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ABSTRACT 
Computational modelling and calibration can play a vital role 
in various geophysical settings, including the management of 
geothermal reservoirs. The calibration process typically 
involves perturbing model parameters, such as subsurface 
permeabilities, so that the resulting simulator outputs match 
field data, usually consisting of noisy surface or subsurface 
measurements. In an engineering context, however, model 
calibration is not a once-off process, but rather an on-going 
process that often requires careful decision-making about 
whether to collect new measurements and where these 
should be collected. Here we present a tutorial-style 
introduction on how to formulate and solve such decision 
problems, using two archetypal but straightforward 
geophysical model problems. 

The basic calibration problem can be considered a statistical 
inference problem. In particular, the Bayesian framework for 
calibration naturally allows for uncertainties in the data, the 
parameters, and models to be quantified and incorporated 
into this process. In this framework, the solution to the 
calibration (and inference problem) is a so-called posterior 
probability density, which characterises the remaining 
uncertainty in the parameters after conditioning on the field 
data. This uncertainty can then help guide the management 
of geophysical resources, where, intuitively, reducing 
(posterior) uncertainty enables higher quality decisions to be 
made. 

Reduction in posterior uncertainty is achievable by a) 
improving measurement precision at existing locations and 
hence obtaining similar data with lower noise or b) collecting 
additional data at new locations. Here we focus on the second 
option. The cost of collecting data in new areas can be 
considerable, however, especially when this data requires 
e.g. drilling a new observation well or constructing and 
deploying other expensive measurement equipment. Hence, 
we consider the design problem of how to determine the 
reward, in terms of uncertainty reduction, of a potential new 
observation, before collection. 

In addition to illustrating the basic principles of optimal data 
collection and data worth analysis using simple geophysical 
problems, we also show how the methodology used can be 
further developed to include, for example, the possibility of 
spatially heterogeneous costs of acquiring new data. 

1. INTRODUCTION  
Computational modelling has become an indispensable tool 
in many geophysical settings, including the management of 
geothermal reservoirs (e.g., O'Sullivan, Pruess, and 

Lippmann (2001)). However, the usefulness of any 
computational model depends on its ability to accurately 
predict reality. This requirement naturally requires 
calibration of the model, a process which entails tuning of 
model parameters, such as subsurface permeabilities, or 
boundary conditions, so that the model can match field data. 

Over at least the last forty years there has been a concerted 
effort towards incorporating various sources of uncertainty 
into the calibration process (e.g., Tarantola and Valette 
(1982)).The ultimate goal of these efforts is to quantify the 
certainty, or lack thereof, in the model parameters and model 
predictions. The Bayesian framework (e.g., Tarantola 
(2005), Kaipio and Somersalo (2006), Stuart (2010), Aster, 
Borchers, Thurber (2018)) is particularly well suited for 
handling various sources of uncertainty, including 
uncertainty in parameters, noise in the measurements, and 
modelling errors (Kaipio and Somersalo (2007)). Posing the 
calibration problem in the Bayesian framework results in a 
problem of statistical inference, where the goal is calculation 
of the parameter posterior probability distribution (or simply 
the posterior), i.e., the probability distribution of the 
parameters conditioned on the field data.  

In addition to one-off calibration problems, the Bayesian 
framework facilitates on-going management of, and 
decision-making concerning, a geophysical resource. Since, 
loosely speaking, the level of confidence in, or credibility of, 
a computational model is inversely proportional to the level 
of uncertainty, it is thus desirable to reduce uncertainties in 
parameters and related quantities of interest. Such reductions 
in uncertainty can generally be achieved by either improving 
the quality of the data, i.e. reducing the amount of noise in 
existing measurements, or by taking additional 
measurements. The latter is the focus of the current paper. In 
many geophysical settings, however, the acquisition of new 
data is expensive, this is particularly the case in petroleum 
and geothermal engineering when collecting new data can 
necessitate the drilling of a new observation well. Intuitively 
then, prior to deciding on where or when to measure, it could 
be highly beneficial to investigate the insights any further 
data would provide, i.e., how much will any new data reduce 
the posterior uncertainty. Carrying out such a study can be 
further complicated when the cost associated with collecting 
new data is heterogeneous, i.e., collecting different types of 
new data may have (very) different costs. 

Here we show how to formalize the problem of finding an 
optimal data collection strategy, using simple geophysical 
problems as illustrations. First, we briefly review how the 
basic calibration process can be posed in the Bayesian 
framework 
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2. CALIBRATION AS AN INVERSE PROBLEM 
As is standard, we will assume that the relationship between 
the field data, 𝒅𝒅 ∈  ℝ𝑑𝑑, and the parameters, 𝒎𝒎 ∈  ℝ𝑚𝑚, can be 
expressed by 

𝒅𝒅 = 𝒈𝒈(𝒎𝒎) + 𝛜𝛜, 

where 𝒈𝒈:ℝ𝑚𝑚 → ℝ𝑑𝑑, represents the forward model (or 
simulator), and 𝛜𝛜 ∈ ℝ𝑑𝑑, denotes any sources of additive 
errors and/or noise in the measurements. The forward 
problem involves solving the forward model equations given 
parameters; the calibration problem is, in contrast, to find the 
model parameters based on the (noisy) data.   

2.1 Inverse problems in the Bayesian Framework 
In the Bayesian framework, all unknown quantities are 
modelled as random variables; the probability distributions 
associated with these variables are updated by conditioning 
on new data as it becomes available. This updating procedure 
is based on the use of Bayes’ formula: 

𝒑𝒑(𝒎𝒎|𝒅𝒅) ∝ 𝒑𝒑(𝒅𝒅|𝒎𝒎)𝒑𝒑(𝒎𝒎), 

where 𝒑𝒑(𝒅𝒅|𝒎𝒎) is termed the likelihood, 𝒑𝒑(𝒎𝒎) the prior, and 
𝒑𝒑(𝒎𝒎|𝒅𝒅) is the posterior. In the case of additive noise, the 
likelihood inherits the distribution of the noise. On the other 
hand, the prior distribution encodes any of our beliefs about 
the parameter, such as smoothness or bounds, before the 
collection of any data. If both the prior distribution and 
distribution of the noise are Gaussian, and the noise is 
independent of the parameters, the posterior has the form 

𝒑𝒑(𝒎𝒎|𝒅𝒅) ∝ exp (−
1
2

((𝒈𝒈(𝒎𝒎) − 𝒅𝒅)𝑇𝑇𝐂𝐂d−1(𝒈𝒈(𝒎𝒎) − 𝒅𝒅)

+ �𝒎𝒎 −𝒎𝒎prior�
𝑇𝑇𝐂𝐂m−1(𝒎𝒎−𝒎𝒎prior))) 

where 𝐂𝐂d is the data covariance matrix, i.e., the covariance 
of the noise, and 𝐂𝐂m is the prior covariance matrix. Although 
this may appear to be a simple Gaussian distribution at first 
sight, the nonlinearity of 𝒈𝒈(𝒎𝒎) prevents this from being 
Gaussian in 𝒎𝒎. 

Fully characterizing the full, nonlinear posterior can be 
extremely time consuming, especially when the forward 
model involves solving high dimensional partial differential 
equations (PDEs). Such computationally intensive forward 
models are common for problems arising in geophysics. A 
computationally cheaper alternative which is often used in 
practice is to construct a local Gaussian (in 𝒎𝒎 ) 
approximation to the posterior centred at the maximum a 
posteriori (MAP) estimate, 𝒎𝒎MAP, which is the point in 
parameter space which maximises the posterior probability. 
While this MAP estimate typically requires nonlinear 
optimization methods for its estimation, subsequent 
uncertainty quantification can utilise efficient local linear 
analysis methods. In particular, the Gaussian approximation 
is constructed by linearising the forward problem around the 
MAP estimate, i.e., 

𝒅𝒅 ≈ 𝒈𝒈(𝒎𝒎MAP) + 𝑮𝑮(𝒎𝒎−𝒎𝒎MAP) + 𝝐𝝐, 

where 𝑮𝑮 is the Jacobian matrix of the forward model, 𝑮𝑮𝑖𝑖𝑖𝑖 =
𝝏𝝏𝒈𝒈𝑖𝑖
𝝏𝝏𝒎𝒎𝑗𝑗

. This results in a Gaussian approximation to the posterior 

with mean 𝒎𝒎MAP, and approximate posterior covariance 
𝐂𝐂p = �𝐆𝐆𝑇𝑇𝐂𝐂d−1𝐆𝐆 + 𝐂𝐂m−1�

−1
 (e.g., Tarantola (2005), Kaipio 

and Somersalo (2006)). The next section details how this 
posterior covariance matrix is fundamental to the optimal 
data collection problem. 

3. MINIMISING POSTERIOR UNCERTAINTY 
The goal of devising an optimal data collection strategy is to 
determine where, when, and what to measure so as to 
minimise the posterior uncertainty, which is encoded in the 
posterior covariance matrix. In the case of a single uncertain 
parameter, i.e., 𝒎𝒎 ∈ ℝ, the posterior covariance reduces to a 
single number, i.e., 𝐂𝐂p = 𝝈𝝈2 ∈ ℝ, and the goal of the 
resulting optimization problem is obvious. On the other 
hand, in the general setting 𝒎𝒎 ∈ ℝ𝑚𝑚, implying 𝐂𝐂p ∈ ℝ𝑚𝑚×𝑚𝑚, 
and minimizing the posterior uncertainty becomes 
ambiguous: What does it mean to minimise a matrix? This 
has led to the introduction of several criteria, including A-
optimality and D-optimality, which are discussed below.  

• A-optimality: The A-optimality criteria is 
minimisation of the average (hence the name A-
optimality) marginal posterior variance. That is 

min ϕA = min 
trace(𝐂𝐂p)

𝑚𝑚 . 

• D-optimality: The D-optimality criteria is 
minimisation of the determinant (hence the name 
D-optimality) of the posterior covariance matrix. 
That is 

min ϕD = min det(𝐂𝐂p). 

Other optimality metrics include E-optimality, which 
minimizes the largest eigenvalue of 𝐂𝐂p , and conditions such 
as the goal of minimising the posterior uncertainty of 
particular subsets of the parameter (see for example: 
Finsterle (2015), Alexanderian (2020)). 

As well as specifying the optimality criteria, to design an 
optimal data collection strategy we must also take into 
account several other problem specific details. The first of 
these is recognising whether the problem is posed in a 
discrete or continuous setting. Specifically, are there a set of 
possible candidate measurement locations, or are we 
essentially free to measure anywhere? Secondly, the cost of 
taking measurements is generally spatially (and temporally) 
heterogenous. 

A straightforward way of incorporating the heterogenous 
cost of taking new measurements into the optimisation 
problem is to introduce a penalty term. Naturally, the penalty 
term should penalise costly measurement strategies more 
than cheaper measurement strategies (see Figure 1 below). 
The exact form of the penalty term is dependent on whether 
the problem is posed in the discrete or continuous setting. If 
the problem is of the discrete form, then we only require a 
penalty term defined at the candidate locations. On the other 
hand, posing the problem in the continuous setting 
necessitates the definition of the penalty term everywhere.  

In the current study, we consider stationary (time-
independent) problems only but note that for time-varying 
problems the time variable can be treated essentially as 
another spatial dimension. Furthermore, without loss of 
generality we consider measurements of only one type, and 
thus the optimization is for the location of the new 
measurement, 𝜒𝜒. Finally, for simplicity, the forward 
problems considered in the current paper are already given 
in linear form, so that 
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𝒈𝒈(𝒎𝒎) = 𝑮𝑮𝒎𝒎. 

This can be considered as arising from a linear 
approximation to a nonlinear problem, or arising from an 
inherently linear problem.  

Independently of the specifics, devising an optimal data 
collection strategy can be formulated mathematically as 
solving a minimization problem of the form  

𝜒𝜒𝐼𝐼: = min
𝑥𝑥∈𝑋𝑋

 𝜙𝜙𝐼𝐼 + 𝑃𝑃(𝑥𝑥), 

where 𝑋𝑋 denotes the space of possible new measurement 
locations (discrete or continuous), 𝐼𝐼 ∈ {𝐴𝐴,𝐷𝐷} is the 
optimality criterion, and 𝑃𝑃(𝑥𝑥) ≥ 0 denotes the heterogenous 
cost of measuring at each 𝑥𝑥 ∈ 𝑋𝑋, i.e., a penalty function. 

 

Figure 1: Possible penalty terms for Bay of Islands, New 
Zealand. Topography of Bay of Islands (top left). 
A cost term which favours smooth topographies 
(top right). A cost term which favours being near 
the water (bottom left), and a combination of the 
two (bottom right).   

In what follows, for ease of communication, we assume the 
additional sets of measurements are composed of only a 
single new measurement, the generalization follows trivially. 
Incorporation of an additional measurement results in an 
updated posterior covariance matrix. Specifically, we now 
have 

𝐂𝐂�p = �𝐆𝐆�𝑇𝑇𝐂𝐂�d−1𝐆𝐆� + 𝐂𝐂m−1�
−1,    𝐆𝐆� = �𝐆𝐆𝒈𝒈� ,    𝐂𝐂�d−1

= �
𝐂𝐂d−1 𝟎𝟎
𝟎𝟎 𝜎𝜎𝑑𝑑−2

�, 

where 𝒈𝒈 ∈ ℝ1×𝑚𝑚 represents the mapping from the 
parameters, 𝒎𝒎 ∈ ℝ𝑚𝑚, to the new measurement, and we have 
assumed the new measurement will also be corrupted by 
additive noise with standard deviation 𝜎𝜎𝑑𝑑. Consequentially, 
the optimal measurement location will be given by 

𝜒𝜒𝐴𝐴 = min
𝑥𝑥∈X

  
trace(𝐂𝐂�p)

𝑚𝑚 + 𝑃𝑃(𝑥𝑥), 

for A-optimality, and  

𝜒𝜒𝐷𝐷 = min
𝑥𝑥∈X

  det�𝐂𝐂�p� + 𝑃𝑃(𝑥𝑥), 

for D-optimality. 

In the continuous setting, efficiently solving the optimization 
problem requires derivative information. That is, we would 
need to compute at least the gradient, 

∇𝑥𝑥𝜙𝜙𝐼𝐼 + ∇𝑥𝑥𝑃𝑃, 

and possibly the Hessian,  

𝑯𝑯𝑖𝑖𝑖𝑖 =
𝜕𝜕2𝜙𝜙𝐼𝐼
𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑖𝑖

+
𝜕𝜕2𝑃𝑃
𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥𝑖𝑖

. 

Arguably, however, for many geophysical problems, 
including within the geothermal context, the discrete setting 
is more applicable. That is, there are often a set of known 
new measurement candidate locations, denoted here by 
𝑥𝑥�1, 𝑥𝑥�2, … 𝑥𝑥�𝑁𝑁. Then to calculate the optimal measurement 
location we compute 𝜙𝜙𝐼𝐼(𝑥𝑥𝑖𝑖) + 𝑃𝑃(𝑥𝑥𝑖𝑖) for each 𝑖𝑖 ∈
{1,2 … ,𝑁𝑁}, and 𝐼𝐼 = 𝐴𝐴 or 𝐼𝐼 = 𝐷𝐷. 

For large-scale problems with more than a few candidate 
locations, however, recomputing the updated posterior 
covariance matrix, 𝐂𝐂�p, 𝑁𝑁 times can easily become 
prohibitive. To avoid this problem, we first rewrite the 
updated posterior covariance matrix as 

𝐂𝐂�p = �𝐂𝐂p−1 + 𝜎𝜎𝑑𝑑−2𝒈𝒈𝑇𝑇𝒈𝒈�
−1

 

Application of the Sherman-Morrison formula then gives 

𝐂𝐂�p = 𝐂𝐂p −
𝐂𝐂p𝒈𝒈𝑇𝑇𝒈𝒈𝐂𝐂p
𝜎𝜎𝑑𝑑2 + 𝒈𝒈𝐂𝐂p𝒈𝒈𝑻𝑻

. 

That is, no further matrix inversions are required to update 
the posterior covariance matrix. Furthermore, the trace, 
required for 𝜙𝜙𝐴𝐴, can then be calculated as 

trace(𝐂𝐂�p) = trace(𝐂𝐂p) − 𝜆𝜆𝒈𝒈𝐂𝐂p𝐂𝐂p𝒈𝒈𝑇𝑇 , 

where 𝜆𝜆 = �𝜎𝜎𝑑𝑑2 + 𝒈𝒈𝐂𝐂p𝒈𝒈𝑻𝑻�
−1

, and applying the matrix 
determinant lemma gives 

det(𝐂𝐂�p) = det(𝐂𝐂p)�1 + 𝜆𝜆𝒈𝒈𝐂𝐂p𝒈𝒈𝑇𝑇�. 

4. EXAMPLES 
Here we apply the developed methodology to two numerical 
examples. We only consider linear cases. However, as 
alluded to previously, the framework considered here relies 
on reducing the uncertainty in a Gaussian approximation to 
the posterior, which only relies on the linearization of the 
forward problem. As such, the treatment of linear problems 
given here is more broadly applicable than one might expect.  

4.1 Example 1: a source reconstruction example 
We first consider the problem of determining the time-
varying concentration of pollutant being released into a (one 
dimensional) groundwater aquifer based on well 
measurements downstream of the concentration levels at a 
particular time 𝑡𝑡 = 𝑇𝑇. The forward problem which maps the 
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concentration at the point of release, 𝒎𝒎 = 𝐶𝐶𝑖𝑖𝑖𝑖(𝑡𝑡), to the 
measurements downstream, at location 𝑥𝑥, is given by 

𝑮𝑮𝒎𝒎 = 𝐶𝐶(𝑥𝑥,𝑇𝑇) = � 𝑓𝑓(𝑥𝑥,𝑇𝑇 − 𝑡𝑡)𝒎𝒎𝑑𝑑𝑡𝑡
𝑇𝑇

0
, 

where 𝑓𝑓(𝑥𝑥, 𝑡𝑡) = 𝑥𝑥
2√𝜋𝜋𝐷𝐷𝑡𝑡3

𝑒𝑒
(𝑥𝑥−𝑣𝑣𝑣𝑣)2

4𝐷𝐷𝑣𝑣 , with the diffusion 
coefficient, 𝐷𝐷 and flowrate 𝑣𝑣 taken as 𝐷𝐷 = 𝑣𝑣 = 1. For more 
details on the set up see Neupauer, Borchers, and Wilson 
(2000) and Aster, Borchers, and Thurber (2018). After 
discretization, the linear forward operator can be written as 
𝑮𝑮𝑖𝑖𝑖𝑖 = 𝑓𝑓�𝑥𝑥𝑖𝑖 ,𝑇𝑇 − 𝑡𝑡𝑖𝑖�Δ𝑡𝑡.  

We represent our prior assumptions about the time-varying 
concentration of pollutant being released into stream, 𝒎𝒎, 
using a prior incorporating smoothness (e.g. due to the 
expectation of correlations in concentration over time). As 
such, we take a prior covariance matrix of the form 

{𝐂𝐂m}𝑖𝑖𝑖𝑖 = 𝜎𝜎m2 𝑒𝑒
−�𝑡𝑡𝑖𝑖−𝑡𝑡𝑗𝑗�

2

2ℓ2  + 𝛾𝛾𝑰𝑰, 

where we take the prior variance as 𝜎𝜎m2 = 1.5, the 
characteristic length scale as ℓ = 10, and taking 𝛾𝛾 = 10−4 
to ensure positive definiteness, with 𝑰𝑰 the identity matrix. In 
Figure 2 we show the prior mean, prior marginal variance, 
several draws from the prior, along with the truth. We also 
report the values of trace(𝐂𝐂m)/𝑚𝑚 and −log(det(𝐂𝐂m)) 

 

Figure 2: The prior distribution for Example 1. Prior 
mean, the prior credibility intervals, several 
samples from the prior showing the smoothness 
(faint green lines), and the truth.  

In terms of the different potential new data, we consider three 
scenarios where each involve taking four new measurements, 
as shown in Figure 3. We assume the cost of taking the 
measurements is the same for each scenario, and thus do 
away with the penalty term, 𝑃𝑃(𝑡𝑡). In Figure 3 we also show 
the collected data along with the underlying model. 

 

Figure 3: The data for Example 1. The collected data, and 
each of the proposed new measurement scenarios, 
as well as the underlying true model output.  

In Figure 4 we show the posterior found using only the 
original field data, and report the values of trace�𝐂𝐂p�/𝑚𝑚 and 
−log�det�𝐂𝐂p��. It is clear that, as hoped, the uncertainty in 
the posterior is significantly reduced compared to the prior 
uncertainty. This posterior is not of primary interest in this 
paper, but instead is used as a reference posterior, to 
compare to for the potential posteriors based on the possible 
new measurements. In Figures 5-7 we show the resulting 
posterior for new measurement scenarios 1-3, respectively. 
It is worth pointing out that the resulting posterior 
uncertainty can be calculated before taking any new 
measurements in the linear case (Kaipio and Somersalo 
(2006), Stuart (2010)). The MAP estimates are shown only 
for completeness. For each of the scenarios we report the 
values of trace�𝐂𝐂p�/𝑚𝑚 and −log�det�𝐂𝐂p�� 

In this case we can see that the second new data collection 
scenario is the best by both of the measures we use. 

 

Figure 4: The reference posterior for Example 1. The 
MAP estimate, credibility intervals, several 
samples from the posterior (faint green lines), and 
the truth.  
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Figure 5: The implied posterior for Scenario 1 of 

Example 1. The MAP estimate, credibility 
intervals, several samples from the posterior 
(faint green lines), and the truth. 

   
Figure 6: The implied posterior for Scenario 2 of 

Example 1. The MAP estimate, credibility 
intervals, several samples from the posterior 
(faint green lines), and the truth. 

 

Figure 7: The implied posterior for Scenario 3 of 
Example 1. The MAP estimate, credibility 
intervals, several samples from the posterior 
(faint green lines), and the truth. 

4.2 Example 2: a subsurface anomaly detection 
The second example we consider arises naturally in the field 
of geophysics, and serves as an archetypal case of subsurface 
measurement problems. Specifically, we consider problem 
of identifying anomalies in the subsurface density, denoted 
generically as 𝒎𝒎, based on noisy point-wise surface 

measurements of the local gravitational acceleration, 𝒅𝒅. The 
forward problem can be derived using Newton’s law of 
gravitation, and can be expressed as  

𝒅𝒅 = 𝑮𝑮𝒎𝒎 + 𝝐𝝐, 

where 𝑮𝑮 can be written, when using a finite element method 
(FEM) as 𝑮𝑮 = 𝑩𝑩𝑲𝑲−1, where 𝑲𝑲 is the so-called stiffness 
matrix,  

𝑲𝑲𝑖𝑖𝑖𝑖 = �∇𝜓𝜓𝑖𝑖𝑇𝑇∇𝜓𝜓𝑖𝑖 𝑑𝑑𝑥𝑥
Ω

,    𝑖𝑖, 𝑗𝑗 = 1,2, … ,𝑚𝑚 

where Ω is the computational domain, and 𝑩𝑩 is the 
observation (or restriction) operator, which maps points 
throughout the domain to only the measurement locations. 
For more on the gravitational problem, see, for example, Li 
and Oldenburg (1998). 

The prior covariance matrix is taken to be 𝐂𝐂m = (𝑲𝑲𝑇𝑇𝑲𝑲)−1, 
where 𝑲𝑲 is as above, but equipped with Dirichlet boundary 
conditions. This choice of prior encodes smoothness (though 
far less smoothness than that of the prior used in the previous 
example) and is sometimes referred to as a PDE-based prior, 
due to its link to the discretization of a PDE (see for example: 
(Kaipio, Kolehmainen, Vauhkonen, et al. (1999), Bardsley 
(2013)). The true anomalies in density are two spheres of the 
same size, while the reference measurements consist of 16 
equally spaced noisy measurements on the top of the domain, 
as shown in the top left of Figure 8. Shown at the top right of 
Figure 8 are the potential new scenarios for data collection, 
each comprised of 8 colinear points on the top surface. 
Shown on the same image is the heterogeneous penalty term, 
𝑃𝑃(𝑥𝑥). In this case we have manufactured a penalty function 
which favours taking measurements near existing 
measurements, and towards the bottom right of the top 
surface. In the bottom row of Figure 8 we show on the left 
the MAP estimate, 𝒎𝒎MAP, along a cross-section, and on the 
right the marginal posterior standard deviation along the 
same cross section. 

In Figure 9 we show the resulting marginal posterior 
standard deviation for each of the potential scenarios, for 
reference we also show the reference marginal posterior 
standard deviation (top right). For each of the new scenario 
posteriors we also report the values of trace(𝐂𝐂m)/𝑚𝑚 + 𝑃𝑃. 
Note that for this example we only consider the A-optimality 
criteria. In this example we see that scenario 2 is the optimal 
measurement strategy based on the value of trace(𝐂𝐂m)/𝑚𝑚 +
𝑃𝑃. 

For completeness we also show the resulting MAP estimates 
(along the same cross-section) in Figure 10. The main 
contribution from all cases of the potential new 
measurements is a reduction in the parameter uncertainty 
between the two spheres (see Figure 9). This in turn results 
in a clear distinction between the two anomalies in the 
updated MAP estimates compared to the reference MAP 
estimate, which is fairly ambiguous as to whether there are 
one or two anomalies. Finally, it is also evident (see Figure 
10) that the MAP estimate found using scenario 2 is the best 
representation of the true anomalies out of all the MAP 
estimates computed. 

 



 
Proceedings 42nd New Zealand Geothermal Workshop 

24-26 November 2020 
Waitangi, New Zealand 

ISSN 2703-4275 

 

Figure 8: Set up and reference posterior for Example 2. 
The true spherical density anomalies (black), 
gravitational force at top surface (violet indicates 
larger force), and data locations (top left). The 
penalty function, 𝑷𝑷(𝒙𝒙), (red indicates higher cost) 
the data locations and each of the proposed new 
measurement scenarios (Scenario 1: green stars, 
Scenario 2: purple stars, Scenario 3: grey stars) 
(top right). Cross section of the MAP estimate 
(darker brown represents higher density) (bottom 
left), and the marginal posterior standard 
deviation (darker brown represents higher 
uncertainty) (bottom right). 

5. DISCUSSION AND CONCLUSIONS 
In this article, we have given a brief introduction to how to 
build on Bayesian model calibration methodologies to take 
into account the collection of future data and associated 
decision problems when managing geophysical resources. 
We illustrated this methodology on relatively 
straightforward but representative geophysical model 
problems: source history reconstruction and subsurface 
(gravity) anomaly detection. The methodology considered 
simultaneously attempts to maximise the reduction in 
uncertainty in the underlying unknown parameters, while 
minimising the cost associated with carrying out the 
proposed field measurements. Although here illustrated on 
relatively simple problems, the approach is immediately 
applicable to the large-scale setting, given a model linearised 
around the best fit (MAP) estimate. Given such a 
linearisation, the optimality criteria discussed can be (very) 
cheaply evaluated.  

We have recently applied this approach to practical, large-
scale geothermal problems. Future research will focus on 
further developing, implementing, and reporting this 
methodology in the context of such large-scale, real-world 
geothermal models, where data is particularly sparse and can 
be very costly to collect. 

  
Figure 9: Marginal posterior standard deviations for 

each scenario for Example 2. The reference (top 
left), Scenario 1 (top right), Scenario 2 (bottom 
left), and Scenario 3 (bottom right). In each image 
the yellow dotted lines indicate the true location of 
the anomalies (along the cross-section), while 
darker brown indicates higher uncertainty. 

 

 

Figure 10: Cross-sections of the MAP estimates for 
Example 2. The reference (top left), Scenario 1 
(top right), Scenario 2 (bottom right), and 
Scenario 3 (bottom right). In each image the 
yellow dotted lines indicate the true location of the 
anomalies (along the cross-section), while darker 
brown indicates higher uncertainty. 
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