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Abstract
We used long read sequencing data generated from Knightia excelsa, a nectar-
producing Proteaceae tree endemic to Aotearoa (New Zealand), to explore how se-
quencing data type, volume and workflows can impact final assembly accuracy and 
chromosome reconstruction. Establishing a high-quality genome for this species has 
specific cultural importance to Māori and commercial importance to honey produc-
ers in Aotearoa. Assemblies were produced by five long read assemblers using data 
subsampled based on read lengths, two polishing strategies and two Hi-C mapping 
methods. Our results from subsampling the data by read length showed that each 
assembler tested performed differently depending on the coverage and the read 
length of the data. Subsampling highlighted that input data with longer read lengths 
but perhaps lower coverage constructed more contiguous, kmers and gene-complete 
assemblies than short read length input data with higher coverage. The final genome 
assembly was constructed into 14 pseudochromosomes using an initial flye long read 
assembly, a racon/medaka/pilon combined polishing strategy, salsa2 and allhic scaf-
folding, juicebox curation, and Macadamia linkage map validation. We highlighted the 
importance of developing assembly workflows based on the volume and read length 
of sequencing data and established a robust set of quality metrics for generating high-
quality assemblies. Scaffolding analyses highlighted that problems found in the initial 
assemblies could not be resolved accurately by Hi-C data and that assembly scaffold-
ing was more successful when the underlying contig assembly was of higher accuracy. 
These findings provide insight into how quality assessment tools can be implemented 
throughout genome assembly pipelines to inform the de novo reconstruction of a 
high-quality genome assembly for nonmodel organisms.
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1  |  BACKGROUND

It is of critical importance that an optimal genome assembly strat-
egy is used to maximize the impact, effectiveness and accuracy of 
resulting pseudochromosome-scale de novo reference genomes. As 
long read sequencing data become more affordable, the integration 
of a multitude of next generation sequencing (NGS) platforms is 
becoming standard for generating near-complete de novo genome 
assemblies. The construction of an accurate de novo assembly is cru-
cial to facilitating investigations of species evolution (Lewin et al., 
2018; Rhie, McCarthy, et al., 2020; Rhie et al., 2020) and organ-
ism diversity (Gurdasani et al., 2016), and to informing health and 
disease treatments in fields such as cancer treatment programmes 
(Berger & Mardis, 2018) and vaccine development (Prachi et al., 
2013). To cater for the synergistic nature of different types of se-
quencing data, the research field of genome assembly is moving 
quickly, and new methods are becoming more flexible, accurate and 
efficient. Genome assembly software incorporates sophisticated al-
gorithms built to deal with a multitude of sequencing data types; 
for instance, accounting for the different base calling accuracies of 
Oxford Nanopore Technology (ONT) (<5% error rate), PacBio Single 
Molecule Real-Time (SMRT) (<1% error rate) and Illumina short 
paired-end (PE) reads (<0.1% error rate). They also allow a multitude 
of parameter specifications to cater for various genome architec-
tures. For example, centroflye (Bzikadze & Pevzner, 2019) was de-
signed for centromere assembly, and chloroextractor (Ankenbrand 
et al., 2018) was developed to assemble chloroplastic genomes from 
whole genome sequencing (WGS) data. Through different error cor-
rection and consensus approaches, these programs use noisy ONT 
data to construct contig assemblies which can be scaffolded to gen-
erate high-quality assemblies, but it is not generally clear what type 
of data are required or the volume necessary to generate the “opti-
mal” assembly, or indeed what combination of software one should 
use given the available types and volumes of data.

Despite a thorough investigation of the computational resource 
performance of long read assemblers by Wick and Holt (2019), 
published data on the optimization of read length and depth in the 
context of the most commonly used long read assemblers (necat, 
WTDBG2/RedBean [wtd], canu, fyle, falcon and shasta] is limited. 
Although the underlying long read data used by these toolkits are 
shared, their methods for error correction, assembly and consensus 
generation differ greatly. For instance, fyle (Kolmogorov et al., 2019) 
identifies “disjointigs” and uses these to first resolve the repeat 
graph in order to construct the final assembly. canu (Koren et al., 
2017) carries out extensive error correction and trimming prior to 
generating the final assembly using overlap-consensus methods 
based on string graph theory (Myers, 2005). necat (Chen et al., 2020) 
acts similarly to canu albeit using a more progressive correction and 
assembly strategy. In contrast, wtd (Ruan & Li, 2020) uses only a 
single round of consensus by a fuzzy DeBruijn algorithm (Zerbino & 
Birney, 2008) that is based on initial short read assembly algorithms 
that have been adjusted to accommodate the base calling inaccura-
cies of noisy long reads. The shasta (Shafin et al., 2020a) algorithm 

maximizes computational efficiency through the identification of 
reduced marker kmers to initially find overlaps and then build the 
consensus sequence.

Gaining an understanding of each assembler's advantages and 
shortcomings is an important consideration prior to assembly to form 
a more educated assembly strategy and ultimately resulting in a ge-
nome assembly sufficient for individual project needs. Quantitative 
metrics to track the accuracy and completeness of the assembly 
must be performed as often as possible throughout the workflow. 
In the past, appropriate nonmanual methods of genome accuracy 
assessment have been limited, particularly with regard to scaffolding 
steps using proximity-guided methods like Hi-C (Lieberman-Aiden 
et al., 2009). Recently, more advanced quantitative toolkits have be-
come available, such as kmer completeness (merqury; Rhie, Walenz, 
et al., 2020), Long terminal repeat retrotransposons Assembly Index 
(LAI; Ou et al., 2018), mapping rate and highly conserved gene com-
pleteness (busco; Simão et al., 2015). However, an isolated selection 
of assembler without factoring the input data and downstream post-
processing steps is insufficient, as the tools used for these steps 
are also important considerations to generate an optimal genome 
assembly.

The identification and correction of misassemblies, or “polish-
ing,” is determined by the initial assembler and the algorithm used, 
but comprehensive analyses of the impact of different polishing 
strategies on genome accuracy are scarce. Assembler algorithms 
act differently during contig construction; thus, the initial assem-
bly accuracy they produce before polishing is not always a fair in-
dication of the metrics that will be obtained afterwards. Iterative 
polishing steps increase assembly accuracy after each step so that 
reads previously unable to map due to error or misassembly in the 
initial assembly become mappable, leading to a more accurate con-
sensus assembly. Polishers are placed in two categories: “Sequencer 
bound” or “General.” Both nanopolish (Loman et al., 2015) and me-
daka (Technologies, 2018) are examples of sequencer-bound polish-
ers that utilize raw signal information, while racon (Vaser et al., 2017) 
and pilon (Walker et al., 2014) are examples of general polishers that 
are applicable to any sequencing platform. To obtain a better under-
standing of polishing and post-assembly processing performance, 
initial contig assemblies generated from a selection of ONT assem-
blers must be tested using a combination of polishing strategies.

Three main methods are commonly used for scaffold order-
ing and orientation to generate chromosome-level assemblies. 
Traditionally, linkage maps made of thousands of genetic markers 
obtained from large segregating progenies were used to anchor as-
sembly contigs to linkage groups (Linsmith et al., 2019). However, 
this method can be expensive and can give false orientations due 
to inaccuracies in marker orientation and ordering due to genotyp-
ing errors. Synteny-based approaches can be used when a closely 
related high-quality genome is available. However, all results ob-
tained via these strategies are heavily biased toward the provided 
reference assembly, and any unique translocations or re-orderings 
will be lost. Further, errors in the provided reference assembly can 
cascade into further projects. Recently, proximity ligation methods 
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have become a more cost-effective and less biased (Peichel et al., 
2017) approach for generating chromosome-level assemblies. The 
Hi-C method is commonly used for scaffolding genomes (Lightfoot 
et al., 2017; Thrimawithana et al., 2019). Hi-C data are generated by 
cleaving chromatin using restriction endonucleases and ligating only 
fragments that are close in 3D chromosomal space. The underlying 
premise is that the closer two fragments the more linkage markers 
they will share. Hi-C scaffolding algorithms take advantage of inter-
actions at contig ends to orient and order scaffolds. However, many 
chromosome-level assemblies generated using Hi-C are littered with 
inaccurate contig placements due to shorter contigs that contain 
interactions spanning their entire length, inhibiting the ability of 
Hi-C software to effectively orient and order these contigs accu-
rately (Burton et al., 2013). Traditionally, Hi-C software are built for 
homozygous diploid genome assemblies and are heavily reliant on 
the accuracy of the reference assembly provided and many require 
a priori knowledge of chromosome number such as lacheisis (Burton 
et al., 2013) and allhic (Zhang et al., 2019). Two tools are commonly 
employed for Hi-C scaffolding: salsa2 (Ghurye et al., 2019) and allhic 
(the latest version of lacheisis). The effects of input assembly on Hi-C 
mapping rate and the performance of such software must also be 
evaluated.

Knightia excelsa (rewarewa) is a nectar-producing tree of the 
family Proteaceae, endemic to Aotearoa. Despite its size (>1,660 
species; Christenhusz & Byng, 2016), the Proteaceae has received 
minimal attention from genome researchers, probably due to most 
diversity being restricted to the southern hemisphere as well as the 
nut-producing macadamia tree being the only species within this 
family of significant worldwide economic interest. A genome assem-
bly of Macadamia integrifolia has been developed (Nock et al., 2020), 
the information from which is used for genome-informed breeding 
(O’Connor et al., 2020). Very little genetic information is available for 
K. exselsa; however, karyotype analysis indicated it is a diploid species 
with n = 14 chromosomes (Hair & Beuzenberg, 1958). Rewarewa is the 
basis of a burgeoning honey industry in Aotearoa. Most of its honeys 
are produced from traditional land owned by Aotearoa's Indigenous 
Peoples, Māori. Rewarewa is considered “taonga” by Māori, mean-
ing this tree is treasured and under their “kaitiaki” or guardianship. 
To this end, an ethical framework is necessary for managing samples 
and data during the project, as has been performed for other taonga 
species (Marshall et al., 2015; Morgan et al., 2019).

The objective of this research was to investigate the impact of 
sequence volume and depth on genome assembly accuracy using 
K. excelsa as a model (Figure 1) whilst also generating a high-quality 
reference genome for K.  excelsa using all of the sequencing data 
available. Subject to Māori consent, Illumina PE (61×), ONT (52×) and 
Hi-C data were obtained, with genome coverage estimates based on 
flow cytometry size estimates. Software for contig assembly, polish-
ing and Hi-C scaffolding were evaluated, and quality metrics were 
measured at each step. Initial contig assemblies were generated from 
five long read assemblers across four subsampled sets of ONT data 
(reads >5 kb, >10 kb, >22 kb, >30 kb). Furthermore, assembly meth-
ods were optimized using all available ONT data to be used for the 

high-quality genome assembly of K. excelsa. All assemblies produced 
were corrected using a combination of long and short read polishing 
tools (Figure 1). After this, the effectiveness of each ONT assembly 
method on chromosomal construction was assessed through Hi-C 
scaffolding using two software packages, salsa2 and allhic. These 
tools were systematically implemented across all four read subsam-
ples, and the accuracy of each assembly was quantitatively assessed 
and compared. For assemblies produced using all ONT data, conser-
vation of macrosynteny was tested against macadamia linkage maps 
(Langdon et al., 2020) in order to identify the optimal K. excelsa ge-
nome assembly that could be generated from our data.

2  |  MATERIAL S AND METHODS

2.1  |  Sample collection

Knightia excelsa (rewarewa) is an endemic tree of Aotearoa, mostly 
found on the North Island, and common in coastal, lowland and 
lower montane habitats. This evergreen tree species can grow up to 
30 m tall, and bears dark green serrated leathery leaves and dense 
racemes of red flowers. K. excelsa's genome size was estimated to be 
1.15 pg per 1C using flow cytometry.

The single K. excelsa tree selected for this project grows in the 
Warawara Forest, Northland, Aotearoa (Lat. ±4  m 35°22′1.9″S, 
Long. ±4 m 173°16′5.4″E, altitude 440 m). The leaves were collected 
in November 2018, authorized by the Te Rarawa Anga Mua and the 
Komiti Kaitiaki for Warawara Ngahere. At the time of collection, 
the tree was about 3 m tall, growing in full sun, isolated from other 
trees, and colonizing a bulldozed site along with Lycopodiella cern-
uua, Leucopogon fasciculatus and Blechnum novae-zelandiae beneath 
it. The tree has deep magenta flowers and was fruiting at the time 
of sample collection. The tree had two trunks from the same base. 
One trunk was 4 cm in diameter at 1.35 m above the ground and the 
other was 2 cm in diameter at 1.35 m above the ground. The com-
bined cross-sectional area at breast height was 15.7 cm2. The leaves 
sampled were undamaged leaves without visible fungal infections 
that ranged in size from 8 to 12 cm long by 2 to 3 cm wide. Two leaf 
samples were collected (~20 and ~30 g).

The leaves were collected aseptically and packed in a sealable 
plastic bag, placed inside a Styrofoam box with crushed ice, and pro-
tected from ice burn by a stack of paper towels. The sample was 
delivered within 2 days after collection and stored at −80°C upon 
arrival at the laboratory.

2.2  |  Nuclear genomic DNA extraction

2.2.1  |  Nuclei isolation

Nuclear genomic DNA was extracted from isolated nuclei as de-
scribed previously (Hilario, 2018; Naim et al., 2012) with the fol-
lowing modifications regarding the homogenization method, the 
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type of lysis buffer and its ratio to the number of nuclei obtained. 
The leaf sample (20 or 30 g) was ground with liquid nitrogen in a 
precooled large mortar. The freeze/grinding cycle was repeated 
three times until a fine powder was obtained. The complete nuclei 
isolation buffer (plus sodium metabisulphite, β-mercaptoethanol 
and 0.5% Triton X-100) was poured into a 1-L beaker with stirrer. 
The powdered sample was added gradually and stirred until com-
pletely dissolved. The homogenate was filtered through two layers 
of Miracloth (Merck) over a funnel. The nuclei were collected by 
low-speed centrifugation and washed twice with the nuclei isolation 
buffer (with sodium metabisulphite only). The final nuclei pellet was 
stored without any liquid at −80°C until used for DNA extraction.

2.2.2  |  DNA extraction

The nuclear genomic DNA was extracted with a cetyl trimethyl-
ammonium bromide (CTAB)-based buffer as described previously 
(Hilario, 2018; Naim et al., 2012) with the following modifications: 
The isolated nuclei were lysed with 15 ml of CTAB buffer and 100 µl 

proteinase K (20  mg  ml–1). After the lysis incubation, the sample 
was extracted with an equal volume of chloroform/iso-amyl alco-
hol (24:1), precipitated with ethanol and the DNA collected by cen-
trifugation. The DNA pellet was washed with 10  ml 70% ethanol, 
centrifuged again and dissolved in 200  µl TE buffer. The quality 
of the DNA was assessed by spectrophotometry (Nanodrop) and 
electrophoresis separation (standard and pulse field gel electro-
phoresis). The amount of DNA was estimated by fluorometry (Qubit 
high-sensitivity dsDNA kit). The average yield of nuclear genomic 
DNA per gram of leaf sample was 1 µg. The quality parameters were 
A260/280 = 2.0, A260/230 = 1.88, Qubit/Nanodrop ~0.5, a concentra-
tion of 164 ng µl−1 and an average fragment size of 50 kbp.

2.3  |  NGS library preparation

2.3.1  |  Short insert Illumina sequencing library

The generation of paired-end Illumina data was required to remove 
errors by polishing the initial noisy ONT-based genome assemblies. 

F I G U R E  1  Overview of the genome 
assembly workflow used for assessing the 
effect of read length and data volume and 
the workflow used for optimal Knightia 
excelsa genome assembly construction
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Eight reactions of 500 ng of nuclear genomic DNA each were set up 
for preparing the short insert Illumina library with the NEBNext Ultra 
FS II DNA library kit as described by the vendor with the following 
parameters: the fragmentation, end repair and deoxyadenylation in-
cubation was 3.75 min (fragments ranging from 200 to 1,000 bp). 
After USER digest, all the reactions were combined and split into 
five tubes. The library was left size selected with AMPure XP beads 
at 0.4× ratio followed by another left side selection at 0.2× ratio. 
The DNA was eluted from both bead fractions (0.4× and 0.4×/0.2×) 
in 30 µl TE buffer and the concentration estimated by fluorometry. 
A cycle test was performed with 5 ng of each size-selected library 
(0.4× and 0.4×/0.2×) amplified 4, 6, 8, 10 or 12 times with NEBNext 
Ultra II Q5 Master mix, and the Illumina universal and index prim-
ers. Ten cycles produced the optimal amplicon size after a dual size 
selection (0.77×/0.61×) from the 0.4× size-selected library fraction 
(average amplicon size: 473 bp). Four reactions from this library frac-
tion were set up under these conditions, pooled, dual size-selected, 
quality checked and sent to our service provider (Custom Science, 
New Zealand) to be sequenced.

2.3.2  |  Long-range sequencing library (Hi-C)

The long-range Hi-C sequencing library was prepared with isolated 
nuclei as starting material. The nuclei enrichment method is similar 
to the protocol described above but with extra steps to remove con-
taminants and large particle debris with polyvinylpolypyrrolidone 
(PVPP) and Percoll gradients, respectively. The Hi-C library was pre-
pared with a combination of kits and in-house methods. The nuclei 
crosslinking, quenching, washing, lysis and chromatin normalization 
steps were performed according to the Dovetail Genomics Hi-C kit. 
The chromatin lysate was bound to AMPure XP beads and washed 
with five sets of 1  ml Wash buffer (Dovetail Genomics Hi-C kit). 
Chromatin fragmentation and biotinylation were performed with 
the Fragmentation buffer and Fragmentation Enzyme mix from the 
Phase Genomics Hi-C kit for plants version 1.0. Once the digestion 
was completed, the captured chromatin was washed twice with 
Wash buffer (Dovetail Genomics). Intramolecular ligation was per-
formed in 500 µl of 1× T4 DNA ligase buffer (Invitrogen) and 10 units 
of T4 DNA ligase (Invitrogen). The ligation was performed at 16°C 
in a thermomixer (Eppendorf) at 1,250 rpm overnight. The ligation 
mixture was discarded, and the crosslink reversal was performed by 
adding 50 µl 1× CutSmart buffer (New England Biolabs) and 20 µg 
proteinase K (Qiagen) and incubated at 55°C for 15 min followed by 
45 min at 68°C at 1,250 rpm. The released DNA was transferred to a 
new tube and purified with AMPure XP beads at 2× ratio. The DNA 
was eluted in 150 µl 10 mm Tris-HCl pH 8 and the biotinylated mol-
ecules captured with Dynabeads M280 (Invitrogen) according to the 
manufacturer's protocol but using 150 µl Bead Binding buffer (Phase 
Genomics) for coupling the biotinylated molecules to the beads and 
continuation with the Phase Genomics Hi-C kit for plants protocol. 
The amplified library was size selected by agarose gel electrophore-
sis followed by an AMPure XP double size selection (0.77×/0.64×). 
The average fragment size of the selected amplicons was 500 bp. 

The size-selected amplicons were assessed by capillary electropho-
resis (Fragment Analyzer) and showed an average fragment size of 
441 bp, at 1.5 ng µl–1 and 4.7 nm. The amplicons were sequenced 
(150-bp PE reads) and delivered 221,731,503 raw PE reads, and 
66.96 Gb.

2.3.3  |  PromethION oxford nanopore sequencing

The PromethION libraries were prepared by the contracted service 
provider (Custom Sciences) with ~50  µg of nuclear genomic DNA 
preparation described above. Here, four libraries were made gener-
ating a total of 176,417,984,645 read bases.

2.4  |  Genome assembly and assessment

2.4.1  |  Initial quality assessment and subset 
generation of oxford nanopore reads

All data sets were base called using guppy flip flop software pack-
age (Appendix S1) and quality assessed using the fastqc raw reads 
for quality assessment. To understand the impact of data volume 
and coverage on ONT assembly, read subsetting was carried out 
using the porechop software package. The data were subsampled 
by read length into four read subsamples: >5-kb reads only (52×), 
>10-kb reads only (50×), >22-kb reads only (33×) and >30 kb (23×) 
reads only. These values were selected in order to retain sufficient 
sequencing depth within each subset.

2.4.2  |  Oxford nanopore assembly

Five long-read assemblers were used: canu, fyle, wtd, shasta and 
necat (for parameters and versions used see Appendix S1). In order 
to further understand the effects of polishing strategies on assem-
bly accuracy, combinations of polishings methods were examined 
and haplotigs were purged. These include general polishing strat-
egies: racon with four rounds (RX4) of polishing only, racon with 
eight rounds of polishing both before (RX8) and after pilon (RX8_SR) 
polishing and haplotig purging (RX8_SR_PH). A sequencer-specific 
strategy alone was also included: medaka only (M) polishing, as well 
as combined polishing approaches: medaka with four iterations of 
racon polishing both with (M_RX4) and without pilon polishing (M_
RX4_SR) and haplotig purging (M_RX4_SR_PH). Each assembly was 
initially quality checked using quast, busco and LAI.

2.4.3  |  Hi-C mapping

The Hi-C data set was filtered using the Phase Genomics filtration 
guidelines (https://phase​genom​ics.github.io/2019/09/19/hic-align​
ment-and-qc.html). The data successfully passed all quality as-
sessment analysis requiring no additional filtration. The data were 

https://phasegenomics.github.io/2019/09/19/hic-alignment-and-qc.html
https://phasegenomics.github.io/2019/09/19/hic-alignment-and-qc.html
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mapped to each generated ONT contig set using bwa mem and scaf-
folding was carried out by salsa2 and allhic (see Appendix S1 for 
parameters and versions used).

2.4.4  |  Hi-C assembly quantitative quality assessment

Each Hi-C assembly kmer spectrum profile was assessed through meryl 
and consensus accuracy and completeness were analysed using the 
merqury toolkit. Map back rates were also used to assess the quality 
of each assembly using samtools (Cock et al., 2015) flagstat statistics 
(see Appendix S1 for parameters used). All assemblies were addition-
ally compared using the LAI index which assesses the LTR repeat com-
pleteness of plant genomes specifically. On top of this, assemblies 
were compared through quast (Gurevich et al., 2013) and gene com-
pleteness examined through a busco (embryophyta_obd9) identification 
of complete single copy, duplicated, fragmented and missing genes. 
Additionally, we used contact map manual inspection by pretextmap 
and pretextview (https://github.com/wtsi-hpag/Prete​xtView).

2.4.5  |  Utilization of Macadamia linkage maps for QC

Nine linkage maps accompanying 64-bp DartSeq reads were down-
loaded from the Southern Cross University data repository (http://
dx.doi.org/10.25918/​5dc25​89924ca2). These reads were aligned 
using blastn to three Hi-C assemblies (the best assemblies selected 
based on quantitative assembly accuracy metrics) and only unique 
hits of >90% identity were used. These markers were mapped to 
each assembly using allmaps (Tang et al., 2015a) (see Appendix S1 for 
versions and parameters).

2.5  |  Computational resources

The majority of analyses were carried out on the New Zealand eS-
cience Infrastructure high-performance computer on the Mahuika 
partition. The Mahuika partition consists of a Cray CS400 Cluster 
High Performance Computer with 8,424 × 2.1-GHz Intel Broadwell 
cores and 30 Tb of memory along with IBM ESS Disk and SSD stor-
age. For computational efficiency each assembly was run using 
minimal requirements (See Appendix S1). canu assemblies were per-
formed at the University of Otago's Biochemistry Servers, which 
have 1 Tb of memory, and 8× Intel(R) Xeon(R) CPU E7-8860 v4 with 
18 cores each, and two threads per core.

3  |  RESULTS

3.1  |  Sequencing data

In total, 2.3 million ONT sequencing reads were obtained totalling 
52.5 Gbp of data and with a read N50 of 28 kbp. Table 1 indicates 
the initial summary read statistics for the ONT data. The significance 

of base-calling was assessed both before and after base-calling 
using minion QC (Lanfear et al., 2019) (Appendix S2). A significant 
increase in overall Q score was achieved and specifically for longer 
read lengths. Hi-C data produced from the Phase Genomics kit and 
Illumina PE sequencing yielded 443 million reads in total (67 Gb of 
data). Short read WGS data were obtained and consisted of 407 mil-
lion PE Illumina reads. Through kmer counting (k = 21) by the geno-
mescope software (Ranallo-Benavidez et al., 2020) a genome size of 
0.95 Gb and heterozygosity of 0.1%–1.0% was estimated.

3.2  |  In-depth critique of ONT assembler 
performance and exploration of the impact of 
iterative polishing

An assessment of the performance of five long read assemblers, 
necat, canu, shasta, fyle and wtd, was carried out and initial contig 
sets generated. ONT data were then split into four subsamples 
based on read length: >5 kb, >10 kb, >22 kb, >30 kb. Assembly per-
formance was compared across these subsamples to assess how 
read length might affect the performance of individual long-read 
assemblers. Furthermore, ONT assemblies were generated using all 
available ONT data (All_Data) to facilitate the optimal high-quality 
Rewarewa genome assembly. For the purposes of initial compari-
sons all assemblies generated both by read length subsamples and 
by All_Data will be compared.

First, the output from iterative long-read polishing using racon 
was examined to explore potential effects on assembly accuracy. 
Overall, when N50, contiguity and total length were considered, the 
first round of polishing always showed significant improvement, but 
additional rounds of polishing had a marginal increase on genome 
accuracy (Figure 2). Interestingly, the necat assembly generated for 
All_Data appears collapsed after two rounds of polishing, with a 
drastic reduction in contig number and total assembly length below 
flow cytometry estimations (1 Gbp). necat failed to complete for all 
other read length subsamples despite adjusting parameters to ac-
commodate low coverage thresholds and therefore was not included 
in further performance comparison analysis. shasta-generated as-
sembly metrics remain consistent in the >10-, >22- and >30-kb read 

TA B L E  1  Basic statistics of Oxford Nanopore Technologies 
sequencing data for Knightia excelsa

Statistics
Knightia 
exselsa

Total number of sequences 2,314,274

Total length 52,588 Mb

Longest sequence 229 kb

Shortest sequence 55 b

Mean length 22 kb

Median length 19 kb

N10 53 kb

N50 28 kb

N90 13 kb

https://github.com/wtsi-hpag/PretextView
http://dx.doi.org/10.25918/5dc2589924ca2
http://dx.doi.org/10.25918/5dc2589924ca2
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F I G U R E  2  A comparison of the performance of five ONT assemblers and iterative polishing by racon across assemblies generated by all 
read length subsamples and those generated from All_Data. A comparison is given of contig number, N50 and total length of a single racon 
polishing in comparison to eight rounds of polishing
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subsamples with iterative polishing having little effect, but total 
genome length slightly reduced in >5-kb and All_Data subsamples. 
wtd assembly metrics remained robust against polishing for all read 
subsamples, apart from the >10-kb subsample which encountered a 
total length expansion.

Gene completeness was assessed; generally, iterative long read 
polishing increased the number of complete genes identified across 
assemblers (Figure 2d), except for canu and fyle’s >22-kb subsam-
ple assembly that experienced a 169 and 224 complete gene reduc-
tion, respectively, and fyle’s >10-kb assembly that showed a 135 
reduction. shasta experienced a complete gene reduction of 158, 
10 and 208 in >10-, >22- and >5-kb read subsamples, respectively, 
and wtd only experienced a reduction of 111 genes in the assembly 
constructed by the All_Data. Across all assemblies the accuracy of 
Illumina data increased the gene completeness through pilon polish-
ing. Interestingly, the ONT assemblies that experienced a reduction 
in gene completeness score after iterative long read polishing in-
curred the greatest increase in score after short read polishing, with 
canu and fyle >22-kb subsample experiencing an increase of 388 and 
286 genes, respectively, and shasta >5-, >10- and >22-kb read subsa-
mples gaining 669, 593 and 536 genes, respectively.

In terms of total length and contiguity (Figure 2a,b), fyle’s perfor-
mance appeared the most robust, with total length and N50 values 
remaining consistent (Figure 2c), but contiguity was increased in the 
>30-kb subsample (smaller number of contigs). wtd, shasta and canu 
appeared to perform much better with longer read lengths, based on 
the lower number of contigs and increased N50 for the >30-kb sub-
sample. However, the >30-kb subsample genome had a total length 
that was below the length expected from flow cytometry estimates. 
This may have been the result of low depth of coverage in this read 
length subsample and may be improved with an increase in data vol-
ume within this read length subsample.

3.3  |  Assessment of general and sequencing-
specific polishing strategies on ONT assemblies

The previous section highlighted the importance of considering all 
quantitative metrics when implementing polishing strategies, with 
busco scores improving significantly while the effect on N50, total 
length and contiguity was marginal. Here, the effect of both general 
and sequence-specific polishing strategies was examined (Figure 3).

The >5- and >10-kb subsamples performed consistently across 
canu, fyle, wtd and shasta assemblers with regard to total length in 
strategies combining racon and medaka (M_RX4, M_RX4_SR_PH and 
M_RX4_SR) (Figure 3a,b). Both fyle and wtd obtained a contig set 
that was the most representative of the expected genome size, with 
no bias toward general or sequencer-specific polishing identified. 
However, when gene completeness is considered, all assemblers 
showed a benefit from using polishing strategies that incorporate 
medaka (M, M_RX4, M_RX4_SR_PH and M_RX4_SR).

Analyses using the >22-kb subsample indicated that read length 
and depth of coverage enabled the wtd assembler to more accurately 
represent the total genome size while retaining gene completeness 

in comparison to that with the >5- and >10-kb subsamples—again 
no polisher bias was apparent (Figure 3c). wtd assemblies were less 
contiguous to those constructed by fyle and canu, whose bias to-
ward a combined polishing (M_RX4, M_RX4_SR_PH and M_RX4_
SR) remained consistent to that constructed with >5- and >10-kb 
subsamples.

The canu >30-kb subsample outperformed all other assemblers 
with regard to gene completeness and there was a clear bias towards 
polishing strategies that include medaka. The >30-kb subsample 
shasta and wtd assembly performance was compromised from the 
lack of read depth, as highlighted by the continual reduction of total 
assembly size as read length cut offs increase and both assemblers 
remain consistent across polishers. fyle’s performance at this read 
length remained consistently biased toward medaka-incorporated 
strategies (Figure 3d).

All_Data shasta and wtd assemblies failed to represent an accu-
rate total length despite becoming more contiguous. Both assemblers 
experienced the same shortcomings when polished using racon only, 
medaka only and combined strategies. canu’s total genome length 
suffered despite good performance with regard to gene completion 
and retained its bias towards medaka polishing. fyle’s performance 
was relatively constant across all subsets. Interestingly, although an 
integrated racon/medaka polishing strategy still performed better 
here, racon only polished assemblies performed better than across 
other read length subsamples (Figure 3e).

Assemblers performed differently to haplotig purging, with 
diploid-aware assemblers such as canu experiencing a reduction in 
gene completeness score when this technique was implemented 
across all read subsamples. Overall, fyle retained gene complete-
ness and increased its contiguity in response to haplotig purging, but 
across each read subset the total genome size experienced a reduc-
tion to below what was expected for the genome. wtd responded 
similarly to fyle across all read subsets whilst shasta experienced 
varying shifts in performance over all read subsets.

Across both general and sequencer-specific polishing, wtd as-
semblies appeared the most fragmented, with expanded genome 
total lengths, and no bias toward polishing strategy was identified. In 
contrast, all shasta assemblies appeared highly contiguous, although 
they had unexpectedly small total lengths and were unaffected by 
polisher. fyle and canu appeared to perform best with fyle perform-
ing equally well across all polishing methods with regard to genome 
size representation. These results highlight a clear bias toward pol-
ishing strategies that incorporate medaka as opposed to those utiliz-
ing racon alone, and this suggests that polishing methods specific 
to the sequence platform utilize have a superior performance than 
general polishers that are not platform-specific.

3.4  |  Analysing the effect of ONT data volume and 
read length on the accuracy of Hi-C scaffolding

To assess the impact of the underlying read length, coverage and 
genome assembly quality on Hi-C scaffolding, each ONT assembly 
constructed using subsampled data (>5-, >10-, >22- and >30-kb read 
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samples; racon+pilon polished assemblies only) was taken and fur-
ther scaffolded by allhic and salsa2. Each scaffolded assembly was 
quality assessed as summarized in Table 2.

These results (Table 2) demonstrated the inability of Hi-C scaf-
folding to effectively reduce the high contig number found across 
all wtd initial ONT assemblies. allhic failed to complete scaffolding 

F I G U R E  3  A comparison of polishing strategy performance on four read subsets and All_Data across contig sets generated by four long 
assemblers: (a) >5-kb read length subsample, (b) >10-kb read length subsample, (c) 22-kb read length subsample, (d) >30-kb read length 
subsample, and (e) All_Data. The vertical red line illustrates the estimated genome size, and horizontal red line highlights maximum number 
of busco genes within the embryophyta_odb9 data set. Increasing data point size indicates an increase in contig number within the assembly
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on the >5- and >10-kb read length subsamples and only a 16% and 
17% reduction in contig number was achieved for >22- and >30-kb 
subsamples, respectively. allhic-wtd >30- and >22-kb subsample as-
semblies consisted of a single “mega” scaffold that contained >97% 
of the total length (Figure 4d), which is not consistent with the ex-
pected karyotype for Knightia excelsa. Despite producing less contig-
uous assemblies, salsa2 scaffolding using the initial wtd assemblies 
appeared more accurate with optimal performance resulting from 
using the >30-kb subsample, achieving a kmer completeness value 
of 83%, gene completeness score of 85% and an 85% reduction 
in contig number observed, and gave a contig length distribution 
(Figure 5c) more similar to the known karyotype.

Similarly, the problem of shasta ONT reduced assembly length 
relative to the genome size estimated by flow cytometry was not 
resolved by Hi-C scaffolding using either salsa2 or allhic. allhic 
scaffolding, although greatly reducing contig number, produced a 
suspicious “mega” scaffold similar to the distribution found in wtd 
scaffolded assemblies (Figure 4d). Again, salsa2 scaffolds con-
structed using the >30-kb subsample appeared to be the most accu-
rate, with a gene completeness of 85% and a 99% reduction in contig 
number and no “mega” scaffold (Figure 4c). Unfortunately, due to 
the poor total length of the initial ONT assembly provided by shasta, 
the kmer completeness score of the final assembly remained low at 
55%, therefore drastically under-utilizing the data provided.

allhic performed optimally when utilizing more robust initial 
ONT assemblies generated by fyle across each subsample (Table 2), 
and although a “mega” scaffold still persists throughout each subset, 
its size reduced to ~50% of the total genome length (Figure4c,d). 
Interestingly, the >5- and >10-kb subsampled assemblies repre-
sented more of the data, with higher gene completeness values and 
a kmer completeness score of 91% for both, in comparison to >22- 
and >30-kb subsamples that had lower gene completeness scores 
and a kmer completeness value of only ~80%. Comparatively, salsa2 
scaffolding failed to reduce contig numbers in the >5- and >30-
kb subsamples and only achieved a 34% and 36% reduction in the 
>10- and >22-kb read subsamples, respectively. Although salsa2 as-
semblies have lower contiguity in comparison to that of allhic, they 
consistently outperformed it in terms of gene completeness.

Finally, allhic scaffolding for all canu ONT assemblies yielded a 
suspicious contig length distribution, with >92% of the total genome 
size being placed on a single mega-scaffold. Gene completeness val-
ues were also poor with all samples below 80%, which was surprising 
considering the scaffolds generated were the most kmer-complete, 
peaking at 93% across samples. Again, the optimal initial canu as-
sembly from the >30-kb read subsample generated the optimal 
assembly after salsa2 scaffolding, with gene completeness of 85% 
and 93% kmer completeness. In this case, salsa2 also reduced contig 
numbers by 39%.

Due to allhic requiring prior knowledge of karyotype to inform 
the pseudochromosome construction it performed well with higher 
contiguity and longer scaffolds. However, on comparison of the 
scaffold length distribution, salsa2 generated more uniform scaf-
fold lengths across subsamples whereas allhic tended to generate 

assemblies with one single mega-scaffold and a multitude of much 
shorter scaffolds, which is not in agreement with the known karyo-
type of K. excelsa.

3.5  |  Optimizing Hi-C scaffolding strategies in 
preparation for pseudochromosome construction 
using all ONT data

In the previous section we determined the effect of data volume and 
sequence length on Hi-C strategies. Here, we optimize the optimal 
Hi-C scaffolding procedure for the 18 assemblies generated utiliz-
ing all available ONT data. Hi-C data were mapped, and duplicates 
again filtered in accordance with Phase Genomics quality assess-
ment guidelines (Appendix S3). Each assembly assessment indicated 
that the library preparation would sufficiently inform the underlying 
assembly. However, for de novo assembly scaffolding, high-quality 
read pairs between contigs are crucial and those found within con-
tigs are uninformative. During QC it was found that wtd and necat as-
semblies had a reduced intercontig percentage of reads pairs when 
compared to that of canu, fyle and shasta each peaking at 19%, 21% 
and 22%, respectively. Each of the eighteen polished ONT assembly 
constructs were scaffolded using two software packages, salsa2 and 
allhic. After initial scaffolding a series of quantitative quality assess-
ments including gene completeness, total length assessment, map 
back rate, kmer spectra analysis, kmer completeness profiling, con-
sensus accuracy and LAI were calculated (Figure 5).

Figure 3 highlights the impact of highly fragmented assemblies 
on scaffolding pipelines. For example, in wtd contigs sets the total 
genome size and overall kmer completeness scores fall short after 
Hi-C data mapping. Overall, canu assemblies performed well and 
scaffolding on assemblies based on a racon/medaka/pilon polishing 
strategy outperformed those produced by racon/pilon-only polish-
ing. canu-based scaffold sets by both allhic and salsa2 were 93% 
kmer-complete. However, read map back rates suggested salsa2 uti-
lized 7% more input data when compared to scaffold sets produced 
by allhic. The canu-salsa2 strategy also outperformed with regard to 
genome completeness with scaffold sets containing 77% complete 
genes in comparison to canu-allhic scaffolds having only 70% com-
plete genes. All fyle scaffold sets perform well with regard to kmer 
completeness. fyle-salsa2 and fyle-allhic mappings with racon/pilon-
only polishing produced more accurate total genome lengths but had 
lower gene completeness scores. Through quantitative metric as-
sessment across all 18 polished assemblies, two assemblies were se-
lected for further analyses before pseudochromosome construction: 
fyle/medaka/racon/pilon/salsa2 and fyle/medaka/racon/pilon/allhic.

3.6  |  Verification of Hi-C scaffolding using synteny 
with nine macadamia genetic maps

As mentioned in the previous section based on quantitative met-
ric assessment (Figure 5), fyle/medaka/racon/pilon/salsa2 and 
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F I G U R E  4  An extensive quantitative quality assessment of scaffold sets produced by both salsa2 and allhic on ONT assemblies. (a) 
Scaffold lengths for assemblies generated using read length subsampled data by four long read assemblers across four read lengths and Hi-C 
data mapped using salsa2. (b) Scaffold lengths for genomes produced using data subsampled by read length by four long read assemblers 
and Hi-C data mapped using allhic. (c) Scaffold lengths for assemblies produced using all read length data by five long read assemblers 
utilizing two alternative polishing strategies and Hi-C data mapped using salsa2. (d) Scaffold lengths for assemblies produced using all read 
lengths by five long read assemblers utilizing two alternative polishing strategies and Hi-C data mapped using allhic
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F I G U R E  5  A quantitative metric comparison of Knightia excelsa genome assemblies generated using all available ONT data after both 
salsa2 and allhic Hi-C mapping. (a) Quantitative metrics of Hi-C assemblies generated using allhic and salsa2. (b) A summary of LAI, kmer 
completeness, base error rate, consensus accuracy (QV), total length, and gene completeness (busco) 
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fyle/medaka/racon/pilon/allhic assemblies were selected for further 
validation using 14 linkage groups generated for the macadamia 
genome (Nock et al., 2020). Macadamia was selected as it belongs 
to the Proteaceae and shares a karyotype of 14 chromosomes with 
K. excelsa. Using blastn, unique markers were identified (mean =227 
unique markers identified per map) across nine maps. These unique 
markers were then mapped using allmaps (Tang et al., 2015b) to the 
two K. excelsa assemblies and the order and orientation of scaffolds 
were visually examined for synteny (Appendix S4). Whole genome 
alignments were constructed to compare each macadamia-informed 
assembly to its original Hi-C assembly. From this it was clear that 

scaffolds generated using salsa2 shared a greater proportion of syn-
teny with macadamia when compared to allhic scaffolds, although 
they were less contiguous. To further assess accuracy, the location 
of the telomere motif “TTAAGGG” was identified in each assem-
bly using emboss (Rice et al., 2000) and visual constructions created 
using chromomap (Anand, 2019) (Appendix S4). These analyses indi-
cate that both Hi-C scaffolders were unable to accurately represent 
telomere sequences, although salsa2 scaffolds generated a more ac-
curate assignment than scaffolds constructed using allhic.

Overall, the analyses confirmed that the fyle/medaka/racon/pi-
lon/salsa2 assembly outperformed the scaffolds produced by allhic 

F I G U R E  6  Pseudochromosome assembly curation and validation using both quantitative metrics, karyotype evaluation and manual 
curation. (a) The contact map generated for fyle/racon/medaka/pilon/salsa2/allhic assembly and zooms in on the misassembly both before 
and after manual correction. (b) Scaffold lengths of the 13 pseudochromosomes and the longest two additional scaffolds. (c) A panel of 
quantitative statistics generated to compare each scaffolding iteration
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with respect to the orientation and ordering of scaffolds and accu-
racy of regions of complexity.

3.7  |  Pseudochromosome-level assembly 
construction

Based on a combination of the quantitative metrics and the 
linkage group validation outlined in previous sections, the 
fyle/medaka/racon/pilon/salsa2 assembly was selected for further 
scaffolding using the allhic package. By specifying the expected 
karyotype, allhic binned contigs into pseudochromosomes, and 
metrics of 92% kmer completion, a QV score of 26 and a total length 
of 0.97 Gb were obtained. However, although a higher level of conti-
guity was achieved, gene completeness scores dropped to 80% from 
87%. On inspection of the allhic contact map produced using the 
pretext software package a misassembly was identified and rectified 
through manual intervention using juicebox (Figure 6a). This manual 
curation resulted in a 10% increase of gene completeness whilst 
retaining the contiguity provided by allhic. The final K. excelsa as-
sembly (Table 3) had a 90% and 97% gene complete using the embry-
ophyta and eukaryota databases, respectively, and an N50 of 114 Mb 
(Figure 6c), a karyotype similar to that expected for the species 
(Figure 6b) and which is available through https://doi.org/10.7931/
paqg-kk20.

4  |  DISCUSSION

Here, we describe the impact of data volume and coverage on as-
sembly, polishing and scaffolding workflows through analyses of 
four ONT read length subsamples. We also outline how to optimize a 
workflow for “optimal” pseudochromosomal assembly construction 

using Knightia excelsa as an exemplar. It is crucial that an appropriate 
assembler and sequencing strategy is selected prior to data genera-
tion, in order to maximize the use of both the data volume and read 
length during assembly to meet the goal of constructing an assem-
bly optimal for individual project needs. The performance of five 
ONT assemblers across four read length subsets (reads >5 kb only, 
>10 kb only, >22 kb only, >30 kb only) were investigated. By sub-
sampling the input ONT data we examined the impact of both data 
coverage and volume on quantitative metrics and how these metrics 
can be used to inform the best assembly approach, facilitating the 
reconstruction of the optimal initial ONT contigs for further Hi-C 
scaffolding. Furthermore, this highlights the use of using a range of 
quantitative metrics when dealing with different data volumes and 
qualities to generate high-quality nonmodel organism genome as-
semblies. We separately assessed the optimal assembly workflow 
utilizing all available ONT data for the generation of the first high-
quality genome assembly for Rewarewa.

4.1  |  Long read assembler performance with 
iterative polishing for assemblies generated using 
subsampled ONT data

In order to compare assembly performance, quantitative metrics such 
as total length, contiguity and N50 for each assembly were generated 
(Figure 2). shasta was built for quick assembly construction and was 
originally developed for the human genome, with 11 human genomes 
assembled in 9 days on a single computer node. This was made possi-
ble by strategic read length encoding, reduced marker representation 
and heuristics. However, although being fast, shasta requires a large 
amount of RAM, 1–2 Tb for the human genome (Shafin et al., 202b), 
which is not always readily available and compromises assembly ac-
curacy over contiguity and total length. Figure 2 highlights shasta’s 

Pseudochromosome number Length (bp)

1 158,258,002

2 128,337,228

3 115,057,523

4 114,119,817

5 89,465,163

6 87,992,687

7 58,927,204

8 47,592,350

9 46,680,506

10 42,698,337

11 36,056,839

12 28,555,625

13 8,702,882

14 2,822,772

Sum of pseudochromosome length 965,266,935 965 Mb

TA B L E  3  Pseudochromosome length of 
the final Knightia excelsa genome assembly

https://doi.org/10.7931/paqg-kk20
https://doi.org/10.7931/paqg-kk20
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shortcoming with assemblies across all read lengths unable to repre-
sent the expected total length of K. excelsa (1 Gb) whilst consistently 
achieving high gene completeness scores.

Interestingly, Figure 2 illustrates this assembler's dependency on 
a high depth of coverage for optimal performance, with subsamples 
that include additional read depth, for example >5-kb assemblies 
being of better quality than those with a lower depth of coverage 
such as >30  kb. shasta appears to positively respond to iterative 
racon polishing with continuous improvements in contiguity found 
across subsamples when implemented (Figure 2). When alternative 
polishing strategies were tested across subsampled data sets shasta 
appeared unbiased with both general and sequencer-specific polish-
ers performing equally well in the >30- and 22-kb subsamples whilst 
medaka-based approaches seem to outperform general approaches 
in the >5- and >10-kb subsample (Figure 3).

wtd produces highly fragmented assemblies in comparison to 
all other assemblers when shorter read lengths are included, with 
enhanced N50 and reduced number of contigs occurring when 
only longer read lengths are provided (Figure 2). This result is due 
to its underlying algorithm having only a single consensus step and 
is reiterated by a significant improvement of contiguity, gene com-
pleteness and N50 after racon and pilon polishing, which has been 
identified as an issue in other plant species assemblies such as Acer 
yangbiense (Yang et al., 2019).

Consistent with results found for prokaryotes (Wick & Holt, 
2019), we demonstrated wtd’s decreased performance at lower read 
depths with assemblies produced by >30-kb read subsample failing 
to span the expected total length, which was not rescued by itera-
tive polishing. wtd was the only assembler identified without a bias 
toward a medaka-based polishing strategy, with racon-based strate-
gies also performing well.

canu’s optimal performance is reached when only longer read 
lengths are provided, and performance is compromised when addi-
tional shorter read length data are added. This clearly shows a pref-
erence by this assembler for read length over depth of coverage, 
supporting claims made by the developers that only >20× coverage 
is required for accurate assembly. Algorithmically, canu contains ex-
tensive rounds of error correction and consensus, and the develop-
ers do not suggest additional long read polishing. Thus, as expected, 
the post-assembly iterative polishing shown in Figure 2 has the least 
effect on these assemblies when compared to all other assemblers, 
as the initial assemblies generated have substantially fewer errors 
to correct. This finding does not appear to be specific to racon and 
medaka long read polishers only, as these minimal effects have also 
been identified by other long read polishing tools. For example, it 
has been shown that by polishing bacterial assemblies generated by 
canu using nanopolish an increase in errors found in the assembly oc-
curred when compared to short-read polishing alone (Goldstein et al., 
2019). Similar results are represented in Figure 2, as implementing 
the short-read polishing recommended by developers achieved a 
substantial gene completeness score across all subsamples.

fyle achieved the most robust performance, with the assemblies 
generated not significantly impeded by the addition or exclusion of 

certain read lengths or read depths. This result has been demon-
strated for bacterial genome assemblies whereby the assembler 
performs well at <10× coverage and in Eucalyptus pauciflora genome 
assembly (Wang et al., 2020) where fyle performs consistently well 
when >1-kb read lengths are subsampled when compared to >35-
kb read length subsamples. Iterative racon polishing has a marginal 
beneficial effect (Figure 2) and across all read lengths a combined 
medaka and racon polishing strategy yields the most enhanced ge-
nome assembly (Figure 3).

Overall, this analysis highlights the advantages and shortcomings of 
various assemblers and provides use cases for each. shasta, when given 
higher coverage data, is an incredibly powerful assembler that runs 
quickly (Wick & Holt, 2019) and generates extremely accurate contigs. 
However, shasta is not robust with regard to data volume, as without 
sufficient read depth this assembler performs suboptimally and fails to 
generate complete assemblies. It could still be useful at a lower depth 
of coverage for the purposes of complete and fast gene identification, 
particularly for large genomes. In comparison, canu is the slowest run-
ning assembler, due to its extensive pre-assembly error correction and 
trimming steps. However, length can be prioritized over depth when 
using this assembler, and the incorporation of shorter read lengths may 
even result in suboptimal results. The advantage of this assembler for 
more advanced users is the ability to modify parameters, although this 
may not be appropriate for novices. fyle is the most robust of the as-
semblers tested, with results across subsamples appearing consistent. 
This assembler may be an attractive tool for most data volumes and 
particularly for novice usage, as minimal parameter adjustments are re-
quired with the single caveat of a user-defined genome size.

4.2  |  An assessment of the 
impact of read length and data volume on Hi-C 
mapping performance

To assess the impact of initial assembly quality on Hi-C mapping per-
formance, Hi-C data, generated using the Phase Genomics kit, were 
mapped to the initial assemblies generated across the >5-, >10-, 
>22- and >30-kb subsamples. The contigs were scaffolded using two 
commonly used software packages, allhic and salsa2. allhic uses 
“pruning” and “optimization” steps to produce allele-aware scaf-
folds, although it requires a priori knowledge of the chromosome 
number. salsa2 uses the ONT assembly graph in order to assess 
assembly accuracy prior to Hi-C scaffolding and does not require 
karyotype information. Assessing assembly constructs from these 
two scaffolding software programs allowed not only a comparison 
of informed (allhic) and noninformed (salsa2) strategies but also 
the performance of a software that corrects misassemblies prior to 
scaffolding to a software that scaffolds based on the input assembly 
alone. When comparing scaffolder performance, it was important to 
integrate quantitative metrics such as N50, total length along with 
intrinsic karyotype information.

Amongst all four read length subsamples, the resulting assem-
blies from the salsa2-generated scaffolds were of greater accuracy 
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than those produced by allhic (Table 2). salsa2 generated assemblies 
that were both more gene complete and of a total length closer to 
the expected genome size. These findings are further supported by 
Figure 4(c,d) that highlight suspicious scaffold length distributions 
constructed by allhic, a result of over-assembly. This over-assembly 
could be a consequence of the homozygous K.  excelsa sample re-
sulting in a reduced long-range interaction signal (Zhang et al., 2019) 
and other more heterozygous genomes may indeed perform better.

allhic fails to construct scaffolds from highly fragmented ONT 
assemblies, and this is highlighted in its inability to construct scaf-
folds for >5- and 10-kb read subsample assemblies produced by 
wtd, which contain 10,317 and 10,043 contigs respectively. salsa2 
circumvents this issue by removing all contigs <1,000  bp prior to 
Hi-C assembly.

Through short contig removal, salsa2 achieves scaffolds utilizing 
all wtd subsamples and overall performs better when longer reads 
are supplied, although the >30-kb read subsample salsa2 scaffolding 
slightly underestimated the total length. As previously mentioned, 
all shasta-generated assemblies, although gene-complete, underesti-
mate the total length of the genome and despite Hi-C scaffolding the 
assembly failed to gain coverage of the entire genome but retained 
gene completeness score. For instance, the shasta assembly con-
structed using the >30-kb subsample and scaffolded with salsa2’s 
gene completeness was 85%, which was the highest score achieved 
when compared to all other ONT assemblers, but the total length 
was less than half the expected length. Similarly, salsa2 performs 
optimally for both the canu and fyle assembly constructed using the 
>30-kb subsample as it does with shasta.

From the analyses highlighted in Table 2 it is clear that the input 
assembly does substantially affect the accuracy of Hi-C scaffolding, 
as the issue of fragmentation found in ONT assemblies produced by 
wtd profoundly affected the scaffolding process, generating assem-
blies of low contiguity even after Hi-C scaffolding. Furthermore, the 
lack of genome length coverage of the initial shasta assemblies was 
not resolved with the addition of Hi-C data. Again, fyle appears more 
robust than other assemblers to scaffolding software, although all-
hic still produces a suspicious read length distribution, suggesting 
over-assembly in individual subsamples. canu assemblies perform 
suboptimally using the allhic scaffolder but the high-quality initial 
>30-kb read subsample ONT assembly appears to remain the supe-
rior assembly after salsa2 scaffolding.

4.3  |  A pseudochromosome-length near-complete 
genome assembly for Proteaceae using all ONT data

In order to generate a high-quality K. excelsa genome the initial 18 
ONT contig sets generated using all of the available ONT data were 
used and quality metrics were obtained (Figure 2). These contigs sets 
were scaffolded by both allhic and salsa2 and compared (Figure 5). 
Overall, this analysis highlighted the importance of the accuracy of 
the underlying ONT assembly as errors found in these assemblies 
(wtd, shasta and necat) were unresolved by further scaffolding with 

Hi-C data. This result is consistent with the accuracy of the initial 
ONT contigs produced by both fyle and canu maintaining superior 
quantitative metrics after scaffolding (Figure 4a,b). Both canu and 
fyle Hi-C assemblies retained a high consensus quality (QV), kmer 
completion scores peaking at 91% and 93% respectively and map 
back rates peaking at 84% for both (Figure 5). Furthermore, shasta, 
necat and wtd all failed to produce reliable scaffolded assemblies, 
suffering from collapsed genome lengths, low kmer completeness, 
and poor mapping back rates and therefore were not considered for 
further analyses.

Interestingly, fyle-based Hi-C assemblies appear to have a higher 
degree of gene completeness in comparison to canu with only a 
slightly smaller total assembly length than expected from flow cy-
tometry. fyle initial assemblies also appear robust to different scaf-
folding strategies with similar results across both allhic and salsa2 
being achieved. Focusing on N50, contiguity, gene completeness 
scores and total length alone lead to misleading conclusions about 
genome accuracy being drawn as allhic appeared more contiguous 
and had similar total lengths and gene completeness scores when 
compared to salsa2 assemblies. Through the integration of scaffold 
length distributions as a quality metric, the accuracy of these assem-
blies could be more thoroughly evaluated as the karyotype shows 
all 14 chromosomes are of similar length (Hair & Beuzenberg, 1958) 
and this should be represented in the scaffolds produced after Hi-C 
data integration. Here, salsa2 had a more realistic length distribution 
whilst allhic generated assemblies with length distributions incon-
sistent with the karyotype.

fyle-allhic assemblies produced high-quality metrics with a gene 
completeness of 88%, N50 of 66.6 Mbp, kmer completeness of 91% 
and a Hi-C read map-back rate of 80% (Figure 5). However, total 
length is lower than expected at 816  Mbp, and evidence of over-
assembly was identified with 50% of the genome being placed on a 
single chromosome (Figure 4a). Comparatively, fyle-salsa2 also per-
formed well, with a gene completeness score of 87%, a total length 
of 977 Mbp, kmer completeness of 84%, a Hi-C read map-back rate 
of 84% and a chromosome length distribution in line with what is 
expected for this species (Figure 5). However, in this case contigu-
ity suffered with an N50 of only 1.56 Mbp being obtained. Due to 
the superiority of the overall quantitative metrics obtained for fyle, 
ONT assemblies scaffolded with allhic and salsa2 were selected for 
further inspection.

Both assemblies were further validated for structure and orien-
tation accuracy through comparison to macadamia linkage maps. 
This analysis highlighted the accuracy and orientation of both scaf-
fold sets. Despite the fyle-salsa2 being less contiguous, the metrics 
suggested more accurate scaffolds (Figure 4b) and therefore this 
assembly underwent pseudochromosome reconstruction through 
an additional round of allhic scaffolding. After pseudochromosome 
reconstruction, contiguity was increased with an N50 of 114 Mbp, 
whilst retaining a high-quality total length and kmer completion, 
although gene completeness scores dropped by 8% (Figure 6c). In 
order to assess this, the data were manually curated using juicer 
and juicebox. Here, a single misassembly was detected and manually 
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curated (Figure 6c) resulting in a genome that is 91% kmer-complete, 
97.5 Mbp in length, 90% gene-complete (99% complete if consider-
ing Eukaryota data set) and has an N50 of 114 Mbp (Figure 6c).

This assembly is the first near-complete genome sequence for 
the Proteaceae clade and will provide invaluable information to the 
honey production industry in Aotearoa New Zealand, but also pro-
vides a reference for other Proteaceae in this clade.

5  |  CONCLUSIONS

Our long read and Hi-C-based assemblies of Knightia excelsa could 
potentially be useful as a benchmarking resource to be utilized regu-
larly on release of new ONT assembly and Hi-C scaffolding tools. This 
will allow the continuous assessment of performance of new genomic 
packages across both read length and read depth. Furthermore, this 
could enhance the genomics community's ability to make a more 
educated de novo genome assembly pipeline prior to assembly whilst 
also giving information on the data volume required. In future it will 
be important that more assemblers, polishing mechanisms and Hi-C 
scaffolders are investigated and benchmarked. Finally, the K. excelsa 
assembly produced here will be used to assess the genomic diversity 
of rewarewa across its natural range in Aotearoa New Zealand, in col-
laboration with Māori agribusinesses involved in the honey industry.
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