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Abstract

Task scheduling with communication delays is a strongly NP-hard problem. Previous attempts at finding optimal solutions to this
problem have used branch-and-bound state-space search, with promising results. However, the scheduling model used assumes a
target system with fully homogeneous processors, which is unrealistic for many real world systems for which task scheduling might
be performed. This paper presents an extension to the Allocation-Ordering (AO) state-space model for task scheduling which allows
a system with related heterogeneous processors to be modeled, and optimal schedules on such a system to be found. Of particular
note, the distinct allocation phase allows this model to efficiently adapt to partially heterogeneous systems, in which subsets of the
processors are identical to each other, which significantly helps to reduce the search space. An extensive experimental evaluation
shows that the introduction of heterogeneity certainly increases the difficulty of the problem. However, many problem instances
solvable using homogeneous processors remain solvable with a heterogeneous target system, made possible by the significant
benefit of this model in considering partial heterogeneity.
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1. Introduction

Task scheduling with communication delays, otherwise known
as P|prec, ci j|Cmax [1], is a well known problem in which a set
of computational tasks must be scheduled on a set of proces-
sors with the goal of minimising the overall execution time,
constrained by precedence relations between tasks and associ-
ated communication costs. A related problem, with additional
complexity, is the problem of task scheduling with communi-
cation delays and related heterogeneous processors, denoted
as Q|prec, ci j|Cmax. In the former problem, all processors are
identical, and give identical execution times. Related heteroge-
neous processors may have different speeds, such that the ex-
ecution time of tasks on one processor is some fixed multiple
of their execution time on a different processor. Both of these
problems are strongly NP-hard, and therefore there is no al-
gorithm known which will find optimal solutions in polynomial
time [2]. Many polynomial-time heuristic algorithms have been
proposed which provide non-optimal solutions [3, 4, 5]. Dy-
namic scheduling must necessarily be performed with heuris-
tic approximation algorithms - these may help to inform lower
bound heuristics for optimal scheduling algorithms, but are oth-
erwise quite distinct. In this work we are concerned with opti-
mal scheduling, and therefore with static scheduling in which
all tasks and their properties are known a priori.

To acquire the maximum benefit of a parallel system for
timely program execution, it is necessary to have high quality
schedules. Because no α-approximation scheme is known for
the problem, it is not generally possible to guarantee the quality
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of an approximate solution [6]. Properly analysing the perfor-
mance of approximation algorithms therefore requires optimal
solutions for comparison. Previous work on optimal solving for
the homogeneous-processor variant of the scheduling problem
has found branch-and-bound state-space search to be a promis-
ing method [7], particularly when using a state-space model
called Allocation-Ordering (AO) [8]. However, there are many
real world systems on which scheduling might be performed
which do not have homogeneous processors.

In this paper, we describe how the AO state-space model
has been adapted to allow it to provide optimal solutions to the
problem of task scheduling with related heterogeneous proces-
sors. In particular, the AO model appears suited for systems
exhibiting partial heterogeneity: that is, where multiple cate-
gories of mutually identical processors can be identified. One
example is that of a computing cluster in which different types
of processor have been added or replaced in distinct stages over
time. We show that this modified AO model can successfully
solve many task scheduling problems of similar size to what
is achievable with homogeneous processors, and identify some
trends in the relative performance on heterogeneous and homo-
geneous systems. In general, heterogeneous systems make task
scheduling more difficult. However, we demonstrate that the
AO model’s adaptation for partial heterogeneity provides a sig-
nificant advantage when scheduling for many possible systems.
In addition, it is seen that when a target system is strongly het-
erogeneous, it can instead make finding solutions easier.

In Section 2 we discuss relevant background information,
including the task scheduling model used and the original for-
mulation of the AO model. Section 3 discusses how the AO
model was reformulated to allow heterogeneity, and the ad-
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Figure 1: A simple task graph, and valid schedules on homogenous and hetero-
geneous processors.

ditional complexity this introduces to the state-space. Subse-
quently, Section 4 presents an empirical evaluation of the per-
formance of the reformulated AO model on a variety of hetero-
geneous and homogeneous systems. Finally, Section 5 presents
the conclusions of the paper.

2. Background

2.1. Task Scheduling Model

The problem this work is concerned with is defined as the
scheduling of a task graph G = {V, E,w, c} on a target parallel
system, this being a set of processors P. G is a directed acyclic
graph (DAG) which represents a program we wish to execute,
and is referred to as a task graph. Nodes n ∈ V represent distinct
computational tasks which make up the program. Each task has
an integer weight w(n), known as the computation cost, indicat-
ing a relative number of time units necessary to complete the
associated computation. Dependencies between tasks are repre-
sented by the task graph’s edges. An edge ei j ∈ E indicates that
task n j is dependent on task ni. This means that data produced
by the computation in ni is a necessary input of n j, and therefore
ni must complete execution before n j can begin. The weight of
an edge c(ei j), known as the communication cost, gives a num-
ber of time units necessary for the associated data to be com-
municated from one processor to another. An example of a task
graph can be seen in Figure 1a. The set of parents (or predeces-
sors) of task n is denoted by pred(n), while the set of children
(or successors) is denoted by succ(n). The processors p ∈ P of
the target system are assumed to have a homogeneous commu-
nication subsystem such that data may be communicated uni-
formly between any pair of processors pi, p j ∈ P. Communica-
tion is achieved without contention and without disrupting the
computational work of the processors. There is no cost associ-
ated with local communication, i.e. from pi to pi. This means
that communication costs between tasks assigned to the same
processor are ignored, and do not cause delays.

The goal of the problem is to define a schedule S = {proc, ts}.
The function proc(n) maps a task n ∈ V to a processor p ∈ P,
indicating on which processor the task should be executed. The
function ts(n) maps a task n ∈ V to an integer start time, indi-
cating the number of time units after the beginning of program
execution when this task should start to be executed. A valid
schedule is one in which proc(n) and ts(n) are defined for all

n ∈ V , subject to two additional constraining criteria. Firstly,
each processor may execute at most one task at any given time.
Second, a task n may only start executing after all of the tasks it
is dependent on have finished execution, and the data they pro-
duce has been communicated to proc(n). An optimal schedule
S ∗ is a valid schedule which has the minimum possible total ex-
ecution time. Figure 1b shows a valid schedule for the simple
task graph in Figure 1a, given two homogeneous processors.
Note that although the task graph specifies a communication
cost of 1 time unit between tasks A and B, in this schedule B is
able to be placed immediately after A with no delay. Since A
and B are both assigned to processor p1, no communication is
necessary and so no cost is incurred.

The distinguishing factor between the model used in this
work and that used by earlier applications of state-space search
to task scheduling is in the definition of the set of processors
P. In both cases, P contains a finite number of processors P.
The processors in P are dedicated, meaning that tasks cannot
be preempted once they begin execution. In earlier work, the
processors are homogeneous: for all p ∈ P, the execution time
of a task n will be the same. More specifically, given a start time
ts(n) for the task, the finish time t f (n) = ts(n) + w(n), regardless
of the value of proc(n).

The model used in this paper, however, allows for proces-
sors to be heterogeneous: the required execution time for a task
may differ from processor to processor.

Definition 1. Time Scaling Factor
A function s f maps each processor p ∈ P to an integer

time scaling factor s f (p). To find the execution time of a task
n on processor p, the computational weight w(n) is multiplied
by the time scaling factor s f (p) to give the total number of time
units required to complete the task. Therefore, when given a
start time ts(n) for a task in this model, the finish time t f (n) =

ts(n)+w(n)×s f (proc(n)). The lowest time scaling factor among
all processors is denoted by s f ∗ = minpi∈P{s f (pi)}.

This additional variable allows processors of varying speeds
to be modeled, better approximating many real world systems
on which programs might be scheduled. If s f (pi) = 1 and
s f (p j) = 2, then it will take p j twice as long to execute any
given task as it would take pi. Figure 1c shows an example of a
valid schedule for the graph in Figure 1a, with s f (p1) = 1 and
s f (p2) = 2. The absolute values of these time scaling factors
are not important. It is the ratios between them that define the
characteristics of P. Integers are used in order to maintain sim-
ple and precise computation and modeling. In general, when
modeling a desired target system, it is useful to give the fastest
processor a baseline scaling factor such as 1, 10, or 100. The
scaling factors of the remaining processors can then be easily
calculated according to the desired ratio. Arbitrarily precise ra-
tios can be modeled by setting the baseline to increasing powers
of ten.

Top and bottom levels of tasks are concepts useful for for-
mulating bounds. The top level tl(n) of task n is the length of the
longest path through the task graph ending at n, calculated by
summing the weights of the tasks in the path. Communication
costs are not included, and neither is the weight w(n) itself. The
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top level is a lower bound on the value that could be assigned
to ts(n) in a valid schedule. Analogously, the bottom level bl(n)
is the length of the longest path in the task graph beginning
with n, also excluding communication costs but including the
weight w(n). This is a lower bound on the time between ts(n)
and the end of the schedule. Communication costs are excluded
because of the possibility that they do not need to be incurred,
due to local communication - in contrast, all computation costs
must always be incurred in any valid schedule.

2.2. Related Work
Many combinatorial optimisation techniques could be used

in solving the task scheduling problem. Branch-and-bound search
algorithms have been applied to optimal solving of small prob-
lem instances, with some success [9, 10]. Previous work us-
ing the A* search algorithm has introduced the AO [11] state-
space model, whereas earlier methods [12, 7] used a state-space
model that can be called exhaustive list scheduling. The AO
model avoids a limitation of older models by not being able to
produce duplicate states: that is, there is only one possible path
through the state-space that will reach any given distinct par-
tial solution. The AO model has been shown to significantly
increase the number of problem instances that can be solved
within a given time limit, and its duplicate-free nature makes it
much more amenable to memory-limited and parallel branch-
and-bound algorithms [13].

Integer linear programming (ILP) is another NP-hard com-
binatorial optimisation method which has been applied to opti-
mal task scheduling. In this method a problem is formulated as
a linear program, with the constraint that variables in a solution
may only take integer values. ILP solvers use a number of algo-
rithms to find the optimal solution, generally including highly
optimised branch-and-bound search at some stage [14]. ILP
formulations of the P|prec, ci j|Cmax task scheduling problem
[15, 16, 17, 18] are able to efficiently solve problem instances of
comparable size to those which can be handled by pure branch-
and-bound approaches, and therefore neither method has yet
been shown to be most effective.

For optimal task scheduling, most work has focused on solv-
ing the problem with homogeneous processors [19, 15, 18]. A*
search has been used to address the optimal allocation of tasks
on heterogeneous distributed systems [20], and the scheduling
of independent parallel tasks on heterogeneous systems [21].
Some ILP formulations allow for optimal scheduling on het-
erogeneous processors [22, 23, 24, 25, 26]. Formulations have
also been presented for scheduling models which include het-
erogeneity in the communication layer [17]. The AO model’s
suitability for modeling partial heterogeneity may allow it to
have an advantage when scheduling for some of the most com-
mon types of heterogeneous systems.

A number of heuristic algorithms for task scheduling have
been proposed to work with heterogeneous processors [3, 4, 27,
28]. In most cases, adaptation for heterogeneity can be as sim-
ple as using an “earliest finish time” metric instead of “earliest
start time” when constructing a schedule. Introducing hetero-
geneity therefore does not tend to increase the computational
complexity of heuristics by more than a small constant factor.

2.3. Branch-and-Bound

Branch-and-bound is a method of state-space search used to
solve combinatorial optimisation problems. Under this method
all of the possible solutions to a problem can be investigated im-
plicitly without resorting to actual exhaustive enumeration [29].
States in the search tree represent partial solutions to the prob-
lem under consideration, with some decisions fixed and oth-
ers not. A branching operation is defined which takes a partial
solution s and transforms it into a set of new, more complete
partial solutions. These new states are referred to as the child
states of s. Each state s is also bounded using a function f (s)
which gives a lower bound on the cost of complete solutions
which could exist as descendants of s. This bound is com-
monly known as the f -value of s. These bounds allow states
(and simultaneously their descendants) to be disregarded by the
search, as they can be used to prove that they cannot lead to a
better solution than other states elsewhere in the state-space. It
is required that the cost function f provides an underestimate,
in which case it is said to be an admissible heuristic. Specifi-
cally, an admissible cost function guarantees that f (s) ≤ f ∗(s),
where f ∗(s) is the actual lowest cost of any complete solution
in the sub-tree rooted at s. For a branch and bound algorithm to
be guaranteed to produce an optimal solution for any problem
instance, two conditions must be met - the branching procedure
must allow all valid solutions (and only valid solutions) to be
reached, and the cost function using in bounding must be ad-
missible.

One of the most well known and widely used variants of
branch-and-bound is the A* algorithm. This algorithm uses
a best-first approach, and has the particularly desirable prop-
erty of being optimally efficient [30]. This means that, using
the same cost function f , there can exist no algorithm which is
guaranteed to examine less states while solving a problem. A*
commonly uses a data structure known as a Closed set in order
to detect when duplicate states (i.e. those previously visited via
another path) are encountered.

2.4. Allocation-Ordering Model for Homogeneous Processors

Allocation-Ordering (AO) is a state-space model for task
scheduling in which complete schedules are constructed through
two distinct phases, combined into a single search tree [11]. In
the first phase, allocation, the assignment of tasks to processors
is decided. In the second phase, ordering, the sequence in which
tasks on each processor will be executed is decided, based on a
complete allocation from the previous phase. In combination,
these phases completely define both the proc and ts functions
and produce a valid schedule. A search algorithm may move
between these phases as required. The AO model was devel-
oped in order to overcome a shortcoming of earlier state-space
models: a potential for duplicate states. Previous research has
shown that this allows the AO model to provide superior per-
formance in optimal solving. The initial formulation of the AO
model assumes the use of homogeneous processors.

The goal in the allocation phase is a complete allocation of
tasks to processors, and each state represents a partial alloca-
tion. We model an allocation as a partition of the set of tasks
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V - a set of mutually exclusive subsets, the union of which is
equal to the original set. A partition of some subset V ′ of V
may be called a partial partition of V . Each state in this phase is
therefore a partial allocation A which is a partition of some V ′.
The branching operation produces child states which are more
complete partial allocations by adding a single additional task
from V . Starting with a list of the tasks n ∈ V arranged in a
topological order, at each branching step we take a new task ni

from the head of the list and insert it into a single part in the
partition. It can either be added to an existing part, or used to
start a new part, with the full range of decisions here giving the
set of child states. Partial partitions cannot contain more parts
than there are processors in P. All possible complete partitions
of V can be created using this method.

States in the allocation phase are bounded using two differ-
ent metrics. The first lower bound is the maximum total compu-
tational load among any of the parts a ∈ A. The second lower
bound is the “allocated critical path” through the task graph,
given the allocations decided in A. The allocated critical path
is determined using the allocated top level, tlA(n), and the al-
located bottom level, blA(n), of the tasks n ∈ V . These are
very similar to the top and bottom levels already define, but in-
corporate communication costs which it is now known must be
incurred. If there is an edge ei j, and the tasks ni and n j have
been assigned to different parts in our allocation A, then we
know that the communication cost c(ei j) must be incurred in
any valid schedule derived from this allocation. We can there-
fore include the weight of this edge when calculating allocated
top and bottom levels. The maximum of these two bounds gives
an overall lower bound for the state:

fload(s) = max
a∈A

∑
n∈a

w(n)

 (1)

facp(s) = max
n∈V
{tlA(n) + blA(n)} (2)

A state representing a complete allocation has just a single
child state: the beginning of a new ordering phase. We use
our complete allocation A to fully define proc(n) by arbitrarily
mapping each part a ∈ A to a processor p ∈ P. In the order-
ing phase, each state represents a “partial ordering”. For each
processor, a ready list is maintained of tasks whose dependen-
cies have been satisfied. At each branching step, a single task
n is selected from the ready list of a processor and “ordered”:
placed next in sequence on that processor. The full range of
ready tasks that could be chosen defines the set of child states.
The basic criterion for “readiness” is as follows: a task ni allo-
cated to pi is considered ready if there is no unordered task n j

also allocated to pi which is an ancestor of ni in the graph G.
More complex criteria are required for the state-space model
to work most efficiently [8]. In order to ensure duplicates are
avoided, the next processor to have a task ordered must be de-
cided by some deterministic scheme, such that the processor
chosen can be determined solely by the depth of the state. A
simple round robin scheme suffices. Once all tasks have been
ordered, a valid schedule can be uniquely derived by defining

ts(n) for all n ∈ V as the earliest start time possible given the
allocation and ordering decided.

To find lower bounds in the ordering phase, we use the con-
cept of an estimated earliest start time eest(n) for each task.
This is the lowest value that ts(n) could take, constrained by the
complete allocation and partial ordering decided so far. For an
unordered task, eest(n) = tlA(n). For ordered tasks, we first de-
fine prev(n) as the task which is ordered directly before n on
the processor proc(n). We also define the estimated data ready
time edrt. If n j is a source task, with no parent tasks, then we
have:

edrt(n j) = 0

Otherwise, if n j has one or more parents, the edrt is defined
as:

edrt(n j) = max
ni∈pred(n j)

eest(ni) + w(ni) +

c(ei j), proc(ni) , proc(n j)
0, otherwise


(3)

We then have the following for eest:

eest(n) =

edrt(n), prev(n) = ∅

max(eest(prev(n)) + w(prev(n)), edrt(n)), prev(n) , ∅
(4)

With these definitions, we are again able to derive two met-
rics for bounding, which parallel those used in the allocation
phase. The first lower bound is the partially scheduled critical
path, derived by finding the maximum among all n ∈ V of the
estimated earliest start time plus the bottom level. The second
lower bound is the largest among all processors of the estimated
finish time plus the sum of the weights of the tasks not yet or-
dered on that processor. The maximum of these two bounds
gives an overall lower bound for the state:

fscp(s) = max
n∈V
{eest(n) + blA(n)} (5)

fordered−load(s) = max
p∈P

tf(p) +
∑

n∈unordered(s):proc(n)=p

w(n)

 (6)

3. Heterogeneous Processors in the AO Model

In this section, we describe how we have adapted the AO
state-space in order to allow the solution of task scheduling
problems using heterogeneous processors. This has been achieved
mostly through changes to the allocation phase, leaving the or-
dering phase almost entirely the same.

The allocation phase of AO models allocations as partitions,
which takes advantage of the homogeneity of processors on tar-
get systems for which it was originally designed. Through the
recognition that these homogeneous processors are entirely in-
terchangeable, the complexity of the state-space attributable to
allocation is significantly reduced. With heterogeneous systems
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(or even homogeneous systems, as with the ELS model without
processor normalisation pruning), other models often treat all
processors in the system as if they are distinct, leading to an
allocation complexity of O(|P||V |). For a system in which all
processors are truly different from all others, this complexity
is unavoidable. However, in real life heterogeneous systems, it
is often the case that subsets of the processors are identical to
each other - a common example would be a system which has
a number of CPUs working in tandem with one or more GPUs.
We can generalise the AO model’s strategy of modeling allo-
cation with partitions to heterogeneous processors such that the
complexity of the state space is minimised for any given target
system. This means that every possible truly distinct allocation
onto the target system can be reached by following exactly one
path through the state-space.

3.1. Processor Category

To begin, we define the concept of a processor category.
When scheduling, we are attempting to efficiently arrange the
components of a program, represented by the task graph G,
onto a target parallel system, abstracted as the set of proces-
sors P. Each processor p ∈ P has a time scaling factor s f (p),
allowing the processors to have arbitrarily differing speeds from
each other. However, we observe that real world systems often
do not exhibit complete heterogeneity, where no two processors
are the same, but instead contain several distinct classes of pro-
cessor. Processors may differ greatly between these groups, but
within such a group they are identical.

Definition 2. Processor Category
A function cat maps processors p ∈ P to a set of processor

categories K(P). The function cat defines an equivalence class
such that for processors pi and p j, cat(pi) = cat(p j) if and only
if s f (pi) = s f (p j). Therefore, if two processors have the same
time scaling factor, they belong to the same processor category
κi ∈ K,

In a homogeneous system, there is only one processor cate-
gory. In a fully heterogeneous system, the number of categories
is equal to the number of processors. A system with a number
of categories greater than one but less than the number of pro-
cessors can be termed a partially heterogeneous system.

3.2. Heterogeneous Allocation

Before beginning the allocation phase, we first determine
how many processor categories the target system possesses, and
the number of processors contained in each category. We then
proceed with constructing a partition of V as normal, but with
the parts of the partition AK each labeled by a category κi. This
is done as follows. We start with a list of the tasks n ∈ V ,
arranged in some topological order. At each step, we take the
next task ni from the head of the list. We then choose a category
κi ∈ K. Once we have made this choice, we choose to insert the
task ni into one of the existing parts in AK which is labeled by
κi, or to begin a new part labeled by κi with that task. The maxi-
mum number of parts which can be created with a given label κi

κ1
P1 P2 P3 P4

κ2κ1
P1 P2 P3 P4

{A, B}, {C}

{A, B, D}, {C} {A, B}, {C}, {D}{A, B}, {C, D}

{A, B}, {C}

{A, B, D}, {C} {A, B}, {C}, {D}{A, B}, {C, D} {A, B}, {C}, {D}

κ1κ1 κ1

κ1 κ1 κ1 κ1 κ1 κ1 κ1 κ1 κ1 κ1 κ1 κ1

κ2

κ2 κ2 κ2 κ2 κ2

Figure 2: Branching in the allocation phase for a homogeneous and a heteroge-
neous system.

is equal to the number of processors in that category, |κi|. Algo-
rithm 1 gives pseudocode for this process. Figure 2 shows the
possible children of a single allocation state, both with a homo-
geneous and a heterogeneous target system, demonstrating the
various ways in which a new task D can be inserted into the par-
tial partition. We see that more children are possible with the
heterogeneous system, as when adding a new part to the parti-
tion there is a choice as to which processor category this new
part will be labeled with. The following proof, adapted from
work on the original AO model[8], demonstrates that all possi-
ble allocations onto heterogeneous proccesors can be produced
with this bounding procedure.

Lemma 1. The allocation phase of the AO model with hetero-
geneity can produce all possible labeled partitions of tasks.

Proof. We show how any given allocation AΩ
K , which is a com-

plete partition of V labeled by K, is constructed with the pro-
posed allocation procedure. We begin with an empty partial
allocation AK = {}, and are presented with the tasks in V in a
fixed order n1, n2, ... n|V |. We must always begin by placing n1
into a new part, so that A = {{n1}}. The new part a1to which n1
belongs must then be labeled with the same κi ∈ K as the part
to which n1 belongs in AΩ

K . Now we must place n2. If n1 and
n2 belong to the same part in AΩ

K , they must also be placed in
the same part in AK , and so we must have AK = {{n1, n2}}. Con-
versely, if n1 and n2 belong to different parts in AΩ

K , the same
must be true in AK , and we make Ak = {{n1}, {n2}}. The part
a2to which n2 now belongs must be given the same label as the
part to which n2 belongs in AΩ

K . For each subsequent task ni, if
ni in AΩ

K belongs to the same part as any of tasks n1 to ni−1, we
must place it in the same part in AK . If ni does not share a part
in AΩ

K with any task n1 to ni−1, it must be placed in a new part
by itself, the label of which is exactly determined by the label
of the part a j to which ni belongs in AΩ

K . At each step, there is
exactly one possible move that can be taken in order to keep AK

consistent with AΩ
K . Since there is always at least one move, it

is possible to produce any partition of V in this fashion.

3.3. Levels and Bounds with Heterogeneity

Bounding in this new allocation phase is very similar, ex-
cept that the differing time scaling factors of the processors
must be taken into account when calculating the top and bot-
tom levels and the total computational load. The total compu-
tational load of a part must simply be multiplied by the time
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scaling factor s f (κi) of the category with which that part is la-
beled. Recall that in order for the result of our search to be
provably optimal, the cost function must be admissible; it must
never overestimate the length of the shortest schedule that can
be reached from the current state. In formulating these bounds
we therefore assume that the minimum possible computation
and communication costs will be incurred, in order to produce
an underestimate. If a task has been allocated in the current
state, we then know what its final computation cost will be, de-
termined by the scaling factor of the part it is allocated to. All
tasks which are still unallocated are instead considered to have
the lowest possible scaling factor, s f ∗. Looking at the top and
bottom levels, we see that the minimum start time will be ob-
tained if all tasks on the path are placed on the fastest processor.
The top level tl(n) in this context is then equal to the sum of the
weights of the nodes in the path, multiplied by s f ∗. The bottom
level bl(n) is changed in the same way.

tl(n) = max
np∈pred(n)

{
tl(np) + w(np) × s f ∗

}
(7)

bl(n) = w(n) × s f ∗ + max
ns∈succ(n)

{bl(ns)} (8)

When calculating allocated top and bottom levels, the scal-
ing factor of the part a task is allocated to must be considered
when determining the task’s execution time. Given a path φ in
the task graph G, and allocation A, we now find the length of
that path by summing the weights of nodes and edges as fol-
lows: if a task n has not been allocated, we add w(n) × s f ∗. If
n has been allocated, we add w(n) × s f (κi). If ni and n j have
each been allocated, and to different parts, we add c(ei j). If
either has not been allocated, or both are allocated to the same
part, we add zero - assuming that the communication cost of the
relevant edge will not be incurred, until it is proved otherwise.
This definition allows both the top and bottom levels to be car-
ried over to the heterogeneous context. The relevant weights of
tasks and edges for an allocation A can be expressed as follows:

wA(n) =

w(n) × s f (proc(n)), n ∈ A
w(n) × s f ∗, n < A

(9)

cA(np, ni) =

c(epi), ni, np ∈ A ∧ proc(ni) , proc(np)
0, otherwise

(10)

Incorporating these definitions gives us these formulas for
allocated top and bottom levels under the heterogeneous model:

tlA(n) = max
np∈pred(n)

{
tlA(np) + wA(np) + cA(np, n)

}
(11)

blA(n) = wA(n) + max
ns∈succ(n)

{blA(ns) + cA(n, ns)} (12)

Algorithm 1 Defining child states in the allocation phase with
heterogeneity.
Input: A, a partial partition of V
Input: unallocated, topologically ordered list of tasks in V not contained in A
Input: C, a partition of P defining processor categories
Output: child states of A
nextTask ←the head of unallocated
childrenA ← ∅

for κi ∈ C do // for each category

1 Ki ← a ∈ A | a is labeled with κi
/* for each part belonging to category κi */

2 for a ∈ Ki do

3 childrenA ← childrenA ∪ ((A \ a) ∪ (a ∪ {nextTask}))
4 if |Ki | < |κi | then

/* more processors in ki can be used */

5 childrenA ← childrenA ∪ (A ∪ {nextTask}label κi )
return childrenA

3.4. Ordering

In the ordering phase, branching is not affected at all by the
introduction of heterogeneity. However, the scaling factors of
each processor need to be factored into the calculation of the
bounds. This is done very simply by substituting w(n) with
w(n) × s f (proc(n)) wherever it is used. This, along with the
definition of the allocated top and bottom levels already given
in Section 3.3, is all that needs to be modified for this phase.

3.5. State-space Growth

The redefinition of the allocation phase changes the struc-
ture of the state-space, as it introduces new distinct possibilities
for complete allocations.

3.5.1. Homogeneous processors
In general, for homogeneous processors, the size of the allo-

cation state-space can be approximated using the Bell numbers,
where Bx is the number of distinct possible partitions of a set
of size x [31]. The precise number of complete allocations in
the state-space can be found using the Stirling numbers of the
second kind, denoted by S tirling(x, k), these giving the number
of ways to divide a set of x objects into k non-empty subsets
[32]. It is necessary to consider the Stirling numbers in order
to account for the limited number of processors in a target sys-
tem. The exact number of partitionsA(|V |, P) of a set of tasks
V which can be mapped to allocations for a target system P is
found as follows:

A(|V |, P) =

|P|∑
k=1

S tirling(|V |, k) =

|P|∑
k=1

k∑
r=1

(−1)k−r
(
k
r

)
r|V | (13)

The value A(|V |, P) will in the worst case be equal to the
Bell number B|V | when |P| ≥ |V |. The Bell numbers, and there-
fore A(|V |, P), have been shown to have the following upper
bound [31]:

A(|V |, P) = O
((

0.792|V |
ln(|V | + 1)

)
|V |

)
(14)
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Parameters Permitted Allocations

|V| |P| AO Naive

10 2 512 1024

10 4 43,947 1,048,576

10 8 115,929 1,073,741,824

21 4 ≈ 1.833 × 1011 ≈ 4.398 × 1012

21 8 ≈ 2.454 × 1014 ≈ 9.223 × 1018

Table 1: Number of permitted allocations with homogeneous processors.

|A| Selections Permutations Total

1 3 (1 0 0), (0 1 0), (0 0 1) 1, 1, 1 3

2 4 (1 1 0), (1 0 1), (0 1 1), (0 0 2) 2, 2, 2, 1 7

3 3 (1 1 1), (1 0 2), (0 1 2) 6, 3, 3 12

4 1 (1 1 2) 12 12

Table 2: Number of possible labelings for system P4C3.

The number of partitions A(|V |, P) grows exponentially in
the number of tasks. However, the growth is slower than for
a naive state-space that does not consider the homogeneity of
processors, where the number of permitted allocations is |P||V |.
Table 1 shows a comparison of specific values for the number of
permitted allocations between AO and such a state-space. Note
that each excess allocation permitted by a naive state-space is
isomorphic with one which is permitted by AO.

3.5.2. Heterogeneous processors
For a heterogeneous system, the total number of distinct

partitions of the tasks remains the same; we have not intro-
duced any new ways in which tasks can be grouped together.
However, the differences between processors mean that each
distinct partition can now be mapped to several different dis-
tinct allocations. In order to take advantage of partial hetero-
geneity it is necessary to consider the way in which the parts of
the partitions are assigned to processor categories. This assign-
ment can be modeled by giving a label representing a category
to each part in a partition. The number of possible ways to la-
bel a given partition corresponds to an increase in state-space
size introduced by heterogeneity. This number of possible la-
belings will vary with the individual characteristics of the het-
erogeneous system, but also with the size |A| of the partition to
be labeled. When considering the entire state-space, we must
consider how many possible partitions exist at all possible sizes
|A|. To aid with this, we define a vector ~U(|V |, |P|) such that
~U(|V |, |P|)i = S tirling(|V |, i), from i = 1 to i = |P|. As an exam-
ple, consider the system P4C3 described in Table 4, along with
a task graph which has |V | = 10. This will give us the following
vector: ~U(10, 4) =

[
1 511 9330 34105

]
. Here we see that,

for example, the number of partitions with size |A| = 2 is 511.
Now we describe how to determine the number of possible

labelings for a partition of size |A|. Given a set of categories K,
and a complete partition A, we can construct a labeled partition
AK as follows. First, we will transform the set K to a multiset
K′, such that each element κi ∈ K is also an element of K′, with
a multiplicity σ(κi,K′) equal to the number of processors in P
belonging to category κi. Note that the multiplicity σ(κi,K′)
is the number of times κi appears in K′. We then perform the
following two operations:

1. Select a multiset K′′ of |A| labels from K′, one for each
subset in the partition A.

2. Choose some permutation of the selected labels K′′ and
apply them to the partition A to produce AK .

P4C3 has four processors divided into three categories: |P| = 4,
|K| = 3, |K′| = 4. For a given partition of tasks A j with say
three parts, i.e. |A j| = 3, we select a multiset of labels of size
3 from K′ . These three labels K′′ are permuted in some order
and the parts of A j are assigned these labels (i.e. processors) in
that order.

Both the number of possible selections of labels, and the
number of possible permutations of the selected labels, fac-
tor into the total number of additional distinct possibilities that
heterogeneity introduces. Unfortunately, the number of possi-
ble distinct selections from K′ is difficult to express - explicit
formulas for the number of k-combinations of a multiset exist,
but they are very complex [33]. Treating each element as dis-
tinguishable, the number of combinations

(
|K′ |
|A|

)
gives an upper

bound, but this is by no means tight. For a given heterogeneous
system, the possible selections can be individually enumerated
using an algorithm [34]. Table 2 gives a full enumeration of
possible selections K′′ for P4C3. We represent these selections
as a tuple of the multiplicities of the elements of K in K′′ e.g.
(1 0 2).

For each selection K′′ the number of distinct permutations
(derived from the standard formula for permutations of a mul-
tiset [35]) is given exactly by:

π(K′′) =
|A|!∏

κi∈K σ(κi,K′′)!
(15)

Table 2 also shows the number of permutations possible for
each selection. The total number of labelings possible for a par-
tition of size |A| is the sum of these, which can be seen in the
final column. For each heterogeneous system, we can define a
vector ~L(P) such that element ~L(P)i is the total number of label-
ings possible where |A| = i, e.g. ~L(P4C3) =

[
3 7 12 12

]
.

The total number of permitted allocations is then the dot-product
of the labeling vector and the partition vector:

A(|V |, P) = ~L(P) · ~U(|V |, |P|)

A(10, P4C3) =


3
7

12
12

 ·


1
511

9330
34105

 = 524800
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Parameters Permitted Allocations

|V| System ID Without Partial With Partial (Exact) With Partial (Bound)

10 P4C1 1,048,576 43,947 43,947

10 P4C2 1,048,576 175,275 175,788

10 P4C3 1,048,576 524,800 527,364

10 P4C4 1,048,576 1,048,576 1,054,728

21 P4C1 ≈ 4.398 × 1012 ≈ 1.833 × 1011 ≈ 1.833 × 1011

21 P4C2 ≈ 4.398 × 1012 ≈ 7.33 × 1011 ≈ 7.33 × 1011

21 P4C3 ≈ 4.398 × 1012 ≈ 2.199 × 1012 ≈ 2.199 × 1012

21 P4C4 ≈ 4.398 × 1012 ≈ 4.398 × 1012 ≈ 4.398 × 1012

Table 3: Number of permitted allocations with and without considering partial
heterogeneity.

Upper Bound for Heterogeneous Processors
Due to the potential difficulty in enumerating the number of

selections of labels, it is desirable to formulate an upper bound
for the total number of ways to label a partition, L≈(P).To do
this we can instead disregard step 1, as in the case in which
|A| = |P|. In this case, we select the entire multiset in step 1, so
that K′′ = K′. By taking a permutation of K′, and applying the
first |A| labels in the sequence to our partition A, we can produce
all possible values for AK - but any given value may be reached
in more than one way. The upper bound is therefore:

L≈(P) = O
(

|P|!∏
κi∈K (σ(κi,K′))!

)
(16)

We will use this value as the number of possible labelings
for partitions of all sizes |A|, and thereby obtain an upper bound.
Note that in a fully heterogeneous system, where |K| = |P| and
therefore σ(κi,K′) = 1 for all κi, this bound is equal to LP(A) =

O(|P|!). In other words, the denominator of (16) is the factor
by which the state space is smaller when considering partial
heterogeneity (i.e. categories) as we propose, in comparison
to (naive) full heterogeneity. In a homogeneous system, the
denominator will be equal to |P|!, and therefore L(A) = O(1).
In general, the fewer processor categories, the lower the value
of L(A).

Table 3 shows a comparison of specific values for the num-
ber of distinct allocations permitted with and without consider-
ation of partial heterogeneity. The parallel systems referenced
here are described in Table 4. The table lists both exact val-
ues, having been calculated according to their individual special
cases, and the values given by the bound above. It is clear that
when the grouping of processors into categories is taken into
account, the number of distinct possibilities decreases dramat-
ically - even with only one less category than the total number
of processors, the number of permitted allocations is reduced by
half. It can also be seen that, at least for these target systems,
the bound is quite tight.

The bound will be very tight whenever |V | is sufficiently
larger than |P|. The value L≈(P) is naturally exactly correct
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Figure 3: Normalised distribution of S tirling(|V |, k) for some values of |V |.

for partitions with size |A| = |P|. It is also correct for parti-
tions with size |A| = |P| − 1, as these will always have the same
number of possible labelings. To see why this is true, consider
that any |P|-permutation of K′can be uniquely transformed to a
(|P| − 1)-permutation by removing its last element. Given this,
the tightness of the bound will depend in large part on the pro-
portion of the total set of possible partitions that have |A| = |P|
or |P| − 1.

To further study when the bound L≈(P) is tight, consider
the following. For a given |V |, there is a value k∗ at which
S tirling(|V |, k) has its maximum value. Remember that the total
number of partitions A(|V |, P) is given by the sum of Sterling
numbers, eq. (13). The number of possible k-partitions grows
exponentially as k increases, comes to a peak at k∗, and then de-
creases exponentially thereafter. Figure 3 shows the distribution
of S tirling(|V |, k) for several values of |V | (note that the values
on the vertical axis have been scaled relative to the peaks of
their respective curves to allow better comparison of the curves
along the horizontal axis; by absolute values, each successive
peak is exponentially higher than the last). Highlighted in this
figure are the points where k = 8. If our |V | and |P| are such
that |P| is to the left of or exactly at the peak, i.e. |P| ≤ k∗,
our bound will be very tight. The proportion of total partitions
with |P| or |P| − 1 parts is guaranteed to be very high. This is
true because even the sum all partitions with a smaller k is sig-
nificantly less than at k∗, due to the initial exponential growth.
When |P| falls farther on the right side of the peak, i.e. |P| > k∗,
the bound is likely to become much less tight, as the exponen-
tial decline means the proportion of total partitions with |P| or
|P| − 1 parts will be low. Figure 3 demonstrates that if we have
|P| = 8, |V | = 20, then |P| = k∗ and the proportion of partitions
with |P| or |P| − 1 parts is very high. For |P| = 8, |V | = 10 the
proportion of partitions with |P| or |P| − 1 parts is very low, and
|P| = 8, |V | = 15 falls between these extremes.

Figure 4 demonstrates how the accuracy of the bound varies
as |V | increases for three of the systems described in Table 4.
Note that in the previous figure we had fixed |V | and varying k
(corresponding to |P|), while in this figure we have fixed |P| and
varying |V |. The red box in the figure highlights the region in
which the k∗ for those |V | is equal to |P|. The bound accuracy
decreases quickly to the left of this region: as |V | decreases,
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k∗also decreases, and the fixed |P| becomes increasingly greater
than k∗.

Strong Heterogeneity
It is clear that we should expect heterogeneous schedul-

ing to be more difficult than homogeneous scheduling, and for
the difficulty to increase significantly as the number of proces-
sor categories increases. However, there may be a counter-
balancing factor: if one processor category is faster than an-
other it is likely that, on average, optimal schedules will al-
locate more tasks to that category than to slower categories.
As the disparity in speed between the categories grows, it be-
comes less and less likely that moving a task from a fast pro-
cessor to a slow processor will be worth the trade-off between
the concurrency that the slower processors allow, and the cost
incurred by introducing remote communication. With a suffi-
ciently high ratio between fast and s‘low, optimal schedules can
be forced to always use only the faster categories of processor.
We will term systems with large differences between proces-
sor categories strongly heterogeneous, and systems with small
differences weakly homogeneous.

The dividing line between these two is not strictly defined.
We can, however, define a simple measure that will provide
an intuition for the relative strength of heterogeneity between
many systems.

Definition 3. Grade of Heterogeneity
The grade of heterogeneity H(P) of a target system P is

defined as:

H(P) =
maxp∈P {s f (p)}
minp∈P {s f (p)}

(17)

Hence H(P) is the ratio of the scaling factor of the slow-
est to that of the fastest processor. The grade of heterogene-
ity can be used to compare the strength of heterogeneity be-
tween different target systems. If Pi and P j are systems, and
H(Pi) > H(P j) then we can say that Pi is more strongly het-
erogeneous and P j is more weakly heterogeneous.

When scheduling on a more strongly heterogeneous target
system, we may expect that in many cases the “correct” alloca-
tion decision will be obvious enough that this will be reflected

by a significant difference in f -values. From this it would fol-
low that, although the overall state-space will be much larger, in
some cases it may be necessary for the search to examine less
of that state-space than if the target system was homogeneous.

4. Evaluation

This section presents an experimental evaluation of the pro-
posed state-space model for optimal scheduling on heteroge-
neous processors. We performed state-space searches for opti-
mal schedules on a large set of task graphs using a variety of dif-
ferent target systems, pursuing two objectives: firstly, to study
whether awareness of partial heterogeneity through the use of
categories can effectively reduce the search space. Further, we
want to determine the effect of the grade of heterogeneity on
the difficulty of solving task scheduling problems with the AO
model. Lastly, we put our state-space search results into re-
lation with ILP-based approaches to optimal scheduling with
heterogeneous processors.

In order to pursue the first objective, we wished to compare
the AO model considering partial heterogeneity against models
which do not consider partial heterogeneity. The heterogeneous
AO model described in this work can be made to ignore partial
heterogeneity by treating each processor as if it belonged to its
own category, regardless of the natural categories of the target
parallel system. In addition, an older state-space model for op-
timal task scheduling, Exhaustive List Scheduling (ELS), was
modified in order to allow scheduling with heterogeneous pro-
cessors by substituting w(n) with w(n) × s f (proc(n)) wherever
it is used.

4.1. Setup

The searches were performed using the A* branch-and-bound
algorithm with the AO state-space (both considering partial het-
erogeneity, and treating each system as if it were completely
heterogeneous) as well as the ELS state-space. We opted to use
A* to enable a fair comparison, since the ELS state space pro-
duces duplicate states which can be most efficiently detected
with a Closed set[13]. The nine target systems used are de-
scribed in Table 4. Due to the length of time required to com-
plete experiments, only a limited number of target systems could
be selected for the data-set. Target systems were chosen with ei-
ther 2, 4 or 6 processors in total. Scheduling on two processors
often appears to be a special case, and is therefore interesting
for comparison. Due to the size of the graphs to be used, it
was considered that using more than six processors would have
diminishing returns - it is likely that many optimal schedules
would leave most processors empty, and trivial solutions may
become possible. With four processors being a reasonable mid-
point, most of the selected target systems fall into this category.
Homogeneous systems with 2, 4 and 6 processors were used
as a baseline for comparison. The systems selected provide
variation in both number of processor categories and strength
of heterogeneity. All possible numbers of categories with four
processors were represented. Most of the target systems were
considered weakly hetereogeneous, with a grade H(P) = 2.
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ID Procs Categories Procs / Cat Time Scaling Factors H

P2C1 2 1 (2) (100) 1

P2C2 2 2 (1, 1) (100, 200) 2

P4C1 4 1 (4) (100) 1

P4C2 4 2 (1, 3) (100, 200) 2

P4C2S 4 2 (1, 3) (100, 600) 6

P4C3 4 3 (1, 1, 2) (100, 150, 200) 2

P4C4 4 4 (1, 1, 1, 1) (100, 120, 150, 200) 2

P6C1 6 1 (6) (100) 1

P6C2 6 2 (3, 3) (100, 600) 6

Table 4: The target systems used for evaluation.

Two strongly heterogeneous systems with H(P) = 6 were also
included.

An initial set of 340 task graphs were selected, each with
21 tasks. Prior experiments for homogeneous processors have
shown this to be an input size of medium difficulty [8]. The
graphs are a mix of the following DAG structure types: In-
dependent, Fork, Join, Fork-Join, Out-Tree, In-Tree, Pipeline,
Random, Series-Parallel, and Stencil. They also have a roughly
equal mix of the following CCR values: 0.1, 1, and 10. These
graphs have randomly distributed task and edge weights. Ad-
ditionally, a smaller set of 90 graphs was generated with unit
weights for tasks and edges - meaning that all tasks have the
same weight, and all edges have the same weight. This was
achieved by taking the graphs with Fork-Join, Pipeline and Sten-
cil structures and producing copies in which all task and edge
weights were replaced with the average of the existing val-
ues. The result is a set of unit-weighted graphs which preserve
the structure and CCR of the random-weighted originals. The
motivation for this additional set of homogeneous graphs is to
observe their scheduling behaviour on heterogeneous systems,
akin to scheduling heterogeneous graphs on homogeneous sys-
tems. All of the task graphs used for evaluation in this paper
are available for download.1

A* and the heterogeneous processor AO model as described
in Section 3 are implemented in Java. For each task graph, we
attempted to find an optimal schedule for each target system,
with a time limit of two minutes allowed for each search to com-
plete, and a maximum heap size of 96 GB. This was performed
with each of: AO with partial heterogeneity, AO without partial
heterogeneity, and the older Exhaustive List Scheduling state
space model without partial heterogeneity. There were a total
of 11,610 trials. Each trial was run on a Linux machine with
4 Intel Xeon E7-4830 v3 @2.1GHz processors with in total 48
cores. To remove the possibility of previous trials affecting sub-
sequent ones due to garbage collection or JIT compilation, a
new JVM instance was started each time.

1https://parallel.auckland.ac.nz/data/HetGraphSet2021.zip
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Figure 5: Performance profiles for each target system.

4.2. Results

To begin, we will look at the results of the trials for AO
using partial heterogeneity, grouped by target system. These
are shown in Figure 5 as performance profiles [36]: the x-axis
shows time elapsed, while the y-axis shows the cumulative per-
centage of problem instances which were successfully solved
by this time.

For the target systems with two processors, where P2C1 is
a homogeneous system and P2C2 a heterogeneous system, it is
clear that more problem instances are solved with the heteroge-
neous system than with the homogeneous. This would seem to
suggest that the introduction of heterogeneity made the prob-
lem easier. However, we note that two processors may be a
special case, as any heterogeneous system with two processors
will have a relatively strong contrast in processor speed, as dis-
cussed in Section 3.5.

Moving on to the four processor systems, we see more va-
riety in results. As shown in Figure 5, our baseline homoge-
neous system (P4C1) allows 79% of problem instances to be
solved. With the strongly heterogeneous system P4C2S, we ac-
tually see better performance than with the homogeneous sys-
tem, having 97% of problem instances solved. Like P2C2, the
system P4C2 shows performance quite similar to the homoge-
neous system. On the other hand, the systems with three (P4C3)
and four (P4C4) processor categories show significantly worse
performance than the homogeneous system. It appears that the
two category systems are, in fact, both strongly heterogeneous
enough to counteract the effect of the larger state-space. The
other systems, however, are not, and we see a downward trend
as the number of categories increases.

The six processor target systems exhibit much the same pat-
tern shown by P4C2S, as seen in Figure 5. The homogeneous
system (P6C1) allows 77% to be solved, while the strongly het-
erogeneous system P6C2 has 83% solved. This is not a large
difference, but the curve of the performance profile shows us
that a significant proportion of problem instances were solved
much earlier when using P6C2.

As expected, these results suggest that scheduling with het-
erogeneous processors is more difficult in general than with
homogeneous processors, but also that stronger heterogeneity
makes it easier. Also as expected, we see better performance
when scheduling on target systems with a lower number of pro-
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cessor categories. There is a downward trend in performance as
the number of categories increases, and therefore as the com-
plexity of the state-space rises.

To examine the effects of partial heterogeneity, Figure 6
shows performance profiles for each of the target systems (Ta-
ble 4) when using AO while either considering partial hetero-
geneity (solid line), or treating each system as if it were com-
pletely heterogeneous (dashed line), and for comparison using
the ELS state-space model (not considering partial heterogene-
ity). It is clear that considering partial heterogeneity gives the
AO model a significant advantage, and as would be expected
the benefit is larger as the number of processor categories (for
a fixed number of processors) decreases: for P4C1, considering
partial heterogeneity allows an additional 31% of schedules to
be solved, for P4C2 an additional 27%, and for P4C3 an addi-
tional 7%.

For AO with complete heterogeneity (dashed lines), there
is a trend of increasing performance as the number of natu-
ral processor categories in the target system increases, which
is the reverse of the previously observed trend for partial het-
erogeneity. A particularly interesting comparison is between
P4C1 with complete heterogeneity and P4C4 (which is natu-
rally completely heterogeneous): we see that task graphs were
in fact easier to schedule on P4C4 in this case, very likely due to
the effects of the grade of heterogeneity already discussed. This
seems to indicate that unless partial heterogeneity is specifi-
cally addressed by the state-space model, heterogeneous sys-
tems with lower numbers of natural categories do not become
any easier than the completely heterogeneous case, and may in
fact be more difficult.

The older ELS state-space model, which also does not con-
sider partial heterogeneity, shows considerably worse results
for all systems, which demonstrates the advantage of AO even
without the consideration of partial heterogeneity. Strong het-
erogeneity, as demonstrated by P4C2S, has a large benefit for
both partial and complete heterogeneity.

4.2.1. Results - CCR
Since we hypothesise that heterogeneous systems with a

higher grade of heterogeneity make optimal scheduling eas-
ier by making the trade-off between additional concurrency and
communication costs more easy to evaluate, it seems natural to
examine the impact of the computation-to-communication ra-
tio (CCR) of the task graphs. The task graphs in the test set
have either low (0.1), medium (1), or high (10) CCRs, or the
tasks are independent (no edges). Figure 7 shows performance
profiles for three of the target systems (P4C1, P4C2S, P4C4),
with results for AO considering partial heterogeneity, grouped
by CCR. These three systems were chosen for further analysis
as they showed the most extreme differences in performance
from one another.

Graphs with independent tasks are seen to be uniformly
easy for AO, and we will not analyse these further. For the ho-
mogeneous system (P4C1), CCR does not appear to have much
impact; the curve of the performance profile shows that more
graphs with high CCR are solved quickly, but the curves con-
verge towards the time limit. For the weakly heterogeneous sys-

tem P4C4 there is a clear difference, with low CCR graphs be-
ing most difficult, and high CCR graphs being significantly eas-
ier. For the strongly heterogeneous system P4C2S CCR makes
a very significant impact, as 100% of low and 99% of medium
CCR graphs are able to be solved within 60 seconds, while only
93% of high CCR graphs are solved within the two minute time
limit. It seems that for the strongly heterogeneous system, the
difficulty of scheduling increases with higher CCR. Even in its
worst case, however, we see that scheduling on P4C2S is still
easier than scheduling on P4C1 in the best case.

The reversal in difficulty of low CCR graphs between weak
and strong heterogeneity seems to support the hypothesis: when
heterogeneity is weak, large communication costs will dom-
inate the schedule length, and decisions which remove these
communications are more obviously beneficial. When hetero-
geneity is strong, deciding where to perform computations be-
comes more important, and communications become relatively
less important; decisions regarding large communication costs
therefore become less obviously beneficial or harmful.

Figure 8 again shows performance profiles comparing AO
with and without partial heterogeneity, and for comparison ELS,
but now grouped by CCR. Again, the benefit of considering
partial heterogeneity is evident across all categories. With low
and medium CCR, considering partial heterogeneity allows an
additional 20% and 19% of problem instances to be solved, re-
spectively. With high CCR, only an additional 10% of problem
instances were solved when considering partial heterogeneity.
It appears that the relative difficulty of low and medium CCR
graphs is higher when treating systems as completely heteroge-
neous than when partial heterogeneity is considered. However,
some of this difference could be explained by the fact that high
CCR graphs were already significantly easier in general, and
therefore there is less opportunity for improvement.

4.2.2. Results - Unit weights
For target systems with homogeneous processors, it is eas-

ier to schedule task graphs with unit-weighted tasks (having a
single value for all task weights, and a single value for all edge
weights) than to schedule task graphs with randomly varying
weights. We included unit-weighted graphs in this evaluation in
order to investigate whether they would also be easier to sched-
ule on heterogeneous systems as they are on homogeneous sys-
tems, and whether any differences in trends might be observed.

Figure 9 shows performance profiles for all target systems
on the set of task graphs with unit weights. It is clear that
all of these graphs are very easy to solve in combination with
the two processor systems, as 100% of problem instances are
solved within 10 seconds. Among the four processor systems,
we see that the strongly heterogeneous P4C2S system is able to
solve 76% of problem instances. It is difficult to discern trends
among the other systems, with each solving 67%. With the
six processor systems, we see that the strongly heterogeneous
P6C2 has 89% of instances solved quickly, while only 67% are
solved within two minutes with the homogeneous system. With
the unit-weighted graphs, as with the random-weighted graphs,
we see that strong heterogeneity has a substantial effect in de-
creasing the difficulty of optimal scheduling. It is also clear
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Figure 6: Performance profiles with and without considering partial heterogeneity (target systems: Table 4.)

0
20

40
60

80
10

0

P4C1

Time (s)

%
 S

ol
ve

d

30 60 90 120

0.1
1
10
Independent

0
20

40
60

80
10

0

P4C2S

Time (s)
30 60 90 120

0
20

40
60

80
10

0

P4C4

Time (s)
30 60 90 120

Figure 7: Performance profiles by CCR for selected target systems.
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Figure 8: Performance profiles with and without considering partial hetero-
geneity, grouped by CCR.
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Figure 9: Performance profiles with unit weight graphs for selected systems.

that unit-weighted graphs are easier to schedule optimally than
random-weighted graphs, both on homogeneous and heteroge-
neous processors.

4.3. Larger Graphs

n order to verify the so far observed results with larger graphs
and graphs for real-world scientific applications we performed
some additional trials. An small set of graphs with a greater
number of tasks was selected for additional evaluation. These
graphs were generated with the aid of the Python package Wf-
Commons, the WfGen module of which aims to generate realis-
tic synthetic workflow traces. WfGen was used to generate one
workflow each with structure, job runtime, and input/output file
sizes corresponding to these real-world scientific applications:
Cycles, BLAST, SoyKB, Epigenomics, and Seismology. For
each, one workflow was generated with approximately 25 jobs,
and other with approximately 30 jobs, with variation depending
on the structure dictated by the applications. The workflows
generated are represented by a list of jobs (with an associated
run time), and a list of files associated with each job (with a file
size, and marked as input or output). These workflow files were
transformed to task graphs appropriate for our task scheduling
model. Each job defines a task, with job run time giving the
weight of the task. The files define edges, with file size as
weight. The edge weights of the task graph were then scaled
uniformly to produce a medium CCR of 1.0.

The 10 task graphs produced by this process were used for
trials with the A* algorithm, again comparing AO with partial
(AO-P) and complete (AO-C) heterogeneity - as well as ELS for
the smaller group. The set of target systems with 4 processors
were used. For each task graph, we attempted to find an optimal
schedule for each target system. A longer time limit of two
hours was allowed for each search to complete. The same Linux
machine was used to run these new trials, with a maximum heap
size of 96 GB.

Table 5 shows the full results of these trials. For each com-
bination of graph, algorithm, and target system, the table reports
either the time in seconds taken for the search to complete suc-
cessfully, or the type of failure: T signifies a timeout, which M
signifies that the memory limit was reached. The majority of
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Graph (# tasks) Algorithm
Target System

P4C1 P4C2 P4C2S P4C3 P4C4

Cycles (23)
AO-P 0.11 164.1 2.31 T 218.8

AO-C 0.26 681.7 2.45 M N/A

ELS T T T M T

Cycles (46
AO-P M M M T T

AO-C T M T T N/A

BLAST (25)
AO-P M T M T T

AO-C T T M T N/A

ELS M T T M M

BLAST (30)
AO-P M T M M M

AO-C T M T T N/A

SoyKB (24)
AO-P 0.10 0.01 0.07 0.11 0.11

AO-C 0.15 0.12 0.08 0.12 N/A

ELS 0.87 0.53 6.55 0.63 0.41

SoyKB (30)
AO-P M M 0.11 M M

AO-C T T 0.16 M N/A

Epigenomics (23)
AO-P 299.1 T M 0.1 5.96

AO-C T T M 0.1 N/A

ELS T T T 2,006.9 M

Epigenomics (29)
AO-P 14.75 M 1099.4 M T

AO-C 62.86 T T M N/A

Seismology (25)
AO-P T T 636.3 T M

AO-C T T T M N/A

ELS M T M M M

Seismology (30)
AO-P T T T T T

AO-C T T T T N/A

Table 5: Results of trials with larger graphs, given as seconds taken for com-
pletion, T (meaning timed out) or M (meaning out of memory).

trials with these larger graphs were unsuccessful. However, the
major trends that were present in the earlier evaluation can still
be observed here. ELS has the least successes, and where it is
successful almost always has the largest solving time. AO with
partial heterogeneity has the most successes, and where multi-
ple algorithms succeeded at the same configuration, it almost
uniformly has the lowest solving time. Although the sample
size is smaller, this data suggests that AO with partial hetero-
geneity continues to have an advantage in optimal solving for
these larger, more realistic graphs.

4.4. Comparison with ILP

As discussed in the Related Work, ILP formulations for the
task scheduling problem have been proposed in the literature.
Some of them are applicable to heterogeneous systems and in
Table 6, we have compiled a comparison of such ILP formula-
tions from the literature, and their reported success in optimal
solving of task scheduling problems with heterogeneous pro-

Source Model Differences Max Size
Solved

Time To
Solve

Yang 2008
[37]

Unrelated procs,
deadlines, data

parallelism

14-16 tasks Up to 1221
secs

Tosun 2012
[25]

Objective:
energy/reliability, no

comm costs

2-16 tasks,
2-8 procs

Up to 400
secs

Singh 2012
[24]

Unrelated processors,
duplication

Up to 20
tasks

1000 sec
limit

Khajekarimi
2013 [38]

Objective: energy
cost

53 tasks Not reported

Kinsy 2014
[39]

N/A 28 tasks Not reported

Mallach
2018 [16]

Homogeneous procs 100 tasks 10 minutes

Roy 2020
[17]

Unrelated procs,
heterogeneous
comms with
contention

16 task
nodes, 30
message

nodes

6h 40 mins

Table 6: Comparison of reported successful optimal solving between ILP for-
mulations with heterogeneous processors.

cessors. Many formulations are not directly comparable to the
problem addressed in this work, having significant differences
in objective function, environment, etc. While bearing in mind
these complications in comparison, it is clear that the size of
problem instances solved by these formulations is quite similar
to that used in this work - the largest graphs solved have 100
tasks, and most are much smaller. This shows that despite the
general advantages of (highly optimised) ILP solvers in speed,
the branch-and-bound approach is still very competitive.

5. Conclusions

Previous applications of branch-and-bound state-space search
to optimal task scheduling have used a scheduling model which
allowed only for homogeneous processors. We have presented
an adaption to the AO state-space model for optimal task schedul-
ing which allows it to find optimal solutions for target systems
with related heterogeneous processors. Of particular note, the
model recognises partial heterogeneity in parallel systems and
uses this to reduce the size of the search space in comparison
to a plain fully heterogeneous model. The additional complex-
ity of this task scheduling model allows a wider variety of real
world target systems to be more closely approximated.

We have demonstrated that this adapted AO model can be
used to solve a large number of problem instances with hetero-
geneous target systems, although often significantly less than
can be solved for a homogeneous system. Importantly, we have
shown that the AO model gains significant benefit from its spe-
cific adaptation to partial heterogeneity. We also demonstrated
how strongly heterogeneous systems can make optimal sched-
ules easier to find, sometimes so much so that they are easier
than homogeneous systems.
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While this work has focused on related heterogeneous pro-
cessors, the state-space model presented would also allow op-
timal scheduling with unrelated heterogeneous processors. In-
corporating this would however require developing a suitable
input format, and a suitable and realistic experimental regime
for evaluation.

Similarly, this state-space model could be extended to op-
erate on a task scheduling model which includes heterogeneity
in the communication subsystem. Of particular interest would
be a model in which communication links are also treated as
resources onto which communications must be scheduled[40].
The AO state-space model could potentially be adapted with the
addition of a third phase in which the scheduling of communi-
cations is decided.
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