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Abstract

Protograph-based low-density parity-check Hadamard codes (PLDPC-HCs) are a new type of ultimate-

Shannon-limit-approaching codes. In this paper, we propose a hardware architecture for the PLDPC-HC

layered decoders. The decoders consist mainly of random address memories, Hadamard sub-decoders

and control logics. Two types of pipelined structures are presented and the latency and throughput of

these two structures are derived. Implementation of the decoder design on an FPGA board shows that

a throughput of 1.48 Gbps is achieved with a bit error rate (BER) of 10−5 at around Eb/N0 = −0.40

dB. The decoder can also achieve the same BER at Eb/N0 = −1.11 dB with a reduced throughput of

0.20 Gbps.

Index Terms

hardware design, layered decoding, PLDPC-Hadamard code

I. INTRODUCTION

Both turbo codes [1] and low-density parity-check (LDPC) codes [2] have been demonstrated

to be capacity-approaching channel codes [3], [4]. They have been used in a wide variety of

communication and data storage systems [5], including 3G/4G/5G cellular communications, op-

tical communications, and magnetic recording systems, [6], [7], [8]; and various encoder/decoder

designs have been proposed [9], [10], [11], [12]. In particular, turbo codes can employ the serial

Bahl-Cocke-Jelinek-Raviv (BCJR) computational method in the iterative decoding algorithm to
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approach the channel capacity [13]. When implementing the BCJR decoder on hardware, state

metric normalization and ungrouped backward recursion techniques are developed to reduce the

critical path delay and to enhance the clock frequency [14]. Furthermore, by eliminating the

data dependencies from the computations in the BCJR algorithm, a fully-parallel turbo decoding

algorithm has been proposed [15]. The proposed method not only reduces the complexity of the

original algorithm, but also increases the parallelism of the decoder and improves the throughput.

As to the LDPC codes, the structured quasi-cyclic (QC) LDPC codes allow easy realization of

linear encoding and parallel decoding. QC-LDPC codes can be constructed from the perspective

of a protograph. By lifting a protograph containing a small number of variable nodes and

check nodes, QC-LDPC codes called protograph-based LDPC (PLDPC) codes are formed [16],

[17]. It has also been shown that well-designed QC-LDPC codes can achieve good decoding

performance, low error floor and high throughput [18], [19], [20], [21], [22]. For example, a

rate-compatible layered decoding architecture that allows parallel decoding of QC-LDPC codes

has been shown to achieve a throughput of 1.28 Gbps [19]. By reordering the layered decoding

procedure and applying other optimization techniques, the layered decoder throughput is shown

to increase to 4.67 Gbps [20]. With a multi-core architecture and a full row-parallel layered

decoder, a throughput of 860 Gbps is achievable at a maximum of 2 decoding iterations [21].

Moreover, a RAM-based decoder architecture is also proposed to decode cyclically-coupled

QC-LDPC codes and obtains a throughput of 3.0 Gbps and an error floor of about 10−16 [22].

When both turbo and LDPC codes are used together with Hadamard codes, forming turbo-

Hadamard codes [23] and LDPC-Hadamard codes (LDPC-HCs) [24], respectively, very good

error performance can be achieved even when operating close to the ultimate Shannon limit

(i.e., bit-energy-to-noise-power-spectral-density ratio (Eb/N0) equals −1.59 dB) [25]. Another

ultimate-Shannon-limit-approaching code is the concatenated zigzag-Hadamard code [26]. Among

these three types of codes, LDPC-HCs have been shown to produce the best error performance.

For example, a rate-0.05 LDPC-HC with a theoretical threshold of −1.35 dB can achieve

a bit error rate (BER) of 10−5 at Eb/N0 = −1.18 dB [24]. These ultimate-Shannon-limit-

approaching codes can be applied to extreme communication environments such as deep-space

communications and interleave division multiple access systems with many users [27].

Recently, a new type of LDPC-HCs called protograph-based LDPC Hadamard codes (PLDPC-

HCs) have been proposed, and a new technique is developed to enable the analysis of PLDPC-

HCs which possess degree-1 and/or punctured variable nodes [28], [29]. PLDPC-HCs perform
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as good as traditional LDPC-HCs. For instance, a rate-0.0494 PLDPC-HC with a theoretical

threshold of −1.42 dB is found to achieve a BER of 10−5 at Eb/N0 = −1.19 dB. In addition,

PLDPC-HC possesses a semi-regular 1 quasi-cyclic structure which is beneficial to hardware

implementation. To improve the convergence rate, a PLDPC-HC layered decoding algorithm has

been proposed [30]. In this paper, we propose a hardware architecture for PLDPC-HC layered

decoders. The proposed architecture is generic and can be readily modified to decode other

PLDPC-derived codes when the Hadamard constraint in the PLDPC-HC is replaced by other

coding constraints.

The paper is organized as follows. Section II reviews the structure of a PLDPC-HC and its

layered decoding algorithm. Section III first introduces the read and write operations of a random

access memory and the pipeline structure of a Hadamard sub-decoder. Then it presents a hardware

architecture of PLDPC-HC layered decoders, and derives its latency and throughput. Section IV

shows the implementation results and finally Section V gives some concluding remarks.

II. REVIEW OF PLDPC-HADAMARD CODES

The structure of a PLDPC-HC can be constructed from a PLDPC code [16]. When the check

nodes in a PLDPC code are replaced by Hadamard check-nodes (H-CNs) to which an appropriate

number of degree-1 Hadamard variable nodes (D1H-VNs) are connected, a PLDPC-HC is formed

[28], [29]. Fig. 1 illustrates the base matrix Bm×n of a PLDPC-HC and its corresponding

protograph. As can be observed, there are n = 11 protograph variable nodes (P-VNs) and

m = 7 H-CNs. Moreover, each H-CN is connected to a number of D1H-VNs. The (i, j)-th entry

in Bm×n, represented by B(i, j), denotes the number of edges connected between the i-th H-CN

and the j-th P-VN. In this example, each H-CN is connected to d = 6 P-VNs, where d also

equals the row weight of the base matrix Bm×n. To obtain the adjacency matrix HM×N of the

PLDPC-HC, the base matrix Bm×n is lifted twice with factors z1 and z2 where M = mz1z2 and

N = nz1z2 [31]. The first lifting replaces each non-zero B(i, j) in Bm×n with a summation of

B(i, j) different z1×z1 permutation matrices, and each B(i, j) = 0 with z1×z1 zero matrix. The

aim is to remove parallel edges between P-VNs and H-CNs. The second lifting then replaces

each “1” with a circulant permutation matrix (CPM) of size z2 × z2 and each “0” with the

z2 × z2 zero matrix. The aim is to construct a quasi-cyclic code structure for easy encoding

1In the protograph of a PLDPC-HC [28], [29], the degrees of the protograph variable nodes can be different while the degrees

of Hadamard check nodes are kept the same.
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B7×11 =



















1 0 0 0 0 0 1 0 3 0 1
0 1 2 0 0 0 0 0 0 2 1
2 1 0 0 1 1 0 0 0 0 1
0 1 0 3 0 0 0 0 0 2 0
2 0 0 0 0 0 0 1 0 3 0
3 0 0 2 0 0 1 0 0 0 0
1 0 0 1 1 0 0 0 1 2 0



















ch
L

ch
L

ex
L

ex
L

Fig. 1. The base matrix and corresponding protograph of a PLDPC-Hadamard code [28], [29]. A circle denotes a protograph

variable node (P-VN), a square with “H” denotes a Hadamard check node (H-CN), and a filled circle denotes a degree-1

Hadamard variable node (D1H-VN). Row weight d = 6, Hadamard order r = d− 2 = 4, and 2r − r − 2 = 10 D1H-VNs are

attached to each H-CN. Code rate R = 0.0494.

and decoding [32]. After the double-lifting process, the lifted graph, which corresponds to the

adjacency matrix, contains M H-CNs and N P-VNs.

Based on the adjacency matrix HM×N obtained, N − M information bits are first encoded

into a length-N LDPC code. Then for each H-CN, the d incoming messages from the P-VNs are

used to encode an order r (= d− 2) Hadamard code [28], [29]. Supposing r is even, 2r − r− 2

Hadamard parity-bits are generated and attached to each H-CN as D1H-VNs. The overall code

rate of the PLDPC-Hadamard code is therefore

R =
n−m

m (2r − r − 2) + n
.

Throughout this paper, we assume that d is even. When d is odd, 2r − 2 Hadamard parity-bits

are generated, and the encoding and decoding algorithms become slightly different [28], [29].

To speed up the convergence speed, a layered decoding algorithm has been proposed [30].

For α = 0, 1, . . . ,M − 1 and β = 0, 1, . . . , N − 1, we denote

• P(α) as the set of P-VNs connected to the α-th H-CN;
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TABLE I

NUMBERS OF H-CNS, P-VNS AND D1H-VNS CONTAINED IN ONE LAYER WHEN r IS EVEN. r = d− 2.

No. of H-CNs No. of P-VNs No. of D1H-VNs

z2 dz2 (2r − d)z2

• H(β) as the set of H-CNs connected to the β-th P-VN;

• LPVN
ch (β) as the channel log-likelihood-ratio (LLR) value of the β-th P-VN;

• L
D1H(α)
ch as a vector consisting of the channel LLR values of the D1H-VNs connected to

the α-th H-CN;

• LPVN
app (β) as the a posteriori probability (APP) LLR value of the β-th P-VN;

• LPVN
ex (α, β) as the extrinsic LLR value from the β-th P-VN to the α-th H-CN;

• LH
app(α, β) as the APP LLR value computed by the α-th H-CN for the β-th P-VN;

• LH
ex(α, β) as the extrinsic LLR value sent from the α-th H-CN to the β-th P-VN.

After lifting the base matrix of a PLDPC-HC two times, the resultant adjacency matrix HM×N

is divided into mz1 layers (also called block rows), where each layer is composed of 1 × nz1

CPMs each of size z2 × z2. Hence, each layer corresponds to a z2 × nz1z2 matrix and contains

z2 H-CNs. Since each H-CN connects d P-VNs and 2r − d D1H-VNs (when r is even), the z2

H-CNs in one layer connects dz2 P-VNs and (2r − d)z2 D1H-VNs. Table I summarizes of the

numbers of H-CNs, P-VNs and D1H-VNs contained in one layer.

Defining k as the layer number (k = 0, 1, . . . , mz1−1) and L(k) = {αkz2, αkz2+1, . . . , αkz2+z2−1}

as the set of H-CNs in layer k, the layered decoding algorithm is described as follows [30].

1) Initialization: Set LPVN
app (β) = LPVN

ch (β) ∀β; and set LH
ex(α, β) = 0 ∀α, β.

2) Symbol maximum-a-posterior Hadamard sub-decoder: Set k = 0.

a) For the α-th H-CN in layer k (α ∈ L(k)), perform the following computations.

i) For β ∈ P(α), compute

LPVN
ex (α, β) = LPVN

app (β)− LH
ex(α, β)

∀β ∈ P(α). (1)

ii) Compute LH
app(α, β) for the β-th P-VN (β ∈ P(α)) using

L
H
app(α) = {LH

app(α, β) : β ∈ P(α)}

October 18, 2021 DRAFT
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= T
[

{LPVN
ex (α, β) : β ∈ P(α)},L

D1H(α)
ch

]

(2)

where T is a transformation involving the fast Hadamard transform (FHT) and the

dual FHT (DFHT) operations [24], [28], [29].

iii) Update LH
ex(α, β) and LPVN

app (β) using

LH
ex(α, β) = LH

app(α, β)− LPVN
ex (α, β);

∀β ∈ P(α) (3)

LPVN
app (β) = LH

app(α, β); ∀β ∈ P(α). (4)

b) If the last layer has not been reached, i.e., k < mz1 − 1, increment k by 1 and go to

Step 2a).

3) Repeat Step 2) I times and make decisions on the P-VNs based on the sign of LPVN
app (β)

∀β.

Note that the layered decoding algorithm neither returns any extrinsic information to the D1H-

VNs nor makes hard decisions on the D1H-VNs. The algorithm only makes use of the channel

information provided by the D1H-VNs to aid the decoding of the PLDPC code and hence the

P-VNs.

III. HARDWARE DESIGN OF THE LAYERED DECODER

This section presents and analyzes a hardware implementation of the layered decoding al-

gorithm for PLDPC-HC. First, we present the read and write operations of LLR values in

random access memories (RAMs). Second, we describe the pipeline structure of the symbol-

maximum-a-posterior (symbol-MAP) Hadamard sub-decoder, which is composed mainly of FHT

and DFHT components. Third, we combine the RAMs and Hadamard sub-decoders and propose

a layered decoder architecture for PLDPC-HC. Fourth, we analyze the decoding timing, latency

and throughput of the proposed architecture.

A. Read and Write Operations of RAMs

As described in the layered decoding algorithm for the PLDPC-HC, there are six types of

LLRs. Among them {LPVN
ex (α, β)} in (1) and {LH

app(α, β)} in (2) are only temporary values

in the computation process and need not to be stored, whereas the other four types of LLRs,

DRAFT October 18, 2021



7

G

G

G

G

nz G

nz G

nz G

G

G

G

G

G

G

G

G

G

G

G

G

Nh G

Nh G

NhG

Nh G

Nh G

NhG

Nh G

Nh G

NhG
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Fig. 2. RAM arrangement for {LPVN
ch (β)} or {LPVN

app (β)} corresponding P-VNs.

i.e., {LPVN
ch (β)}, {LPVN

app (β)}, {LH
ex(α, β)} and {L

D1H(α)
ch }, are not temporary and thus need to

be stored in RAMs.

Referring to Table I, the z2 H-CNs in each layer connect dz2 P-VNs and (2r−d)z2 D1H-VNs

(when r is even). Using the layered decoding algorithm to process each layer, we therefore need

to retrieve dz2 values of {LPVN
ch (β)} (during initialization) or dz2 values of {LPVN

app (β)} (to be

used in (1)); and z2 vectors of {L
D1H(α)
ch }. Note that each vector of {L

D1H(α)
ch } contains 2r − d

LLR values. According to (1), we also need to retrieve dz2 values of {LH
ex(α, β)} in order to

compute the dz2 values of {LPVN
ex (α, β)}. In our design, we form sets of LLRs where each set

has a size of z2 — the same size as the second lifting factor. For a PLDPC-HC with an m× n

protomatrix and lifting factors z1 and z2, {LPVN
ch (β)} will be divided into N/z2 = nz1 sets,

{LPVN
app (β)} into N/z2 = nz1 sets, {LH

ex(α, β)} into Md/z2 = mdz1 sets, and {L
D1H(α)
ch } into

M/z2 = mz1 sets.

To achieve reading/retrieving Nh data from memories in one clock cycle, we use Nh RAMs

to store each type of LLRs, where 0 < Nh ≤ z2 and G = z2/Nh is an integer and represents the
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number of groups. Taking {LPVN
ch (β)} which is related to the P-VNs as an example, each set of

LLRs, i.e., a total of z2 LLR values, is further divided into G groups. Referring to Fig. 2, the

addresses 0, 1, . . . , G − 1 in the Nh RAMs are to store the first set of LPVN
ch (β). In particular,

RAM #1 stores the first group of LLRs, i.e., LLRs with indices 0, 1, . . . , G− 1; RAM #2 stores

the second group of LLRs, i.e., LLRs with indices G,G + 1, . . . , 2G − 1; . . .; and RAM #Nh

stores the Nh-th group of LLRs, i.e., LLRs with indices (Nh−1)G, (Nh−1)G+1, . . . , NhG−1.

Using a similar fashion, the addresses G,G + 1, . . . , 2G− 1 in the Nh RAMs are to store the

second set of LPVN
ch (β). The arrangement is repeated until all nz1 sets of LPVN

ch (β) are stored in

the Nh RAMs.

With the above storage arrangement, in each clock cycle Nh values from the same LLR set can

be retrieved from the Nh RAMs. Using Fig. 2 as an example, at clock t = 1 the Nh LLR values

stored at Address #0 (with indices 0, G, . . . , (Nh−1)G) are retrieved; at clock t = 2, the Nh LLR

values stored at Address #1 (with indices 1, G+1, . . . , (Nh−1)G+1) are retrieved; · · · ; at clock

t = G, the Nh LLR values stored at Address #G− 1 (with indices G− 1, 2G− 1, . . . , NhG− 1)

are retrieved. Thus one set of LLR values (i.e., z2 LLR values) can be retrieved in G clock

cycles. Hence, reading or writing d sets of LPVN
ch (β) or LPVN

app (β) for each layer requires dG

clock cycles.

We use a similar storage arrangement for {LH
ex(α, β)} and {L

D1H(α)
ch }, which correspond

to H-CNs and D1H-VNs, respectively. The only differences are that the RAMs will have

different depths and widths. Fig. 3 shows the storage arrangement of {LH
ex(α, β)} and {L

D1H(α)
ch }

(corresponding to the first layer) in Nh RAMs. In Fig. 3(a), “α = i : βj” (i = 0, . . . , GNh−1; j =

0, . . . , d − 1) denotes the j-th H-CN connected to the i-th P-VN; and hence “α = i : β0” to

“α = i : βd−1” represent P(α = i), i.e., all the P-VNs connected to the i-th H-CN. In Fig. 3(b),

each address stores the 2r − d channel LLRs corresponding to the 2r − d D1H-VNs connected

to the same H-CN.

Remark: In the actual hardware implementation, we use dual-port RAMs instead of single-port

ones. Since two memory locations in each dual-port RAM can be accessed (read and/or write)

at the same time, the number of clock cycles required to read/write one set of LLRs can be

further reduced by half compared with the discussion above.

Supposing we have retrieved Nh values for {LPVN
ch (β)} or {LPVN

app (β)}, we need to interleave

them — a process similar to that used in QC-LDPC decoding [33]. For each layer, the exact

connections between the H-CNs and the P-VNs are determined by the CPMs, and hence the
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GNh
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Fig. 3. Storage arrangement of (a) {LH
ex(α, β)} and (b) {L

D1H(α)
ch } in Nh RAMs. The first layer of H-CNs is being considered.

interleaver can be realized by a simple cyclic shifter. Assuming that the offset value of a CPM

equals p (0 ≤ p < z2), we calculate the quotient qu = ⌊p/G⌋ and the remainder re = p mod G,

where ⌊x⌋ denotes the greatest integer less than or equal to x and “mod” denotes the modulus

operation. When (address mod G) < re, the corresponding Nh LLRs are cyclically shifted to

the left by (qu + 1 mod Nh); otherwise, these LLRs are cyclically shifted to the left by qu.

Example: We assume that z2 = 16. Fig. 4(a) shows a 16× 16 identity matrix, i.e., a 16× 16

CPM with p = 0; Fig. 4(b) depicts a 16 × 16 CPM with p = 9, which can be obtained by

cyclically shifting the 16× 16 identity matrix to the right by 9 columns. Assume that the CPM

with p = 9 corresponds to one set of LPVN
ch (β) with indices [0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15].
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Fig. 4. (a) A 16 × 16 identity matrix, i.e., a 16 × 16 circulant permutation matrix (CPM) with p = 0; (b) A 16 × 16 CPM

with p = 9, which can be obtained by cyclically shifting the 16× 16 identity matrix to the right by p = 9 columns.

After retrieving these LLRs from the RAMs and interleaving them, these indices are expected

to be re-ordered into [9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8]. Suppose we use Nh = 4 RAMs to

store this set of LPVN
ch (β). According to our aforementioned storage scheme, each set of LPVN

ch (β)

is divided into G = z2/Nh = 4 groups; and each RAM would use the first G = 4 addresses, i.e.,

Addresses #0,#1,#2,#3, to store 4 LLR values. The storage arrangement is shown in Table

II. As p = 9, we have qu = ⌊p/G⌋ = 2 and re = p mod G = 1. Once the Nh = 4 LLRs are

retrieved, we process them as follows.

• Cyclically shift the LLRs stored at Address #0 (< re = 1), i.e., LLRs with indices [0 4 8 12],

to the left by qu + 1 mod Nh = 3 and the order of the indices becomes [12 0 4 8];

• Cyclically shift the LLRs stored at Address #1 (≥ re = 1) to the left by qu = 2 and the

order of the indices becomes [9 13 1 5];

• Cyclically shift the LLRs stored at Address #2 (≥ re = 1) to the left by qu = 2 and the

order of the indices becomes [10 14 2 6];

• Cyclically shift the LLRs stored at Address #3 (≥ re = 1) to the left by qu = 2 and the

order of the indices becomes [11 15 3 7].

Therefore, the expected interleaving effect [9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8] can be achieved

by such a process. Note that the “write” operation can be regarded as the reverse process of the

“read” operation. Hence the procedures are similar and are omitted here.

DRAFT October 18, 2021



11

TABLE II

EXAMPLE FOR STORING A SET OF LLRS IN Nh = 4 RAMS. z2 = 16 AND G = z2/Nh = 4.

Address
Indices

RAM #1 RAM #2 RAM #3 RAM #4
0 0 4 8 12
1 1 5 9 13
2 2 6 10 14
3 3 7 11 15

B. Operation of A Symbol-MAP Hadamard Sub-decoder

The Hadamard sub-decoder can be considered as the kernel of the PLDPC-HC layered decoder

in our implementation and hence will be described in detail. For an order-r Hadamard code, the

corresponding Hadamard matrices of size q × q can be recursively constructed by

±Hq = {±hj, j = 0, 1, . . . , q − 1}

=





±Hq/2 ±Hq/2

±Hq/2 ∓Hq/2



 (5)

where q = 2r equals the code length and ±H1 = [±1]. Each column ±hj of the Hadamard

matrices corresponds to a Hadamard codeword, and hence there is a total of 2q = 2r+1 codewords

in ±Hq. In (6), we show the 16×16 Hadamard matrices ±H16 corresponding to the order-r = 4

Hadamard code having 2r+1 = 32 codewords. Note that the codewords are formed by mapping

each +1 in the Hadamard matrices to bit “0” and each −1 to bit “1”.

When the Hadamard order r is even, it has been proven that there always exists a length-

d = r + 2 single-parity-check (SPC) codeword “embedded” in each Hadamard codeword [24],

[28], [29], i.e.,

[±h0,j ⊕±h1,j ⊕ · · · ⊕ ±h2k−1,j ⊕ · · ·⊕

±h2r−1,j] ⊕ ±h2r−1,j = 0, (7)

where the symbol ⊕ represents the XOR operator. (In (6), the length-6 SPC constraint is ±h0,j⊕

±h1,j ⊕±h2,j ⊕±h4,j ⊕±h8,j ⊕±h15,j = 0 ∀ j and the corresponding 6 bits are marked in red

color.) In each H-CN of the PLDPC-HC described in Section II, the length-d SPC codeword is
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±H16 =























































±1 ±1 ±1 ±1 ±1 ±1 ±1 ±1 ±1 ±1 ±1 ±1 ±1 ±1 ±1 ±1
±1 ∓1 ±1 ∓1 ±1 ∓1 ±1 ∓1 ±1 ∓1 ±1 ∓1 ±1 ∓1 ±1 ∓1
±1 ±1 ∓1 ∓1 ±1 ±1 ∓1 ∓1 ±1 ±1 ∓1 ∓1 ±1 ±1 ∓1 ∓1
±1 ∓1 ∓1 ±1 ±1 ∓1 ∓1 ±1 ±1 ∓1 ∓1 ±1 ±1 ∓1 ∓1 ±1
±1 ±1 ±1 ±1 ∓1 ∓1 ∓1 ∓1 ±1 ±1 ±1 ±1 ∓1 ∓1 ∓1 ∓1
±1 ∓1 ±1 ∓1 ∓1 ±1 ∓1 ±1 ±1 ∓1 ±1 ∓1 ∓1 ±1 ∓1 ±1
±1 ±1 ∓1 ∓1 ∓1 ∓1 ±1 ±1 ±1 ±1 ∓1 ∓1 ∓1 ∓1 ±1 ±1
±1 ∓1 ∓1 ±1 ∓1 ±1 ±1 ∓1 ±1 ∓1 ∓1 ±1 ∓1 ±1 ±1 ∓1
±1 ±1 ±1 ±1 ±1 ±1 ±1 ±1 ∓1 ∓1 ∓1 ∓1 ∓1 ∓1 ∓1 ∓1
±1 ∓1 ±1 ∓1 ±1 ∓1 ±1 ∓1 ∓1 ±1 ∓1 ±1 ∓1 ±1 ∓1 ±1
±1 ±1 ∓1 ∓1 ±1 ±1 ∓1 ∓1 ∓1 ∓1 ±1 ±1 ∓1 ∓1 ±1 ±1
±1 ∓1 ∓1 ±1 ±1 ∓1 ∓1 ±1 ∓1 ±1 ±1 ∓1 ∓1 ±1 ±1 ∓1
±1 ±1 ±1 ±1 ∓1 ∓1 ∓1 ∓1 ∓1 ∓1 ∓1 ∓1 ±1 ±1 ±1 ±1
±1 ∓1 ±1 ∓1 ∓1 ±1 ∓1 ±1 ∓1 ±1 ∓1 ±1 ±1 ∓1 ±1 ∓1
±1 ±1 ∓1 ∓1 ∓1 ∓1 ±1 ±1 ∓1 ∓1 ±1 ±1 ±1 ±1 ∓1 ∓1
±1 ∓1 ∓1 ±1 ∓1 ±1 ±1 ∓1 ∓1 ±1 ±1 ∓1 ±1 ∓1 ∓1 ±1























































(6)

formed by the d P-VNs to which the H-CN is connected. Using these d bits as inputs to the

Hadamard encoder, 2r − d Hadamard parity-check bits corresponding to the D1H-VNs attached

to the H-CN can be generated. (In the case of an order-4 Hadamard code, d = 6 bits are input

to the Hadamard encoder which generates 2r − d = 10 Hadamard parity-check bits.)

To decode Hadamard codes, a symbol-MAP decoding algorithm has been proposed [24], [28],

[29]. We define

L
H
ch = [LH

ch(0) L
H
ch(1) · · · LH

ch(2
r − 1)]T , (8)

L
H
apr = [LH

apr(0) L
H
apr(1) · · · LH

apr(2
r − 1)]T , (9)

L
H
app = [LH

app(0) L
H
app(1) · · · LH

app(2
r − 1)]T , (10)

as the channel, the a priori and the a posteriori LLR information of the coded bit, respectively.

Note that LH
ch contains only 2r − d channel observations coming from the D1H-VNs while the

remaining d values are set to 0. On the other hand, LH
apr has d non-zero values coming from

P-VNs (i.e., repeat decoder) while the remaining 2r − d values are set to 0. (Please refer to [28,

Section III-B] and [29, Section III-B] for the detailed arrangement of LH
ch and L

H
apr.) Based on
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L
H
ch and L

H
apr, L

H
app(i) is computed using

LH
app(i) = ln

∑

±H[i,j]=+1

γ (±hj)

∑

±H[i,j]=−1

γ (±hj)
, (11)

where γ (±hj) = exp
(〈

±hj ,L
H
ch +L

H
apr

〉

/2
)

represents the a posteriori “information” of the

codeword ±hj; and 〈·〉 denotes the inner-product operator. Since the Hadamard matrix has a

butterfly-like structure, our Hadamard decoder design is based on the fast Hadamard transform

(FHT) block and the dual FHT (DFHT) block [23], [24], [34].

1) We first use a FHT block to compute
〈

+hj,L
H
ch +L

H
apr

〉

. Using the structure of the FHT

block for r = 4 shown in Fig. 5 as an example, the inputs are In j = LH
ch(j) + LH

apr(j)

and the outputs are Out j = 2 ln [γ (+hj)] (j = 0, 1, . . . , 15). Then, ln [γ (+hj)] is readily

obtained from 2 ln [γ (+hj)] by shifting the least significant bit out. Moreover, ln [γ (−hj)]

is readily available because ln [γ (−hj)] = − ln [γ (+hj)]. There are r = 4 stages in the

FHT block and thus a latency of r = 4 clock cycles is required.

2) The structure of a DFHT block is similar to that of a FHT block, but with twice the number

of inputs and outputs. Using the structure of the DFHT block for r = 4 shown in Fig. 6

as an example, the inputs to the DFHT block are ln [γ (+hj)] and ln [γ (−hj)]; and the

outputs are ln
[

∑

±H[i,j]=+1 γ (±hj)
]

and ln
[

∑

±H[i,j]=−1 γ (±hj)
]

(j = 0, 1, . . . , 15). The

module
∗

max in the DFHT block represents the Jacobian logarithm, i.e.,

∗

max(a, b) = ln[exp(a) + exp(b)]

= max(a, b) + ln [1 + exp(− |a− b|)]

(12)

where max(a, b) returns the greater value between a and b. In our design, we use a

comparison operation to realize max(a, b), a look-up-table to realize ln [1 + exp(− |a− b|)]

and an addition operation to sum the above outputs.

As we only need to feedback values related to the r + 2 information bits, the structure of

DFHT block can be further simplified to minimize resources requirement. Same as the FHT

block, the DFHT block contains r stages and thus has a latency of r clock cycles.

Finally, for i = 0, 1, . . . , 2k−1, . . . , 2r−1, 2r − 1, it takes another clock cycle to compute
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• the r + 2 LLR values LH
app(i) which equals

ln





∑

±H[i,j]=+1

γ (±hj)



− ln





∑

±H[i,j]=−1

γ (±hj)



 ,

• the r + 2 extrinsic LLR messages LH
ex(i) which is computed using (3).

Overall, it takes 2r + 1 clock cycles to complete one set of computation. Note that the FHT

and DFHT blocks have pipeline structures, and the results computed in each stage will be stored

in registers. To simplify the presentations of the structures of the FHT block (Fig. 5) and the

DFHT block (Fig. 6), we omit all connections to the clock in the figures.

C. Layered Decoder Architecture

Referring to Fig. 7, we propose an architecture of PLDPC-Hadamard layered decoder based

on RAMs and Hadamard sub-decoders. Moreover, we assume that there are Nh Hadamard sub-

decoders. In addition to RAMs and sub-decoders, the architecture contains control logics. The

control logics are dependent on the structure of the adjacency matrix which has a relatively simple

quasi-cyclic format. They are used to ensure that the correct data are loaded into the individual

Hadamard sub-decoder and the updated data are written to the correct memory locations.

Using the read/write operations described in Section III-A, each set of LLRs, i.e., z2 LLRs or

z2 vectors, is first divided into G groups and then each group of LLRs is stored in one of the Nh

RAMs, where G = z2/Nh. With this storage method, we can retrieve Nh values of {LPVN
app (β)}

(or {LPVN
ch (β)}), Nh values of {LH

ex(α, β)} and Nh vectors of {L
D1H(α)
ch } from the Nh RAMs in

each clock cycle when single-port RAMs are used; and twice the number of LLRs values/vectors

when dual-port RAMs are used. Once dNh values of {LPVN
app (β)} (or {LPVN

ch (β)}), dNh values

of {LH
ex(α, β)} and dNh vectors of {L

D1H(α)
ch } are retrieved, the Nh Hadamard sub-decoders

can operate on these Nh individual batches of independent data. To ensure that no conflict of

memory access occurs during the decoding process, we design the size and storage of RAMs as

follows.

• Nh RAMs, denoted by PVN-CH-RAM, are used to store {LPVN
ch (β) : β = 0, 1, . . . , N −1}.

Each RAM has a width of wPVN
ch bits (to represent the quantized LLR value) and a depth

of nz1G. Referring to Fig. 2, the g-th location (g = 0, 1, . . . , nz1G − 1) in the l-th RAM

(l = 0, 1, . . . , Nh − 1) stores LPVN
ch (β) where β = ⌊g/G⌋z2 + lG + (g mod G). Note that

{LPVN
ch (β)} is needed only once during the first decoding iteration. After the first iteration,
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the content in PVN-CH-RAM is overwritten by the incoming channel LLR values of the

next codeword.

• Nh RAMs, denoted by PVN-APP-RAM, are used to store {LPVN
app (β) : β = 0, 1, . . . , N−1}.

Each RAM has a width of wPVN
app bits and a depth of nz1G. Data are stored in the same

way as in PVN-CH-RAM, i.e., the g-th location (g = 0, 1, . . . , nz1G− 1) in the l-th RAM

(l = 0, 1, . . . , Nh − 1) stores LPVN
app (β) where β = ⌊g/G⌋z2 + lG+ (g mod G).

• Nh RAMs, denoted by H-EX-RAM, are used to store {LH
ex(α, β) : α = 0, 1, . . . ,M −

1; β ∈ {β0, β1, . . . , βd−1} = P(α)}. Each RAM has a width of wH
ex bits and a depth of

mdz1G. Referring to Fig. 3(a), the q-th location (q = 0, 1, . . . , mdz1G−1) in the l-th RAM

(l = 0, 1, . . . , Nh − 1) stores {LH
ex(α, β)} where α = ⌊q/d⌋Nh + l, β = βδ, and δ = q

mod d.

• Nh RAMs, denoted by D1H-CH-RAM, are used to store {L
D1H(α)
ch : α = 0, 1, . . . ,M − 1}.

Each RAM has a width of wD1H
ch = wPVN

ch × (2r − r − 2) bits and a depth of mz1G. Each

address stores all the 2r − r − 2 channel LLR values for D1H-VNs connected to a H-

CN. Referring to Fig. 3(b), the w-th location (w = 0, 1, . . . , mz1G − 1) in the l-th RAM

(l = 0, 1, . . . , Nh − 1) stores {L
D1H(α)
ch } where α = wNh + l. (To allow the decoding to

proceed while receiving the incoming channel LLR values of the next codeword, either two

sets of D1H-CH-RAM are used or the depth of D1H-CH-RAM is doubled to 2mz1G. We

double the depth of D1H-CH-RAM to 2mz1G in our design.) Moreover, we use dual-port

RAMS — one port reads the data in D1H-CH-RAM used for decoding and the other port

writes incoming channel LLR values into the same RAM.

D. Latency and Throughput

1) Nh = z2: We first consider a special case in which maximum parallelism is designed for

each layer. In other words, we consider the case where Nh = z2 and G = z2/Nh = 1. We also

assume dual-port RAMs are used and hence two memory addresses can be accessed at the same

time and it takes d/2 clock cycles to retrieve the required d sets of LPVN
app (β) (or LPVN

ch (β)) and

LH
ex(α, β) values in each layer. Note that {LPVN

ex (α, β)} in (1) is computed in the same clock

cycle as LPVN
app (β) (or LPVN

ch (β)) and LH
ex(α, β) are retrieved. At the d/2-th clock cycle, we also

load the required z2 sets of L
D1H(α)
ch from one address location to the sub-decoders. Subsequently,

dz2 LLRs of {LPVN
ex (α, β)} and z2 vectors of {L

D1H(α)
ch } are passed to the z2 FHT blocks in

the z2 Hadamard sub-decoders, i.e., d LLRs of {LPVN
ex (α, β)} and one vector of {L

D1H(α)
ch } to
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one FHT block in one Hadamard sub-decoder. Then, it takes 2r + 1 clock cycles to compute

dz2 LLRs of {LH
ex(α, β)} and dz2 LLRs of {LPVN

app (β)} using (3) and (4), respectively. Finally,

it takes another d/2 clock cycles to write these updated LPVN
app (β) and LH

ex(α, β) values into the

RAMs.

To summarize,

i) Clock cycle no. 1 to d/2: read {LPVN
app (β)} (or LPVN

ch (β)) and {LH
ex(α, β)} from memory,

and at the same time compute {LPVN
ex (α, β)} using (1);

ii) Clock cycle no. d/2 (in parallel with above): read {L
D1H(α)
ch };

iii) Clock cycle no. d/2 + 1 to d/2 + 2r: process the inputs {LPVN
ex (α, β)} and {L

D1H(α)
ch } by

the Hadamard sub-decoders (consisting of FHT and DFHT blocks) using (2);

iv) Clock cycle no. d/2 + 2r + 1: compute {LH
ex(α, β)} and {LPVN

app (β)} using (3) and (4);

v) Clock cycle no. d/2 + 2r + 2 to d/2 + 2r + 1+ d/2: write {LPVN
app (β)} and {LH

ex(α, β)} to

memory.

Since d = r + 2, the whole process takes d/2 + 2r + 1 + d/2 = 3r + 3 clock cycles.

When Nh = z2, maximum parallelism for each layer is achieved. The latency is minimized

and the throughput of the decoder is maximized. However, such a design consumes a lot of

hardware resources (a large number of RAMs and Nh Hadamard sub-decoders) and may not be

practical. In the next section, we consider the cases when Nh is smaller than z2.

2) Nh < z2: We consider the case when Nh < z2 and G = z2/Nh is an integer. Using

the proposed decoder architecture, G(> 1) groups of H-CNs (each consisting of Nh H-CNs)

are sequentially processed in each layer. Referring to the timing details in Section III-B and

Section III-D1 and with the use of our RAM designs, it takes d/2 clock cycles to load the data

of one group of H-CNs. (Recall that dual-port RAMs are used.) We use a pipelined structure

and load the G groups of data to the sub-decoders in a consecutive manner. To complete loading

all G groups of data, it takes tloading = dG/2 clock cycles. Moreover, the first set of outputs

(i.e., LPVN
app (β) and LH

ex(α, β)) is available at the t1st output = (d/2 + 2r + 1)-th clock cycle.

a) Case I tloading ≤ t1st output: It means that all the required data are read from the RAMs

before the Hadamard sub-decoders generate the updated results. The total time taken to complete

updating one layer equals “loading time of all groups + processing time of last group + writing
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time of last group”, i.e.,

tl1 = tloading + (2r + 1) + d/2

= (r/2 + 1)G+ 5r/2 + 2 (13)

using d = r + 2. Supposing I iterations are needed and the clock frequency is fc, the latency

for decoding each codeword equals

tc1 = Imz1tl1/fc

= Imz1[(r/2 + 1)G+ 5r/2 + 2]/fc, (14)

where mz1 is the number of layers in layered decoding. For a given m × n base matrix, the

latency tc1 can be reduced by (a) lowering I and/or z1 and/or G; or (b) increasing fc. As the

codeword length is l = nz1z2 +mz1z2 (2
r − r − 2), the throughput of the decoder is expressed

as

T1 =
l

tc1
=

[nz1z2 +mz1z2 (2
r − r − 2)] fc

Imz1tl1

=
[n/m+ (2r − r − 2)] z2fc
I[(r/2 + 1)G+ (5r/2 + 2)]

. (15)

To improve the throughput, we can (a) increase z2 and/or fc; or (b) decrease I and/or G.

Example: Taking r = 4, d = r + 2 = 6, z2 = 512 and Nh = 128 as an example, we have

tloading = dG/2 = 12 and t1st output = (d/2+ 2r+1) = 12. Fig. 8 shows the timing diagram for

the decoding of one layer, in which the LLR data is divided into G = z2/Nh = 4 groups.

i) Clock cycle no. 1 to dG/2 = 12: We load G = 4 groups of {LPVN
ex (α, β)} into the Hadamard

sub-decoders corresponding to the z2 H-CNs in the layer in dG/2 = 12 clock cycles.

In each clock cycle, 2Nh = 256 LLRs of {LPVN
app (β)} (or LPVN

ch (β)) and 256 LLRs of

{LH
ex(α, β)} are read from RAMs, and at the same time 256 LLRs of {LPVN

ex (α, β)} are

computed using (1) and loaded into the Nh = 128 Hadamard sub-decoders. Therefore, it

takes d/2 = 3 clock cycles to completely retrieve all LLR values belonging to the first

group, i.e., dNh = 6 × 128 = 768 LLRs of {LPVN
app (β)} (or LPVN

ch (β)) and 768 LLRs of

{LH
ex(α, β)}, and to compute and load 768 LLRs of {LPVN

ex (α, β)} into the Nh = 128

Hadamard sub-decoders. Referring to Fig. 8, we use the symbol “1g12” to represent the

LLRs corresponding to the first and second P-VNs in Group #1, “1g34” to represent the
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LLRs corresponding to the third and fourth P-VNs in Group #1, and “1g56” to represent the

LLRs corresponding to the fifth and sixth P-VNs in Group #1. Moreover, “Zg12”, “Zg34”

and “Zg56” where Z = 2, 3, 4 are defined in a similar fashion. Thus, LLR values belonging

to Group #1 are retrieved during Clock cycle no. #1 to #3; Group #2 during Clock cycle

no. #4 to #6; Group #3 during Clock cycle no. #7 to #9; and Group #4 during Clock cycle

no. #10 to #12.

ii) Clock cycle no. 3, 6, 9 and 12: We load G = 4 groups of {L
D1H(α)
ch } into the Hadamard

sub-decoders. At clock no. 3, we load the channel LLRs for D1H-VNs in Group #1 into

the Nh = 128 Hadamard sub-decoders. Referring to Fig. 8, we use the symbol “1gllr” to

represent these LLRs in Group #1. Similarly, at clock no. 6, 9 and 12, we load the channel

LLRs for D1H-VNs in Group #2, Group #3 and Group #4, respectively, into the Nh = 128

Hadamard sub-decoders. They are represented by “Zgllr” in Fig. 8 where Z = 2, 3, 4.

iii) Clock cycle no. 4 to 21: We decode one layer consisting of z2 H-CNs in a pipeline manner.

At Clock cycle no. 4, the Hadamard sub-decoders starts processing the LLRs belonging to

Group #1 which has completed its LLR loading at Clock cycle no. 3. Similarly, at Clock

cycle no. 7, 10 and 13, the Hadamard sub-decoders starts processing the LLRs belonging

to Group #2, Group #3 and Group #4, respectively. Since it takes 2r + 1 = 9 clock cycles

to process each group of LLRs and the groups of LLRs are processed in a pipeline manner,

the last group of LLRs will be processed completely at Clock cycle no. 13 + 9− 1 = 21.

iv) Clock cycle no. 13 to tl1 = 24: We write the updated G = 4 groups of data into the

corresponding RAMs. Referring to the step above, at Clock cycle no. 4, 7, 10 and 13,

the Hadamard sub-decoders starts processing the LLRs belonging to Group #1, Group #2,

Group #3 and Group #4, respectively. Moreover, at Clock cycle no. 12, 15, 18 and 21,

the Hadamard sub-decoders has completed processing the LLRs belonging to Group #1,

Group #2, Group #3 and Group #4, respectively; and has each time generated a group of

LLRs consisting of 768 LLR values of {LPVN
app (β)} and 768 LLR values of {LH

ex(α, β)}. In

a similar fashion as in Step i), it takes d/2 clock cycles to store/write the LLRs belonging

to one group. Thus, LLRs belonging to Group #1 are stored during Clock cycle no. 13

to 15; Group #2 stored during Clock cycle no. 16 to 18; Group #3 stored during Clock

cycle no. 19 to 21; Group #4 stored during Clock cycle no. 22 to 24. In other words, from

Clock cycle no. 13 to 24, 2×128 = 256 updated LLR values of {LPVN
app (β)} are stored into

Nh = 128 PVN-APP-RAMs and 2 × 128 = 256 updated LLR values of {LH
ex(α, β)} are
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stored to Nh = 128 H-EX-RAMs during each clock cycle.

Note that the total time taken to complete updating one layer is 24 clock cycles, which is

the same as the theoretical result computed using (13).

b) Case II tloading > t1st output: It means that the Hadamard sub-decoders start to output

the updated results before all the required data have been read from the RAMs. In this case, we

need to use first-in-first-out (FIFO) RAMs to temporarily store the updated results (i.e., LPVN
app (β)

and LH
ex(α, β)) from the Hadamard sub-decoders. Once all the required data are read from the

RAMs, the updated results stored in the FIFO RAMs are written to the RAMs. The total time

taken to complete updating one layer equals “loading time of all groups + writing time of all

groups”, i.e.,

tl2 = dG/2 + dG/2 = (r + 2)G. (16)

The latency to decode one codeword equals

tc2 = Imz1G(r + 2)/fc, (17)

and the throughput equals

T2 =
[n/m+ (2r − r − 2)] fcz2

IG(r + 2)
(18)

which can be improved by (a) increasing fc and/or z2; or (b) decreasing I and/or G. Fig. 9

shows the timing diagram when decoding one layer with parameters z2 = 512, Nh = 64 and

G = z2/Nh = 8. The difference between this case and the previous one is that we use FIFO

RAMs to temporarily store the “updated” LLR values until all the required data are loaded into

Hadamard sub-decoders.

Note that in both Case I and Case II, it requires d/2 clock cycles to complete loading one

group of data into the Nh Hadamard sub-decoders. Thus, the Nh Hadamard sub-decoders are

idle most of the time. Therefore the throughput can potentially be increased by a factor of d/2

if the Hadamard sub-decoders are allowed to process d/2 different codewords at the same time.

The extra requirement would be d/2 times increase in memory storage and a bit more control

logics.
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IV. IMPLEMENTATION RESULTS

We implement the r = 4 and R = 0.0494 PLDPC-Hadamard decoder (whose base matrix and

protograph are shown in Fig. 1) optimized in [28], [29] on the Xilinx VCU118 FPGA board. The

maximum operating frequency is fc = 130 MHz. Binary phase-shift-keying (BPSK) modulation

and an additive white Gaussian noise channel are assumed. To compare with the floating-point

results in [30], we use the same lifting factors, i.e., z1 = 32 and z2 = 512, and the same code

length l = 1327104.

We implement two designs with Nh = 128 (G = 4) and Nh = 64 (G = 8) Hadamard sub-

decoders, respectively, which belong to Case I and Case II in Section III-D. Fig. 10 shows the

quantization schemes used and Fig. 11 plots the BER results. It can be observed that the two

designs produce almost the same BER curves. The minute difference arises only because the

same noise samples generated have been assigned to different code bits in the two different

designs. The results in Fig. 11 also show that at a BER of 10−5, the fixed-point decoder suffers

from a small degradation of 0.08 dB compared with the floating-point computation when I = 150

iterations are used; and a degradation of 0.10 dB when I = 20. While no error floor appears

for the floating-point simulations; for fixed-point results, error floors start to emerge at around

3× 10−6 for I = 150 iterations and 10−6 for I = 20 iterations.

For r = 4 (hence d = r + 2 = 6), t1st output = (d/2 + 2r + 1) = 12 cycles. When G = 4,

tloading = dG/2 = 12 = t1st output which belongs to Case I in Section III-D. The decoding latency

per layer equals tl1 = 24 cycles. 2 Similarly when G = 8, tloading = dG/2 = 24 > t1st output

which belongs to Case II. The decoding latency per layer equals tl2 = 48 cycles. Table III lists

the hardware implementation results of the proposed layered decoder for Nh = 64 (G = 8) and

Nh = 128 (G = 4). Since the code lengths are identical, the two designs consume almost the

same amount of block RAMs (BRAMs). Compared with the decoder with Nh = 64 Hadamard

sub-decoders, the one with Nh = 128 sub-decoders produces about twice the throughput, reduces

the latency by about half, and utilizes about twice the amount of look-up tables (LUTs).

V. CONCLUSION

A hardware architecture of the PLDPC-Hadamard layered decoder has been designed and

implemented onto an FPGA. The architecture consists of control logics, BRAMs and Hadamard

2In practice, there is a fixed delay tδ when operating RAMs. In our designs, tδ = 2 cycles and are included in deriving the

latency and throughput in Table III.
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TABLE III

COMPARISON OF IMPLEMENTATION RESULTS FOR PLDPC-HADAMARD DECODER WITH 64 AND 128 HADAMARD

SUB-DECODERS. HADAMARD ORDER r = 4, CODE RATE R = 0.0494, CODE LENGTH l = 1327104, AND CLOCK FREQUENCY

fc = 130 MHZ. LUT: LOOK-UP TABLE; BRAM: BLOCK RAM.

Available

LUT
1, 182, 240

Available

BRAM
2, 160

No. of

sub-decoders
Nh = 64 Nh = 128

LUT

Utilization
485, 738 (41.09%) 968, 538 (81.92%)

BRAM

Utilization
718.5 (33.26%) 715 (33.10%)

No. of

iterations
I = 150 I = 20 I = 150 I = 20

Eb/N0 at

BER of 10−5 −1.11 dB −0.40 dB −1.11 dB −0.40 dB

Latency 12.92 ms 1.72 ms 6.72 ms 0.896 ms

Throughput 0.10 Gbps 0.77 Gbps 0.20 Gbps 1.48 Gbps

sub-decoders. The latency and throughput of the design have been derived in the terms of the

code parameters and the amount of parallel sub-decoders deployed. A throughput of 1.48 Gbps

is achieved when 20 decoding iterations are used. Error floors are observed when the BER is

around 3× 10−6.

In our current decoder design, the Hadamard sub-decoders are not fully utilized in the time

domain. When these sub-decoders are fully utilized, the decoder can decode d/2 (= 3 in the

example used) codewords simultaneously and hence increase the throughput by the same factor

(i.e., to almost 4.5 Gbps). To decode more codewords, more BRAMs would be needed though.

Our decoder architecture is generic and can be readily modified to decode LDPC-Hadamard codes

with the order of the Hadamard code being odd, i.e., r is odd. Moreover, it can be modified

and applied to decode other LDPC-derived codes when the Hadamard constraints LDPC-HC

are replaced by other code constraints. Another future direction of research is to investigate the

cause of the error floors when fixed-point computation is used and then to design novel ways to

overcome it.
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Fig. 5. Pipeline structure of a FHT block for r = 4 [24]. Connections to the clock are omitted for clarity.
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Fig. 6. Pipeline structure of a reduced DFHT block for r = 4. An additional clock cycle (5-th clock cycle) is shown for the

computation of APP LLRs LH
app(i) [24]. Connections to the clock are omitted for clarity.
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Fig. 7. Proposed layered PLDPC-Hadamard decoder with four types of RAMs, Hadamard sub-decoders and control logics.

clk

clk cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 22 23 24

HDEC idle decoding idle

Index&shift 1g12 1g34 1g56 2g12 2g34 2g56 3g12 3g34 3g56 4g12 4g34 4g56 1g12 1g34 1g56 4g12 4g34 4g56

Ena read write

CH&APP&EX 1g12 1g34 1g56 2g12 2g34 2g56 3g12 3g34 3g56 4g12 4g34 4g56

APP*&EX* 1g12 1g34 1g56 4g12 4g34 4g56

D1H_ch 1gllr 2gllr 3gllr 4gllr

Fig. 8. Timing diagram for the decoding of one layer of PLDPC-Hadamard code. r = 4, z2 = 512, Nh = 128 and G = z2/Nh =
4. HDEC represents the state of the Hadamard sub-decoder; Index&shift represents the shift values of the corresponding CPMs;

Ena represents the state of PVN-CH-RAMs, PVN-APP-RAMs and H-EX-RAMs; CH&APP&EX represent the channel LLR

values of {LPVN
ch (β)}, the a posteriori LLRs of {LPVN

app (β)} and the extrinsic LLRs of {LH
ex(α, β)}; APP*&EX* represents

the updated LLRs for {LH
app(β)} and the updated extrinsic LLRs for {LH

ex(α, β)}; D1H ch represents the channel LLRs of

{L
D1H(α)
ch }.

clk

clk cycle 1 2 3 10 11 12 22 23 24 25 26 27 34 35 36 46 47 48

HDEC idle decoding idle

index&shift 1g12 1g34 1g56 4g12 4g34 4g56 8g12 8g34 8g56 1g12 1g34 1g56 4g12 4g34 4g56 8g12 8g34 8g56

Ena read write

CH&APP&EX 1g12 1g34 1g56 4g12 4g34 4g56 8g12 8g34 8g56

APP*&EX* 1g12 1g34 1g56 5g12 5g34 g56 8g12 8g34 8g56

OUT_FIFO 1g12 1g34 1g56 4g12 4g34 4g56 8g12 8g34 8g56

D1H_ch 1gllr 4gllr 8gllr

Fig. 9. Timing diagram for the decoding of one layer of PLDPC-Hadamard code. r = 4, z2 = 512, G = 8 and Nh = 64.

OUT FIFO represents the output LLRs for {LH
app(β)} and {LH

ex(α, β)}. The representations of other symbols are the same as

in Fig. 8.
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appL
chL exL

Fig. 10. Data transformation among different modules for a r = 4 PLDPC-Hadamard code. “1 sign + y int + z frac” denotes

1 bit to represent sign, y bits to represent the integral part, and z bits to represent the fractional part.
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Fig. 11. Floating-point and fixed-point BER performance of the layered PLDPC-Hadamard decoders. r = 4 and l = 1327104.
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