B on ps without consequence. The processor that an
individual task in a set of identical tasks is allocated to does not matter. What
matters, therefore, is what number of the tasks in I belong to each part of the
allocation. While building our allocation, we give the parts of the allocation an
arbitrary index order. Say that part a, € A is the part with highest index to
which any task in I is allocated. When a task n; € I is next to be allocated,
we restrict the parts to which it may be assigned to only those a; € Ali > z.
Essentially, as we allocate the tasks in I, we first decide how many of the
identical tasks are assigned to agp, then how many are assigned to a;, and so
on. In this way, we avoid producing any allocations which differ only in the
permutation of identical tasks across processors.

During the ordering phase the pruning technique is applied in much the
same way as in ELS. However, since we consider only local ready lists, the
virtual edges are not always relevant. If identical tasks A and B are allocated
to the same processor, then the virtual edge from A to B will be respected, and
only orderings in which A goes before B will be produced. If A and B are on
different processors, however, then the order in which they are considered for
scheduling is instead decided by the order in which processors are considered.
These virtual edges will therefore be ignored.
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Heuristic Upper Bound

A solution to a task scheduling problem can be found quickly (that is, in
polynomial time) using a heuristic algorithm. The length of an approximate
solution can then be used as an upper bound for f-values in an optimal search.
Since we have an example of a solution with this length, it is guaranteed that
no solution with a higher f-value can be optimal. The A* algorithm will not
examine states with higher f-values than the optimal solution, so this optimisa-
tion will not prevent additional states from being created. However, it can save
memory as states that will never need to be examined do not need to be stored.
Additionally, if the heuristic happens to find an optimal solution, it saves us
from searching through an indeterminate number of equal f-value states. As
soon as our best state has that f-value, we know we can stop and take the
heuristic solution - now proven to be optimal [41, 8.

The AO model is able to use this technique in just the same way as ELS,
with no special consideration required.

Fized Task Order

For a fork graph, it is guaranteed that an optimal schedule exists in which
the tasks are scheduled in order of non-decreasing in-edge weight [12]. Given
such an order for the tasks, all that is required to find the optimal schedule is a
search for an optimal allocation of tasks. Conversely, for join graphs, the same
is true if the tasks are scheduled in order of non-increasing out-edge weight. In
a fork-join graph, if an order can be found which satisfies both the fork and the
join condition simultaneously, then this order is also optimal. We can therefore
fix the order of this set of tasks, eliminating the need to search all permutations.

In fact in ELS, whenever the current set of ready tasks fulfills these condi-
tions, their order can be fixed [12]. This fixed order can then be followed until
changes to the ready list invalidate the fixed order conditions. This property
allows the technique to be extended to graphs which are not purely indepen-
dent, a fork, join, or fork-join, but merely contain these as a sub-structure. If
in any state the current ready tasks all belong to such a sub-structure, it may
be possible to fix their order. It also means that if a fork-join graph does not
immediately meet the fixed order conditions, the conditions may still be met in
subsequent states and allow the order to be fixed for certain sub-trees.

For AQ, if we are able to fix the order of all the tasks in a graph then only
the allocation phase of our search is relevant, and the ordering phase becomes
trivial. Generally, in the ordering phase, we can apply our fixed order conditions
to the tasks in a local ready list. If the conditions hold for the currently ready
tasks on a given processor, then the local order of these tasks can be fixed.
Since these local ready lists are smaller than the global ready list of ELS, they
are less likely to contain a task which contradicts the fixed order conditions.
Additionally, the number of chances for an order to be fixed increases by a
factor of |P|. It is therefore probable that the order of tasks can be fixed more
often when using AQ, albeit for smaller sets of tasks. We can even fix the order
of multiple fork-join substructures in a graph at the same time, as long as they
are assigned to different processors.
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5.2. Obsolete

Since there are no duplicates in the AO model, the pruning techniques used
to mitigate the impact of duplicates in ELS [9] are no longer relevant.

Duplicate Detection

In ELS, there is no way to mitigate the effect of independent scheduling order
duplicates (Section 2.3) except to keep a record of all states found so far. Binary
search trees are used to store both an open set (containing states created but
not yet explored) and a closed set (containing states which have already been
expanded) [8]. Each time a state is created, it must be ensured that neither the
open nor the closed set already contain this state. If they do, then this state is
a duplicate and is discarded. The need for the closed set means that all states
created must be kept in memory for the duration of the search. The time taken
to search the open and closed sets is O(lg(k)), where k is the number of states
so far created by the search.

Since there are no duplicates in AQ, it is not necessary to maintain a closed
list. It is also unnecessary to compare new states against the open list, which
permits the use of more efficient data structures for the open list. AO therefore
has a very large advantage in terms of memory usage, and a small but perhaps
practically significant advantage in time complexity.

Processor Normalisation

In order to avoid processor permutation duplicates (Section 2.3) in ELS, each
state created has its partial schedule S’ transformed into a normalised form S
[8]. In the ELS implementation compared here, we rename and therefore 're-
order’ the processors to which tasks are assigned in S/, in a way that ensures
that all processor permutation duplicates of S’ are transformed to the same nor-
malised form. First, we give a total ordering to the tasks in V. This can be any
order, so long as it is used consistently, but is likely to be the same topological
order used elsewhere. We can then define min(p;) as the task n with lowest
value among those assigned to p;. The ordering of processors is then defined
such that min(p;) < min(p;) = p; < p;. Once the processors are re-ordered
according to this scheme, we have our normalised partial schedule S%;. By nor-
malising all states in this way, we can use the previously discussed duplicate
detection mechanism in order to remove processor permutation duplicates from
consideration.

The method used by the AO model for its allocation phase makes this process
unnecessary, as it simply does not allow these duplicates to be produced in the
first place. In essence, the method of iteratively building a partition from an
ordered list of tasks ensures that each state produced is automatically in its
normalised form. In other words, if the processor normalisation process were
to be applied to one of AQ’s partial allocations no re-ordering would ever take
place, as the processors are in their normalised order at all times.
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5.3. Nowel

Graph Reversal

Among the standard task graph structures, there are several pairs which
differ only by the direction of their edges. Most obviously, reversing the edges of
a fork graph produces a join graph, and vice versa. It can also be observed that,
for both the ELS and AO models, join graphs are significantly more difficult
to solve than fork graphs, as evident in Figure 16. This arises from the fact
that in both models tasks are allocated to processors in a topological order.
In a fork graph, all communications originate from the source task. Being
a source, and therefore first in topological order, this task is always the first
to be allocated, and from that point on it will always be known whether a
communication cost is incurred or not as soon as the other corresponding task
is allocated. Conversely, in a join graph, all communications go to the sink task.
Since it is last in topological order, all other tasks are allocated before it without
any knowledge of which communications are incurred. The decision of which
communication costs to set to zero is made all at once, in the last step. Since
knowledge about communication costs is critical to determining a lower bound
on the eventual length of a partial schedule, it is clear to see why fork graphs,
where this information is always available, can be solved much more efficiently
than join graphs, where this information is not available until too late.

We define R(G), the reverse of a task graph G, simply by reversing the
direction of each edge e € G. If we do this for a join graph, the result is a
corresponding fork graph. We can then find an optimal schedule S}‘%(G) for this
reversed graph. If this reversed graph is now a fork, it can be solved much more
efficiently than the original join. Our optimal schedule for R(G) can then be
reversed to obtain a valid schedule for G. Reversing a schedule simply means
reversing the ordering of the tasks allocated to each processor, so that the task
scheduled first is now scheduled last, and so on. Using, this ordering, each task is
started as early as possible, subject to the processor availability and precedence
constraints. This reversed schedule R(S};(G)) is now an optimal schedule S for
the original graph. This known result is easy to show. Taking a schedule and
reversing its time line, while at the same time reversing the direction of all edges
results in a valid schedule for the reversed graph. The reversed schedule and the
original must have the same length - the same computation and communication
delays occur, only in backwards order. In the reversed schedule, not all tasks
might start at their earliest possible time, but rescheduling them earlier has no
negative impact on the schedule length (this is done automatically in the above
described procedure as we only take the order of the tasks). If a shorter schedule
for G existed, it could in turn be reversed to produce a shorter valid schedule
for R(G), and so S}, could not have been an optimal schedule in the first
place. Instead of solving difficult join graphs, we can instead transform them
into fork graphs, solve these much more easily, and then transform the resulting
schedules to produce optimal schedules for the original joins. This technique is
also applied to out-tree and in-tree graphs, of which fork and join are special
cases, respectively.
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6. Evaluation

In this section we evaluate the benefit of the new AO state-space model in
the search for optimal solutions. For this purpose it is compared against the use
of the ELS model. The empirical evaluation was performed by running branch-
and-bound searches on a set of task graphs using each state-space model. We
wished to evaluate the models using a large and diverse data set, so as to provide
a representative view of their general performance. To that end, software was
developed that allowed task graphs to be procedurally generated following a
number of templates.Task graphs were generated that differed by the following
attributes: graph structure, the number of tasks, and the communication-to-
computation ratio (CCR). In the generation process, the structure of the graph
would first be defined by creating the desired number of tasks and then creating
edges between them as suitable for the specified structure. With the structure
defined, weights were generated for the nodes and edges by selecting from a
uniform distribution of integers between 1 and 10. These weights would then
be scaled in order to closely approximate the specified CCR value.

Table 1 describes the range of attributes in the data set. A set of
1360 task graphs with unique combinations of these attributes were gener-
ated. These graphs were divided into four groups according to the number
of tasks they contained: either 10 tasks, 16 tasks, 21 tasks, or 30 tasks.
This set of task graphs is available for use in GXL and DOT formats from
http://parallel.auckland.ac.nz/Optimal TaskScheduling/BenchmarkSet.zip.

An optimal schedule was attempted for each task graph using 2, 4, and 8
processors, once each for each state-space model. This made a total of 4080
problem instances attempted per model. Searches were performed using the A*
search algorithm. All pruning techniques discussed in the previous section were
applied to each state-space model that could take advantage of them.

The implementations were built with the Java programming language. An
existing implementation of ELS (as described in [12]) was used as the basis for
an AO implementation, with code for common procedures shared wherever pos-
sible. Notably, the basic implementation of the A* search algorithm is shared,
with the implementations differing in how the children of a search node are
created and bounded. In addition, a closed list is used for duplicate detection
when searching using ELS, but no such data structure is used when searching
with AO. The implementations of commonly applicable pruning techniques are
also shared. Using this approach, the differences observed in the experimen-
tal results are most like due to the different models and not implementation
artifacts.

All tests were run on a Linux machine with 4 Intel Xeon E7-4830 v3 @2.1GHz
processors. The tests were single-threaded, so they would only have gained
marginal benefit from the multi-core system, but the high-end system provided
large amounts of memory. The tests were allowed a time limit of 2 minutes to
complete. This time limit was chosen in the interest of practicality for finishing
the large number of experimental trials in a feasible time - preliminary results
suggested that the relative performance of the two models would remain very
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Graph Structure

No. of Tasks

CCR values

Independent
Fork

Join

e 16
e 21
e 30

e 0.1
o1
e 10

Fork-Join
e Out-Tree
e In-Tree
e Pipeline
e Random

e Series-Parallel

Table 1: Range of task graphs in the experimental data set.

similar if longer time limits were allowed. For all tests, the JVM was given
a maximum heap size of 96 GB. Since the A* algorithm has an exponential
memory requirement, it is preferable to have a very large amount of memory
available. 96 GB is a reasonable maximum given the RAM available on our
machine. A new JVM instance was started for every search, to minimise the
possibility of previous searches influencing the performance of later searches due
to garbage collection and JIT compilation. As there is potential for confusion,
it is important to note that the physical machine used in these experiments to
perform the A* search is unrelated to the abstract parallel systems modelled
within the scheduling problem.

6.1. Results and discussion

For the 10-task group, every problem instance was solved within at most 3
seconds, regardless of the state-space model used. It is apparent that both mod-
els are powerful enough that task graphs this small will not present a challenge,
and so we will not discuss these results further. The other three groups will be
discussed in detail in the following.. Figure 15 shows performance profiles (as
used in Section 4.1) that compare the performance of the two models, broken
down by graph size. These charts indicate the accumulated percent of problem
instances in the data set that were successfully solved after a given time had
elapsed, up to the timeout of 120 seconds. In the 16 task group, a large ma-
jority of the problem instances were able to be solved by both models, but AO
gives a clear advantage. By the timeout, 90% of instances were solved by AO,
while only 77% were solved by ELS. In the 21 task group, we see an even more
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Figure 15: Overall performance of the two models.

dramatic difference: while ELS solves only 46% of instances within two minutes,
AO manages to solve 70%. Graphs of size 30 are difficult to solve within two
minutes for both models. Although ELS is seen to have a slight advantage in the
first few seconds of runtime, by the end of two minutes the lines have converged
and both models solve 19% of instances. Overall, AO has significantly better
performance in these experiments, particularly in the “medium difficulty” 21
task group. Not only does it solve more instances within a few seconds, the gap
between the models widens as time goes on, with AO consistently solving more
instances than ELS.

Breaking the results down by graph structure, we see that AO has a clear
advantage for most structures. Figure 16 shows the solved instances within
the time limit by model in stacked bar charts across the different structures.
In the 16 and 21 task graphs, AO dominates ELS in almost all structures.
For 30 tasks, it is clear that graphs of this size present a significant challenge
for both models, as a large majority of problem instances were not solved by
either. Overall, both models solved 19% of graphs in this group. ELS shows
better performance with Independent, Random, and Stencil graphs, while AO is
better for the other structures. The large number of non-solved instances in this
size category makes it difficult to draw further conclusions. Comparing by the
communication-to-computation ratio of the task graphs (Figure 17), we see that
AO has an advantage at all values, but is dramatically better at solving graphs
with very high CCR of 10. By deciding the allocation of tasks first, a search using
the AO model very quickly determines the entire set of communication costs
which will be incurred. Allocations which incur very large communication costs
are likely to be quickly ruled out, and knowledge of all the communication costs
can be used in the calculation of f-values throughout the ordering stage. For
graphs in which communication is dominant, it is intuitive that early knowledge
of the communication would allow more efficient decision-making, and these
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results support that intuition.

The newly implemented reversed-join pruning technique allowed for a dra-
matic increase in the number of join and in-tree task graphs able to be solved,
as seen in Figure 18, where the -R’ graph name extension indicates that the
graph was reversed before scheduling. As would be expected, the performance
trend for reversed join graphs is very similar to that for fork graphs, and the
same is true for reversed in-tree and out-tree graphs. Both AO and ELS are
able to solve many more graphs this way, but the impact is more significant for
AO.

7. Advanced Lower Bound Heuristics

Section 3 described intuitive and essential bounds and corresponding f-value
functions to use for the initial implementation of the AO state space. However,
it is likely that tighter bounds could improve the performance of searches using
AO. Below we describe various improvements which allow these bounds to be
tightened in some circumstances. These new bounds all apply to the Allocation
phase of the state-space. Since this is the part of the model which is most
distinct from ELS, it appears to offer the most new opportunities for heuristic
development.

Minimum Finish Time

The allocation-load heuristic (Section 3.1.1, fi,qq(1)) was intended to provide
an estimate for the finish time of each processor, using the trivial fact that a
processor will require at least as much time as is necessary to execute all of its
allocated tasks. The addition of the minimum allocated top and bottom levels
was a simple step which acknowledged that processors must sometimes wait for
data to be communicated to them before they can begin execution. However,
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it is also often the case that a processor cannot execute all of its tasks in one
unbroken stretch, and additional idle time must occur. Idle time is time during
the run of a schedule when a processor is not performing any computation.
This is often necessitated when a processor has finished execution of one task
but has not yet received all data necessary to begin the next task in order. It
is required to wait while computation and communication associated with that
task’s ancestors is performed by other components of the system. The time at
which a processor receives all the necessary data for a task n and may begin
execution is known as the data-ready time, drt(n). In any schedule, for a given
task n, it must always be the case that t5(n) > drt(n) > tl,(n). It follows from
this that we may obtain a tighter bound by considering the allocated top levels
of all tasks on a processor, thereby including some additional idle time.

Consider a single grouping a in a partial partition A. When scheduled, each
task n € a will have some finish time t¢(n) = ts(n) + w(n). We wish to find a
lower bound for the value Tr(a) = maznecq{ts(n)}. A simple observation is that
Tr(a) > maznecq{tla(n) +w(n)}: the minimum finish time must be at least as
large as the maximum of the earliest possible finish times of the tasks. However,
in many cases a task n will not be able to start at ¢/, (n) without overlapping
execution of tasks and violating the processor constraint. Execution of the final
task must be delayed until all other tasks are completed.

Given a total ordering O, for the tasks n € a, let task nm; be the i*" in
order according to O,. The earliest possible starting time for task n; adher-
ing to order O, is then t.s(n;, Of) = max{tly(n;), test(ni—1,04) + wn;—1)},
with test(ng, On) = tla(ng). It follows for the order O, that Tr(a,O,) >
Maxnecq{test(n, Oy) + w(n)}.

To use this in a lower bound, we now need to find an ordering which min-
imises Tr(a).
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Lemma 3. Let O« be the ordering of the tasks n € a in non-descending
allocated top level order tl,. Then Tr(a,O%) < Tr(a,0,) for all pos-
sible orders O, of tasks in a.

Proof. The proof is by contradiction. Assume there is an ordering OF # O«
with Tr(a,Ol) > Tp(a,0). Now consider two adjacent tasks n;_1 and n;,
1 < j <|a]—1, in the ordering O}. If tl,(n;) > tla(nj_1), they are already in the
same relative order as in O'». Otherwise, their order can be swapped without
increasing the earliest start time of the following tasks, tes¢(n;), Vi > j. This is
true because tly(n;) < tle(n;—1), and so there is no gap (idle time) between the
two tasks. This means they can be swapped and placed again without any gap,
such that the now first task n; starts at the original tes(n;—10}). Following this,
the now later task n;_; will finish at the original t¢(n;, O}), and therefore the
swap does not impact on the following tasks in the order. Repeatedly swapping
all task pairs that are not in order until there is no such pair left, will then
bring all tasks of a into O%« order with the same Tr(a, Q) as before, which is
a contradiction to the original assumption. O

We have shown that by ordering the tasks n € a by non-descending allocated
top level, we can obtain a lower bound for Tr(a), which we call Tj(a). Adding
the minimum bottom level to this, as explained in the previous section, achieves
an even tighter lower bound for the overall schedule.

Additionally, an analogous bound T¢(a) can be found by arranging the tasks
in an order OY, such that bl(n;) — w(n;) > bl(n;+1) — w(n;y1), and assigning
them as-late-as-possible start times. Note that this is equivalent to the process
of finding T} (a) on a reversed task graph. Where T} (a) is a lower bound on
the time between the start of the overall schedule and the end of execution of
the last task on the processor, T§(a) is a lower bound on the time between the
start of execution of the first task on the processor and the end of the overall
schedule. This can of course be combined with the minimum allocated top level
in just the same way as Th(a) is with the minimum bottom level. Finally, we
can combine all of this to obtain our new overall bound:

fload—mft(s) = maxaeA{man{T;‘(a) + minnéa(bla(n) - w(n))v
mitcotla(n) + T5(a | @

Critical Path Load

The allocated critical path heuristic (Section 3.1.1, fqcp 2) can be improved
by closer examination of the reasons for using top and bottom levels. The top
level ti(n) gives us a lower bound on the time before a task n can start. The
bottom level bl(n) gives us a lower bound on the time between the start of
task n and the overall finish time of the schedule. These are determined by
finding the "critical paths" in the task graph that begin and end with that
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task, respectively. However, as shown by use of the allocation-load heuristic,
combining a critical path with a load balancing heuristic gives us a tighter
bound. To apply this to top and bottom levels, we can examine the ideal load
balancing of the tasks preceding and following our task n. We call these the
top load, tload(n), and bottom load, bload(n). We use a well-known simple
load-balancing bound found by summing the weights of all relevant tasks and
dividing by the total number of processors. For the top load, this means the sum
of the weights of all ancestors of our task: since they all must finish execution
before our task starts, a perfect load balancing of these tasks gives a lower
bf)u-nd for the start of our task. Therefore, tload(T.z) = Y icancestors(n) W)/ P|-
Similarly, the bottom load uses the sum of the weights of all descendants of our
task: since they all must start execution after our task finishes, a perfect load
balancing gives a lower bound for the time required to finish the schedule, and
so bload(n) = 3¢ jescendants(n) W(@)/|P|- The top and bottom load values are
not affected by allocation, and therefore need only be calculated once at the
beginning of the search process. When determining the allocated critical path,
we can use whichever is the maximum of the top level or top load of each task
(and similarly, bottom level or bottom load) to find a tighter overall bound:

facp—load(s) = max,cy- {ma:c(tla(n), tload(n))
+ max(bly(n), bload(n))} (8)

7.1. Evaluation

To determine experimentally the impact of these new lower bound heuristics,
we performed A* searches on a set of task graphs using various heuristic profiles,
detailed in Table 2. To clearly see the effect of these novel lower bounds, we keep
the A* search algorithm fixed, except for the changes in the f-value calculation
using the proposed bounds. In each trial, the number of states created by the
A* search before reaching an optimal solution was recorded. The same set
of task graphs was used as in Section 6. We attempted to find an optimal
schedule using 4 processors, once each for each heuristic profile, giving a total
of over 1000 trials. As before, the algorithms were implemented in the Java
programming language. All tests were run on a Linux machine with 4 Intel
Xeon E7-4830 v3 @2.1GHz processors. The tests were single-threaded, so they
would only have gained marginal benefit from the multi-core system. The tests
were allowed a time limit of 2 minutes to complete. For all tests, the JVM
was given a maximum heap size of 96 GB. A new JVM instance was started
for every search, to minimise the possibility of previous searches influencing the
performance of later searches due to garbage collection and JIT compilation.

Figure 19 shows the results of these tests as performance profiles for the three
heuristics. It is obvious that the CPL heuristic produces no difference from the
baseline, with both solving 71% of instances overall. This suggests that the top
and bottom load metrics rarely produce a critical difference when compared to
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Heuristic Profile ‘ Description

Baseline Previous heuristics - see Egs. (1) and (2).
CritPathLoad (CPL) facp(2) is replaced by focp—ioad(8)-
MinFinishTime (MFT) fr0ad(1) is replaced by fioad—idie(7)-

Table 2: Heuristic profiles used for experimental trials.
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Figure 19: Comparing percent of instances solved with different heuristic profiles.

top and bottom level. However, MFT does show an advantage over the baseline,
with a total of 74% of instances solved. The inclusion of necessary idle time in
the processor load heuristic is significant enough to produce a difference of 3%
of total graphs solved. Further, that advantage is achieved very early in the A*
search, which makes this even more useful. This noticeable improvement of the
AO model based A* search demonstrates the further potential that this new
AO model may show as better f functions are discovered.

8. Larger Task Graphs

Having demonstrated the advantage of the AO model over the ELS model
with a large number of small task graphs, we wish to investigate whether this
advantage will continue to be apparent when solving larger task graphs and
allowing longer run times. This is particularly interesting given that the per-
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’ Graph | Source | Tasks [ CCR | ELS (ms) | AO (ms) |

OS_Random_34_1 Original 34 10 TIMEOUT 171
OS_Random_34_3 Original 34 0.1 | TIMEOUT 25112
OS_Fork_34_1 Original 34 1 TIMEOUT 105

0S_Join_34_1 Original 34 1 TIMEOUT | 3519481
OS_Random_34 4 Original 34 10 TIMEOUT 16113
OS_Fork_34_2 Original 34 10 TIMEOUT | 194881
OS_Independent_40_-1 | Original 40 N/A | MEMORY 2934
D40.30_1 [42] 40 4 TIMEOUT 70121
D40-30_-2 [42] 40 5.7 | TIMEOUT 17914
D40_50_2 [42] 40 | 10.3 | TIMEOUT | 1416
D40-60_-1 [42] 40 6.6 | TIMEOUT 246
D40.90_1 42 40 11 TIMEOUT 13804
D40-90_2 42 40 23.5 4153667 260

Table 3: Results for larger graphs where at least one model was successful.

formance of AO and ELS seemed to be converging with the graphs having 30
tasks. It is less practical to use a large dataset for solving graphs at this scale,
so we have selected a smaller group of task graphs with between 34 and 56 tasks
each.

Some of the larger graphs were generated using the same method as our
previous dataset - some of these have 34 tasks, and others have 40. Additionally,
large graphs suggested by Davidovic et al. have been included [42] - these
graphs are believed to be generally easier to solve due to their high density.
Also included are three graphs representing the linear algebra algorithm known
as Cholesky factorisation [43], with 56 tasks, along with three graphs generated
by the Montage software package [44] representing an algorithm for producing
astronomical image mosaics, each with 50 tasks. A total of 39 task graphs were
selected. We attempted to find an optimal schedule using 2 processors, once
each for each state-space model. As before, the algorithms were implemented
in the Java programming language. All tests were run on a Linux machine with
4 Intel Xeon E7-4830 v3 @2.1GHz processors. The tests were allowed a time
limit of 2 hours to complete. For all tests, the JVM was given a maximum heap
size of 96 GB.

Table 3 gives the results for each of the graphs which could be solved within
two hours when using at least one of the state-space models. Overall, around
33% of the selected graphs were able to be solved, and in all such cases they were
able to be solved by the AO state-space model. In the single instance in which
one of these larger graphs was solved using the ELS model, it took approximately
70 minutes for the search to complete, where AO was able to solve this problem
instance in less thanone second. It is clear that, although graphs of this size are
challenging for both models, AO performed significantly better with this data set
than ELS did. This suggests that despite the convergence in performance seen
with the 30-task set, AO continues to be the superior option when scheduling
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graphs of larger size.

9. Conclusions

Previous attempts at optimal task scheduling through branch-and-bound
methods have used a state-space model which we refer to as exhaustive list
scheduling. This state-space model is limited by its high potential for producing
duplicate states. In this paper, we have proposed a new state-space model which
approaches the problem of task scheduling with communication delays in two
distinct phases: allocation, and ordering. In the allocation phase, we assign
each task to a processor by searching through all possible groupings of tasks. In
the ordering phase, with an allocation already decided, we assign a start time to
each task by investigating each possible ordering of the tasks on their processors.
Using a priority ordering on processors, and thereby fixing the sequence in which
independent tasks must be scheduled, we are able to avoid the production of
any duplicate states.

Our evaluation suggests that the AO model allows for superior performance
in the majority of problem instances, as searches using the new model were
significantly more likely to reach a successful conclusion within a two minute
time limit. Along with pruning techniques and optimisations previously used
with ELS, a new graph reversal optimisation leads to much higher success rates
with Join and In-Tree graph structures. Finally, the more complex Minimum
Finish Time heuristic for the allocation phase of AO was found to produce a
significant advantage over a simpler heuristic. In this work, the majority of
pruning techniques for ELS have either been adapted to AO, or made obsolete
by its lack of duplicates. However, entirely new pruning techniques which are
only possible under the AO model are likely to be able to be found. Application
of these new techniques may allow AO to further improve.

In both the allocation and ordering phases, the sequence in which schedul-
ing decisions are made does not affect the correctness of the result (so long as
some described conditions are met). It is possible, however, that certain priority
schemes for these decisions could allow improved f-values, and thereby improve
the viability of optimal solving. The reverse-join optimisation technique de-
scribed here demonstrates that, for a task involved in many communications,
early rather than late allocation makes a large difference in performance. A
priority scheme which generalises this principle could therefore be of significant
benefit.

The AO state-space model’s lack of duplicates means that branch-and-bound
algorithms searching it do not require the use of additional data structures
for duplicate detection. This suggests that AO may have an advantage over
ELS when using a low-memory algorithm such as depth-first branch-and-bound.
Parallel branch-and-bound is also likely to benefit from the AO model, as the
lack of duplicate detection means a decreased need for synchronisation.

Beyond this, it is likely that the AO model can be extended to allow the
solving of more complex task scheduling problems - for example, using a task
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scheduling model which allows task duplication, models which allow heteroge-
neous processors, or models that include communication contention.
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