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ABSTRACT  
The circadian clock is a specialised cell signalling pathway present in all cells. Loss 
of clock function leads to tissue degeneration and premature aging in animal 
models demonstrating the fundamental importance of clocks for  cell, tissue and 
organism health There is now considerable evidence that the chondrocyte 
circadian clock is altered in osteoarthritis (OA). The purpose of this review is to 
summarise current knowledge regarding the nature of the change in the 
chondrocyte clock in OA and the implications of this change for disease 
development. 
 
Expression of the core clock component, BMAL1, has consistently been shown to 
be lower in OA chondrocytes. This may contribute to changes in  chondrocyte 
differentiation and extracellular matrix turnover in disease. Circadian clocks are 
highly responsive to environmental factors. Mechanical loading, diet, inflammation 
and oxidative insult can all influence clock function. These factors may contribute 
to causing the change in the chondrocyte clock in OA.  
 
 
Key messages: 

Expression of the circadian clock transcription factor, BMAL1, is reduced in 
chondrocytes in OA. 

Reduced BMAL1 levels have been linked with aberrant control of chondrocyte 
differentiation and cartilage turnover.  

The chondrocyte clock may be regulated by lifestyle-associated factors such as 
diet and exercise.  
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Almost all cells contain a circadian clock; a specialised cell-signalling circuit that 
synchronises biological activity with rhythmic changes in the external 
environment(1). Highly conserved across species and phyla, clocks provide an 
adaptive advantage, allowing regular environmental changes to be anticipated, 
and cellular activity modified in advance, to maximally exploit favourable 
changes and minimize the impact of negative changes.  

(2). 
 
The most well-known circadian clock is the central clock located in neurons of the 
suprachiasmatic nucleus (SCN) in the hypothalamus. Sensitive to light, the SCN 
clock synchronises diurnal rhythms in physiology and behaviour, such as the 
sleep/wake cycle and hormone secretion, with the external day/night cycle(3). 
Circadian clocks in other tissues (known as “peripheral” clocks) are integrally 
involved in controlling the timing of the cell cycle, energy metabolism, cell 
differentiation and have recently emerged as potential key regulators of 
extracellular matrix synthesis(4-12). Just as chronic disruption to the SCN clock 
has been associated with increased risk of disease (e.g. obesity, diabetes and 
cancer), peripheral clock disruption has also been implicated in several diseases 
including cancer, asthma and rheumatoid arthritis(13-16). Recently, disruption to 
the chondrocyte peripheral clock has been observed in osteoarthritis (OA)(17-19).  
 
The cartilage loss in OA is driven in part by abnormal activity of cells within various 
joint tissues, including chondrocytes(20). The purpose of this review is to evaluate 
the evidence for a role of chondrocyte clock disruption in contributing to the 
disease-associated changes in chondrocyte behaviour in OA.   
 
The molecular circuitry of the circadian clock   
The core circadian clock proteins are BMAL1, CLOCK, Period (PER) and 
Cryptochrome (CRY)(21-23). BMAL1 and CLOCK dimerise to form a transcription 
factor(23) that drives expression of several target genes including those of the 
PER (PER1, PER2, PER3) and CRY (CRY1, CRY2) families. PER and CRY proteins 
form heterodimers which in turn repress the transcriptional activity of BMAL1 and 
CLOCK(24). Other transcriptional and translational regulators also contribute to 
controlling PER/CRY and BMAL1/CLOCK expression such that levels of BMAL1 and 
CLOCK oscillate with those of PER and CRY in a self-sustaining cycle(25-27) 
(Figure 1). Although clock cycling can continue in the absence of any external 
input (known as “free-running” (Table 1)), this seldom occurs in vivo. Instead 
clocks are sensitive to, and will synchronise with, rhythmic changes in the 
environment. For the SCN clock, the most powerful entraining rhythm or 
“zeitgeber” is the daily light/dark cycle and the cycling of BMAL1:CLOCK/PER:CRY 
in the SCN is synchronised with the 24h day/night cycle(1, 27).  
 
Most peripheral tissues are not light-sensitive. Instead, they are entrained by 
various rhythms in their local environment. This includes rhythms in circulating 
hormone levels e.g. cortisol which are regulated by the SCN clock(28). Originally 
it was assumed that peripheral clocks were entirely regulated by the SCN. 
However this notion was dispelled in 2000-2001, when two groups independently 
demonstrated that clocks in peripheral tissues preferentially entrain to daily 
rhythms in food availability over light/dark cycles(29, 30). Since this time, other 
factors such as mechanical loading have also been shown to regulate peripheral 
clocks(31). Peripheral clocks are therefore controlled by both systemic and 
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localised factors(31, 32). Although usually these cues would align e.g. in a diurnal 
animal cortisol levels peak in the morning which corresponds with the time the 
animal is active and consuming food, misalignment of these cues may lead to 
discordant clock control.  
 
The chondrocyte circadian clock  
Chondrocytes within the growth plate, articular cartilage and secondary cartilage 
all contain circadian clocks(33-35) and there is evidence that chondrocyte 
differentiation is under circadian control(34, 35). 
 
Transcription of IHH, a master controller of chondrocyte differentiation, is directly 
regulated by BMAL1 in chondrocytes (34, 35). Ptch1 expression (encoding the IHH 
receptor) has also been shown to oscillate over a 24h period in chondrocytes(34). 
Other transcription factors critical for chondrocyte differentiation may also be 
under circadian control including Sox9(15), Nfatc2(17) and Sox6(36).  
 
Expression of several genes involved in matrix turnover have been shown to 
oscillate over the course of a day in chondrocytes including ACAN, MMP13, and 
COL2A1(17, 18, 33). Whether this is due to direct circadian control or a 
consequence of circadian regulation of transcription factors such as IHH and SOX9 
is unclear.  
 
At present, the most well understood mechanism by which peripheral clocks 
control cell activity is through the regulation of gene transcription. However, it is 
likely that the circadian clock influences chondrocyte behaviour through 
mechanisms that extend beyond transcriptional control. For instance, both BMAL1 
and PER2 have been found to associate with components of the mTOR complex 
and provide temporal control of protein translation(37, 38).  
 
The SCN (central) clock in OA pathogenesis 
Although SCN clock disruption is implicated as a risk factor for other chronic 
conditions(39), to date there is minimal evidence to support a link with OA. No 
difference in cartilage was observed in transgenic mice bearing the clockΔ19 
mutation (which results in a lengthened SCN circadian period >24h(40)) or the 
csnk1etau mutation(41) (which results in a shortened SCN circadian period 
<24h(42)). Two further studies found that mice exposed to a simulated shift-work 
regimen (induced by shifting the light/dark cycle by 12h every week), had reduced 
proteoglycan content, increased immune cell infiltrate and signs of fibrillation in 
articular cartilage within the knee (but not other joints) and these effects were 
exacerbated by a high fat diet(41, 43). A link between shift-work and increased 
risk of knee OA has also been reported in humans(44). However, shift-work has 
many effects other than just SCN clock disruption. Whether SCN clock disruption 
itself has adverse effects on cartilage remains to be established.  
 
The chondrocyte (peripheral) clock in OA pathogenesis 
There is considerable evidence that the chondrocyte circadian clock is altered in 
OA. Expression of BMAL1 has been consistently shown to be lower in OA 
chondrocytes(17-19, 45, 46). Reduced Bmal1 levels have also been observed in a 
mouse model of TMJ OA(47) but not in the DMM mouse where Bmal1 expression 
was instead found to be elevated(33).  
 



4 
 

Differences in expression of other clock genes have also been observed in OA(18, 
19, 45, 46, 48, 49), however results have been inconsistent. This is likely a 
reflection of the difficulty in investigating the circadian clock in human disease. 
The dynamic nature of the clock means that both the magnitude and direction of 
differences in clock gene expression between healthy and diseased tissue may 
differ at different timepoints throughout a 24h period. This is an important 
consideration when interpreting the results of studies investigating potential 
differences in the circadian clock in OA particularly as two different experimental 
approaches have been used for these studies, often yielding different results.  
 
One approach is to measure clock gene expression directly in cartilage of 
individuals with and without OA at the single timepoint at which tissue is collected. 
The second approach is to isolate chondrocytes from OA and normal cartilage and 
use a technique such as serum shock (an in vitro zeitgeber(50)) to synchronise 
cell clocks. Chondrocytes are then cultured in vitro, and clock gene expression 
measured at regular intervals over the circadian cycle.  
 
The two approaches provide slightly different information regarding changes in 
the clock in OA. Whilst the first approach only allows identification of differences 
in clock gene expression at a single timepoint, it will capture differences in 
expression due to both intrinsic factors i.e. a change in the epigenetic control of 
clock genes, as well as those due to extrinsic factors i.e. as a result of a change 
in clock-regulating cues in the diseased environment. In contrast, the second 
approach allows comparison of clock gene expression throughout the circadian 
cycle, however, it is likely that only intrinsic differences in clock gene expression 
will be detected as differences due to exposure to different clock regulating cues 
in disease may be lost during in vitro culture. The second approach will detect 
whether clocks in OA chondrocytes respond in the same way as normal 
chondrocytes to a given zeitgeber. Combining data obtained from the two 
approaches can provide insight into the mechanisms involved in causing changes 
in the clock in OA.  
 
Reduced BMAL1 expression in OA chondrocytes has been observed in studies using 
both approaches suggesting epigenetic control of BMAL1 is altered in disease. 
However, the two approaches have often yielded different results when expression 
of other clock components have been assessed. It is likely that these changes are 
a result of differences in the types of clock regulating stimuli to which chondrocytes 
are exposed to in OA, and/or a change in the responsiveness of chondrocytes to 
clock-resetting cues in OA.  
 
Potential mechanisms leading to alteration of the chondrocyte circadian 
clock in OA 
There is evidence that factors present in the OA disease environment can induce 
changes in the chondrocyte circadian clock. Oxidative stress, IL-1β and basic 
calcium phosphate crystals alter expression of circadian clock genes in 
chondrocytes with all causing a reduction in BMAL1 expression,  (51, 52).  
 
Various studies have identified signalling pathways involved regulating the 
chondrocyte clock. Reduced sirtuin 1 (sirt1) activity(19) and altered NMDA 
receptor signalling(48), (the latter a major pathway involved in re-setting the SCN 
clock to light) have been implicated in the change in the chondrocyte clock in OA.  
Increased NF-κB(52) and reduced sirt1 activity(19) have also been implicated in 
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IL-1β induced effects on the chondrocyte clock. It is plausible that these three 
pathways may act in concert to regulate the clock. In other cell types, NMDA 
receptor signalling leads to reduced levels of sirt1(53) and  increased NF-κB 
activation(54, 55). Increased NF-κB activation also drives a reduction in  sirt1 
levels(56). Both sirt1 and NF-κB are epigenetic regulators. Sirt1 is a histone 
deacetylase and whereas NF-kB binds chromatin and regulates chromatin 
remodelling and histone acetylase recruitment (57, 58). Whether either are 
involved in epigenetic control of clock gene expression, particularly BMAL1, 
remains to be determined.  
 
Consequences of changes in the chondrocyte clock for cartilage integrity 
The effects of reduced BMAL1 levels  
Global Bmal1 knockout mice display a premature aging phenotype, developing 
multiple morbidities including cataracts and reduced bone mass(59). However, 
although extensive ectopic calcification of tendons, ligaments and intervertebral 
discs was observed in Bmal1-null mice, articular cartilage appeared normal(59). 
Other types of cartilage though do appear to be compromised in BMAL1-null 
animals.  Levels of aggrecan and  types II and X collagen were reduced in 
mandibular condyle cartilage during both embryonic as well as postnatal 
development in global Bmal1 knockout mice (35) suggesting that Bmal1 is 
involved in mandibular cartilage development(35).  
 
In contrast to the global Bmal1 knockout, articular cartilage has been shown to be 
compromised in cartilage-specific Bmal1 knockout mice. Chondrocyte number was 
reduced, chondrocyte apoptosis increased and  extracellular matrix loss apparent 
in cartilage-specific Bmal1-knockout mice(17). Data from the global and cartilage-
specific Bmal1 knockout models suggest that it may be asynchrony of the 
chondrocyte clock relative to other tissue clocks, or reduced Bmal1 levels in 
chondrocytes relative to other tissues, that drives cartilage lesion formation. This 
is an interesting concept given that OA is a disease affecting multiple joint tissues.  
 
Intriguingly, although cartilage-specific Bmal1 ablation resulted in loss of cartilage 
integrity in knee joints, hip cartilage was unaffected(17). This indicates that loss 
of Bmal1 alone may be insufficient to cause substantive changes in cartilage. 
Rather it may sensitise tissue to other cartilage-damaging agents such as 
mechanical loading. Understanding why hip cartilage was preserved following 
Bmal1 knockout may provide insight into understanding the risk factors for OA 
development between different joints.  
 
It should be noted that reduced levels of BMAL1 rather than complete BMAL1 
ablation are seen in patients with OA. (17, 18, 48). The effect of reduced BMAL1 
levels in human cartilage are likely to be less profound than those observed in 
Bmal1 knockout animals. Nevertheless, findings in Bmal1 knockout animals 
provide compelling evidence that a change in the chondrocyte clock can profoundly 
impact cartilage integrity.  
 
The effects of Bmal1 on the growth plate has also been studied in knockout 
animals(34, 60). Both body length and long bone length is reduced in cartilage-
specific Bmal1 knockout mice(34, 60) suggesting growth plate function is 
compromised. Effects were only apparent when Bmal1 knockout was induced 
postnatally not during embryonic growth(60), differing from effects seen in 
mandibular cartilage(35). This indicates that unlike mandibular cartilage, Bmal1 
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is not involved in growth plate cartilage development but rather has a role in post-
natal maintenance of the tissue. Whether the same is true for articular cartilage 
is unclear.   
 
Mechanisms by which BMAL1 affects chondrocyte activity and cartilage 
integrity 
Chondrocyte proliferation and viability 
In growth plates from cartilage-specific Bmal1 knockout mice, number of 
proliferating chondrocytes was lower whereas number of apoptotic chondrocytes 
higher compared to wildtype controls(60). This is consistent with findings in 
articular cartilage(17), indicating that Bmal1 deletion reduces chondrocyte 
viability. However, a reduction in BMAL1 levels in human chondrocytes appears to 
have less dramatic effects than complete BMAL1 ablation in animal models. . A 
small increase in cell proliferation was reported in one study following 
approximately 50-60% knockdown of BMAL1 in human chondrocytes isolated from 
macroscopically-normal cartilage from OA joints(18) whereas no effect on cell 
number was observed in a second study following BMAL1 knockdown in 
chondrocytes obtained from patients without OA (19). The level of BMAL1 
knockdown achieved was not reported in the latter study therefore it is unclear 
whether a comparable level of knockdown was achieved in the two studies.  
Differences in the sensitivity of the assays used and/or the source of primary 
chondrocytes may also have contributed to the difference in effects observed 
between these studies.  . Both studies involved only a transient reduction in BMAL1 
expression. Whether a chronic reduction in BMAL1 levels has more pronounced 
effects on cell number is unknown.   
 
Total Bmal1 knockout leads to complete loss of circadian clock cycling. However, 
this does not occur following just a partial reduction in BMAL1 levels and  
oscillations in the chondrocyte clock appear to be retained in OA chondrocytes 
(17, 18, 48)It It is possible that the anti-proliferative and pro-apoptotic effects 
observed in Bmal1 knockout mice are due to loss of overall clock cycling rather 
than a direct effect of loss of Bmal1 itself.  
 
There is some indication that BMAL1 levels may naturally be lower in proliferating 
compared to non-proliferating chondrocytes. By immunohistochemistry, Takarada 
et al(34) found BMAL1 staining was noticeably less intense in proliferating cells 
compared to pre-hypertrophic or hypertrophic chondrocytes within growth plate 
cartilage. This raises the possibility that BMAL1 knockdown has different effects in 
proliferating compared to differentiating chondrocytes.  
 
Chondrocyte differentiation 
There is evidence that reduced BMAL1 levels result in altered expression of 
chondrocyte phenotype markers conducive with changes seen in OA. In articular 
chondrocytes from cartilage-specific Bmal1 knockout mice, phosphorylated smad 
2/3 levels were lower and phosphorylated smad 1/5 levels higher (17).. Likewise, 
expression of Nfatc2 and Sox9 have also been shown to be reduced following 
cartilage-specific Bmal1 ablation(15).   
 
However, mRNA levels of Ihh(34) as well as protein levels of Hif1α and Hif2α and 
their downstream effector Vegf, were found to be reduced in growth plate 
chondrocytes in cartilage-specific Bmal1 knockout mice(60). These findings are 
somewhat disparate with the changes in these factors observed in OA(61-63). The 
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number and type of genes regulated by the circadian clock is known to differ 
between different tissues(33). Whether BMAL1 has differing effects in the growth 
plate than it does in articular cartilage remains to be determined.  
 
Extracellular matrix turnover  
Expression of Col2 and Acan has been found to be reduced in chondrocytes from 
cartilage-specific Bmal1 knockout mice consistent with the reduced Col2a1 and 
Acan expression observed at certain stages of OA (34). However, in growth plate 
cartilage, Col10 expression was also found to be reduced in Bmal1 knockout mice 
suggesting that loss of Bmal1 inhibits chondrocyte hypertrophy(64). These data 
may suggest that the contribution of reduced BMAL1 levels to OA pathogenesis 
may differ depending on the stage of disease.  
 
Transient knockdown of BMAL1 (50-60% reduction) in chondrocytes isolated from 
macroscopically-normal regions of cartilage from patients with OA  resulted in 
elevated MMP13 expression in one study(18) but had no effect in a second study 
involving chondrocytes isolated from patients without OA (19). As for cell number, 
the level of BMAL1 knockdown was not reported in this second study.  In both 
studies, gene expression was only measured at a single time point. Given that 
expression of MMP13 differs across the course of a day (suggesting it may follow 
a circadian rhythm)(18), the effects of BMAL1 knockdown may differ depending 
on the timepoint measured. Interestingly in the second study, although 
knockdown of BMAL1 alone had no effect on MMP13 expression(19), it 
exacerbated the effects of IL-1β(19). This is conducive with the notion that 
reduced BMAL1 levels may sensitise chondrocytes to other factors in the disease 
environment. It is possible that chondrocytes within macroscopically normal 
regions from OA joints are more vulnerable to the effects of reduced BMAL1 levels 
than chondrocytes from non-OA joints and this may be a factor in the difference 
in effects observed following BMAL1 knockdown between the two studies. The 
potential causes and consequences of reduced BMAL1 levels in OA chondrocytes 
are summarised in Figure 2.  
 
 
The effects of other clock components 
BMAL1 is not the only clock component with altered expression in OA and hence 
may not be the only means by which an altered circadian clock influences cartilage 
integrity in OA.  
 
Global Clock mutant mice (ClockΔ19 mutation) exhibit pronounced cartilage 
degradation which is further exacerbated by anterior cruciate ligament 
destabilisation(65). CLOCK regulates NF-κB activity by physically interacting with 
the p65 NF-κB subunit(66). Increased NF-κB activation was found to contribute to 
the cartilage damage in Clock mutant mice(65). At present there is little evidence 
that CLOCK expression is altered in OA. However, since CLOCK is the dimer 
partner of BMAL1, reduced BMAL1 levels in OA may lead to increased levels of free 
CLOCK, enabling dimerization of CLOCK with p65 and promoting NF-κB activation.  
 
Other clock components have also been shown to influence chondrocyte activity 
and cartilage integrity. Cartilage thickness is greater in global Cry2 knockout mice 
compared to wild type controls(64). However, pathological changes in cartilage, 
subchondral bone and synovium were more pronounced in Cry2 knockouts 
following surgical OA induction by medial meniscus destabilisation(64). 
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Knockdown of NR1D1 in normal chondrocytes resulted in altered expression of 
components of the TGF-β pathway(49) whereas knockdown of PER2 in OA 
chondrocytes led to increased SOX9 and modest reductions in both ADAMTS5 and 
MMP13(51).  
 
 
Circadian clocks in other joint tissues in osteoarthritis 
In addition to chondrocytes, cells within other musculoskeletal tissues including 
synovial fibroblasts, tenocytes, osteoblasts, myocytes and  cells of the immune 
system also contain functional circadian clocks(67-72). Clocks in these tissues 
have important roles in contributing to joint tissue health (Figure 3). For instance, 
clocks in T cells are involved in joint inflammation, the osteoblast clock is involved 
in bone remodelling, and the tenocyte clock regulates collagen secretion  (4, 73, 
74).  At present there is a paucity of data as to whether clocks in joint tissues 
other than cartilage are altered in OA. Differences in clock gene expression have 
been observed between synovial fibroblasts and immune cells in RA compared to 
OA(69, 70, 75). However, in the absence of normal controls, this data is difficult 
to interpret.  
 
The circadian clock as a therapeutic target in OA 
A number of existing drugs are known to modulate the circadian clock(76). For 
instance, both synthetic glucocorticoids and general anaesthetics cause phase 
shifts in the clock (although whether this contributes to their clinical efficacy is 
unclear)(77, 78). In addition, novel small molecule inhibitors targeting specific 
clock components are also in development(79). However, the ubiquity of circadian 
clocks throughout the body may limit their utility as direct drug targets. Targeting 
the clock in one tissue whilst avoiding effects in non-target tissues may be 
problematic. There is some indication that there are tissue specific differences in 
the responsiveness of clocks to regulators.  For instance, TNF-α, IL-6 and IL-1β 
have all been shown to regulate the synovial fibroblast clock(69, 70) whereas IL-
1β but not TNF-α was shown to regulate the chondrocyte clock(52). This is an 
important avenue for further investigation as it will not only aid in determining 
how clocks in individual tissues become disrupted in disease but may also inform 
drug discovery studies aimed at achieving tissue-specific targeting of the clock.  
   
Aside from pharmacological approaches, circadian clocks are likely to be 
particularly amenable to modification through lifestyle interventions. Peripheral 
clocks in general are known to be regulated by feeding cycles, mechanical loading 
as well as diurnal rhythms in hormone release. At present, how these different 
cues converge to ultimately control the chondrocyte clock is unclear. It is possible 
that the timing of exercise itself, or in relation to meal intake, may be important 
for retaining normal chondrocyte clock cycling. Further studies investigating these 
factors may enable the development of targeted advice regarding exercise and 
diet for those with early-stage OA or those at risk of developing OA.   
 
Technical considerations for circadian clock studies in human tissue 
There are several important factors that need to be considered when interpreting 
data from studies investigating circadian clocks in human tissue: 
1. Differences between study participants in lifestyle and chronotype can lead to 

profound inter-individual variation in circadian clock cycling. Tissue obtained at 
the same time of day from different individuals may not be at the same 
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circadian time. This has implications when comparing the circadian clock 
between normal and diseased tissue obtained from different patient donors.  

2. The effects of regulators of the circadian clock often vary depending on the 
time during the circadian cycle at which exposure occurs. For instance, 
dexamethasone and forskolin have been shown to invoke phase advances, 
phase delays or have no effect on the chondrocyte clock depending on the time 
of day at which they are administered(80). The time at which a treatment is 
administered needs to be considered when assessing the effects of potential 
regulators of the chondrocyte clock. One approach to overcome these issues is 
to use an in vitro zeitgeber such as serum shock to synchronise cell clocks 
before treatment with a clock regulator. The timing of treatments relative to 
zeitgeber exposure can then be kept consistent between patient samples.  

3. It is difficult to determine whether apparent changes in the level of clock gene 
expression in disease are due to a true change in the magnitude of gene 
expression or are caused by a change in the phase or period of the circadian 
clock. Establishing whether a change in phase or period has occurred requires 
near continual monitoring of clock cycling over several days, a process which 
is problematic in primary cells due to the need to minimise in vitro manipulation 
to preserve in vivo characteristics. However, assessing clock gene expression 
at more than one timepoint during the circadian cycle will provide more 
comprehensive insight into the nature of a change in clock gene expression.   

 
 Conclusions and Future Directions 
There is compelling evidence that the chondrocyte circadian clock is altered in OA. 
. Changes in the type of clock regulating cues chondrocytes are exposed to and 
changes in the responsiveness of chondrocytes to clock regulating signals may 
both contribute to driving the change in the clock in OA.     
 
There is consensus that BMAL1 levels are reduced in OA chondrocytes. Whilst 
studies in cartilage-specific Bmal1 knockout animals clearly show that complete 
loss of Bmal1 in chondrocytes leads to a loss of cartilage integrity, the effects of 
a partial reduction in BMAL1 levels are less clear. Further studies exploring the 
effects of long-term, rather than transient, reductions in BMAL1 levels in human 
chondrocytes are required.    
 
A surprising finding from animal studies is that detrimental effects of BMAL1 
knockout on articular cartilage are only apparent with cartilage-specific, not global 
knockout and are restricted to the knee not the hip joint. Determining whether 
the circadian clock is altered in other joint tissues in OA and how clocks in different 
joint tissues interact would aid in understanding how changes to the chondrocyte 
clock contribute to disease.  
 
Circadian clocks are attuned to environmental change. Understanding how factors 
such as exercise and meal timing impact clocks in tissues such as cartilage, may 
provide an opportunity for more targeted lifestyle-based strategies to aid in 
preventing or slowing the progression of OA.  
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Figure 1 The molecular circuitry of the circadian clock. In nucleated cells, 
the circadian clock consists of interconnecting transcription/translation feedback 
loops. At its core, the clock consists of a repressing arm made up of the proteins 
PER (Period) and CRY (cryptochrome) and an activating arm made up of the 
proteins BMAL1 and CLOCK. BMAL1 and CLOCK form a dimer which promotes the 
transcription of PER and CRY. As PER and CRY protein levels build up, these too 
form a dimer which feeds back to inhibit the activity of BMAL1:CLOCK. Auxiliary 
loops (such as those involving REV-ERBs, RORs and TIM) also act on 
BMAL1:CLOCK/PER:CRY cycle resulting in the creation of a self-sustaining 
oscillating molecular circuit. The circadian clock regulates fundamental cell 
processes such as the cell cycle, cell differentiation and energy metabolism. 
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Figure 2 The causes and consequences of reduced BMAL1 levels in 
chondrocytes in OA. Changes in the joint environment in OA such as increased 
levels of inflammatory cytokines, oxidative stress and basic calcium phosphate 
crystal deposition have been implicated as possible causes of the change in the 
chondrocyte circadian clock in disease. Mechanistically, decreased sirtuin 1 levels, 
increased NF-κB activity and altered NMDA receptor signalling may combine to 
drive the reduction in BMAL1 expression in OA chondrocytes.  Reduced BMAL1 
levels in chondrocytes have been linked with altered expression of chondrocyte 
differentiation markers, altered TGF-β signalling activity, decreased synthesis of 
extracellular matrix (ECM) components and increased expression of the cartilage 
degrading enzyme MMP13.  
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Figure 3 The involvement of circadian clocks in the maintenance of joint 
tissues. Circadian clocks are present within cells in all joint tissues. They 
contribute to the regulation of tissue turnover and the control of cell 
differentiation, immune responses and inflammation. Although the chondrocyte 
circadian clock is known to be altered in OA, it is currently unknown whether clocks 
in other joint tissues are also altered in disease.     
 


