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ABSTRACT 
Transient flow in a geothermal wellbore is modelled using 
equations for conservation of mass, momentum and energy. 
Additional constitutive equations that describe phase slip, 
heat transfer and frictional effects are also required for model 
closure. The transient wellbore simulator described in this 
paper solves discrete two-phase conservation equations 
numerically using the Newton-Raphson procedure. 
Additionally, the constitutive equation describing phase slip 
is included in the set of equations to be solved implicitly. This 
method requires four primary variables, however, the best 
choice of the primary variables is not clear. This paper 
discusses the use of different combinations of primary 
variables in our transient geothermal wellbore simulator. The 
numerical performance of each model is assessed using a set 
of problems that have been developed to test the transient 
simulator. This suite of test problems covers a range of 
operating conditions and serves as a benchmark for future 
simulator development. It was found that using pressure, 
temperature (swapped with saturation for two-phase 
conditions), vapour velocity and liquid volume flux resulted 
in the best numerical performance for all cases tested.  

1. INTRODUCTION 
Geothermal wellbore simulators numerically solve the 
equations for conservation of mass, momentum and energy. 
These conservation equations are typically solved for three 
primary variables that are required to completely specify the 
thermodynamic state of the wellbore (Pan et al., 2014). Table 
1 gives the primary variables used in past transient 
geothermal wellbore simulators. Three of the four simulators 
use persistent primary variables, where the primary variables 
remain the same for all phase states. Pan et al.'s (2011) 
simulator T2WELL solves a second conservation of mass 
equation to account for CO2 and is the only simulator to use 
primary variable switching. In this case, temperature, 𝑇𝑇, is 
used for single phase flow but is swapped to vapour 
saturation, 𝑆𝑆𝑣𝑣, for two-phase conditions.  

Table 1: Primary variables used in past transient 
geothermal wellbore simulators  

Model  

WELLBORE (Miller, 1980) 𝑃𝑃 𝑄𝑄𝑚𝑚 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 − 

Garcia-Valladares et al. (2006) 𝑃𝑃 𝑄𝑄𝑚𝑚 ℎ𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 − 

T2WELL (Pan et al., 2011) 𝑃𝑃 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 𝑇𝑇(𝑆𝑆𝑣𝑣) 𝑥𝑥𝐶𝐶𝐶𝐶2 

Akbar et al. (2016) 𝑃𝑃 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 ℎ𝑚𝑚𝑚𝑚𝑚𝑚 − 
 

In Table 1, 𝑃𝑃 is pressure, 𝑄𝑄𝑚𝑚 is total mass flow, 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 is mass 
weighted mixture velocity, and 𝑥𝑥𝐶𝐶𝐶𝐶2 is the mass fraction of 
CO2 . The variables 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 and ℎ𝑚𝑚𝑚𝑚𝑚𝑚 are the static (mass 

weighted) internal energy and enthalpy, respectively, and 
ℎ𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚  is the flowing (mass flux weighted) enthalpy.  

A different approach was taken when formulating our 
wellbore model. A fourth equation, the constitutive model for 
slip was added to the three conservation equations and is also 
solved implicitly. Solving the slip equation in this way 
provides implicit knowledge of the flow direction for both 
phases. This is beneficial for upwinding procedures that are 
required for numerical stability. Additionally, in some cases, 
three equation models do not allow the empirical slip 
parameters to be calculated explicitly. This makes assessing 
wellbore simulator performance (e.g. data matching, 
convergence and time stepping) difficult when different slip 
models and primary variable combinations are used.  

Solving the slip equation implicitly requires a fourth primary 
variable. Therefore, none of the primary variable 
combinations presented in Table 1 are appropriate. Only one 
previous simulator, a steady-state simulator by Tachimori 
(1982), has solved the slip equation implicitly. They used 𝑃𝑃, 
𝑇𝑇 (𝑆𝑆𝑣𝑣), 𝑢𝑢𝑣𝑣 and 𝑢𝑢𝑙𝑙 as primary variables. These variables were 
initially used in our simulator, however, after several issues 
were encountered (discussed further in this paper), two other 
choices for primary variables were explored. This paper 
discusses how these three formulations were implemented 
and compares their performance on eight test problems. 

2. TWO-PHASE CONSERVATION EQUATIONS  
Transient flow in geothermal wells is modelled by 
considering the conservation of mass, momentum and energy. 
A three-equation model, that describes the fluid as a mixture 
rather that each phase individually, is given in (1), (2) and (3) 
below (Pan et al., 2011, Tonkin et al. 2020, Yadigaroglu, 
2018). 

The conservation of mass for a two-phase fluid mixture is 

 𝜕𝜕
𝜕𝜕𝜕𝜕

[𝜌𝜌𝑙𝑙𝑆𝑆𝑙𝑙 + 𝜌𝜌𝑣𝑣𝑆𝑆𝑣𝑣] +  

1
𝐴𝐴
𝜕𝜕
𝜕𝜕𝜕𝜕

[𝐴𝐴𝜌𝜌𝑙𝑙𝑆𝑆𝑙𝑙𝑢𝑢𝑙𝑙 + 𝐴𝐴𝜌𝜌𝑣𝑣𝑆𝑆𝑣𝑣𝑢𝑢𝑣𝑣] − 𝑞𝑞𝑚𝑚𝑚𝑚𝜕𝜕𝜕𝜕 = 0.          (1) 

Here, 𝜌𝜌𝛽𝛽 is the density, 𝑆𝑆𝛽𝛽 is the saturation and 𝑢𝑢𝛽𝛽 is the 
velocity of phase 𝛽𝛽 = 𝑣𝑣, 𝑙𝑙. The subscripts 𝑣𝑣 and 𝑙𝑙 represent 
the vapour and liquid phases, respectively. The mass 
exchange between the reservoir and the wellbore is modelled 
by the source term 𝑞𝑞𝑚𝑚𝑚𝑚𝜕𝜕𝜕𝜕. 

The conservation of momentum is 

 ∂
∂𝜕𝜕

[ρ𝑙𝑙𝑆𝑆𝑙𝑙𝑢𝑢𝑙𝑙 + ρ𝑣𝑣𝑆𝑆𝑣𝑣𝑢𝑢𝑣𝑣] + 1
𝐴𝐴
∂
∂𝜕𝜕

[𝐴𝐴ρ𝑙𝑙𝑆𝑆𝑙𝑙𝑢𝑢𝑙𝑙2 + 𝐴𝐴ρ𝑣𝑣𝑆𝑆𝑣𝑣𝑢𝑢𝑣𝑣2]  

+ ∂𝑃𝑃
∂𝜕𝜕

+ 2
𝑅𝑅
τ + (ρ𝑙𝑙𝑆𝑆𝑙𝑙 + ρ𝑣𝑣𝑆𝑆𝑣𝑣)𝑔𝑔 ∂𝑧𝑧

∂𝜕𝜕
− 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 = 0.       (2) 
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Here, 𝑃𝑃 is pressure, 𝑔𝑔 is gravity, 𝑧𝑧 is vertical depth and 𝑠𝑠 is 
the distance along the wellbore. Wellbore friction, 𝜏𝜏, is 
defined by a constitutive model, discussed in the companion 
paper by Tonkin et al. (2020).  

The conservation of energy for a two-phase mixture is 

 ∂
∂𝜕𝜕
�ρ𝑙𝑙𝑆𝑆𝑙𝑙 �ℎ𝑙𝑙 + 𝑢𝑢𝑙𝑙

2

2
� + ρ𝑣𝑣𝑆𝑆𝑣𝑣 �ℎ𝑣𝑣 + 𝑢𝑢𝑣𝑣2

2
� − 𝑃𝑃�+  

1
𝐴𝐴
∂
∂𝜕𝜕
�𝐴𝐴ρ𝑙𝑙𝑆𝑆𝑙𝑙𝑢𝑢𝑙𝑙 �ℎ𝑙𝑙 + 𝑢𝑢𝑙𝑙

2

2
� + 𝐴𝐴ρ𝑣𝑣𝑆𝑆𝑣𝑣𝑢𝑢𝑣𝑣 �ℎ𝑣𝑣 + 𝑢𝑢𝑣𝑣2

2
�� +  

(ρ𝑙𝑙𝑆𝑆𝑙𝑙𝑢𝑢𝑙𝑙 + ρ𝑣𝑣𝑆𝑆𝑣𝑣𝑢𝑢𝑣𝑣)𝑔𝑔 ∂𝑧𝑧
∂𝜕𝜕

+ 𝑞𝑞ℎ𝑒𝑒𝑚𝑚𝜕𝜕 − 𝑞𝑞𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 0.       (3) 

Here, ℎ𝛽𝛽 is specific enthalpy, 𝑞𝑞ℎ𝑒𝑒𝑚𝑚𝜕𝜕 models wellbore heat 
transfer and 𝑞𝑞𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 models energy transfer due to mass 
exchange with the reservoir. 

Three equation models for two-phase flow require an 
additional constitutive equation to model phase slip. This 
simulator uses the drift flux model originally presented by 
Zuber and Findlay (1965) and used in some past transient 
simulators. Pan et al. (2011) solved equations (4) and (5) for 
the phase velocities while Garcia-Valladares et al. (2006) and 
Akbar et al. (2016) solved the drift flux model for vapour 
saturation. 

The vapour and liquid velocities are calculated using the drift 
flux model using:  

𝑢𝑢𝑣𝑣 = 𝐶𝐶0𝐹𝐹𝑉𝑉 + 𝑢𝑢𝑑𝑑,                (4) 

and  

𝑢𝑢𝑙𝑙 = 1−𝑆𝑆𝑣𝑣𝐶𝐶0
1−𝑆𝑆𝑣𝑣

𝐹𝐹𝑉𝑉 −
𝑆𝑆𝑣𝑣

1−𝑆𝑆𝑣𝑣
𝑢𝑢𝑑𝑑.               (5) 

In (4) and (5), 𝐹𝐹𝑉𝑉 is the total volume flux defined as, 

𝐹𝐹𝑉𝑉 = 𝑆𝑆𝑙𝑙𝑢𝑢𝑙𝑙 + 𝑆𝑆𝑣𝑣𝑢𝑢𝑣𝑣.                (6) 

The distribution coefficient, 𝐶𝐶0, accounts for non-uniform 
saturation and volume flux profiles across the well while the 
drift velocity, 𝑢𝑢𝑑𝑑 accounts for the relative velocity between 
phases caused by buoyancy forces (Yadigaroglu, 2018). Pan 
et al.’s (2011) constitutive model for 𝐶𝐶0 and 𝑢𝑢𝑑𝑑 (adapted from 
Shi et al. (2005)) is used in this simulator. 

The constitutive equations for friction, 𝜏𝜏, heat transfer, 𝑞𝑞ℎ𝑒𝑒𝑚𝑚𝜕𝜕, 
and for evaluating sources 𝑞𝑞𝑚𝑚𝑚𝑚𝜕𝜕𝜕𝜕, 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑞𝑞𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 are 
discussed in a companion paper (Tonkin et al.,2020). 

3. NUMERICAL IMPLEMENTATION 
An analytical solution of the non-linear equations for mass, 
momentum and energy conservation is not possible and they 
must be solved numerically. To do this, the governing 
equations presented in Section 2 are discretised and solved for 
the primary thermodynamic variables using the Newton-

Raphson method. An outline of this numerical method is 
given in Section 3.5. 

Three different primary variable combinations, given in Table 
2, are tested in this work. Two of the primary variables remain 
the same for all three cases. For single-phase flow, pressure 
and temperature are used. They are switched to pressure and 
vapour saturation for two-phase conditions. These primary 
variables are the standard choice when simulating geothermal 
reservoirs using the pure water equation of state and have 
proven to be a very robust method for dealing with multi-
phase systems (Pruess et al., 2012, Croucher, 2020). 

The two remaining primary variables are flow variables and 
appear predominantly in the momentum equation, as such we 
will refer to them as flowing primary variables. Three 
different options for the flowing primary variables were 
tested. These were the phase velocities, phase volume fluxes 
and a mixed formulation that used the vapour velocity and 
liquid volume flux. 

Table 2: Primary variables tested in this work 

Velocity formulation 𝑃𝑃 𝑇𝑇(𝑆𝑆𝑣𝑣) 𝑢𝑢𝑣𝑣 𝑢𝑢𝑙𝑙 
Volume flux formulation 𝑃𝑃 𝑇𝑇(𝑆𝑆𝑣𝑣) 𝐹𝐹𝑉𝑉𝑣𝑣 𝐹𝐹𝑉𝑉𝑙𝑙 
Mixed formulation 𝑃𝑃 𝑇𝑇(𝑆𝑆𝑣𝑣) 𝑢𝑢𝑣𝑣 𝐹𝐹𝑉𝑉𝑙𝑙 

 

3.1 Discrete conservation equations 
A fully implicit, one-dimensional finite volume discretisation 
is used in this simulator. Here, static wellbore properties, e.g. 
pressure, temperature and saturation, are defined at the centre 
of each wellbore element, as shown in Figure 1, and flowing 
variables, e.g. phase velocities and fluxes, are defined on the 
interface between elements, as shown in Figure 2.  

 
Figure 1: Discretisation scheme for the mass and energy 

equations centred on element i 

The discrete conservation of mass and energy are given in (7) 
and (8) below for a generic element 𝑖𝑖. Here, the superscripts 
𝑛𝑛 + 1 and 𝑛𝑛 indicate the current and previous time steps, 
respectively. The subscript 𝑖𝑖 is the spatial index of an element 
centre. The subscript 𝑖𝑖 + 1/2 is the index of the interface 
between elements 𝑖𝑖 and 𝑖𝑖 + 1. 

 

 1
Δ𝜕𝜕
�[𝑆𝑆𝑣𝑣𝜌𝜌𝑣𝑣 + 𝑆𝑆𝑙𝑙𝜌𝜌𝑙𝑙]𝑚𝑚𝑒𝑒+1 − [𝑆𝑆𝑣𝑣𝜌𝜌𝑣𝑣 + 𝑆𝑆𝑙𝑙𝜌𝜌𝑙𝑙]𝑚𝑚𝑒𝑒� + 1

[𝑉𝑉]𝑖𝑖
�[𝐴𝐴𝐹𝐹𝑚𝑚𝑣𝑣 + 𝐴𝐴𝐹𝐹𝑚𝑚𝑙𝑙]𝑚𝑚+1/2

𝑒𝑒+1 − [𝐴𝐴𝐹𝐹𝑚𝑚𝑣𝑣 + 𝐴𝐴𝐹𝐹𝑚𝑚𝑙𝑙]𝑚𝑚−1/2
𝑒𝑒+1 � − [𝑞𝑞𝑚𝑚𝑚𝑚𝜕𝜕𝜕𝜕]𝑚𝑚𝑒𝑒+1 = 0             (7) 

 1
Δ𝜕𝜕
�[𝑆𝑆𝑣𝑣𝜌𝜌𝑣𝑣𝐻𝐻𝑣𝑣 + 𝑆𝑆𝑙𝑙𝜌𝜌𝑙𝑙𝐻𝐻𝑙𝑙 − 𝑃𝑃]𝑚𝑚𝑒𝑒+1 − [𝑆𝑆𝑣𝑣𝜌𝜌𝑣𝑣𝐻𝐻𝑣𝑣 + 𝑆𝑆𝑙𝑙𝜌𝜌𝑙𝑙𝐻𝐻𝑙𝑙 − 𝑃𝑃]𝑚𝑚𝑒𝑒� + 1

[𝑉𝑉]𝑖𝑖
�[𝐴𝐴𝐹𝐹𝑚𝑚𝑣𝑣𝐻𝐻𝑣𝑣 + 𝐴𝐴𝐹𝐹𝑚𝑚𝑙𝑙𝐻𝐻𝑙𝑙]𝑚𝑚+1/2

𝑒𝑒+1 − [𝐴𝐴𝐹𝐹𝑚𝑚𝑣𝑣𝐻𝐻𝑣𝑣 + 𝐴𝐴𝐹𝐹𝑚𝑚𝑙𝑙𝐻𝐻𝑙𝑙]𝑚𝑚−1/2
𝑒𝑒+1 � +  

[𝑞𝑞ℎ𝑒𝑒𝑚𝑚𝜕𝜕]𝑚𝑚𝑒𝑒+1 + [𝐹𝐹𝑚𝑚𝑣𝑣 + 𝐹𝐹𝑚𝑚𝑙𝑙]𝑚𝑚𝑒𝑒+1𝑔𝑔
𝑧𝑧𝑖𝑖+1−𝑧𝑧𝑖𝑖−1
𝜕𝜕𝑖𝑖+1−𝜕𝜕𝑖𝑖−1

− [𝑞𝑞𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒]𝑚𝑚𝑒𝑒+1 = 0                  (8) 
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The time step is Δ𝑡𝑡 and the volume of a wellbore block is [𝑉𝑉]𝑚𝑚, 
defined as 

[𝑉𝑉]𝑚𝑚 = [𝐴𝐴]𝑚𝑚Δ𝑠𝑠𝑚𝑚                (9) 

where [𝐴𝐴]𝑚𝑚 is the average cross-sectional area and Δ𝑠𝑠𝑚𝑚 is the 
axial length of a wellbore element. 

The mass flux of a phase on an interface is defined as 

�𝐹𝐹𝑚𝑚β�𝑚𝑚+1/2
𝑒𝑒+1 = �ρβ𝑆𝑆β�𝑚𝑚+1/2

𝑒𝑒+1 �𝑢𝑢β�𝑚𝑚+1/2
𝑒𝑒+1

.            (10) 

The interface saturation and density are weighted according 
to the direction of the flow. This is called upstream weighting 
or upwinding. The interface saturation is calculated using: 

�𝑆𝑆𝛽𝛽�𝑚𝑚+1/2
𝑒𝑒+1 �

�𝑆𝑆𝛽𝛽�𝑚𝑚
𝑒𝑒+1, �𝑋𝑋𝛽𝛽�𝑚𝑚+1/2

𝑒𝑒+1 ≥ 0

�𝑆𝑆𝛽𝛽�𝑚𝑚+1
𝑒𝑒+1, �𝑋𝑋𝛽𝛽�𝑚𝑚+1/2

𝑒𝑒+1 < 0
,            (11) 

and the interface density is calculated using: 

�𝜌𝜌𝛽𝛽�𝑚𝑚+1/2
𝑒𝑒+1 �

�𝜌𝜌𝛽𝛽�𝑚𝑚
𝑒𝑒+1, �𝑋𝑋𝛽𝛽�𝑚𝑚+1/2

𝑒𝑒+1 ≥ 0

�𝜌𝜌𝛽𝛽�𝑚𝑚+1
𝑒𝑒+1, �𝑋𝑋𝛽𝛽�𝑚𝑚+1/2

𝑒𝑒+1 < 0
.             (12) 

Here, �𝑋𝑋𝛽𝛽� 𝑚𝑚+1/2
𝑒𝑒+1  refers to the flowing primary variable of a 

phase.  

The calculation of phase velocity, �𝑢𝑢𝛽𝛽� 𝑚𝑚 + 1/2
𝑒𝑒+1 , differs 

depending on which primary variables are used. Its 
calculation is outlined in Sections 3.2, 3.3 and 3.4 for the 
velocity, volume flux and mixed formulations, respectively.  

In (8), �𝐻𝐻𝛽𝛽�𝑚𝑚
𝑒𝑒+1

 is the sum of enthalpy and kinetic energy of 
each phase, 

�𝐻𝐻𝛽𝛽�𝑚𝑚
𝑒𝑒+1 = �ℎ𝛽𝛽�𝑚𝑚

𝑒𝑒+1 + �𝐸𝐸𝐾𝐾𝛽𝛽�𝑚𝑚
𝑒𝑒+1

           (13) 

where � 𝐸𝐸𝐾𝐾𝛽𝛽� 𝑚𝑚𝑒𝑒+1 is the average kinetic energy of a phase. It 
is defined as the average of the kinetic energy at the 
interfaces, 

�𝐸𝐸𝐾𝐾β�𝑚𝑚
𝑒𝑒+1 = 1

2
�1
2
�𝑢𝑢β2�𝑚𝑚+1/2

𝑒𝑒+1 + 1
2
�𝑢𝑢β2�𝑚𝑚−1/2

𝑒𝑒+1 �.          (14) 

The interface enthalpies are upstream weighted, such that 

�𝐻𝐻𝛽𝛽�𝑚𝑚+1/2
𝑒𝑒+1 �

�𝐻𝐻𝛽𝛽�𝑚𝑚
𝑒𝑒+1, �𝑋𝑋𝛽𝛽�𝑚𝑚+1/2

𝑒𝑒+1 ≥ 0

�𝐻𝐻𝛽𝛽�𝑚𝑚+1
𝑒𝑒+1, �𝑋𝑋𝛽𝛽�𝑚𝑚+1/2

𝑒𝑒+1 < 0
.           (15) 

The discrete momentum equation, given in (16) above, is 
centred on the block interface at 𝑖𝑖 + 1/2. The momentum 
control element is shown in red in Figure 2. Definitions of the 
momentum flux would be required at 𝑖𝑖 and 𝑖𝑖 + 1 if a central 
differencing scheme was used. Instead, upwinding based on 
the direction of the flowing primary variables at 𝑖𝑖 + 1/2 is 
used. 

 

Figure 2: Discretisation scheme for the momentum 
equation centred on element i + 1/2 

The gravity term in (16) uses the average density on the 
interface, 

  [𝜌𝜌𝑣𝑣𝑆𝑆𝑣𝑣 + 𝜌𝜌𝑙𝑙𝑆𝑆𝑙𝑙]𝑚𝑚+1/2
𝑒𝑒+1 =  

1
2
�[𝜌𝜌𝑣𝑣𝑆𝑆𝑣𝑣 + 𝜌𝜌𝑙𝑙𝑆𝑆𝑙𝑙]𝑚𝑚𝑒𝑒+1 + [𝜌𝜌𝑣𝑣𝑆𝑆𝑣𝑣 + 𝜌𝜌𝑙𝑙𝑆𝑆𝑙𝑙]𝑚𝑚+1𝑒𝑒+1�.    (17) 

Equation (17) must be used instead of the upwinded 
saturations and densities. This is because in simulations with 
low mass flow the liquid velocity can flip between positive 
and negative values after each newton iteration. This causes 
the value of the gravity term to change and can result in slow, 
and sometimes failed, convergence. 

The effective interface volume, [𝑉𝑉]𝑚𝑚+1/2, is the average 
volume of the surrounding elements: 

[𝑉𝑉]𝑚𝑚+1/2 = 1
2

([𝑉𝑉]𝑚𝑚+1 + [𝑉𝑉]𝑚𝑚).            (18) 

3.2 Velocity formulation 
The velocity formulation calculates the vapour and liquid 
velocities, [𝑢𝑢𝑣𝑣]𝑚𝑚+1/2

𝑒𝑒+1   and [𝑢𝑢𝑙𝑙]𝑚𝑚+1/2
𝑒𝑒+1 , as flowing primary 

variables. The phase volume flux is calculated from the phase 
velocity using 

�𝐹𝐹𝑉𝑉𝛽𝛽�𝑚𝑚+1/2
𝑒𝑒+1 = �𝑆𝑆𝛽𝛽�𝑚𝑚+1/2

𝑒𝑒+1 �𝑢𝑢𝛽𝛽�𝑚𝑚+1/2
𝑒𝑒+1

,           (19) 

where the interface saturation is given in (11).  

The average velocity at 𝑖𝑖 is the average of the interface 
velocities, calculated as 

�𝑢𝑢𝛽𝛽�𝑚𝑚
𝑒𝑒+1 = 1

2
��𝑢𝑢𝛽𝛽�𝑚𝑚+1/2

𝑒𝑒+1 + �𝑢𝑢𝛽𝛽�𝑚𝑚−1/2
𝑒𝑒+1 �.           (20) 

 

 1
Δ𝜕𝜕
�[𝐹𝐹𝑚𝑚𝑣𝑣 + 𝐹𝐹𝑚𝑚𝑙𝑙]𝑚𝑚+1/2

𝑒𝑒+1 − [𝐹𝐹𝑚𝑚𝑣𝑣 + 𝐹𝐹𝑚𝑚𝑙𝑙]𝑚𝑚+1/2
𝑒𝑒 � +  

1
[𝑉𝑉]

𝑖𝑖+12

�
[𝐴𝐴𝐹𝐹𝑚𝑚𝑣𝑣𝑢𝑢𝑣𝑣]𝑚𝑚+1/2

𝑒𝑒+1 − [𝐴𝐴𝐹𝐹𝑚𝑚𝑣𝑣𝑢𝑢𝑣𝑣]𝑚𝑚−1/2
𝑒𝑒+1 , [𝑋𝑋𝑣𝑣]𝑚𝑚+1/2

𝑒𝑒+1 ≥ 0
[𝐴𝐴𝐹𝐹𝑚𝑚𝑣𝑣𝑢𝑢𝑣𝑣]𝑚𝑚+3/2

𝑒𝑒+1 − [𝐴𝐴𝐹𝐹𝑚𝑚𝑣𝑣𝑢𝑢𝑣𝑣]𝑚𝑚+1/2
𝑒𝑒+1 , [𝑋𝑋𝑣𝑣]𝑚𝑚+1/2

𝑒𝑒+1 < 0
+ 1

[𝑉𝑉]
𝑖𝑖+12

�
[𝐴𝐴𝐹𝐹𝑚𝑚𝑙𝑙𝑢𝑢𝑙𝑙]𝑚𝑚+1/2

𝑒𝑒+1 − [𝐴𝐴𝐹𝐹𝑚𝑚𝑙𝑙𝑢𝑢𝑙𝑙]𝑚𝑚−1/2
𝑒𝑒+1 , [𝑋𝑋𝑙𝑙]𝑚𝑚+1/2

𝑒𝑒+1 ≥ 0
[𝐴𝐴𝐹𝐹𝑚𝑚𝑙𝑙𝑢𝑢𝑙𝑙]𝑚𝑚+3/2

𝑒𝑒+1 − [𝐴𝐴𝐹𝐹𝑚𝑚𝑙𝑙𝑢𝑢𝑙𝑙]𝑚𝑚+1/2
𝑒𝑒+1 , [𝑋𝑋𝑙𝑙]𝑚𝑚+1/2

𝑒𝑒+1 < 0
  

+ 𝑃𝑃𝑖𝑖+1
𝑛𝑛+1−𝑃𝑃𝑖𝑖

𝑛𝑛+1

𝜕𝜕𝑖𝑖+1−𝜕𝜕𝑖𝑖
+ 2

𝑅𝑅
𝜏𝜏𝑚𝑚+1/2
𝑒𝑒+1 +  [𝜌𝜌𝑣𝑣𝑆𝑆𝑣𝑣 + 𝜌𝜌𝑙𝑙𝑆𝑆𝑙𝑙]𝑚𝑚+1/2

𝑒𝑒+1 𝑔𝑔 𝑧𝑧𝑖𝑖+1−𝑧𝑧𝑖𝑖
𝜕𝜕𝑖𝑖+1−𝜕𝜕𝑖𝑖

− [𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚]𝑚𝑚+1/2
𝑒𝑒+1 = 0           (16) 
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This allows the average mass flux, used in (8), to be 
calculated as 

�𝐹𝐹𝑚𝑚𝛽𝛽�𝑚𝑚
𝑒𝑒+1 = �𝜌𝜌𝛽𝛽𝑆𝑆𝛽𝛽�𝑚𝑚

𝑒𝑒+1�𝑢𝑢𝛽𝛽�𝑚𝑚
𝑒𝑒+1

.           (21) 

The slip constitutive equation is solved implicitly. For 
[𝑆𝑆𝑣𝑣]𝑚𝑚+1/2

𝑒𝑒+1 ≤  0.8, the discrete form of (4) is solved: 

[𝑢𝑢𝑣𝑣]
𝑚𝑚+1

2

𝑒𝑒+1 −  [𝐶𝐶0]
𝑚𝑚+1

2

𝑒𝑒+1[𝐹𝐹𝑉𝑉]
𝑚𝑚+1

2

𝑒𝑒+1 −   [𝑢𝑢𝑑𝑑]
𝑚𝑚+1

2

𝑒𝑒+1 =  0.          (22) 

For cases where [𝑆𝑆𝑣𝑣]𝑚𝑚+1/2
𝑒𝑒+1 >  0.8, (5) is solved implicitly, 

such that 

  [𝑢𝑢𝑙𝑙]𝑚𝑚+1
2

𝑒𝑒+1 −
1 − [𝑆𝑆𝑣𝑣𝐶𝐶0]

𝑖𝑖+12

𝑛𝑛+1

1 − [𝑆𝑆𝑣𝑣]
𝑖𝑖+12

𝑛𝑛+1 [𝐹𝐹𝑉𝑉]
𝑚𝑚+1

2

𝑒𝑒+1  

+
[𝑆𝑆𝑣𝑣]

𝑖𝑖+12

𝑛𝑛+1

1 − [𝑆𝑆𝑣𝑣]
𝑖𝑖+12

𝑛𝑛+1 [𝑢𝑢𝑑𝑑]
𝑚𝑚+1

2

𝑒𝑒+1 =  0.          (23) 

The saturation at which these equations are switched was 
chosen arbitrarily as 0.8. 

Equation (23) suffers from division by zero errors when 
[𝑆𝑆𝑣𝑣]𝑚𝑚+1/2

𝑒𝑒+1 ≈ 1. To prevent this issue, we solve 

  [𝑢𝑢𝑙𝑙]𝑚𝑚+1
2

𝑒𝑒+1 −
1−[𝑆𝑆𝑣𝑣𝐶𝐶0]

𝑖𝑖+12

𝑛𝑛+1

1−𝑆𝑆𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
[𝐹𝐹𝑉𝑉]

𝑚𝑚+1
2

𝑒𝑒+1  

+
[𝑆𝑆𝑣𝑣]

𝑖𝑖+12

𝑛𝑛+1

1−𝑆𝑆𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
[𝑢𝑢𝑑𝑑]

𝑚𝑚+1
2

𝑒𝑒+1 =  0,          (24) 

where 𝑆𝑆𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 = 0.9999, for cases in which [𝑆𝑆𝑣𝑣]𝑚𝑚+1/2
𝑒𝑒+1  >

 0.9999. 

3.3 Volume flux formulation  
The volume flux formulation calculates the liquid and vapour 
volume fluxes, [𝐹𝐹𝑉𝑉𝑣𝑣]𝑚𝑚+1/2

𝑒𝑒+1  and [𝐹𝐹𝑉𝑉𝑙𝑙]𝑚𝑚+1/2
𝑒𝑒+1 , as primary 

variables. Phase velocities are calculated as secondary 
variables using the following equation: 

�𝑢𝑢𝛽𝛽�𝑚𝑚+1/2
𝑒𝑒+1 = �

�𝐹𝐹𝑉𝑉𝛽𝛽�𝑚𝑚+1/2
𝑒𝑒+1 �𝑆𝑆𝛽𝛽�𝑚𝑚+1/2

𝑒𝑒+1� ,  �𝑆𝑆𝛽𝛽�𝑚𝑚+1/2
𝑒𝑒+1 ≠ 0

0 ,  �𝑆𝑆𝛽𝛽�𝑚𝑚+1/2
𝑒𝑒+1 = 0

.  (25) 

The average volume flux of an element is the average of the 
interface fluxes, such that 

�𝐹𝐹𝑉𝑉𝛽𝛽�𝑚𝑚
𝑒𝑒+1 = 1

2
��𝐹𝐹𝑉𝑉𝛽𝛽�𝑚𝑚+1

2

𝑒𝑒+1 + �𝐹𝐹𝑉𝑉𝛽𝛽�𝑚𝑚−1
2

𝑒𝑒+1�.           (26) 

This allows the average mass fluxes to be calculated as 

�𝐹𝐹𝑚𝑚𝛽𝛽�𝑚𝑚
𝑒𝑒+1 = �𝜌𝜌𝛽𝛽�𝑚𝑚

𝑒𝑒+1�𝐹𝐹𝑉𝑉𝛽𝛽�𝑚𝑚
𝑒𝑒+1

,           (27) 

and the average velocity as 

�𝑢𝑢𝛽𝛽�𝑚𝑚
𝑒𝑒+1 = �

�𝐹𝐹𝑉𝑉𝛽𝛽�𝑚𝑚
𝑒𝑒+1 �𝑆𝑆𝛽𝛽�𝑚𝑚

𝑒𝑒+1� ,  �𝑆𝑆𝛽𝛽�𝑚𝑚
𝑒𝑒+1 ≠ 0

0 ,  �𝑆𝑆𝛽𝛽�𝑚𝑚
𝑒𝑒+1 = 0

.           (28) 

The volume flux formulation does not require equation 
switching when solving the slip constitutive equation. Instead 

(22) is solved for all values of [𝑆𝑆𝑣𝑣]𝑚𝑚+1/2
𝑒𝑒+1 . This procedure has 

advantages because it does not introduce small discontinuities 
as is the case with (24). 

3.4 Mixed formulation 
The mixed formulation uses [𝑢𝑢𝑣𝑣]𝑚𝑚+1/2

𝑒𝑒+1  and [𝐹𝐹𝑉𝑉𝑙𝑙]𝑚𝑚+1/2
𝑒𝑒+1  as 

flowing primary variables. The secondary variables for the 
vapour phase are calculated from [𝑢𝑢𝑣𝑣]𝑚𝑚+1/2

𝑒𝑒+1  as outlined in 
Section 3.2. The secondary variables for the liquid phase are 
calculated from [𝐹𝐹𝑉𝑉𝑙𝑙]𝑚𝑚+1/2

𝑒𝑒+1  as outlined in Section 3.3.  

Slip is modelled by solving (22) for all values of [𝑆𝑆𝑣𝑣]𝑚𝑚+1/2
𝑒𝑒+1 . 

3.5 Solution procedure 
The discrete conservation equations discussed above are non-
linear and strongly coupled. They are solved simultaneously 
using Newton-Raphson iterations. This method iteratively 
updates the primary variable vector, 𝑥𝑥, to drive the imbalance 
in the residual equations (e.g. (7), (8), (16) and (22)) to zero 
using the following linear system: 

𝐉𝐉𝐉𝐉𝑥𝑥 = −𝑅𝑅.             (29) 

Here 𝐉𝐉 is the Jacobian matrix and R is the residual vector 
calculated using the discretised conservation equations. This 
linear system is solved for the update vector, Δ𝑥𝑥, representing 
the change in primary variables. 

The Jacobian matrix is defined as 

𝐽𝐽𝑚𝑚𝑖𝑖 = ∂𝑅𝑅𝑖𝑖
∂𝑚𝑚𝑗𝑗

= 𝑅𝑅𝑖𝑖�𝑚𝑚𝑗𝑗+𝑑𝑑𝑚𝑚𝑗𝑗�−𝑅𝑅𝑖𝑖�𝑚𝑚𝑗𝑗�
𝑑𝑑𝑚𝑚𝑗𝑗

.            (30) 

It describes how the discrete residual equations given in 
Section 3 change with respect to the primary variables. It is 
used to drive the convergence of the residual equations to zero 
for each time step and, if not calculated accurately, can result 
in slow or failed convergence and erroneous solutions. Our 
simulator calculates the Jacobian using finite differencing. 
This involves perturbing the primary variable 𝑥𝑥𝑖𝑖  by a small 
amount 𝑑𝑑𝑥𝑥𝑖𝑖  (scaled to the size of the primary variable) and 
taking the forward difference, as shown in (30). This method 
can be prone to truncation and round-off errors. Decreasing 
the step size, 𝑑𝑑𝑥𝑥𝑖𝑖 , will reduce the truncation error, however, 
it will also increase the round-off error. The optimal size of 
𝑑𝑑𝑥𝑥𝑖𝑖  is unknown and differs for each residual equation. For 
this reason, 𝑑𝑑𝑥𝑥𝑖𝑖  is estimated as 𝑑𝑑𝑥𝑥𝑖𝑖 = 1E − 6 × �𝑥𝑥𝑖𝑖 + 1�.  

4. TEST PROBLEMS 
A suite of test problems has been developed to ensure the 
simulator can model a range of operating conditions. It also 
provides a benchmark for the numerical performance of the 
simulator to check out future developments. A subset of these 
problems is discussed below. Problems 1 to 4 all feature 
transitions between liquid and two-phase conditions, while 
Problems 5 to 8 include transitions between two-phase and 
vapour conditions. 

4.1 Problem 1: Single feed 300 °C liquid production 
Problem 1 simulates flow from a hot, liquid reservoir into a 
well initialised with hydrostatic liquid pressure profile and a 
linear temperature profile varying from 30 - 200 °C. The 
wellbore and formation properties are given in Table 3 and 
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feed properties are given in Table 4, where PI is the 
productivity index of the feed.  

Flow in the well is started by dropping the wellhead pressure 
from 9.5 bar to 4.29 bar. Flashing initially occurs deep in the 
well due to the influx of hot fluid. This forces a slug of warm 
liquid up the well and causes flashing at the wellhead. 
Flashing continues until the entire length of the well is two-
phase. 

Table 3: Problem 1 - wellbore and formation parameters 

Inclination angle 0 ° 
Length 1000 m 
Cement thermal conductivity 1.4 W °C-1 m-1  
Formation thermal conductivity 2.4 W °C-1 m-1 
Geothermal gradient 0.27 °C/m 
Pipe diameter 0.2205 m above 660 m 
 0.1594 m below 660 m 
Cement diameter 0.314 m above 660 m 
 0.1694 m below 660 m 
Pipe roughness 4.5E-5 m above 660 m 
 9.0E-5 m below 660 m 

 

Table 4: Problem 1 - feed properties 

PI [m3] Depth [m] P bar] T [°C] Sv [-] 
1E-13 950 - 1000 100 300 0.0 

 

4.2 Problem 2: Wellbore shut-in 
Problem 2 simulates the rapid shut-in of a flowing geothermal 
well. Flow is stopped over a period of 60 seconds using a 
time-dependent, mass flow boundary condition. The wellbore 
and feed-zone parameters given in Tables 3 and 4 are used for 
this simulation.  

4.3 Problem 3: Single-feed 198.5 °C liquid production 
Problem 3 simulates production from a deep liquid reservoir. 
Flashing in the well begins at the wellhead and proceeds down 
to approximately 1200 m. This process evolves slowly. The 
wellbore and feed properties are given in Tables 5 and 6, 
respectively. For this problem, the feed mass flux is 
calculated using 𝑞𝑞𝑚𝑚𝑚𝑚𝜕𝜕𝜕𝜕 = 𝛼𝛼(𝑃𝑃𝑒𝑒𝑒𝑒𝜕𝜕 − 𝑃𝑃𝑤𝑤𝑤𝑤)/𝑉𝑉. The value of the 
lumped parameter 𝛼𝛼 is given in Table 6. The well is initialised 
with a hydrostatic, all-water pressure profile. 

Table 5: Problem 3 - wellbore and formation parameters 

Inclination angle 0 ° 
Length 2133 m 
Cement thermal conductivity 1.4 W °C-1 m-1  

Formation thermal conductivity 2.4 W °C-1 m-1 
Pipe diameter 0.2215 m 
Cement diameter 0.314 m 
Pipe roughness 4.5E-5 m 
Reservoir temperature Figure 7 (Tonkin et al, 2020) 

 

Table 6: Problem 3 - feed properties 

α [kg s-1 Pa-1] Depth [m] P[bar] T [°C] Sv [-] 
1.168E-6 2090 - 2140 210 198.5 0.0 

 

4.4 Problem 4: Multi-feed liquid production 
Problem 4 models the start-up processes of the example 
simulation given in Section 5 of Tonkin et al. (2020). It 
simulates production from a well with three liquid water 
feeds. The start-up processes are complex and feature internal 
flow from the shallow feed to the deeper feeds. 

4.5 Problem 5: Single-feed vapour production 
Problem 5 simulates the entire length of a wellbore 
transitioning from single-phase vapour to two-phase flow. 
This is achieved by transitioning the feed-zone from vapour 
to two phase conditions. The test well described in Table 3 is 
used in this problem and the feed-zone properties are given in 
Table 7. The formation temperature varies with time and is 
linear between 150 – 𝑇𝑇𝜕𝜕𝑚𝑚𝜕𝜕�𝑃𝑃𝑓𝑓𝑒𝑒𝑒𝑒𝑑𝑑�°C, where 𝑃𝑃𝑓𝑓𝑒𝑒𝑒𝑒𝑑𝑑  is the 
transient feed pressure given in Table 7. 

Table 7: Problem 5 - feed properties 

Depth [m] PI [m3] Time 
[days] 

P 
[bar] T [°C] Sv [-] 

2090 - 2140 1E-12 242 20 300  1.0 
  670 40 𝑇𝑇𝜕𝜕𝑚𝑚𝜕𝜕  1.0 
  5895 40 𝑇𝑇𝜕𝜕𝑚𝑚𝜕𝜕  0.5 

 

4.6 Problem 6: Multi-feed vapour production: flashing 
and condensing 

Problem 6 tests transitions to and from single-phase vapour. 
The feed conditions, given in Table 8, vary rapidly and are 
designed to test the simulators ability to transition between 
two-phase and vapour conditions. The wellbore used in this 
simulation is 200 m deep with a constant diameter of 0.2205 
m and a completion radius of 0.314 m. The formation 
temperature varies with time and is linear between 150 – 
𝑇𝑇𝜕𝜕𝑚𝑚𝜕𝜕�𝑃𝑃𝑓𝑓𝑒𝑒𝑒𝑒𝑑𝑑�°C, where 𝑃𝑃𝑓𝑓𝑒𝑒𝑒𝑒𝑑𝑑  is the transient pressure of the 
deep feed given in Table 8. The simulation is initialised with 
flowing vapour conditions. 

Table 8: Problem 6 - feed properties 

Depth [m] PI [m3] Time 
[days] 

P 
[bar] 

T 
[°C] Sv [-] 

950 - 1000 1E-12 0 20 𝑇𝑇𝜕𝜕𝑚𝑚𝜕𝜕  0.0 
  9 20 𝑇𝑇𝜕𝜕𝑚𝑚𝜕𝜕  1.0 
  36-59 20 300 1.0 
  70 20 𝑇𝑇𝜕𝜕𝑚𝑚𝜕𝜕  1.0 
  82 20 𝑇𝑇𝜕𝜕𝑚𝑚𝜕𝜕  0.0 
400 - 450 1E-12 constant 20 300 1.0 

 

4.7 Problem 7: Multi-feed vapour production: transient 
deep feed 

Problem 7 builds on Problem 5 by adding a shallow vapour 
feed. The deep feed-zone slowly transitions from vapour 
conditions to two-phase conditions as given in Table 9. This 
causes the well to condense to two-phase conditions below 
the shallow feed, while above, the well remains single phase 
vapour. 

This problem uses the test well given in Table 3. It is a vertical 
1000 m well with a change of internal diameter, from 0.2205 
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m to 0.1594 m, at a depth of 660 m. It is initialised with 
flowing vapour conditions and uses the transient formation 
temperatures from Problem 5. 

Table 9: Problem 7 - feed properties 

Depth [m] PI [m3] Time 
[days] P [bar] T 

[°C] Sv [-] 

950 - 1000 1E-12 242 20 300 1.0 
  670 40  𝑇𝑇𝜕𝜕𝑚𝑚𝜕𝜕 1.0 
  6242 40  𝑇𝑇𝜕𝜕𝑚𝑚𝜕𝜕 0.5 
400 - 450 1E-12 constant 20 300 1.0 

 

4.8 Problem 8: Multi-feed vapour production: transient 
shallow feed 

Problem 8 is identical to Problem 7, except that in this case it 
is the shallow feed that transitions to two-phase conditions, as 
specified in Table 10. This causes the top of the well to 
transition to two-phase conditions above the shallow feed 
while the rest of the well remains in single-phase conditions. 
The transient formation temperatures from problem 5 are 
used. 

Table 10: Problem 8 - feed properties 

Depth [m] PI [m3] Time 
[days] P [bar] T 

[°C] Sv [-] 

950 - 1000 1E-12 242 20 300 1.0 
  670 40 𝑇𝑇𝜕𝜕𝑚𝑚𝜕𝜕  1.0 
  6242 40 𝑇𝑇𝜕𝜕𝑚𝑚𝜕𝜕  0.5 
400 - 450 1E-12 constant 20 300 1.0 

5. RESULTS AND DISCUSSION 
The performance of the primary variable formulations is 
compared using three metrics. These are the total number of 
time steps, linear solves, and equation of state (EOS) errors 
that occur during a simulation. EOS errors include cases when 
primary variables step outside of thermodynamic bounds and 
errors caused by upwinding (e.g. when [𝑆𝑆𝑣𝑣𝜌𝜌𝑣𝑣]𝑚𝑚+1/2

𝑒𝑒+1 +
[𝑆𝑆𝑙𝑙𝜌𝜌𝑙𝑙]𝑚𝑚+1/2

𝑒𝑒+1 = 0).  

Simulations with liquid transitions (problems 1 to 4) are 
discussed in Section 5.1 while simulations with vapour 
transitions (problems 5 to 8) are discussed in Section 5.2. 

5.1 Liquid transition results 
Figures 3 a) and 3 b) show that in all test cases with liquid 
transitions the velocity formulation performs significantly 
better than the volume flux formulation. The performance of 
the mixed formulation is slightly better than the velocity 
formulation. Figure 3 c) shows the number of EOS errors are 
similar for all formulations.  

Problem 3 shows the greatest difference between methods. 
The volume flux method takes 567 time steps and 1938 linear 
solves compared to 177 time steps and 288 linear solves taken 
by the mixed method. This poor performance can be 
explained by considering the gradient of the constitutive slip 
equation (4) with respect to the vapour volume flux. When 
𝑆𝑆𝑣𝑣 ≈ 0,  

∂
∂𝐹𝐹𝑉𝑉𝑣𝑣

�𝐹𝐹𝑉𝑉𝑣𝑣
𝑆𝑆𝑣𝑣
− (𝐹𝐹𝑉𝑉𝑣𝑣 + 𝐹𝐹𝑉𝑉𝑙𝑙) − 𝑢𝑢𝑑𝑑� = 1

𝑆𝑆𝑣𝑣
− 1 − ∂𝑢𝑢𝑑𝑑

∂𝐹𝐹𝑉𝑉𝑣𝑣
≈ 1

𝑆𝑆𝑣𝑣
 .    (31) 

Figure 3: Comparison of the total number of A) time steps B) linear solves and C) EOS errors for Problems 1 – 4. A 
comparison of the time stepping for Problem 3 is given in D).  
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This gradient is large compared to the magnitude of (4) 
meaning small changes in the vapour flux result in large 
changes in the residual equation and inaccurate updates of 
primary variable are calculated. As a result, the simulation is 
only stable if one element flashes per time step as evident in 
the cyclical time stepping shown for Problem 3 in Figure 3 d).   

5.2 Vapour transition results 
Figures 4 a) and 4 b) show the total number of time steps and 
linear solves taken for Problems 5 to 8. They indicate that, for 
cases with vapour transitions, the volume flux formulation 
performs significantly better than the velocity formulation. In 
all cases, volume flux requires fewer time steps and fewer 
linear solves. The performance of the mixed formulation is 
identical to that of the volume flux formulation.  

The poor performance of the velocity formulation is 
highlighted by the time stepping comparison for Problem 7 
given in Figure 4 d). Here, the velocity method drops the time 
step every time an element condenses. Comparatively, the 
volume flux and mixed formulations allow the entire bottom 
section of the well to condense in a single time step.  

The worst performance of the velocity formulation is for 
problem 8. Here, the run was stopped after 5800 timesteps. At 
this point it had completed over 33,900 linear solves but was 
less than halfway through the simulation. By comparison, the 
volume flux and mixed formulations required only 83 time 
steps and 184 linear solves. This poor performance makes the 

velocity formulation unusable for many high saturation 
problems.  

It should also be noted that the velocity formulation cannot 
simulate Problems 5 to 8 without switching the slip equation 
for high saturations as was described in Section 3.2. This can 
be explained by considering the derivatives of the constitutive 
slip equation.  

Assuming 𝐶𝐶0 = 1, the derivatives of (4), in residual form, 
with respect to the liquid and vapour velocities, are 

∂
∂𝑢𝑢𝑣𝑣

(𝑢𝑢𝑣𝑣 − (𝑆𝑆𝑣𝑣𝑢𝑢𝑣𝑣 + 𝑆𝑆𝑙𝑙𝑢𝑢𝑙𝑙) − 𝑢𝑢𝑑𝑑) = 1 − 𝑆𝑆𝑣𝑣 −
∂𝑢𝑢𝑑𝑑
∂𝑢𝑢𝑣𝑣

,          (32) 

and 

∂
∂𝑢𝑢𝑙𝑙

(𝑢𝑢𝑣𝑣 − (𝑆𝑆𝑣𝑣𝑢𝑢𝑣𝑣 + 𝑆𝑆𝑙𝑙𝑢𝑢𝑙𝑙) − 𝑢𝑢𝑑𝑑) = −𝑆𝑆𝑙𝑙 −
∂𝑢𝑢𝑑𝑑
∂𝑢𝑢𝑙𝑙

.          (33) 

When 𝑆𝑆𝑣𝑣 ≈ 1, such is the case when an element transitions to 
or from vapour flow, ∂𝑢𝑢𝑑𝑑/ ∂𝑢𝑢𝛽𝛽 ≈ 0. Note that this may not 
be the case if other empirical equations for 𝑢𝑢𝑑𝑑 are used. Given 
this, it is clear from (32) and (33) that 

∂
∂𝑢𝑢𝑣𝑣

(𝑢𝑢𝑣𝑣 − (𝑆𝑆𝑣𝑣𝑢𝑢𝑣𝑣 + 𝑆𝑆𝑙𝑙𝑢𝑢𝑙𝑙) − 𝑢𝑢𝑑𝑑)  ≈ 1 − 𝑆𝑆𝑣𝑣 ≈ 0,           (34) 

and 

  ∂
∂𝑢𝑢𝑙𝑙

(𝑢𝑢𝑣𝑣 − (𝑆𝑆𝑣𝑣𝑢𝑢𝑣𝑣 + 𝑆𝑆𝑙𝑙𝑢𝑢𝑙𝑙) − 𝑢𝑢𝑑𝑑) ≈ −𝑆𝑆𝑙𝑙 ≈ 0.           (35) 

Figure 4: Comparison of the total number of A) time steps B) linear solves and C) EOS errors for Problems 5 – 8. A 
comparison of the time stepping for Problem 7 is given in D).  
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These gradients result in a near singular Jacobian, bad 
primary variable updates and, ultimately, the failure of the 
simulation. Equation (5) is used for simulations where 𝑆𝑆𝑣𝑣 ≈
1 for this reason. Assuming 𝐶𝐶0 = 1, the derivatives of (5) 
with respect to the vapour velocity is 

  ∂
∂𝑢𝑢𝑣𝑣

�𝑢𝑢𝑙𝑙 − (𝑆𝑆𝑣𝑣𝑢𝑢𝑣𝑣 + 𝑆𝑆𝑙𝑙𝑢𝑢𝑙𝑙) + 𝑆𝑆𝑣𝑣
1−𝑆𝑆𝑣𝑣

𝑢𝑢𝑑𝑑� =  

−𝑆𝑆𝑣𝑣  +  𝑆𝑆𝑣𝑣
1−𝑆𝑆𝑣𝑣

∂𝑢𝑢𝑑𝑑
∂𝑢𝑢𝑣𝑣

≈ −1 + 1
1−𝑆𝑆𝑣𝑣

∂𝑢𝑢𝑑𝑑
∂𝑢𝑢𝑣𝑣

.    (36) 

The derivative with respect to liquid velocity is 

  ∂
∂𝑢𝑢𝑙𝑙

�𝑢𝑢𝑙𝑙 − (𝑆𝑆𝑣𝑣𝑢𝑢𝑣𝑣 + 𝑆𝑆𝑙𝑙𝑢𝑢𝑙𝑙)  +  𝑆𝑆𝑣𝑣
1−𝑆𝑆𝑣𝑣

𝑢𝑢𝑑𝑑� =   

1 − 𝑆𝑆𝑙𝑙 + 𝑆𝑆𝑣𝑣
1−𝑆𝑆𝑣𝑣

∂𝑢𝑢𝑑𝑑
∂𝑢𝑢𝑙𝑙

≈ 1 + 1
1−𝑆𝑆𝑣𝑣

∂𝑢𝑢𝑑𝑑
∂𝑢𝑢𝑙𝑙

 .    (37) 

These gradients are non-zero and do not result in a singular 
Jacobean. However, the velocity code still shows poor 
convergence and the high number of EOS errors in Problems 
2 and 3 as shown in Figure 4 c). This indicates that the 
primary variables are frequently stepping outside of their 
thermodynamic bounds which suggests there are bad 
gradients in the Jacobian. The gradient of (5) with respect to 
vapour saturation is, 

  𝜕𝜕
𝜕𝜕𝑆𝑆𝑣𝑣

�𝑢𝑢𝑙𝑙 − (𝑆𝑆𝑣𝑣𝑢𝑢𝑣𝑣 + 𝑆𝑆𝑙𝑙𝑢𝑢𝑙𝑙) + 𝑆𝑆𝑣𝑣
1−𝑆𝑆𝑣𝑣

𝑢𝑢𝑑𝑑�  

= +𝑢𝑢𝑙𝑙 − 𝑢𝑢𝑣𝑣 + 𝑢𝑢𝑑𝑑
(1−𝑆𝑆𝑣𝑣)2 + 𝑆𝑆𝑣𝑣

1−𝑆𝑆𝑣𝑣

𝜕𝜕𝑢𝑢𝑑𝑑
𝜕𝜕𝑆𝑆𝑣𝑣

.    (38) 

As (1 − 𝑆𝑆𝑣𝑣) ≲ 1E − 7 when transitioning to and from 
vapour, the gradient given by (38) is very large which causes 
bad primary variable updates and poor convergence. Limiting 
the size of 𝑆𝑆𝑣𝑣, as is done in (24), reduces, but does not prevent, 
this issue. 

Using the mixed formulation avoids all the issues discussed 
above. When vapour saturation is low, the gradient given in 
(31) is avoided and when vapour saturation is high the issues 
discussed with (34) to (38) are avoided. The mixed 
formulation has the best performance as a result.  

The discussion above indicates that the form of the slip 
equation has a large impact on the performance of different 
primary variables and the simulators ability to transition 
between phase states. Analysis similar to the above can help 
guide the choice of flowing primary variables when 
implementing different slip relationships. For example, if the 
relative velocity equation, 𝑢𝑢𝑒𝑒  =  𝑢𝑢𝑣𝑣  −  𝑢𝑢𝑙𝑙, is used the 
velocity formulation would perform well for all cases 
whereas the volume flux variables would perform poorly at 
both high and low saturations. 

6. CONCLUSION 
This work presents the numerical implementation of a new 
transient geothermal wellbore simulator capable of modelling 
two-phase flow in complex wellbores. The discrete 
conservation equations and the constitutive equation for slip 
were solved implicitly for four primary variables. It was 
found that using both phase velocities as primary variables 
resulted in poor performance for cases with high vapour 
saturation. Similarly, it was found that using both phase 
volume fluxes resulted in poor performance for cases with 
low vapour saturation. The best choice of primary variables, 

of those tested, was the mixed formulation (𝑃𝑃, 𝑇𝑇(𝑆𝑆𝑣𝑣), 𝑢𝑢𝑣𝑣 and 
𝐹𝐹𝑉𝑉𝑙𝑙). It performed at least as well as the other formulations on 
all problems. The poor performance of the velocity and 
volume flux formulations was explained by considering the 
analytical gradients of the constitutive slip equation with 
respect to the primary variables. This method can be used to 
help determine whether a primary variable is appropriate for 
different slip models. 
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