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ABSTRACT 
Computational reservoir models are commonly used to 
inform management decisions in the geothermal energy 
sector. With a well-calibrated model, a range of future 
scenarios can be simulated and informed decisions can be 
made. However, the task of calibrating large-scale 
geothermal models is challenging, both from a conceptual 
standpoint and in terms of computational cost. Furthermore, 
decision-makers typically desire the quantification of 
uncertainty and confidence in any calibration results. These 
problems have been addressed quite successfully in related 
fields, such as petroleum engineering, by using so-called 
ensemble-based uncertainty quantification methods.  

Ensemble-based methods use a small collection (ensemble) 
of models, with each ensemble member having different 
values for the model parameters (such as deep mass and heat 
sources or subsurface permeabilities). The associated 
calibration methods guide this ensemble of different models 
to regions in parameter space which provide adequate 
matches to the measured field data, while ensuring an 
appropriate diversity of models to characterise uncertainty. 
In the Bayesian framework, ideally, the distribution of the 
ensemble should converge to the posterior probability 
distribution representing this uncertainty, i.e., the probability 
distribution of the unknown parameters given the measured 
field data.  

A crucial task in ensemble methods, as well as in uncertainty 
quantification in general, is to simultaneously allow the 
parameters of interest to be uncertain and variable, while also 
being physically sensible (i.e., realistic). Careful 
parameterisations of the unknown parameters can fulfil these 
two objectives. In the context of ensemble-based methods, 
such parameterisations should also correspond to easy-to-
evaluate prior terms. Here we propose a variety of possible 
parameterisations for deep mass and heat sources and 
subsurface permeabilities for use in the calibration of 
geothermal reservoir models. Each of the parameterisations 
presented can easily be implemented within an ensemble-
based framework for model calibration.  

1. INTRODUCTION  
Computational modelling plays an important role in the 
management of a geothermal reservoir. Perhaps the most 
important attribute of a computational model is its ability to 
make accurate predictions. However, the accuracy of such 
predictions is naturally limited by, among other things, how 
well the computational model is calibrated. Calibration of a 

geothermal reservoir model generally entails estimation of 
controlling parameters such as the (anisotropic) permeability 
of the subsurface, and the locations and strengths of deep 
energy and mass up-flows.  

The calibration process for real-world geothermal problems 
can be extremely time consuming however, due to the large 
number of parameters to be estimated and the computational 
cost of forward model simulations. Furthermore, decision-
makers require quantification of the inherent uncertainty in 
any predictions made, which further increases the 
computational burden. Ensemble-based methods (Chen and 
Oliver, 2013; Emerick and Reynolds, 2013; Evensen et al., 
2019) are computationally attractive tools for efficiently 
carrying out model calibration and uncertainty quantification 
for such large-scale models and have recently gained 
popularity in related areas such as petroleum engineering and 
hydrology.  

Due to their ability to handle large numbers of parameters, 
ensemble methods can combine with more flexible and 
realistic parameterisation schemes than those used in 
standard geothermal calibration workflows. Traditionally, 
such calibration workflows involve adjusting a small number 
of unknown parameters and using fixed regions (e.g., zones 
or rock types) within which spatial model parameters are 
constant. Here we propose parameterisation schemes for use 
along with ensemble-based uncertainty estimation methods 
to characterize geothermal reservoirs better. The 
parameterisation methods considered include ways to 
generate bottom boundary mass- and heat-source 
distributions, and stratified permeability fields which are 
intersected by faults and dikes. 

2. MODEL CALIBRATION AND UNCERTAINTY 
ESTIMATION 
2.1 Calibration 
The starting point for calibrating a model is defining the 
relationship between the measured field data, 𝒅𝒅 ∈ ℝ𝑚𝑚, the 
parameters to be estimated, 𝜽𝜽 ∈ ℝ𝑛𝑛, and any errors (or noise) 
corrupting the data, 𝒆𝒆 ∈ ℝ𝑚𝑚. A commonly used assumption 
is the additive error model, written 

𝒅𝒅 = 𝒇𝒇(𝜽𝜽) + 𝒆𝒆. 

Here 𝒇𝒇:ℝ𝑛𝑛 → ℝ𝑚𝑚 maps parameter inputs on to measured 
data and is typically referred to as the forward model. Here, 
it is the reservoir simulation model. 

The goal of the calibration process is then to estimate the 
parameters, 𝜽𝜽, based on matching the field data, 𝒅𝒅. However, 
the properties of the forward model, and a lack of extensive 
data, lead to the estimation problem being (severely) ill-
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posed. To overcome this issue the estimation problem is 
typically either modified to include some type of 
regularisation or is formulated as a statistical inference 
problem. Here we adopt the latter approach, and use a 
Bayesian framework for statistical inference. Posing the 
problem in the Bayesian framework is particularly well-
suited to incorporating and quantifying multiple sources of 
uncertainty and provides a natural setting for ensemble-
based methods.  

In the Bayesian framework, the solution to the inference 
problem is the posterior density, given by 

𝑝𝑝(𝜽𝜽|𝒅𝒅) ∝ 𝑝𝑝(𝒅𝒅|𝜽𝜽)𝑝𝑝(𝜽𝜽), 

where 𝑝𝑝(𝒅𝒅|𝜽𝜽) is the likelihood function, and 𝑝𝑝(𝜽𝜽) is the 
prior density, which encodes any prior beliefs about the 
parameters. Assuming that the errors are distributed 
normally, with mean 𝟎𝟎 and covariance 𝑪𝑪𝒆𝒆, i.e., 𝒆𝒆~𝑝𝑝(𝒆𝒆) =
𝚴𝚴(𝟎𝟎,𝑪𝑪𝒆𝒆), and that the prior density is also Gaussian, 𝑝𝑝(𝜽𝜽) =
𝚴𝚴(𝜽𝜽∗,𝑪𝑪𝜽𝜽), the posterior is then 

𝑝𝑝(𝜽𝜽|𝒅𝒅) ∝ exp �−
1
2

(‖𝑳𝑳𝑒𝑒(𝒅𝒅 − 𝒇𝒇(𝜽𝜽))‖2 + ‖𝑳𝑳𝜃𝜃(𝜽𝜽 − 𝜽𝜽∗)‖2)�, 

where 𝑳𝑳𝑒𝑒𝑇𝑇𝑳𝑳𝑒𝑒 = 𝑪𝑪𝑒𝑒−1 and 𝑳𝑳𝜃𝜃𝑇𝑇𝑳𝑳𝜃𝜃 = 𝑪𝑪𝜃𝜃−1. 

Although the posterior is easily written down, when 𝒇𝒇 is 
nonlinear, as is the case for geothermal models, generating 
samples from it is notoriously costly. The gold standard is to 
employ Markov chain Monte Carlo (MCMC) methods, 
though in the geothermal setting these can easily lead to run 
times of more than a month (Cui, Fox, and O’Sullivan, 2011, 
2019). Ensemble-based methods result in samples from an 
approximate posterior, at a vastly reduced computational 
cost.  

2.2 Ensemble-based methods 
There are a variety of ensemble-based methods which can be 
used for calibration. The approach of Chen and Oliver (2013) 
is particularly robust and has the advantage of being 
essentially derivative-free, i.e., requires no explicit 
derivative information. The approach is based largely on the 
randomised-maximum-likelihood (RML) approach (Oliver, 
He, and Reynolds, 1996), with an ensemble approximation 
to the sensitivity matrix.  

The end goal is the generation of an ensemble of 𝑠𝑠 ∈ ℕ 
samples, 𝜽𝜽1,𝜽𝜽2, … ,𝜽𝜽𝑠𝑠, from the posterior parameter 
distribution. This goal is achieved via the iterative updating 
of an ensemble of samples initially drawn from the 
prior, 𝜽𝜽10,𝜽𝜽20, … ,𝜽𝜽𝑠𝑠0. Specifically, letting 𝚯𝚯𝑖𝑖 =
[𝜽𝜽1𝑖𝑖 ,𝜽𝜽2𝑖𝑖 , … ,𝜽𝜽𝑠𝑠𝑖𝑖 ], where 𝑖𝑖 = 0,1, … ,𝑞𝑞 ∈ ℕ is the iteration 
number, 𝑭𝑭𝑖𝑖 = [𝒇𝒇(𝜽𝜽1𝑖𝑖 ),𝒇𝒇(𝜽𝜽2𝑖𝑖 ), … ,𝒇𝒇(𝜽𝜽𝑠𝑠𝑖𝑖 )], and 𝑫𝑫 = [𝒅𝒅+
𝒆𝒆1,𝒅𝒅 + 𝒆𝒆2, … ,𝒅𝒅 + 𝒆𝒆𝑠𝑠], where 𝒆𝒆𝑖𝑖~𝑝𝑝(𝒆𝒆), the update of the 
parameters from iteration 𝑖𝑖 to iteration 𝑖𝑖 + 1 is given by 

𝚯𝚯𝑖𝑖+1 = 𝚯𝚯𝑖𝑖 − �𝑱𝑱𝑇𝑇𝑪𝑪𝑒𝑒−1𝑱𝑱 + 𝑪𝑪𝜃𝜃−1�
−1 �𝑱𝑱𝑇𝑇𝑪𝑪𝑒𝑒−1(𝑭𝑭 −𝑫𝑫)

+ 𝑪𝑪𝜃𝜃−1�𝚯𝚯𝑖𝑖 − 𝚯𝚯0��, 

where 𝑱𝑱 is the empirical ensemble Jacobian matrix, defined 
as 

𝑱𝑱 = �𝑭𝑭𝑖𝑖 − 𝑭𝑭�𝒊𝒊��𝚯𝚯𝑖𝑖 − 𝚯𝚯�𝒊𝒊�−1. 

Here 𝑭𝑭�𝒊𝒊 ∈ ℝ𝑚𝑚×𝑠𝑠 and 𝚯𝚯�𝒊𝒊 ∈ ℝ𝑛𝑛×𝑠𝑠 are the matrices comprised 
of the means of the simulation ensemble and parameter 
ensemble at iteration 𝑖𝑖, respectively, i.e.,  

𝑭𝑭�𝒊𝒊  = (𝑭𝑭𝑖𝑖𝟏𝟏/𝒔𝒔)𝟏𝟏𝑇𝑇 ,     𝚯𝚯�𝒊𝒊  = (𝚯𝚯𝑖𝑖𝟏𝟏/𝒔𝒔)𝟏𝟏𝑇𝑇 , 

where 𝟏𝟏 ∈ ℝ𝑠𝑠×1 is a column vector of 1’s. It is worth noting 
that the matrix �𝚯𝚯𝑖𝑖 − 𝚯𝚯�𝒊𝒊� is generally singular, and thus a 
pseudoinverse is taken, as explained by, for example, Chen 
and Oliver (2013). 

Key to success of the ensemble-based approach is the choice 
of representations (or parameterisations) of the unknowns, 
such as subsurface permeability and deep mass and heat 
sources. We next consider various representations which 
could prove successful in the geothermal model calibration 
setting. 

3. REPRESENTING UNKNOWN PARAMETERS  
3.1 Preliminaries 
Without any restrictions, choices for representing unknown 
parameters are fairly arbitrary. However, in order to maintain 
some formal mathematical foundations, and for 
computational ease, we restrict our representations to 
Gaussian densities, 𝚴𝚴(𝜽𝜽∗,𝑪𝑪𝜃𝜃), along with some additional 
filtering of the associated samples generated from these. 
These densities are defined by a mean, 𝜽𝜽∗, and covariance 
matrix, 𝑪𝑪𝜃𝜃. Though this constraint may appear limiting or 
overly restrictive, as explained below it is possible to encode 
fairly arbitrary structures and varying levels of smoothness 
through the use of Gaussian densities, and thus allow for 
samples of physically reasonable parameters. Most of the 
prior parameter sampling schemes used here are based on 
Matérn class covariance matrices (see (Roininen, Huttunen, 
and Lasanen, 2014) and the references therein), which easily 
encode various degrees of smoothness and structure. 

We consider the representation of deep sources of mass or 
energy, subsurface permeability, and faults and intrusions. 
The deep sources are two-dimensional (defined on the 
bottom boundary of the computational domain), while the 
permeability distribution is three-dimensional (defined 
throughout the computational domain shown in Figure 1).  

 

Figure 1: Schematic of the computational domain used 
for examples. Deep sources are defined on the 
bottom boundary and permeability is defined 
throughout (blue dashed line shows a vertical 
cross-section used for Figures 8-11). 
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Figure 2: Bottom mass flows (top) and conductive heat 
fluxes (bottom) for a Wairakei geothermal field 
model (considered in (Bjarkason et al., 2019)). 
Dark blue indicates no mass flow, while black 
indicates no conductive heat flux. 

3.2 A reference real-world reservoir model 
The overarching goal of the representations considered here 
is to be able to generate physically sensible parameters, while 
simultaneously enabling enough parameter flexibility to 
match observations and enough parameter variability to 
provide a reasonable reflection of the true uncertainty. 
Standard representations of unknown model parameters 
typically found in the literature use fairly simple and fixed 
geometries for bottom upflows and permeabilities, as shown 
in Figures 2 and 3. For instance, the permeability distribution 
in a model is commonly parameterised using a small number 
of rock-types or zones, where the permeability is constant 
within each zone. When employing automatic calibration 
methods, the extent or edges of these zones are usually fixed. 
It is unlikely, however, that the unknowns are so simple, and 
such representations can easily lead to difficulty in fitting 
measured field data. Therefore, when manually calibrating 
models, it is common to iteratively redefine or split up zones 
to achieve better matches to data. Furthermore, limiting the 
representation of the unknowns to such simple geometries 

introduces so-called modelling errors, something calibration 
techniques handle particularly poorly, see for example 
(Kaipio and Somersalo, 2007; Maclaren et al., 2020). 

For reference, we consider a model of the Wairakei 
geothermal system Wairakei, New Zealand, which was 
considered by Bjarkason et al. (2019) and is based on a 
model developed by Yeh et al. (2016). Figure 2 shows the 
bottom mass flows and heat fluxes in the model, and Figure 
3 presents a vertical cross-section of the subsurface 
permeability.  

This Wairakei model is a result of years of model 
development starting from very coarse models early on and 
gradually introducing refinement as computational resources 
improved and more data became available during field 
development (O’Sullivan, Yeh, and Mannington, 2009; Yeh 
et al., 2016). The Wairakei model presents a state-of-the-art 
model, which has relatively complex structural features. 
Most other geothermal models used to describe other fields, 
which have been developed based on shorter observation 
histories and therefore sparser field data, tend to have simpler 
model structures than the model displayed in Figures 2 and 
3. 

 

Figure 3: Vertical cross-section of subsurface 
permeability for a Wairakei geothermal field 
model (considered in (Bjarkason et al., 2019)). 

As shown in Figure 2, the bottom boundary has a small 
number of mass upflow zones and most of the boundary area 
has zero mass flux (dark blue area). The conductive heat flux 
varies smoothly across most of the boundary, apart from 
areas associated with upward mass flux where the conductive 
heat fluxes were set to be zero. Figure 3 illustrates the model 
permeabilities along a vertical cross-section. The 
permeability distribution shows layered zones, which are 
most clearly visible on the flanks of Figure 3 and reflect the 
understanding of the lithological structure at Wairakei. The 
centre of Figure 3 displays vertical fault-like features, some 
of which may represent expected or estimated locations of 
faults and may also reflect areas where the permeability 
structure needed to be refined to improve model calibration. 

In the following three subsections we illustrate, through 
displaying multiple samples, various representations which 
can capture different features of the bottom boundary sources 
and subsurface permeability. We begin by discussing several 
representations for deep sources, of mass or energy, and then 
move on to parameterisations of the subsurface permeability 
and faults and intrusions.  
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3.3 Representations for deep sources 
3.3.1 Heat fluxes 
As shown in Figure 2, the bottom heat-flux distribution is 
taken to be fairly smooth (away from areas where the mass 
flows are assigned nonzero values). This is our starting point 
for representing the deep upflows. Gaussian priors are well 
suited to describing spatially smooth distributions (that is, 
spatially correlated parameter fields) and may, therefore, be 
appropriate for describing prior ideas for conductive heat-
flux boundary conditions (like the ones shown in the lower 
plot in Figure 2). 

In Figure 4, we show four samples from a Gaussian prior 
having essentially no structure other than favouring fairly 
smooth samples. For an appropriately chosen smoothness, 
we can get boundary heat-flux samples which resemble the 
smooth heat flux features in Figure 2 (see lower subplots in 
Figure 4). In principle, positive background heat fluxes can 
be assigned in this way over the whole bottom boundary, 
although ensuring positivity may require additional 
parameter truncation or transformation. Moreover, if 
preferred, zero conductive heat fluxes can also be enforced 
in areas having nonzero mass flows (as is the case for the 
Wairakei model boundary conditions in Figure 2), which are 
considered in the following subsection. Again, this may 
require truncation of the Gaussian samples. 

3.3.2 Mass fluxes 
For mass-flux bottom boundary conditions, one could 
consider directly applying a spatially smooth Gaussian prior 
like the one discussed for conductive heat fluxes. However, 
a possible drawback to such a representation is that it can 
result in positive mass fluxes (inflow of mass) across 
essentially the entire bottom boundary of the computational 
domain. Such a scenario would not represent physically 
realistic boundary conditions. Alternatively, such Gaussian 
priors could result in both positive and negative boundary 
mass fluxes. Although negative (downward) mass fluxes are 
expected to appear when considering arbitrary horizontal 
cross-sections in real geothermal reservoirs, especially for a 
cross section that a model bottom boundary usually 
represents (which for practical reasons is typically placed far 
above the roots (heat sources) of the geothermal system), it 
is standard practice to only include zones of upward 
(positive) mass flow at the bottom boundary as shown in 
Figure 2.  

There are several possible ways to generate prior samples 
which only have nonnegative mass fluxes, including the use 
of so-called level sets (Xie, Efendiev, and Datta-Gupta, 
2011; Chang, Zhang, and Lu, 2010) or truncated Gaussian 
prior models (Oliver and Chen, 2018), where values below 
(or above) some threshold are set to a fixed value. Figure 5 
shows how a level-set approach, which assigns zero mass 
fluxes to areas where the fluxes are below a certain threshold, 
can produce distributions which resemble the mass-flow 
boundary condition displayed in Figure 2. 

It may often be preferable to have the deep upflows near the 
centre of the domain. This can easily be encoded by adapting 
the variance accordingly over the bottom boundary. In 
Figure 6, we show four samples generated by reducing the 
variance towards the edges of the basal domain; we also 
increase the smoothness for the samples and implement the 
level-set approach. This type of approach may be appealing 
for models where the geothermal reservoir is believed to be 

close to the centre of the model domain and the model edges 
(that is, the horizontal boundaries) of the model extend far 
away to reduce the influence of the side boundary conditions. 

Finally, we note that various other features can be encoded. 
For example, sources of mass and energy may be related to 
fractures and/or intrusive bodies such as dikes (see, e.g., 
Figures 2 and 3, and (Gunnarsson and Aradóttir, 2015)). 
Such objects can be represented, for instance, by elongated 
features. Elongated shapes on the bottom boundary can be 
generated by assigning an anisotropic spatial correlation for 
the prior Gaussian samples. This results in Gaussian features 
which are stretched along a dominant direction along which 
the basal parameters are more correlated. However, more 
general shapes can also be considered. For example, in 
various geophysical settings it is desirable to be able to 
generate samples with channel-like geometries, like those 
shown in Figure 7, which were also generated using a 
Gaussian prior. 

3.4 Representations for subsurface permeability 
3.4.1 Stratified permeability distributions 
The Gaussian representations proposed here for the deep 
upflows can also be generalized to three dimensions and used 
for describing subsurface permeability. However, subsurface 
permeability typically exhibits a layer-like structure, as 
shown in Figure 3, and thus we focus on representations 
which promote such structure. Here we present depictions of 
permeabilities along vertical slices (like the one marked by 
the blue dashed line in Figure 1). Though we do not show it 
here, the sampled permeability distributions can have a 
complex three-dimensional structure. For example, sampled 
permeabilities along horizontal cross sections may look like 
some of the distributions discussed in the subsections of 
Section 2. 

In Figure 8, we show four samples generated using an 
anisotropic Matérn class covariance matrix, with a longer 
correlation length in the horizontal direction than in the 
vertical direction. Furthermore, by again applying the level-
set method, we can generate permeability samples appearing 
to be partitioned into different rock types, as is standard in 
the geothermal community. The permeability samples shown 
in Figure 8 portray structure which looks similar to the 
lithological structure on the flanks of Figure 3. 

The layered stratigraphy can easily be generalized to 
accommodate tilted geological structure, as shown in Figure 
9. Furthermore, by not carrying out the level-set 
transformation, we can generate smoothly varying samples, 
still displaying the layer-like structure, as shown in Figure 
10. The samples shown in Figures 8‒10 were generated by 
using a homogeneous prior mean over the vertical slice. 
However, if prior knowledge suggests otherwise, the prior 
mean can vary over the model domain. For instance, on 
average, we can expect permeability to decrease with 
increasing depth, which we can accommodate by choosing a 
prior mean which decreases accordingly with depth. 

Notably, the parameterisations discussed here for subsurface 
permeability do not require the knowledge of the location of 
the boundaries of facies a priori, something which is 
typically needed with standard approaches. Having flexible 
facies boundaries could help to achieve acceptable matches 
to observations and allow for greater posterior parameter 
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variability, which may result in more reliable uncertainty 
estimates. 

3.4.2 Representations for faults and intrusions 
Finally, we briefly discuss the representation of faults and 
intrusions, such as dikes. In the middle of Figure 2, vertical 
fault-like structures are evident. In practice, faults are 
commonly assumed to follow fairly simple linear shapes. 
Such features can also be generated using Gaussian 
distributions. Specifically, the locations and slopes of faults 
can be easily sampled, see Figure 11. Lithological units are 
commonly displaced or offset along faults, as seen, for 
example, in graben and horst. The first three samples in 
Figure 11 display strata which are offset along linear faults. 
However, offsets need not be restricted to linear structures, 
as the bottom right example shows in Figure 11. 

However, more complex, and arguably more natural 
geometries can also be generated in a straightforward manner 
by considering the faults as samples from a Gaussian 
distribution. Figure 12 displays more complex random 
samples of sheet-like structures, which could be used to 
represent faults or dikes. Formation permeabilities could be 
modified along such planar structures to generate features 
such as the vertical ones in the centre of Figure 3. 

Lastly, the generation of other intrusive bodies can also be 
placed into this framework. Rather arbitrary shapes can be 
generated to describe intrusive bodies. As an example, the 
slope, location, depth, and radius of a cylindrically shaped 
intrusive can be randomly generated, see Figure 13. 

4. CONCLUSION 
In this paper we have considered various stochastic 
representations for several unknown parameters which are 
often estimated when carrying out geothermal model 
calibration. The representations give qualitatively very 
different samples, though all are based largely on Gaussian 
distributions. This ensures any of the representations chosen 
can easily be used within ensemble-based methods, which 
can then be used to efficiently estimate parameter 
uncertainty. Furthermore, we demonstrated that Gaussian 
distributions can be used to generate prior parameter samples 
which have features which resemble both what we might 
expect for geothermal settings and parameter choices 
commonly used in standard geothermal models. However, 
the types of parameterisation schemes proposed here could 
prove to be more flexible and useful than standard 
geothermal parameterisation schemes. 
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Figure 4: Four deep upflow samples generated using a 
Gaussian distribution which promotes 
smoothness. The lower row shows samples drawn 
from a smoother prior distribution than that used 
for the samples in the top row. 

 

Figure 5: Four deep upflow samples generated using a 
Gaussian distribution which promotes 
smoothness and the application of a level-set 
method. 
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Figure 6: Four deep upflow samples generated by using 
a Gaussian distribution which promotes a high 
order of smoothness, applying a level-set method, 
and using a spatially varying variance which 
decays toward the model edges. 

 

Figure 7: Four deep upflow samples generated using a 
Gaussian distribution which generates 
heterogeneous channel-like structures. 

 

Figure 8: Four subsurface permeability samples 
generated using an anisotropic Gaussian 
distribution which promotes longer correlation in 
the horizontal direction, and the application of a 
level-set method to give large homogeneous rock 
types. 

 

Figure 9: Four subsurface permeability samples, similar 
to those in Figure 8, but with different level sets 
and with the addition of tilt. 



 
Proceedings 42nd New Zealand Geothermal Workshop 

24-26 November 2020 
Waitangi, New Zealand 

ISSN 2703-4275 

 

Figure 10: Four subsurface permeability samples 
generated using an anisotropic Gaussian 
distribution which promotes longer correlation in 
the horizontal direction. 

 

Figure 11: Four simple fault samples where stratified 
permeability samples are offset along the sampled 
faults.  

 

Figure 12: Four samples of more complex faults or dikes. 

 
Figure 13: Four samples of cylindrical intrusions. 
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