Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author’s permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage.
http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form and Deposit Licence.

Note: Masters Theses

The digital copy of a masters thesis is as submitted for examination and contains no corrections. The print copy, usually available in the University Library, may contain alterations requested by the supervisor.
The life of a flatfish, the yellowbelly flounder, *Rhombosolea leporina* Günther, 1873, in Auckland’s sheltered waters

David Baraza Mutoro

A thesis submitted for the degree of Doctor of Philosophy in Biological Sciences, University of Auckland, September 1999, resubmitted November 2001
“Give Them Fish and They will ask for More
Show Them to Fish and They Will Feed Themselves”
ABSTRACT

Rhombosolea leporina Günther, 1873 is a right-eyed flatfish endemic to New Zealand coastal waters. This study examines this flounder species as an indicator of the importance to fish of the fringe habitats, and its early life stages in those habitats as an indicator of human disturbance. The study was carried out in disturbed areas of the Manukau and Waitemata Harbours, and Tamaki Estuary, which have an urban catchment from the Auckland metropolitan city area, and less disturbed areas in the Kaipara Harbour and Waiwera Estuary with rural catchments.

Juvenile fish on mud/sand flats were caught by scoopnet and in channels by a dragnet. The adult fish were taken by a setnet. Aging was estimated by use of the otolith. Analysis of the otolith and length relationship shows that *R. leporina* has a short life span of about four years. This species spends most of its life in shallow water and starts tidal migration during the 1+ age.

At low tide *R. leporina* < 5cm total length remain on the mud / sand flats, but at localities where there is no standing water this size group occurs along the edge of the retreating tide. Fishes >20cm migrate with the ebb tide to the deeper parts of the channels which in turn lead to the main, deepest channels of the harbour.

Length and weight data were used in the analysis of growth of fish from different localities. The Condition Factor index (CF) calculated from length and weight data of juvenile *R. leporina* reveals that the Manukau Harbour fish are in poorer condition than those of the Waitemata and Kaipara Harbours. Growth estimates by Von Bertalanffy (1938) curves show fast growth in the 1+ and 2+ age groups. The Von Bertalanffy parameters and Walford plots reveal that the female *R. leporina* may grow larger than the male fish.

Sexual maturity is attained at age 2+, females at a length >25cm and males at 22cm. Spawning of this species takes place offshore. Ovary development can be divided into five stages; immature / resting, ripening, ripe, running, and spent. Gonadosomatic index (GSI), founded on ovary development, shows a peak spawning season from winter to spring. GSI is estimated from ovary and fish weight. The juvenile stages of 0+ and 1+ age groups feed on assorted invertebrates. Adults from >20cm length size, the 2+ age group, start to specialise in their diet, mainly feeding on three species of crabs, *Halicarculmus cooki*, *Helice crassa* and *Macrophthalmus hirtipes*.

The early life stages of the 0+ and 1+ age groups are protected by the minimum legal size of fish
that can be taken commercially not being reached until 2+. This enables the fish to reach adulthood and spawn at least once before being taken. The species grows fast and has high fecundity. The fish collected from the Manukau Harbour are more affected by pollution related diseases than those from the Waitemata and Kaipara Harbours. The sediment and water samples were analysed for heavy metals, organo-chemicals, faecal coliforms and Enterococci coli. Those fish analyzed for heavy metals and organo chemicals had their liver loaded with these toxins more than any other organ or tissue. The Manukau, Waitemata Harbours and Tamaki Estuary are more impacted than the Kaipara Harbour.

The other flatfish species caught were Rhombosolea plebeia (Richardson, 1842) and Peltorhamphus latus (James, 1972). The Auckland inshore areas are dominated by the juvenile and adult yellow eye mullet Aldrichetta forsteri which occurs throughout the year. The other fish species caught were only present seasonally, particularly from spring to summer. Nineteen other fish species were recorded at the study sites.
Acknowledgements

I thank my Supervisor, Associate Professor Michael Miller, for advice, direction and support throughout my thesis project. I am indebted to him particularly for the help he gave me in preparing the final manuscript even after he had retired from the university staff.

I am grateful to my project Adviser Graham McGregor of MAF-Fisheries for much advice and helping me obtain fishing permits. I thank Associate Professor Clive Evans for advice on pathological matters and the related literature. I am indebted to Dr. David Roper for the literature on New Zealand flatfish, Boubacar Coulibally for discussing Auckland’s stormwater problem, and Luke Gowing for discussing the New Zealand coastal sediments and benthos. I thank all of those who helped me in the field and laboratory, assisted me with operating the computer data analysis, and contributed to the discussion of my project. I do appreciate Adrian Moore and David Wilson for coming with me into the field. I am grateful to Caroline Aspden, Dr. Martin Cryer, Dr. Richard Taylor and Dr. Samuel Manda for their help setting up a programme of statistical analysis for this project. I am indebted to Franz Pichler and Dr. Samuel Manda for their help in the computer programs, Brent Barrett for type setting the figures, whenever requested despite being very busy with their own work. I thank Iain MacDonald and Vivian Ward for the photographs, and Beryl Davy for helping in the preparation of histological sections, and preservatives.

I am indebted to the World Bank for the Scholarship, University of Auckland Research Committee for a grant to help me present my work at the 3rd Flatfish Symposium in the Netherlands and for laboratory expenses, School of Biological Sciences for funding my attendance at the Marine Sciences Society Annual Conference, in Wellington 1995 and Christchurch in 1996.

I also thank the many friends and relatives who were involved in discussing my work, gave critical advice (negative & positive) and encouraged me to carry on: Cleone Armstrong, Kim Badmus, Esperance Bankundiye, Rick Brown, Nick Burgess, Jenny Coulibally, Jenny Harding, Marilyn Hennecker, Greg Lim, Brian Lythe, Bram Musombi & Lillian Sayo, Nyamori Ochoki & Elizabeth Nyaboke, Anna-Marie O’Sullivan, Kingiri Senelwa & Pamela Ingutia, Ibrahim Wafula & Maria Simiyu, Clare Swinney, Tim Sullivan & Sarah Prenter and David Todd.
I do thank my special friend Charlotte Mitchell for standing by me whenever I needed any assistance. To my sisters and brothers, I do thank them for their support and encouragement as a family during my life as a student. I dedicate the thesis to my parents, my mother Petora Naswa and father Mutoro Wamuno for their support throughout my years of education. Finally, I acknowledge the two commercial fishermen, Ivan Booker and Don Fremlin for their vital knowledge of flatfish habits and habitats and helping me obtain samples of fish.
Table of Contents

Abstract

Acknowledgements

List of Figures

List of Tables

Chapter One General Introduction

1.1 Introduction

1.2 Aims and objectives

1.3 Studies on flatfishes and inshore areas
 - 1.3.1 Information on New Zealand flatfishes
 - 1.3.2 Inshore areas as flatfish habitats

Chapter Two Materials and Methods

2.1 Introduction

2.2 Study areas
 - 2.2.1 Manukau Harbour
 - 2.2.2 Waitemata Harbour
 - 2.2.3 Kaipara Harbour
 - 2.2.4 Waiwera Estuary
 - 2.2.5 Tamaki Estuary

2.3 Equipment

2.4 Collection of sample and data analysis

Chapter Three Otolith and Aging

3.1 Introduction

3.2 Otolith structure and information

3.3 Back calculation of fish length from otolith rings

3.4 Results

3.5 Discussion
<table>
<thead>
<tr>
<th>Chapter Four</th>
<th>Distribution and Population Patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>41</td>
</tr>
<tr>
<td>4.2 Materials and Methods</td>
<td>42</td>
</tr>
<tr>
<td>4.2.1 Flatfish of the Auckland Region</td>
<td>42</td>
</tr>
<tr>
<td>4.2.2 Manukau Harbour</td>
<td>43</td>
</tr>
<tr>
<td>4.2.3 Waitemata and Kaipara Harbours</td>
<td>45</td>
</tr>
<tr>
<td>4.2.4 Waiwera Estuary</td>
<td>45</td>
</tr>
<tr>
<td>4.2.5 Tamaki Estuary</td>
<td>46</td>
</tr>
<tr>
<td>4.3 Results</td>
<td>47</td>
</tr>
<tr>
<td>4.4 Discussion</td>
<td>49</td>
</tr>
<tr>
<td>4.4.1 Flatfish known in New Zealand coastal areas</td>
<td>49</td>
</tr>
<tr>
<td>4.4.2 Flatfish outside New Zealand</td>
<td>52</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter Five</th>
<th>Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>78</td>
</tr>
<tr>
<td>5.2 Growth in length and weight</td>
<td>78</td>
</tr>
<tr>
<td>5.3 Instantaneous growth rate</td>
<td>80</td>
</tr>
<tr>
<td>5.4 Growth patterns</td>
<td>80</td>
</tr>
<tr>
<td>5.5 Results</td>
<td>81</td>
</tr>
<tr>
<td>5.6 Discussion</td>
<td>91</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter Six</th>
<th>Reproduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>106</td>
</tr>
<tr>
<td>6.2 Sexual maturity and gonad development</td>
<td>107</td>
</tr>
<tr>
<td>6.3 Results</td>
<td>109</td>
</tr>
<tr>
<td>6.3.1 Data analysis</td>
<td>109</td>
</tr>
<tr>
<td>6.3.2 Gonadal somatic index</td>
<td>112</td>
</tr>
<tr>
<td>6.4 Discussion</td>
<td>116</td>
</tr>
</tbody>
</table>
List of Figures

Chapter Two: Materials and Methods

Figure 2.1: A map of the New Zealand Exclusive Economic Zone which extends 200 nautical miles (c.370km), from the coast (source Francis 1994). 17

Figure 2.2: The study area showing localities, the Manukau, Waitemata and Kaipara Harbours, Waipera and Tamaki Estuaries. 18

Figure 2.3: The juveniles of the three common flatfish species caught during the study, lower side left and upper side right. 19

Figure 2.4: Weymouth Creek at low tide 19

Figure 2.5: Drag net fishing at low tide. 20

Figure 2.6: Fishing at Weymouth Creek during the incoming tide using a drag net drawn by the boat. 20

Figure 2.7: Fishing in a deeper channel of the Waitemata Harbour using a drag net towed by the boat. 20

Figure 2.8: Fishing in a deeper channel of the Kaipara Harbour using a drag net towed by the boat. 20

Figure 2.9: The drag net of a 2.5cm mesh size. 21

Figure 2.10: The set net or flounder net, 70m long with a 11cm mesh size. 21

Figure 2.11: Collecting post-settled juvenile R. leporina from mud/sand flats. 21

Figure 2.12: A juvenile R. leporina <5cm from a mud/sand flat pool. 21

Figure 2.13: Trap net set in the low tidal channel of a mangrove swamp. 21

Figure 2.14: Plastic container traps set in the mud floor of a mangrove swamp. 21

Chapter Three: Otolith and Aging

Figure 3.1: R. leporina upper and lower sides, heads cut above operculum to remove otolith. 38

Figure 3.2: R. leporina otoliths showing transparent and opaque rings when viewed on a dark background under reflected light. 38

Figure 3.3: Sketch of R. leporina otolith 3+, measurement used in age determination along line AB. 38

Figure 3.4: A model of otolith opaque and hyaline rings per age group, when viewed using transmitted light. Model for R. leporina has two forms differing in numbers of rings. 39

Figure 3.5: The female and male R. leporina graphs showing fish length (mm) and otolith radius (mm) for the Manukau, Waitemata and Kaipara Harbours. 40

Chapter Four: Distribution and Population Patterns

Figure 4.1: A map of New Zealand showing the coastal areas where R. plebeia (source Colman 1978) and R. leporina are abundant and fished. 58

Figure 4.2: Map showing the Manukau Harbour and Tamaki Estuary sampling and pilot survey sites. 59

Figure 4.3: Map showing the Waitemata Harbour and Waiwera Estuary sampling and pilot survey sites. 59

Figure 4.4: Map showing the Kaipara Harbour sampling and pilot survey sites. 59

Figure 4.5: A map showing the worldwide distribution of flatfish species (source Pauly 1994). 60

Figure 4.6: Showing latitudinal distribution of species diversity in pleuronectiformes (source Pauly 1994). 61

Figure 4.7: A map of a hypothetical section of sheltered coastal Auckland showing three size groupings of R. leporina at low tide. 62

Figure 4.8: A map of a hypothetical section of sheltered coastal Auckland showing movement of R. leporina with the flood tides and position at high tide. 63
Chapter Five: Growth

Figure 4.9: Herald Island Waitemata Harbour, turbid water (circled) caused by flounder.

Figure 4.10: Weymouth Creek, net set on the ebbing tide to catch the 0+ and early 1+.

Figure 4.11: A flounder, upper or right side with electronic 3-MT95-2 (black) and indentification (blue) tags attached.

Figure 4.12: Sonotronic meter used to track the movements of tagged flounder.

Figure 4.13: Map of Waiwera Estuary showing stations (sites) mentioned in the text.

Figure 4.14: Waiwera Estuary at ebb tide looking towards the mouth.

Figure 4.15: Waiwera Estuary the upper reach stations 8 and 9 (Figure 4.13).

Figure 4.16: Waiwera Estuary between stations 2 and 3 at ebb tide showing mud / sand flat pools and mangroves (Figure 4.13).

Figure 4.17: Tamaki Estuary, showing Panmure Basin at low tide.

Figure 4.18: Length frequency distribution for juvenile female R. leporina from the Manukau Harbour 1994.

Figure 4.19: Length frequency distribution for juvenile female R. leporina from the Manukau Harbour 1995 to 1997.

Figure 4.20: Length frequency distribution for juvenile male R. leporina from the Manukau Harbour 1994.

Figure 4.21: Length frequency distribution for juvenile male R. leporina from the Manukau Harbour 1995 to 1997.

Figure 4.22: Length frequency distribution for juvenile female R. leporina from the Waitemata Harbour.

Figure 4.23: Length frequency distribution for juvenile male R. leporina from the Waitemata Harbour.

Figure 4.24: Length frequency distribution for juvenile female R. leporina from the Kaipara Harbour.

Figure 4.25: Length frequency distribution for juvenile male R. leporina from the Kaipara Harbour.

Figure 4.26: Length frequency distribution for juvenile R. leporina from the Tamaki Estuary.

Figure 4.27: Length frequency distribution of juvenile R. plebeia in sheltered areas on the Otago Peninsula, June 1975 to July 1979 (source Roper 1979).

Figure 4.28: Length frequency distribution of juvenile R. plebeia at the Petone station Wellington (source Domanski 1984).

Chapter Five: Growth

Figure 5.1: Female and male R. leporina averaged condition factor "Cf" from the Manukau, Waitemata and Kaipara Harbours.

Figure 5.2: Log₁₀ of length (cm) and weight (gm) of juvenile female and male R. leporina from the Manukau Harbour.

Figure 5.3: Log₁₀ of length (cm) and weight (gm) of juvenile female and male R. leporina from the Waitemata Harbour.

Figure 5.4: Log₁₀ of length (cm) and weight (gm) of juvenile female and male R. leporina from the Kaipara Harbour.
Figure 5.5: Growth in length and weight and specific growth rate, of juvenile female R. leporina in the Manukau, Waitemata and Kaipara Harbours.

Figure 5.6: Growth in length and weight and specific growth rate, of juvenile male R. leporina in the Manukau, Waitemata and Kaipara Harbours.

Figure 5.7: Mean length (mm) of juvenile female and male R. leporina from the Manukau from the Manukau and Waitemata Harbours 1994 / 1995.

Figure 5.8: Mean length (mm) of juvenile female and male R. leporina from the Manukau, Wai mata and Kaipara Harbours 1996 / 1997.

Figure 5.9: Median length (mm) of juvenile female and male R. leporina from the Manukau and Waitemata Harbours 1994 / 1995.

Figure 5.10: Median length (mm) of juvenile female and male R. leporina from the Manukau, Waitemata and Kaipara Harbours 1996 / 1997.

Figure 5.11: Walford plots for female and male populations of R. leporina from the Manukau, Waitemata and Kaipara Harbours.

Figure 5.12: Growth data points and fitted von Bertalanffy curves for female and male R. leporina from the Manukau, Waitemata and Kaipara Harbours.

Chapter Six: Reproduction

Figure 6.1: R. leporina, adults, views of lower (left) side, female showing ovary and male showing testis.

Figure 6.2: R. leporina histological sections of the ovaries showing maturation stages.

Figure 6.3: Gonadosomatic index and ovary weight for female R. leporina from the Manukau and Waitemata Harbours.

Figure 6.4: The Bar charts showing R. leporina progressive ovary development stages for the Manukau and Waitemata Harbours.

Chapter Seven: Feeding

Figure 7.1: The gut contents. Bar charts of juvenile R. leporina for the Manukau, Waitemata and Kaipara Harbours, and the Tamaki Estuary.

Figure 7.2: The gut contents. Bar charts of sub-adult R. leporina for the Manukau, Waitemata and Kaipara Harbours.

Figure 7.3: The gut contents. Bar charts of adult R. leporina for the Manukau, Waitemata and Kaipara Harbours.

Figure 7.4: The gut contents. Bar charts of non-food items of juvenile R. leporina for the Manukau, Waitemata and Kaipara Harbours.

Chapter Eight: Human Impact on Coastal Habitats of Auckland Region

Figure 8.1: Map of the Manukau Harbour.

Figure 8.2: Weymouth Creek, a sample site.

Figure 8.3: R. leporina juveniles with white spot disease.

Figure 8.4: R. leporina juvenile from the Manukau Harbour of hyperplasia case.

Figure 8.5: R. leporina healthy adult lower or left side usually yellowish.

Figure 8.6: R. leporina adult from the Manukau Harbour with severe case of skin discoloration.

Figure 8.7: R. leporina fin erosion, caudal fin skin abrasion, caudal fin rot and fungal infection.
Figure 8.8: \(R. \) leporina adult from the Waitemata Harbour haemorrhagia.

Figure 8.9: \(R. \) leporina adult from the Manukau Harbour skin discoloration.

Figure 8.10: \(R. \) leporina juvenile from the Manukau Harbour white lesion.

Figure 8.11: \(R. \) leporina adult from the Manukau Harbour white skin lesion.

Figure 8.12: \(R. \) leporina adult caudal fin deformed in 3+ fish.

Figure 8.13: \(R. \) leporina adult skin discoloration, heamorrhagic pectoral fin and scars of white spot disease.

Figure 8.14: \(R. \) leporina adult skin nodules, above pectoral fin in the photograph.

Figure 8.15: \(R. \) leporina adult skin lesion, discoloration and fin erosion.

Figure 8.16: \(R. \) leporina adult skin discoloration, and wound infection.

Figure 8.17: \(R. \) leporina adult injuries probably caused by the bites of a predator.

Figure 8.18: \(R. \) leporina histological section of the skin infected with the cyst of white spot disease.

Figure 8.19: An endoparasitic nematode \(Cucullanus \) antipodeus Baylis, (1932).

Figure 8.20: Bar charts showing amount of metals in \(R. \) leporina, \(A. \) forsteri and \(C. \) gigas.

Figure 8.21: Bar charts showing amount of metals in sediments from the Manukau, Waitemata and Kaipara Harbours.

Figure 8.22: Bar charts showing water quality of the Manukau Harbour and Tamaki Estuary.

Appendix I: Other Fishes

Figure A1.1: \(Rhombosolea \) plebeja female and male averaged condition factor from the Manukau, Waitemata and Kaipara Harbours.

Figure A1.2: \(Aldrichetta \) fosteri female and male averaged condition factor from the Manukau, Waitemata and Kaipara Harbours, and the Waiwera Harbour.
List of Tables

CHAPTER THREE Otolith and Aging

Table 3.1: The numbers of R. leporina otolith hyaline and opaque rings for each age group. 26

Table 3.2: The female R. leporina minimum and maximum fish lengths as per otolith readings for each age group from the three harbours (Manukau = M, Waitemata = W, Kaipara = K). 27

Table 3.3: The male R. leporina minimum and maximum fish lengths as per otolith readings for each age group from the three harbours (Manukau = M, Waitemata = W, Kaipara = K). 27

Table 3.4: The results for female and male R. leporina obtained using the equation,

\[\log O = \log a + b \log L \]

Table 3.5: The female R. leporina average otolith radius per 25mm total length cohort for the three harbours. 29

Table 3.6: The male R. leporina average otolith radius per 25mm total length cohort for the three harbours. 29

Table 3.7: The female R. leporina mean and median for fish length and otolith radius per age group from the three harbours (Manukau = M, Waitemata = W and Kaipara = K). 30

Table 3.8: The male R. leporina mean and median for fish length and otolith radius per age group from the three harbours (Manukau = M, Waitemata = W and Kaipara = K). 30

Table 3.9: Otolith radius Anova single factor of R. leporina from the Manukau, Waitemata and Kaipara Harbours. 31

Table 3.10: The t-test two sample for differences of same age groups of female R. leporina from the Manukau, Waitemata and Kaipara Harbours. 31

Table 3.11: The t-test two sample for differences of same age groups of male R. leporina from the Manukau, Waitemata and Kaipara Harbours. 32

Table 3.12: Kruskal-Wallis one way Anova on ranks and median for differences among age groups of female R. leporina from the Manukau Harbour. 32

Table 3.13: Kruskal-Wallis one way Anova on ranks and median for differences among age groups of female R. leporina from the Waitemata Harbour. 32

Table 3.14: Kruskal-Wallis one way Anova on ranks and median for differences among age groups of female R. leporina from the Kaipara Harbour. 33

Table 3.15: Kruskal-Wallis one way Anova on ranks and median for differences among age groups of male R. leporina from the Manukau Harbour. 33

Table 3.16: Kruskal-Wallis one way Anova on ranks and median for differences among age groups of male R. leporina from the Waitemata Harbour. 33

Table 3.17: Kruskal-Wallis one way Anova on ranks and median for differences among age groups of male R. leporina from the Kaipara Harbour. 34
Table 3.18: The mean length (cm) from previous studies for *R. leporina* from the Hauraki Gulf (Colman 1973) and Manukau Harbour (Pearks 1985).

Table 3.19: The *R. leporina* mean (cm) for fish length per age group from Manukau = M, Waitemata = W and Kaipara = K Harbours.

CHAPTER FOUR

Distribution and Population Patterns

Table 4.1: The numbers of juvenile *R. leporina* taken per haul from Weymouth Creek, the Manukau Harbour (this study).

Table 4.2: The numbers of juvenile *R. leporina* taken per haul from Herald Island, the Waitemata Harbour (this study).

Table 4.3: The numbers of juvenile *R. leporina* taken per haul from Shelly Beach, the Kaipara Harbour (this study).

Table 4.4: The numbers of juvenile *R. leporina* taken per haul from mud/sand flats, the Tamaki Estuary (this study).

Table 4.5: The of juvenile (taken per haul), and adult *R. leporina* by set net from Waiwera Estuary (this study).

Table 4.6: Catch data of flatfish species world wide (source Pauly 1994)

Table 4.7: The Waiwera Estuary, sites, depth, salinity, temperature, oxygen, sediment and tides.

CHAPTER FIVE

Growth

Table 5.1: The mean of length (cm) and weight (gm) for juvenile *R. leporina* from the Manukau, Waitemata and Kaipara Harbours.

Table 5.2: The ratio of weight (gm) to length (cm); (Wt / Tl) for juvenile female and male *R. leporina*.

Table 5.3: The regression of juvenile Logarithms of length against weight from each harbour.

Table 5.4: Walford plots often used in association with von Bertalanffy growth model, for female and male *R. leporina* from the Manukau, Waitemata and Kaipara Harbours.

Table 5.5: Estimated von Bertalanffy parameters for age-length data of *R. leporina* using solver programme by minimising the sum of residual squares from actual and predicted values.

Table 5.6: Kruskal-Wallis one way Anova on ranks and median for differences of length among age groups of female *R. leporina* from the Manukau Harbour.

Table 5.7: Kruskal-Wallis one way Anova on ranks and median for differences of length among Age groups of female *R. leporina* from the Waitemata Harbour.

Table 5.8: Kruskal-Wallis one way Anova on ranks and median for differences of length among age groups of female *R. leporina* from the Kaipara Harbour.
Table 5.9: Kruskal-Wallis one way Anova on ranks and median for differences of length among age groups of male *R. leporina* from the Manukau Harbour.

Table 5.10: Kruskal-Wallis one way Anova on ranks and median for differences of length among age groups of male *R. leporina* from the Waitemata Harbour.

Table 5.11: Kruskal-Wallis one way Anova on ranks and median for differences of length among age groups of male *R. leporina* from the Kaipara Harbour.

Table 5.12: Kruskal-Wallis one way Anova on ranks and median for differences of weight among age groups of female *R. leporina* from the Manukau Harbour.

Table 5.13: Kruskal-Wallis one way Anova on ranks and median for differences of weight among age groups of female *R. leporina* from the Waitemata Harbour.

Table 5.14: Kruskal-Wallis one way Anova on ranks and median for differences of weight among age groups of female *R. leporina* from the Kaipara Harbour.

Table 5.15: Kruskal-Wallis one way Anova on ranks and median for differences of weight among age groups of male *R. leporina* from the Manukau Harbour.

Table 5.16: Kruskal-Wallis one way Anova on ranks and median for differences of weight among age groups of male *R. leporina* from the Waitemata Harbour.

Table 5.17: Kruskal-Wallis one way Anova on ranks and median for differences of weight among age groups of male *R. leporina* from the Kaipara Harbour.

Table 5.18: The *t*-test two sample for differences among length of same age groups of female *R. leporina* from the Manukau, Waitemata and Kaipara Harbours.

Table 5.19: The *t*-test two sample for differences among length of same age groups of male *R. leporina* from the Manukau, Waitemata and Kaipara Harbours.

Table 5.20: The *t*-test two sample for differences among weight of same age groups of female *R. leporina* from the Manukau, Waitemata and Kaipara Harbours.

Table 5.21: The *t*-test two sample for differences among weight of same age groups of male *R. leporina* from the Manukau, Waitemata and Kaipara Harbours.

CHAPTER SIX

Reproduction

Table 6.1: Female yellowbelly flounder (*R. leporina*) and sand flounder (*R. plebeia*): the stages of ovarian development recognized (Colman 1973).

Table 6.2: The Manukau Harbour *R. leporina* taken with a large value of gonad weight at different ovary developmental stages were as follows:

Table 6.3: The largest *R. leporina* taken from the Waitemata Harbour had the heaviest ovary at different developmental stages as follows:

Table 6.4: The percentage of developmental stages of ovary in the Manukau and Waitemata Harbours between September 1996 to November 1997.

Table 6.5: The average ovary weight and GSI of the five ovary developmental stages for the
Manukau and Waitemata Harbours.

Table 6.6: The *R. leporina* fish length and weight, ovary weight and GSI for the Manukau and Waitemata Harbours.

Table 6.7: Ovary maturity stages (weight) Anova single factor of *R. leporina* from the Manukau and Waitemata Harbours.

Table 6.8: Kruskal-Wallis one way Anova on ranks and median for differences of weight among ovary maturity stages *R. leporina* from the Manukau Harbour.

Table 6.9: Kruskal-Wallis one way Anova on ranks and median for differences of weight among ovary maturity stages of *R. leporina* from the Waitamata Harbour.

Table 6.10: The t-test two sample for differences of weight among ovary maturity stages of *R. leporina* from the Manukau and Waitamata Harbours.

CHAPTER SEVEN

Feeding

Table 7.1: The gut contents of juvenile *R. leporina* from the Manukau, Waitamata and Kaipara Harbours, and Tamaki Estuary.

Table 7.2: The gut contents of sub-adult *R. leporina* from the Manukau, Waitamata and Kaipara Harbours.

Table 7.3: The gut contents of adult *R. leporina* from the Manukau, Waitamata and Kaipara Harbour.

Table 7.4: The juvenile *R. leporina* gut index, means of (fish length, weight and gut weight) for fish from the Manukau and Kaipara Harbours.

Table 7.5: The adult *R. leporina* gut index, means of (fish length, weight and gut weight) for fish from the Manukau and Kaipara Harbours.

Table 7.6: The gut contents of flatfish species along the Auckland Coastal fringe.

CHAPTER EIGHT

Human Impact on Coastal Habitats of Auckland Region

Table 8.1: Prevalence of pathological conditions (Percentage = %) in juvenile and adult *R. leporina*, from the Manukau, Waitamata and Kaipara Harbours.

Table 8.2: The amount (mg/kg) of metals detected in *R. leporina*, *A. forsteri* and *C. gigas* from the Manukau, Waitamata and Kaipara Harbours, and Tamaki Estuary.

Table 8.3: The amount (mg/kg) of four metals detected in sediments from the Manukau, Waitamata and Kaipara Harbours.

Table 8.4: The amount (mg/kg) of PCBs detected in *R. leporina*, *A. forsteri* and *C. gigas* from the Manukau, Waitamata and Kaipara Harbours, and Tamaki Estuary.
APPENDIX I

Other fishes of the Auckland Region

Table A1.1: The juvenile fish of other species in Auckland coastal habitats, for the Manukau, Waitemata and Kaipara Harbours.

Table A1.2: The *R. plebeia* mean of total length (cm) and weight (gm), for the Manukau, Waitemata and Kaipara Harbours.

Table A1.3: The *Aldrichetta forsteri* mean of total length (cm) and weight (gm), for the Manukau, Waitemata and Kaipara Harbours.

Table A1.4: The *R. plebeia* condition factor index “CF” for the Manukau, Waitemata and Kaipara Harbours.

Table A1.5: The *Aldrichetta forsteri* condition factor index “CF” for the Manukau, Waitemata and Kaipara Harbours.

APPENDIX II

Data of collected and analysed sample

Tables A3.1, A3.2

Table A4.1

Tables A5.1, A5.2, A5.3, A5.4, A5.5, A5.6, A5.7, A5.8, A5.9, A5.10, A5.11, A5.12, A5.13, A5.14, A5.15

Tables A6.1, A6.2

Tables A8.1, A8.2, A8.3, A8.4, A8.5, A8.6, A8.7, A8.8, A8.9

xvii