
THE UNIVERSITY OF AUCKLAND

DOCTORAL THESIS

Understanding and Improving Deep Learning

Author:

Cecilia Summers

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

School of Computer Science, the University of Auckland, 2021.

October, 2021

Abstract

Deep learning is a modern subfield of machine learning, itself a subfield of artificial intelligence.

The key distinguishing feature of modern deep learning is the use of many layers of computation, which

can be trained with relatively simple and scalable optimization methods such as stochastic gradient

descent. By stacking many computation layers together, models in deep learning can represent complex

functions that were previously difficult to approximate. This capability has led to significant advances

in a variety of fields, including computer vision, natural language processing, game playing, and protein

folding, among others.

Despite this success, key pieces of deep learning remain not well-understood, hampering the field’s

ability to advance. This thesis aims to shed light on a variety of fundamental components in deep

learning, using the additional understanding to subsequently improve them. These components are

varied: We develop an understanding of mixed-example data augmentation, disproving the hypothesis

that linearity is responsible for its efficacy, while introducing new methods that are superior to linear

approaches. We show that logit pairing methods aimed at enhanced adversarial robustness derive much

of their benefit from logit regularization, then show how they can be extended by other logit regular-

ization techniques. We analyze multiple facets of batch normalization, a critical component of many

neural networks, and demonstrate four unique changes that improve it across a variety of settings. We

study the effects of nondeterminism on model training, show that they are largely due to instability in

model training, and propose two methods for reducing the effects of instability.

i

Acknowledgements

First and foremost, I would like to thank my advisor Michael J. Dinneen, who has supported me

throughout my entire Ph.D. Michael has been an ally from the day I first met him, encouraging me to

pursue the research topics that I’ve been interested in, even when they went in a different direction than

originally anticipated. He has routinely been a source of good research advice throughout my Ph.D.

I would also like to thank my family, whose love and support has kept me going, especially when

things were difficult. In particular, I thank my parents for raising me and guiding me on the path of life,

and I feel truly fortunate to have such a wonderful family.

During my path through higher education, I also encountered many nice and interesting friends

who I am thankful for — the number is large enough that I’ll forgo listing them all out, but I want them

to know that I cherish them all. I also want to explicitly thank other professors and researchers who I

met during my Ph.D. for their support and advice.

Last, I’d like to thank the Department of Computer Science of the University of Auckland for

supporting my Ph.D. financially in the form of a scholarship. I feel lucky to have done a Ph.D. at the

excellent and beautiful University of Auckland.

ii

Table of Contents

List of Tables vii

List of Figures ix

1 Introduction 1

2 Mixed-Example Data Augmentation 5

2.1 Introduction . 5

2.2 Related Work . 7

2.3 Methods . 8

2.3.1 General Formulation . 8

2.3.2 Linearity-Based Methods . 9

2.3.3 Non-Linear Methods . 10

2.4 Experiments . 15

2.4.1 Implementation Details . 15

2.4.2 Results . 17

2.5 Conclusion . 21

iii

3 Logit Regularization for Adversarial Robustness 22

3.1 Introduction . 22

3.2 Overview of Adversarial Training . 24

3.3 Adversarial Logit Pairing and Logit Regularization 26

3.3.1 Experimental Evidence . 28

3.4 Other forms of logit regularization . 29

3.4.1 Decoupling Adversarial Logit Pairing . 32

3.5 Additional experiments . 33

3.5.1 Implementation Details . 34

3.5.2 Towards a more robust model . 35

3.5.3 Evaluating Stronger Attacks . 37

3.6 Conclusion . 38

4 Improving Batch Normalization 40

4.1 Introduction . 40

4.2 Related Work/Background on normalization methods 42

4.3 Improving Normalization . 43

4.3.1 Inference Example Weighing . 44

4.3.2 Ghost Batch Normalization for Medium Batch Sizes 47

4.3.3 Batch Normalization and Weight Decay . 50

4.3.4 Generalizing Batch and Group Normalization for Small Batches 51

4.4 Additional Experiments . 52

4.4.1 Experimental Details . 52

4.4.2 Combining All Four: Improvements Across Batch Sizes 53

4.4.3 Transfer Learning . 53

4.4.4 Non-i.i.d. minibatches . 55

4.5 Conclusion . 56

iv

5 Nondeterminism and Instability 57

5.1 Introduction . 57

5.2 Related Work . 59

5.3 Nondeterminism . 59

5.3.1 Protocol for Testing Effects of Nondeterminism 60

5.3.2 Experiments in Image Classification . 62

5.3.3 Experiments in Language Modeling . 63

5.3.4 Nondeterminism Throughout Training . 65

5.4 Instability . 66

5.4.1 Instability and Nondeterminism . 66

5.4.2 Instability and Depth . 67

5.5 Reducing Variability . 68

5.6 Generalization Experiments . 69

5.7 Conclusion . 72

6 Conclusion 73

A Appendix: Improving Batch Normalization 74

A.1 Proof of Batch Normalization Output Bounds . 74

A.2 Empirical Evidence of Batch Normalization Output Bounds 77

A.3 Negative Results: Approaches That Didn’t Work. 77

A.4 Supplemental Inference Example Weighing Plots . 79

B Appendix: Nondeterminism and Instability 82

B.1 Linear, 2-Layer, and ResNet-10 Results . 82

B.2 Impact of Random Bit Changes Over Time . 82

v

B.3 Test-Time Augmentation Details . 84

B.4 Approaches that don’t reduce instability . 84

B.5 Accelerated Ensembling in Language Modeling . 88

B.6 Subtleties in Evaluation . 88

References 90

vi

List of Tables

2.1 Experimental results on CIFAR-10. 17

2.2 Experimental results on CIFAR-100. 19

2.3 Experimental results on Caltech-256. 20

3.1 White-box accuracy of models on CIFAR-10. 34

3.2 Black-box accuracy of models on CIFAR-10. 36

3.3 White-box accuracy of models on CIFAR-100. 36

3.4 Black-box accuracy of models on CIFAR-100. 38

3.5 White-box accuracy of models on SVHN. 38

3.6 Model evaluation against the strongest white-box attacks on CIFAR-10. 39

4.1 Accuracy on CIFAR-100 with non-i.i.d. minibatches. 55

5.1 Effect of each source of nondeterminism on CIFAR-10. 63

5.2 Effect of each source of nondeterminism for a QRNN on Penn Treebank. 63

5.3 Effect of instability on CIFAR-10. 66

5.4 Effect of instability on Penn Treebank. 67

5.5 Comparison of ensemble model variability against the proposed methods for reducing

the effects of nondeterminism on CIFAR-10. 69

vii

5.6 Generalization experiments of nondeterminism and instability with other architectures

on CIFAR-10, ImageNet, and MNIST. 70

B.1 Linear, 2-layer, and ResNet-10 experiments on CIFAR-10. 83

B.2 Experiments varying the learning rate and number of epochs for ResNet-14 on CIFAR-10. 87

B.3 Effect of accelerated model ensembling on Penn Treebank. 88

viii

List of Figures

2.1 Illustrative example of mixed-example data augmentation. 6

2.2 Example outputs for each mixed-example data augmentation method. 11

3.1 Effect of logit pairing on the test set logit distribution and effect of combining logit

pairing with logit regularization. 29

3.2 Effect of label smoothing on adversarial example accuracy and logit distributions. . . . 30

4.1 Effect of the example-weighing hyperparameter α on ImageNet. 45

4.2 Effect of the example-weighing hyperparameter α for models trained with Group Nor-

malization. 46

4.3 Accuracy vs. Ghost Batch Normalization size for CIFAR-100, SVHN, and Caltech-

256. 48

4.4 Interaction between Inference Example Weighing and Ghost Batch Normalization. . . 49

4.5 Total performance changes across batch sizes and datasets when incorporating all im-

provements to Batch Normalization. 54

5.1 Average CKA representation similarity for pairs of ResNet-14 models on CIFAR-10. . 64

5.2 Effect of the onset of nondeterminism on the variability of accuracy in converged models. 65

A.1 Comparison of observed output value range with theoretical bound on CIFAR-10. . . . 78

A.2 Effect of the example-weighing hyperparameter α on ImageNet; full range of α. 80

ix

A.3 Effect of the example-weighing hyperparameter α for models trained with Group Nor-

malization; full range of α. 80

A.4 The interaction between Inference Example Weighing and Ghost Batch Normalization;

full range of α. 81

B.1 Effect of random bit changes for linear vs 2-layer models. 85

x

Co-Authorship Form

Last	updated:	28	November	2017	

School of Graduate Studies
AskAuckland Central
Alfred Nathan House
The University of Auckland
Tel: +64 9 373 7599 ext 81321
Email: postgradinfo@auckland.ac.nz

This form is to accompany the submission of any PhD that contains published or unpublished co-authored
work. Please include one copy of this form for each co-authored work. Completed forms should be
included in all copies of your thesis submitted for examination and library deposit (including digital deposit),
following your thesis Acknowledgements. Co-authored works may be included in a thesis if the candidate has
written all or the majority of the text and had their contribution confirmed by all co-authors as not less than
65%.

CO-AUTHORS

Name Nature of Contribution

Certification by Co-Authors
The undersigned hereby certify that:
v the above statement correctly reflects the nature and extent of the PhD candidate’s contribution to this

work, and the nature of the contribution of each of the co-authors; and
v that the candidate wrote all or the majority of the text.

Name Signature Date

Please indicate the chapter/section/pages of this thesis that are extracted from a co-authored work and give the title
and publication details or details of submission of the co-authored work.

Nature of contribution
by PhD candidate

Extent of contribution
by PhD candidate (%)

Michael J. Dinneen 6 May 2021

Michael J. Dinneen Supervision and writing

95

Ideation, implementation, experimentation, and writing

Chapter 2
Improved mixed-example data augmentation. In IEEE Winter Conference on Applications of Computer
Vision, 2019.

xi

Co-Authorship Form

Last	updated:	28	November	2017	

School of Graduate Studies
AskAuckland Central
Alfred Nathan House
The University of Auckland
Tel: +64 9 373 7599 ext 81321
Email: postgradinfo@auckland.ac.nz

This form is to accompany the submission of any PhD that contains published or unpublished co-authored
work. Please include one copy of this form for each co-authored work. Completed forms should be
included in all copies of your thesis submitted for examination and library deposit (including digital deposit),
following your thesis Acknowledgements. Co-authored works may be included in a thesis if the candidate has
written all or the majority of the text and had their contribution confirmed by all co-authors as not less than
65%.

CO-AUTHORS

Name Nature of Contribution

Certification by Co-Authors
The undersigned hereby certify that:
v the above statement correctly reflects the nature and extent of the PhD candidate’s contribution to this

work, and the nature of the contribution of each of the co-authors; and
v that the candidate wrote all or the majority of the text.

Name Signature Date

Please indicate the chapter/section/pages of this thesis that are extracted from a co-authored work and give the title
and publication details or details of submission of the co-authored work.

Nature of contribution
by PhD candidate

Extent of contribution
by PhD candidate (%)

Michael J. Dinneen 6 May 2021

Michael J. Dinneen Supervision and writing

95

Ideation, implementation, experimentation, and writing

Chapter 3

Improved adversarial robustness via logit regularization methods. arXiv, 2019

xii

Co-Authorship Form

Last	updated:	28	November	2017	

School of Graduate Studies
AskAuckland Central
Alfred Nathan House
The University of Auckland
Tel: +64 9 373 7599 ext 81321
Email: postgradinfo@auckland.ac.nz

This form is to accompany the submission of any PhD that contains published or unpublished co-authored
work. Please include one copy of this form for each co-authored work. Completed forms should be
included in all copies of your thesis submitted for examination and library deposit (including digital deposit),
following your thesis Acknowledgements. Co-authored works may be included in a thesis if the candidate has
written all or the majority of the text and had their contribution confirmed by all co-authors as not less than
65%.

CO-AUTHORS

Name Nature of Contribution

Certification by Co-Authors
The undersigned hereby certify that:
v the above statement correctly reflects the nature and extent of the PhD candidate’s contribution to this

work, and the nature of the contribution of each of the co-authors; and
v that the candidate wrote all or the majority of the text.

Name Signature Date

Please indicate the chapter/section/pages of this thesis that are extracted from a co-authored work and give the title
and publication details or details of submission of the co-authored work.

Nature of contribution
by PhD candidate

Extent of contribution
by PhD candidate (%)

Michael J. Dinneen 6 May 2021

Michael J. Dinneen Supervision and writing

95

Ideation, implementation, experimentation, and writing

Chapter 4; Appendix A
Four things everyone should know to improve batch normalization. In International Conference on
Learning Representations, 2020.

xiii

Co-Authorship Form

Last	updated:	28	November	2017	

School of Graduate Studies
AskAuckland Central
Alfred Nathan House
The University of Auckland
Tel: +64 9 373 7599 ext 81321
Email: postgradinfo@auckland.ac.nz

This form is to accompany the submission of any PhD that contains published or unpublished co-authored
work. Please include one copy of this form for each co-authored work. Completed forms should be
included in all copies of your thesis submitted for examination and library deposit (including digital deposit),
following your thesis Acknowledgements. Co-authored works may be included in a thesis if the candidate has
written all or the majority of the text and had their contribution confirmed by all co-authors as not less than
65%.

CO-AUTHORS

Name Nature of Contribution

Certification by Co-Authors
The undersigned hereby certify that:
v the above statement correctly reflects the nature and extent of the PhD candidate’s contribution to this

work, and the nature of the contribution of each of the co-authors; and
v that the candidate wrote all or the majority of the text.

Name Signature Date

Please indicate the chapter/section/pages of this thesis that are extracted from a co-authored work and give the title
and publication details or details of submission of the co-authored work.

Nature of contribution
by PhD candidate

Extent of contribution
by PhD candidate (%)

Michael J. Dinneen 6 May 2021

Michael J. Dinneen Supervision and writing

95

Ideation, implementation, experimentation, and writing

Chapter 5; Appendix B
Nondeterminism and instability in neural network optimization. In International Conference on Machine
Learning, 2021.

xiv

1. Introduction

As a field, deep learning is focused on learning algorithms that would otherwise be difficult to create. It

is a subfield of machine learning, which has largely similar goals, but what distinguishes deep learning

methods is the use of models composed of many layers of computation, which allows for the flexible

expression of complex functions. Each layer of computation is typically parameterized by a set of

numbers, or weights, which are used to compute a simple function (e.g. a convolution [63]), and by

stacking many of these simpler functions together and optimizing a task-specific objective, much more

sophisticated functions can be learned. Examples of successes of deep learning in recent years include

computer vision [59], natural language processing [116], game playing [97], and protein folding [92],

among others.

Many components of deep learning are necessary in order to be successful. First, a representative

dataset for the task in question is required. This dataset must be large enough that it is possible to

effectively learn the appropriate task-specific patterns in the data: for example, early breakthroughs

of deep learning in image classification [59] used a dataset with more than 1 million images, each

annotated with one of 1,000 categories. When it is prohibitive to collect a large enough dataset, and

often even when a fairly large dataset is available, it is common to apply a technique called data

augmentation [59, 98, 14], which consists of transforming each example in a myriad of different ways

to produce multiple synthetic examples, which can artificially increase the dataset size by several orders

of magnitude. For example, in the context of images, horizontally flipping produces another image

which is likely equally valid for a given training task.

Next, a suitable model architecture is required, which defines the structure of the model that will

learn from the data. Although in theory very simple model architectures can learn arbitrarily complex

patterns in data [11], in practice it is effective and worthwhile to use a somewhat task-specific architec-

ture. For example, for many tasks in computer vision, the relevant patterns or features in the data are

1

similar at different locations in an image (e.g. a cat or bicycle looks the same regardless of where in an

image it is), so it is common to use architectures with convolutional layers [63], in which the weights

to be learned are shared across all locations in the image. Over time, newer architectures that are more

effective at common tasks have been developed [59, 35, 128].

Last, a task-specific target for optimization, or loss function, and a method for optimizing it are

required. For classification tasks, the most common loss function is the cross-entropy between the

correct label given in the dataset and the probability distribution over labels predicted by the model.

In terms of the optimization method itself, by far the most common approach is stochastic gradient

descent [5] (SGD), or variants of it. Gradient descent minimizes the objective function by updating

weights in the opposite direction of the gradient, calculated across the entire dataset, and stochastic

gradient descent approximates it by considering the gradient on a small subset of the dataset, which is

typically much more efficient in practice.

Despite the success of deep learning, many of these components remain poorly understood. The

work in this thesis examines a range of these such topics, seeking to increase the field’s understanding

and use the newfound understanding to develop better deep learning algorithms.

In Chapter 2 (published as [103] in WACV 2019, an A-ranked conference), we consider the topic of

data augmentation. Specifically, we consider a new and interesting variant of data augmentation, which

we term mixed-example data augmentation, consisting of mixing two different examples together. Un-

like traditional data augmentation, which uses label-preserving transformations (e.g. horizontally flip-

ping an image of a cat produces an image still containing a cat), mixed-example data augmentation is

non-label preserving, since mixing an image of a cat together with an image of a dog produces an image

that is neither entirely of a cat nor entirely of a dog. The prevailing hypothesis prior to our work for

this approach’s efficacy was that mixed-example data augmentation, previously done only with linear

combinations of pairs of examples, imposed a linear inductive bias on the final trained model, and that

this linear inductive bias was the main benefit of mixed-example data augmentation. In our work, we

tested this hypothesis by exploring a new, more generalized form of mixed-example data augmentation.

By considering this broader scope, we found a much larger space of practical augmentation techniques,

including methods that improve upon previous state-of-the-art. This generalization had benefits beyond

improved performance, though, revealing a number of types of mixed-example data augmentation that

are radically different from those considered in prior work. This provides evidence that existing theory

for the effectiveness of such methods is incomplete and suggests that any such theory must explain a

much broader phenomenon.

2

In Chapter 3 ([102]), we examine the end-to-end behavior of trained models. Specifically, while

great progress has been made at making neural networks effective across a wide range of visual tasks,

most models are surprisingly vulnerable. This frailness takes the form of small, carefully chosen per-

turbations of their input, known as adversarial examples [110], which represent a security threat for

learned vision models in the wild. Our work examined a recent method for effective defense against

adversarial examples, Adversarial Logit Pairing [54], and demonstrated that much of its effectiveness

could in fact be attributed to a simpler phenomenon of logit regularization. Based on this, we showed

how to extend the particular logit regularization technique used, thus improving its defense against two

different types of adversarial example attacks, known as white-box and black-box attacks.

In Chapter 4 (published as [104] in ICLR 2020, an A-ranked conference), we investigated a par-

ticular type of layer used in nearly all neural network architectures, known as a normalization layer.

Specifically, the normalization layer that we examine is Batch Normalization [51], used extremely

commonly in computer vision. However, Despite its common use and large utility in optimizing deep

architectures, it has been challenging both to generically improve upon Batch Normalization and to

understand the circumstances that lend themselves to other enhancements. In our work, we identified

four improvements to the generic form of Batch Normalization and the circumstances under which

they work, yielding performance gains across all batch sizes while requiring no additional computation

during training. These contributions included proposing a method for reasoning about the current ex-

ample in inference normalization statistics, fixing a training vs. inference discrepancy; recognizing and

validating the powerful regularization effect of Ghost Batch Normalization [42] for small and medium

batch sizes; examining the effect of weight decay regularization on the scaling and shifting parameters

γ and β; and identifying a new normalization algorithm for very small batch sizes by combining the

strengths of Batch and Group Normalization [121].

Finally, in Chapter 5 (published as [105] in ICML 2021, an A-ranked conference), we considered

the role of nondeterminism in the optimization process of neural networks. A topic that affects nearly

all experiments in deep learning, nondeterminism in neural network optimization is due to various

stochastic components of optimization that are typically not controlled (e.g. random weight initial-

izations or random shuffling of training data), which produces uncertainty in performance and makes

small improvements difficult to discern from run-to-run variability. While uncertainty can be reduced

by training multiple model copies, doing so is time-consuming, costly, and harms reproducibility. In our

work, we established an experimental protocol for understanding the effect of optimization nondeter-

minism on model diversity, allowing us to isolate the effects of a variety of sources of nondeterminism.

3

Surprisingly, we found that all sources of nondeterminism have similar effects on measures of model

diversity. To explain this intriguing fact, we identified the instability of model training, taken as an

end-to-end procedure, as the key determinant, showing that even one-bit changes in initial parameters

result in models converging to vastly different values. We also proposed two approaches for reducing

the effects of instability on run-to-run variability.

Put together, the chapters contained in this thesis span the full range of topics common across deep

learning, ranging from data augmentation (Chapter 2) to model architecture (Chapter 4), optimization

(Chapter 5), and the robustness of final trained models (Chapter 3). We hope that the research contri-

butions contained herein continue to inspire further research and spark interesting ideas in the field of

deep learning.

4

2. Mixed-Example Data Augmentation

We begin by considering a key component in most deep learning applications, data augmentation.

More specifically, we develop an understanding of a new and interesting variant of data augmenta-

tion in which different examples are mixed together, termed mixed-example data augmentation. The

prevailing hypothesis for the approach’s efficacy is that it biases neural networks towards linearity

in predictions. Our work is focused on examining this hypothesis, showing linearity is unnecessary

for effective mixed-example data augmentation. In the process, we introduce a number of non-linear

methods which improve upon the previous state-of-the-art mixed-example methods.

2.1 Introduction

Deep neural networks have demonstrated remarkable performance on many tasks previously considered

intractable, but they come with a cost: they require a large amount of data. While great progress has

been made at making neural nets more data-efficient through the use of improved network architectures

and training methods, the limitation remains with the greatest effect in data-starved domains such as

robotics [65, 77] and medical applications [17, 31, 30].

To get around the requirement for large amounts of data, machine learning practitioners typically

either transfer knowledge from other tasks, or employ large amounts of “data augmentation”, the prac-

tice of generating synthetic data based on real examples. This synthetic data artificially expands the

size of datasets used for training models by many orders of magnitude, and typically takes the form of

transformations that maintain the realistic appearance of the input, e.g. for image classification, flipping

an image horizontally or making minor adjustments to its brightness.

A handful of recent work, however, has pointed out a new direction: data augmentation can take

5

Linear MethodsInput

Generalized

Figure 2.1: Given two input examples, mixed-example data augmentation consists of the set of func-
tions that combine the inputs into a novel image, perhaps with an appearance unrealistic to humans.
Previous work has considered the case of linear transformations, i.e. element-wise weighted averaging.
In this chapter, we explore a more generalized space of functions in order to determine whether non-
linear functions are similarly effective. Shown above are examples of 8 of the methods considered, all
of which result in improved performance over non-mixed example augmentation, illustrating that the
space of viable functions is much broader than previously realized.

the form of mixing training examples together, specifically via element-wise averages of pairs of in-

puts [124, 111, 112, 49]. Though this type of data augmentation does not produce data realistic to

humans, it is surprisingly effective at training models, significantly improving performance across a

variety of tasks and domains even after other forms of data augmentation are considered. Due to the

nascency of such techniques, we currently do not have a good understanding of why they are effective.

One hypothesis comes from Zhang et al. [124], who suggest that the added linearity this form of data

augmentation encourages is a useful inductive bias, i.e. a bias that helps models in generalizing to

unseen data. Another is from Tokozume et al. [111], who put forth the idea that CNNs treat imagery

as waveform data and that such data augmentation puts constraints on internal feature distributions.

While the true modus operandi by which these methods are successful remains an area of active re-

search, these works nevertheless point to new directions for reducing the dependence of modern deep

neural networks on large quantities of labeled data.

In this chapter, we ask the question: is linearity critical to the success of these data augmentation

6

methods that combine multiple input examples? To answer this question, we explore this new area of

data augmentation as generalized functions of multiple inputs, which we denote “mixed-example data

augmentation”. We propose a variety of alternative methods for example generation, and surprisingly

find that almost all methods result in improvements over models trained without any form of mixed-

example data augmentation (see Fig. 2.1 for examples). As a byproduct of increasing this search space,

we find multiple methods that improve upon existing work [124, 111]. Though we do not propose new

theoretical reasons for the utility of mixed-example data augmentation, our experiments shed empirical

light on existing hypotheses, providing evidence that they are incomplete.

The remainder of this chapter is organized as follows: In Sec. 2.2 we review related work in

data augmentation and regularization more generally, and in Sec. 2.3 we present our exploration of

mixed-example data augmentation, overviewing 14 alternatives. We present experiments on CIFAR-

10, CIFAR-100, and Caltech-256 in Sec. 2.4, then conclude with a discussion in Sec. 2.5.

2.2 Related Work

Data Augmentation. Data augmentation is key to the success of most modern neural networks

across nearly every domain. Here we limit our discussion of data augmentation to applications with

images, the focus of this chapter.

Common forms of data augmentation include random crops, horizontal flipping, and color aug-

mentation [59], which improve robustness to translation, reflection, and illumination, respectively. Oc-

casionally, random scalings are also done [98] as well as random rotations and affine transformations,

though these tend to get somewhat less use. One more recent form of data augmentation consists of

zeroing out random parts of the image [14, 126], a structured form of input-layer dropout, which works

surprisingly well on the CIFAR-10/100 datasets. Though they differ greatly in technique, all of these

methods are a form of label-preserving data augmentation, i.e. they are designed to maintain the label

of the transformed image, which requires a small amount of task-specific knowledge. For example, in

the context of image classification, an image of a cat, even after horizontally flipping it and altering its

brightness, is still recognizable as an image of a cat.

More directly relevant to our work is recent progress on generating images for training as linear

combinations of other training images [124, 111, 49]. While we save a detailed overview for Sec. 2.3.2,

these methods take the general form of randomly generating a mixing coefficient and producing a new

7

image and label as a convex combination of two images/labels. Tokozume et al. [111] further consid-

ered an improved form based on the interpretation of images as waveform data, and Inoue restricted the

sampling coefficient to 0.5. Our research, inspired by these, considers more generalized functions of

a different form, showing that the space of effective mixed-example data augmentation is much more

broad than linearity-based methods.

Regularization. Closely related to the topic of data augmentation is regularization. One of the

most common approaches to regularization is weight decay [60], which is equivalent toL2-regularization

when using a vanilla stochastic gradient descent learning rule. Other common types of regularization

include Dropout [101], which can also be considered a form of feature-space data augmentation in-

jected at intermediate layers in a neural network, and Batch Normalization [51], which has a regu-

larization effect due to randomness in minibatch statistics. Other more exotic forms of regularization

include randomly dropping out layers [46] and introducing disparities between forward- and backward-

propagation [23]. Data augmentation and regularization can both be viewed as ways to incorporate prior

knowledge into models, either via invariances in data (label-preserving data augmentation) or through

priors on how weights and activations in neural networks should behave (regularization), and both have

the goal of reducing the train-test generalization gap. As such, it is folk wisdom that there is a tradeoff

between the optimal amount of data augmentation and regularization to use — for example, Zhang et.

al [124] found that using mixup well required a 5x lower amount of weight decay than without mixup

on CIFAR-10.

2.3 Methods

2.3.1 General Formulation

Most uses of label-preserving data augmentation can be represented by stochastic functions of the form

(x̃, ỹ) = f̃(x, y) = (f(x), y). (2.1)

For example, f may be a function randomly altering the brightness of its input, horizontally flipping

it, or applying a projective transformation. Of key note, however, is that f̃ is an identity function with

respect to its second input.

8

In this chapter, we consider generalized methods for data augmentation of the form:

(x̃, ỹ) = f̃({(xi, yi)}2i=1) (2.2)

That is, we consider arbitrary functions mapping two examples into a single new training example.

This is a strict generalization of the form of augmentation in Eq. 2.1, which can be obtained by ignoring

either one of the two inputs. In theory one could consider functions with N > 2 examples as input,

but in initial experiments (also agreeing with [124]) we did not see improvement beyond N = 2, so we

restrict our methods to this setting.

2.3.2 Linearity-Based Methods

In this section we present previous work [124, 111, 112, 49], which can be represented as special cases

of Eq. 2.2 in which f̃ is a linear combination of (x1, y1), (x2, y2):

Mixup. In mixup[124], the augmentation function f̃ is represented by:

x̃ = λx1 + (1− λ)x2

ỹ = λy1 + (1− λ)y2
(2.3)

where λ ∼ Beta(α, α) for each pair of examples, with α a hyperparameter. For experiments on

CIFAR-10 and CIFAR-100, Zhang et al. [124] used the value α = 1, which results in a uniform

distribution between 0 and 1, and found that on larger datasets such as ImageNet [86] a smaller value

of α was required due to underfitting. Mixup was motivated as encouraging linearity between training

examples, with the hypothesis that linearity is an effective inductive bias (an assumption built into a

model) for most models. Indeed, mixup was shown to be useful across a wide variety of tasks and

models. As we shall show in our work, this picture is incomplete — linearity, while useful, is not

required for mixed-example data augmentation to be effective, and extremely non-linear methods can

perform nearly as well.

Between Class (BC+). Tokozume et al. [111] developed two methods for mixed-example data

augmentation. The first, “BC” (Between-Class), is equivalent to mixup and was developed in parallel

9

with Zhang et al. [124]. Improving upon “BC” and building upon their previous work with audio [112],

Tokozume et al. developed “BC+”, which is based on the intuition that neural networks (specifically

CNNs) can treat imagery as waveform data. Using this intuition, two improvements were made:

First, waveforms are naturally zero-mean signals, while images are not. Therefore, Tokozume et al.

first subtract each image’s mean (computed across all channels, i.e. a single number per image) from

itself before further processing. This stands in contrast to most recent work with CNNs [123], which

uses a mean across an entire dataset for normalization.

The second improvement comes from noting that combining examples in a strictly linear fashion

does not produce a perceptually linear combination of images, a fact which was an acute concern in

their prior work on audio [112]. To solve this, Tokozume et al. use the standard deviation of each

image σ1, σ2 to measure “energy”, with the intuition that more variable images are more perceputally

salient, and ultimately derive the mixing equation

x̃ =
p(x1 − µ1) + (1− p)(x2 − µ2)√

p2 + (1− p)2

where p =
1

1 + σ1
σ2
· 1−λλ

(2.4)

with λ ∼ U [0, 1] and the label being determined via the mixing coefficient λ as in mixup. While BC+ is

technically a non-linear method, we group it together with linearity-based methods such as mixup since

the non-linearity only occurs in the normalization term and the method is still fundamentally based on

element-wise averaging.

2.3.3 Non-Linear Methods

We now illustrate the generality of our formulation (Eq. 2.2) by presenting many different non-linear

methods for mixed-example data augmentation. Although we present them as alternatives to linearity-

based approaches, we note that most of these methods are largely orthogonal both to such approaches as

well as to more traditional forms of data augmentation and can potentially be employed in combination

with them. Illustrative examples are shown in Fig. 2.2.

10

xi xj
Original
images

mixup
Noisy

mixup

Horiz.
Concat.

Mixed
Concat.

VH-
Mixup/

BC+

Random
Row

Interval

Random
Rows

Vertical
Concat.

Random
2 x 2

or

or

or

or

Random
Column
Interval

Random
Columns

Random
Pixels

Random
Elements

Random
Square

Figure 2.2: Example outputs for each mixed-example data augmentation method. See text (Sec. 2.3)
for details of each method. Diagonal stripes are used to indicate element-wise weighted averaging.
Note that for “VH-Mixup/VH-BC+”, the bottom-left and upper-right regions use different weights for
the weighted average depending on λ3 (see text).

Vertical Concat. As in mixup and similar to BC+, “Vertical Concat” begins by sampling a ran-

dom mixing coefficient λ ∼ Beta(α, α). However, instead of element-wise averaging, in this method

the top λ fraction of image x1 is vertically concatenated with the bottom (1− λ) fraction of image x2.

Formally, we have

x̃(r, c) =

{
x1(r, c), if r ≤ bλHc
x2(r, c) otherwise

(2.5)

where H is the height of the image and x(r, c) denotes the 3-dimensional pixel at row r and column c

of an image x. Though simple, this is an extremely non-linear transformation with respect to the input.

The label ỹ remains equal to the original labels weighted by the mixing coefficient: λy1 + (1 − λ)y2.

11

Thus, a network trained with “Vertical Concat” must not only correctly classify the top and bottom

portions of the image, but also correctly identify what fraction of the image they occupy.

Horizontal Concat. This method is similar to “Vertical Concat.”, but instead horizontally con-

catenates the left λ fraction of x1 with the right (1− λ) fraction of x2:

x̃(r, c) =

{
x1(r, c), if c ≤ bλW c
x2(r, c) otherwise

(2.6)

where W is the width of the image. As before, we have ỹ = λy1 + (1− λ)y2.

Mixed Concat. This is a combination of vertical and horizontal concatenation: first we sample

λ1, λ2 ∼ Beta(α, α). Then we divide the output image in a 2× 2 grid as shown in Fig. 2.2, where the

horizontal boundary between grid members is determined by λ1 and the vertical boundary is determined

by λ2. The top-left and bottom-right portions of the output image are set to the corresponding pixel

values in x1, and the top-right and bottom-left are set to x2, with ỹ = (λ1λ2 + (1− λ1)(1− λ2))y1 +

(λ1(1−λ2)+(1−λ1)λ2)y2, i.e. ỹ is determined by the relative area of x1 vs x2. Another interpretation

of “Mixed Concat.” is an application of “Vertical Concat.” to two images produced by “Horizontal

Concat.” with the same mixing coefficient but opposite argument order.

Random 2× 2. This method is a more randomized version of “Mixed Concat.”. First, this

method divides the image into a 2 × 2 grid with random sizes as before, but instead of using a fixed

assignment of grid cells to input images, “Random 2× 2” randomly decides for each square in the grid

whether it should take content from x1 or x2. This prevents the network from relying on the fixed as-

signment in “Mixed Concat.“, forcing it to adapt to potentially changing positions of the input content.

The target label ỹ is measured as a function of the relative area of x1 vs x2 in the generated image.

One implementation detail that we have found to modestly help “Random 2× 2” is a constraint on

the 2× 2 grid produced. Specifically, this constraint forces the intersection lines of the grid to occur in

the middle p fraction of the image, preventing image content from becoming too long, narrow, or not

even present. Though this constraint is not critical to the success of the method, we find that it tends to

improve performance by a small but significant amount. In our experiments we set p to 0.5.

12

VH-Mixup. In order to explore whether it is possible to combine the strengths of non-linear

methods with methods based on linearity, we introduce “VH-Mixup”, the goal of which is to leverage

the advantages of “Vertical Concat.”, “Horizontal Concat.”, and mixup [124] (or equivalently BC [111]).

First, two intermediate images are made as the result of “Vertical Concat.” and “Horizontal Concat.”,

each with their own randomly chosen λ. Then, mixup is applied with these two images as input. This

has the effect of producing an image where the top-left is from x1, the bottom-right is from x2, and the

top-right and bottom-left are mixed between the two with different mixing coefficients. All together,

with λ1, λ2, λ3 ∼ Beta(α, α), we have that x̃(r, c) is equal to:

x1(r, c), if r ≤ λ1H ∧ c ≤ λ2W
λ3x1(r, c) + (1− λ3)x2(r, c), if r ≤ λ1H ∧ c > λ2W

(1− λ3)x1(r, c) + λ3x2(r, c), if r > λ1H ∧ c ≤ λ2W
x2(r, c) if r > λ1H ∧ c > λ2W

(2.7)

The label ỹ is determined in a straightforward manner based on the rules for label generation in

“Vertical Concat.”, “Horizontal Concat.”, and mixup, and can be thought of as the expected fraction of

its value a random pixel takes from x1 vs x2.

VH-BC+. Rather than combining the outputs of “Vertical Concat.” and “Horizontal Concat.”

with mixup, in “VH-BC+” they are combined with BC+. While it is tempting to think of this as simply

replacing mixup with BC+, there is a subtle implementation detail: when to subtract the mean for each

image. There are two options: directly before applying BC+, i.e. after performing “Vertical Concat.”

and “Horizontal Concat.”, or before producing either of the concatenated images. We argue that the

latter is correct — if an output of one of the concatenation methods is made into a zero-mean image,

then it will have relatively little effect, as the image will still be clearly made of two distinct parts, even

only based on first-order statistics (the mean). However, if the original two images are zero-meaned

before either of the concatenation methods, then each concatenated image will still be zero mean in

expectation, but the boundary between the two will no longer be as easily discerned. Indeed, we tested

both methods in initial experiments, and while we found both to perform reasonably, ultimately the

latter was slightly better on average.

Random Square. In this method, a random square within x1 is replaced with a portion of x2.

This method is inspired by Cutout [14] and random erasing data augmentation [126], but instead of

13

replacing the subimage with 0, we replace it with part of a different image. As in Cutout, the size of

the square is a hyperparameter, which we set to 16 pixels. One subtle implementation choice with this

method is which region in x2 to use as a replacement — in our implementation, we use a portion of x2
picked randomly among all regions of the appropriate size, which we found slightly better than using

the region in x2 directly corresponding to the replaced region of x1.

Random Column Interval. This method is a slight generalization of “Horizontal Concat.” — a

random interval of columns is picked and that part of image x1 is replaced with columns in x2. The

difference between this method and “Horizontal Concat.” is that this column interval need not begin

with the first column. The interval in this method is picked by sampling the lower bound of the interval

uniformly, with the upper bound then sampled uniformly between all possible remaining upper bounds.

Random Row Interval. This method is identical to “Random Column Interval” but is applied to

a random interval of rows instead of columns.

Random Rows. For each row in the output image x̃, this method randomly samples whether to

take the row from x1 or x2, where the probability of choosing the corresponding row in x1 is given by

λ. As before, ỹ is determined based on the fraction of rows that were taken from x1 compared with x2.

One interpretation of this method is as a higher-frequency variant of “Vertical Concat.” in that rows are

still taken either entirely from x1 or x2, but with this method they may alternate between x1 and x2,

possibly many times, rather than being grouped into a single large block of rows.

Random Columns. This method is identical to “Random Rows” but samples columns instead of

rows.

Random Pixels. This method is similar to “Random Rows” but samples each pixel separately.

That is, after first sampling λ, a matrix of sizeW×H is created, consisting of numbers drawn uniformly

from [0, 1], and converted to a binary matrix via comparison with λ. This is interpreted as a boolean

mask which can be element-wise multipled with x1 and x2 in order to efficiently compute the output.

The label ỹ can also be easily determined using the expected value of the mask.

14

Random Elements. This method is similar to “Random Rows” but samples each element of the

image separately. That is, when the image is represented as a H ×W × 3 tensor (using RGB), each

element in the tensor is randomly sampled from the corresponding value in either x1 or x2. As with

“Random Pixels”, this can be efficiently computed by using a H ×W × 3 tensor of random numbers.

Noisy Mixup. Normally, in mixup [124], a single λ ∼ Beta(α, α) is sampled and then used

across the entire image (or λ ∼ U [0, 1] for BC [111]). However, in order to produce an output with an

expected label of λy1+(1−λ)y2, there is no need for λ to be the same across an entire image – instead,

as long as its expectation is the same, the same label applies. In this method, we first sample λ in the

same fashion, but then for each pixel identified by a row r and column c we add random zero-centered

noise to the mixing coefficient: λr,c = λ + `r,c where `r,c ∼ N(0, σ2), with σ2 a hyperparameter that

we set to
√

0.025 ≈ 0.16, indicating adding a small amount of pixel-wise data-dependent noise. It is

also useful to constrain λr,c to lie in the range [0, 1], i.e. λr,c = max (min (λ+ `r,c, 1), 0). Though

this method is nearly linear, we find that it makes for an interesting comparison experimentally with

the strictly linear methods mixup [124] and BC [111].

2.4 Experiments

2.4.1 Implementation Details

In all experiments, we perform mixed-example data augmentation by directly pairing together two ex-

amples at a time, rather than doing it on a batch-by-batch basis [124]. While this has the potential to

slow down data processing due to twice as much I/O and non-vectorized operations, it is somewhat

simpler to develop with, especially for the slightly more involved data generation methods. Further-

more, we found that we were still able to generate data fast enough for models to use via effective

use of dataset caching, which keeps I/O to a minimum. Initial experiments furthermore suggested that

this does not affect accuracy. We also found that it was crucial to do other types of data augmentation

(e.g. random cropping and flips) before applying any type of mixed-example data augmentation, with

differences in accuracy greater than 1% on CIFAR-10, but do not currently have an explanation for

why this is important, an implementation detail we also found shared in all existing open-source code

of prior work. All experiments were done on a desktop with two Nvidia Geforce GTX 1080 Ti GPUs.

We now list dataset-specific implementation details.

15

CIFAR 10/100. We perform the bulk of our experiments on the CIFAR-10 and CIFAR-100

datasets [58], the primary test bed used by prior work [124, 111]. Following [124], we conduct our

experiments using the pre-activation ResNet-18 [36], which we re-implemented in TensorFlow [1].

This network architecture has the advantage of having a relatively high accuracy (e.g. 5.4% error on

CIFAR-10) while taking only 2 hours for a complete training run with any of the methods. Further-

more, previous work [124, 111] has already shown strong correlations in improvements across model

architectures. We also note that this ResNet variant is slightly different from the official pre-activation

ResNet-18, attaining somewhat higher accuracy.

Following both Zhang et al. [124] and Tokozume et al. [111], we use α = 1 where applicable,

which results in a uniform distribution for λ, though this parameter can in principle be tuned based on

the extent of overfitting. On CIFAR-10 we use a weight decay of 10−4 for all mixed-example methods

and 5 · 10−4 for the baseline ResNet-18, and on CIFAR-100 we use a weight decay of 5 · 10−4 for all

methods on CIFAR-100, which we found necessary in order to reproduce prior work [124], making a

difference of slightly more than 1% in final accuracy.

Our learning rate schedule follows [36], in which minibatches are of size 128, the learning rate starts

at .01 for a warm-up period of 400 steps, increases to 0.1, then decays by a factor of 10 after 32,000,

48,000, and 70,000 steps. In practice, we noticed that this learning rate strategy can be somewhat

unstable, with losses spiking up at the 400-step transition, after which models failed to recover well

and ended up with a few percent lower accuracy than they would otherwise. Though the extent of this

problem depended on the method, for reproducibility we have taken the practice of running 20 copies of

each model for three epochs (≈ 1,200 steps) and then only continuing the three models with the lowest

loss values, which tended to not observe dramatic spikes in loss. This both improved final performance

and reduced training variability.

Caltech-256. For experiments on Caltech-256 [29] we used the Inception-v3 [109] architecture

with the default “Inception” preprocessing, resulting in a 299×299 pixel image input to the model. We

used the default weight decay for Inception models of 4 · 10−5 and a batch size of 64 for all methods.

For the baseline model we used a learning rate of .03, decayed by a factor of 10 when validation

performance saturated, which occurred after 20,000 and 26,000 steps. The learning rate additionally

had a warm-up period of 2,000 steps, during which time we increased it at a log-linear rate from 3·10−5

to .03. All other methods had a similar warm-up phase and initial learning rate, but with learning rate

decays by a factor of 10 after 45,000 and 57,000 steps, echoing the observation in prior work [124, 111]

16

Table 2.1: Experimental results on CIFAR-10. All numbers are the average across three training runs,
measured at the final step of training, and methods are ordered by performance. Numbers for the
baseline ResNet-18 model, mixup, and BC+ are from our TensorFlow re-implementation. Italicized
method names and performances indicate methods which performed better than either existing state-
of-the-art mixed-example method.

CIFAR-10

Method Error (%)
ResNet-18 5.4

mixup[124] 4.3
BC+[111] 4.2

Rand. Elems. 6.2
Rand. Pixels 5.7

Rand. Col. Int. 5.1
Rand. Cols 4.8

Horiz. Concat. 4.7
Rand. Rows 4.6

Noisy Mixup 4.5
Rand. Row. Int. 4.5

Vert. Concat. 4.4
Mixed. Concat. 4.4

Rand. Square. 4.3
Rand. 2× 2 4.1

VH-BC+ 3.8
VH-Mixup 3.8

that mixed-example data augmentation can take longer to train, particularly with larger models. For

“BC+” and “VH-BC+”, we found it important to add a small constant when determining the standard

deviation of each image in order to avoid numerical issues that made the loss diverge.

2.4.2 Results

CIFAR-10. CIFAR-10 [58] consists of 60,000 images of size 32× 32 pixels, split evenly among

10 categories, with 50,000 training images and 10,000 test images, and is a standard test bed for training

of small-scale deep learning models, having been used extensively in related work [124, 111]. Results

on CIFAR-10 are shown in Table 2.1. A few trends are immediately apparent:

First, we examine the central question of our work: is linearity required for mixed-example data

augmentation to be successful? Our experimental results answer this clearly: linearity is not required

17

for effective mixed-example data augmentation. Rather, the space of useful mixed-example data aug-

mentation appears to be much larger than realized in previous work [124, 111, 49] — with the exception

of “Rand. Pixels” and “Rand. Elems”, all other mixed-example techniques improved upon the baseline

ResNet. Even the simplest of methods, “Horiz. Concat” and “Vert Concat’, improved upon the baseline

significantly, and are perhaps the least similar to prior work of the methods considered.

While linearity may not be a requirement in order for a method to improve upon baseline perfor-

mance, is it required among the most effective methods? Again, our results indicate that this need not

be the case. While “VH-BC+” and “VH-Mixup” have some element of linearity in portions of the

image, “Rand. 2× 2”, despite containing no element-wise weighted averaging at all, was just as useful

a form of data augmentation as BC+ and mixup, even slightly outperforming them in the sample set

of runs we conducted. While we agree with previous work that linearity on its own can be a fruitful

inductive bias, it is by no means necessary.

Can we get the best of both worlds by combining the insights of linearity as an inductive bias with

non-linear types of mixed-example data augmentation? Two of the methods we explored, “VH-Mixup”

and “VH-BC+”, do just that, and in fact both were able to outperform all other approaches, setting a

new state of the art for mixed-example data augmentation. This result is particularly promising due to

the nascency of mixed-example approaches and the general applicability to a wide range of tasks (for

the methods in this chapter, tasks in computer vision).

Last, in an effort to learn more about which aspects of such augmentation methods are useful, it

is worth remarking on the methods that did not work well as negative examples. In particular, “Rand.

Elems” and “Rand. Pixels” both worked worse than the baseline of doing no mixed-example data

augmentation. These methods have a commonality: by treating every pixel differently, they exhibit the

tendency to introduce high-frequency signals in the data, i.e. introducing a signal that varies rapidly

from pixel to pixel. We hypothesize that this type of data augmentation makes it more difficult for

models to capture local details within images, forcing them to rely more on low-frequency content and

limiting their ability to properly learn from all available signals. In a similar vein, we also note that

“Noisy Mixup”, although it worked reasonably well, was not even as effective as mixup without any

modifications, which we also attribute to the addition of high-frequency content.

CIFAR-100. CIFAR-100 [58] is a 100-class companion of CIFAR-10 with otherwise similar

properties. We present our results on CIFAR-100 in Table 2.2 Trends on CIFAR-100 were largely

18

Table 2.2: Experimental results on CIFAR-100. As in CIFAR-10, all numbers are the average across
three training runs, measured at the final step of training, and methods are ordered by performance.
Italics indicates better than existing state-of-the-art mixed-example methods.

CIFAR-100

Method Error (%)
ResNet-18 23.6

mixup[124] 21.3
BC+[111] 21.1

Rand. Elems. 24.2
Rand. Pixels 24.0

Rand. Cols 22.4
Noisy Mixup 21.8

Horiz. Concat. 21.7
Rand. Col. Int. 21.4
Rand. Square. 20.9

Rand. Rows 20.9
Mixed. Concat. 20.9

Vert. Concat. 20.8
Rand. 2× 2 20.4

Rand. Row. Int. 20.1
VH-BC+ 19.9

VH-Mixup 19.7

similar to results on CIFAR-10, with the best and worst methods consistent, though the ordering in be-

tween changed somewhat. One clear difference, though, is that many more of our exploratory methods

outperformed prior work on CIFAR-100 (8 for CIFAR-100 vs 3 for CIFAR-10). While we do not offer

any compelling hypothesis for this change, it provides evidence that at least some minor differences in

effectiveness between each mixed-example method are likely to be data-dependent.

A further point worth noting, shared across both CIFAR-10 and CIFAR-100, is that row-based

methods performed better than their column-based counterparts: “Vert. Concat” outperformed “Horiz.

Concat”, “Rand. Rows” outperformed “Rand. Cols”, and “Rand. Row. Int” improved upon “Rand.

Col. Int”. This potentially indicates the importance of keeping horizontal information intact when

doing data augmentation, a finding reminiscent of much older work in picking horizontally-shaped

spatial pooling grids [62].

19

Table 2.3: Experimental results on Caltech-256. Results are determined by a single run of model
training, with evaluation checkpoints picked based on maximum validation performance.

Caltech-256

Method Error (%)
Inception-v3 51.4
mixup[124] 42.7

BC+[111] 42.6
VH-Mixup 43.7

VH-BC+ 40.3

Caltech-256. In order to test methods for mixed-example data augmentation on larger, more real-

world images, we additionally evaluate on Caltech-256 [29], a dataset of 256 categories. Since there

is no predefined training, validation, or test splits, we constructed splits by randomly taking 40 im-

ages from each category for training, 10 for validation, and 30 for testing, resulting in splits of size

10,240, 2560, and 7,680, respectively. While smaller than other datasets of large natural images, e.g.

ImageNet [86], experiments are also much more tractable, taking roughly 10 hours on average when

training from scratch, compared with an estimated 25 days to run a single ImageNet experiment, which

is prohibitively long. For this set of experiments, we focused our analysis on the best-performing meth-

ods from CIFAR-10 and 100, “VH-Mixup” and “VH-BC+”, in addition to the three baselines. Results

are presented in Table 2.3.

Most noticeably, we found that all mixed-example data augmentation methods were able to improve

performance over the baseline Inception-v3 network. The effect is dramatic, with improvements of up

to 10% in accuracy above baseline. This highlights the strength of mixed-example methods, particularly

with high-capacity models, a finding that strengthens results from prior work [124, 111].

Within the set of mixed-example methods, though, ordering is less obvious — while it is clear

that “VH-BC+” was particularly successful, the reason by which it was so much better than “VH-

Mixup” remains mysterious. It is also worth noting that confidence intervals for these experiments

are somewhat wide: a 95% confidence interval due to data sampling alone is roughly ±1% at current

accuracy levels, and the true interval is likely larger due to additional run-to-run variance from random

initialization and data processing. Despite these limitations in measurement, we see these results as

highly encouraging for applied tasks where data may be limited and performance is critical.

20

2.5 Conclusion

In this chapter we explored the space of mixed-example data augmentation, in the process generalizing

and improving upon recent work [124, 111, 49]. We sought to determine whether linearity was nec-

essary in order for mixed-example data augmentation to be effective, and in the process of answering

that question, found a surprisingly large spectrum of non-linear methods that resulted in improvements

over models trained with standard augmentation methods. Our methods, though specific to image-

based tasks, are straightforward to implement and do not require any hyperparameter tuning beyond

those in existing methods [124, 111]. Though we considered a variety of methods in this chapter, the

field of mixed-example data augmentation is still in its early stages, and we postulate that it is likely

even more effective methods exist. We hope that our explorations inspire further research in the area.

Key questions for future research include developing an understanding for why mixed-example

data augmentation works and determining which specific properties of such augmentation methods

are useful. We have shown that it is possible to combine the strengths of multiple approaches, but it

remains unclear what the limits of mixed-example data augmentation are. On a lower level, it would

also be interesting to understand the relationship between mixed-example data augmentation and other

more traditional forms of data augmentation. For example, we found the puzzling behavior that mixed-

example data augmentation is only effective when performed after other forms of data augmentation,

and even this simple detail eludes current understanding.

One disadvantage of our approach is that, unlike some prior work [124, 111], our methods operate

only on images. While this is true, we believe it is likely that domain-specific approaches such as

ours can be made for other problems, such as speech [39] or natural language processing [9]. Further-

more, we believe that such approaches are actually most important for domain-specific tasks, such as

robotics [65], which also tend to be the most data-starved and in need of improved methodology and

further research.

21

3. Logit Regularization for Adversarial
Robustness

We now turn our attention to the end-to-end behavior of trained models, examining the worst-case

performance of neural networks via small perturbations of their input, known as adversarial exam-

ples [110]. In this chapter, we investigate a recent method for defending against adversarial examples,

and demonstrate that much of its benefit can be attributed to a simpler phenomenon, logit regularization.

Using this understanding, we extend the logit regularization technique used, improving its effectiveness

against two different types of adversarial example attacks.

3.1 Introduction

Neural networks, despite their high performance on a variety of tasks, can be brittle. Given data in-

tentionally chosen to trick them, many deep learning models suffer extremely low performance. This

type of data, commonly referred to as adversarial examples, represent a security threat to any machine

learning system where an attacker has the ability to choose data input to a model, potentially allowing

the attacker to control a model’s behavior.

At the same time, applications of computer vision are pervasive, with future applications including

autonomous driving and medical diagnostics. While these use cases of vision are exciting in their

potential for societal good, they also have the potential to be grave threats when behaving erroneously,

with undesired behavior able to cause harm to both their users and creators. It is therefore of critical

importance to understand how to defend against such adversarial attacks, both to prevent these systems

from failing and to prevent malicious actors from exploiting any vulnerabilities they may have. Though

22

challenging, this is nonetheless an urgent need, as it is already known that attacks targeting systems for

autonomous driving and medical diagnostics are possible [18, 19].

Today, adversarial examples are typically created by small, carefully chosen transformations of data

that models otherwise have high performance on. While this is primarily due to the ease of experimen-

tation with existing datasets [24], the full threat of adversarial examples is indeed only limited by the

ability and creativity of an attacker’s example generation process – for example, even relatively basic

research has shown the potential for adversarial attacks in the physical world [61], with more attacks

being found on a regular basis.

Even with the limited threat models considered in current research, performance on adversarially

chosen examples can be dramatically worse than unperturbed data. One canonical example is the

CIFAR-10 image classification task [58], where white-box accuracy (accuracy when an adversary has

access to the entire model structure and weights) on adversarially chosen examples is lower than 50%,

even for the most robust defenses known today [73, 54], while unperturbed accuracy can be as high

as 98.5% [10], a 30× difference in misclassification rate. On larger tasks, such as ImageNet [86], the

difference is even bigger, as no model is known to be robust to any but the weakest of all adversarial

attacks.

Current defenses against adversarial examples generally come in one of a few flavors. Perhaps the

most common approach is to generate adversarial examples as part of the training procedure and explic-

itly train on them, known as “adversarial training”. Another approach is to transform the model’s input

representation in a way that thwarts an attacker’s adversarial example construction mechanism. While

these methods can be effective, care must be taken to make sure that they are not merely obfuscating

gradients [3]. Last, generative models can be built to model the original data distribution, recognizing

when the input data is out of sample and potentially correcting it [100, 88]. Of these, arguably the most

robust defenses today follow the adversarial training paradigm, of which adversarial logit pairing [54]

is the most recent incarnation, extending the adversarial training work of Madry et al. [73] by incorpo-

rating an additional loss term to make the logits (the pre-softmax values that are the result of the final

fully-connected layer in a network) of an unperturbed and adversarial example more similar. This sim-

ilarity provides an additional training signal to encourage model predictions on adversarial examples

to not differ much from the original examples, decreasing the negative effect of adversarial examples.

In this chapter, we show that adversarial logit pairing derives a large fraction of its benefits from

regularizing the model’s logits toward zero, which we demonstrate through simple and easy to un-

derstand theoretical arguments in addition to empirical demonstration. Investigating this phenomenon

23

further, we examine two alternatives for logit regularization, finding that both result in improved ro-

bustness to adversarial examples, sometimes surprisingly so – for example, using the right amount of

label smoothing [109] can result in greater than 40% robustness to a 10-step projected gradient descent

(PGD) attack [73] on CIFAR-10 while training only on the original, unperturbed training examples,

and is also a compelling black-box defense. We then present an alternative formulation of adversarial

logit pairing that separates the logit pairing and logit regularization effects, improving the defense. The

end result of these investigations is a defense that outperforms state-of-the-art approaches for PGD-

based adversaries on CIFAR-10 for both white-box and black-box attacks, while requiring little to no

computational overhead on top of adversarial training.

3.2 Overview of Adversarial Training

Before proceeding with our analysis, we review existing work on adversarial training for context. While

adversarial examples have been examined in the machine learning community in some capacity for

many years [12], their study has drawn a sharp focus in the current renaissance of deep learning,

starting with Szegedy et al. [110] and Goodfellow et al. [26], particularly in the context of computer

vision. In Goodfellow et al. [26], adversarial training is presented as training with a weighted loss

between an original and adversarial example, i.e. with a loss of

J̃(θ, x, y) =
1

m

m∑
i=1

αJ(θ, x(i), y(i))+

(1− α)J(θ, g(x(i)), y(i))

(3.1)

where g(x) is a function representing the adversarial example generation process, originally presented

as g(x) = x + ε · sign(∇xJ(θ, x, y)), α is a weighting term between the original and adversarial

examples typically set to 0.5, θ are the model parameters to learn, J is a cross-entropy loss, m is

the dataset size, x(i) is the ith input example, and y(i) is its label. Due to the use of a single signed

gradient with respect to the input example, this method was termed the “fast gradient sign method”

(FGSM), requiring a single additional forward and backward pass of the network to create. Kurakin

et al. [61] extended FGSM into a multi-step attack, iteratively adjusting the perturbation applied to the

input example through several rounds of FGSM. This was also the first attack that could be described

24

as a variant of projected gradient descent (PGD), where the adversarial perturbation is initialized to

zero. Both of these approaches primarily target an L∞ threat model, where the L∞ norm between the

original and adversarial example is constrained to a small value. By keeping the L∞ norm small, it is

assumed that the adversarial example will have the same correct label as the original example, i.e. that

the perturbation is small enough to still be easily recognizable as the original category, an assumption

that allows for research in the field without requiring the manual annotation of every new adversarial

example.

Madry et al. [73] built upon these works by initializing the search process for the adversarial per-

turbation randomly, and is among the strongest attacks currently available. Although only a slight

modification of Kurakin et al. [61], this detail is critical – with a zero initialization it is easy to become

robust only at existing training points, thus causing a “gradient masking” effect [3]. Through exten-

sive experiments, they showed that even performing PGD with a single random initialization is able

to approximate the strongest adversary found with current first-order methods, and doing adversarial

training with this attack resulted in the most robust model yet. However, as with multi-step FGSM, per-

forming adversarial training with this approach can be rather expensive, taking an order of magnitude

longer than standard training. Specifically, PGD-based adversarial training requires N + 1 forward and

backward passes of the model, where N is the number of PGD iterations, and is typically on the order

of 5 to 20 [73].

Improving on PGD-based adversarial training, Kannan et al. [54] introduced adversarial logit pair-

ing (ALP), which adds a term to the adversarial training loss function that encourages the model to

have similar logits for original and adversarial examples:

J̃(θ, x, y) =
1

m

m∑
i=1

αJ(θ, x(i), y(i))+

(1− α)J(θ, g(x(i)), y(i))+

λL(f(x(i); θ), f(g(x(i)); θ)).

(3.2)

where L was set to an L2 loss and f(x, θ) returns the logits of the model corresponding to example

x. Adversarial logit pairing has the motivation of increasing the amount of structure given to the model

in the learning process by encouraging the model to have similar prediction patterns on the original and

adversarial examples, a process reminiscent of distillation [40].

25

Kannan et al. [54] also studied a baseline version of ALP, called “clean logit pairing”, which paired

randomly chosen unperturbed examples together. Surprisingly, this worked reasonably well, inspiring

them to experiment with a similar idea they call “clean logit squeezing”, regularizing the L2 norm of

the model’s logits, which worked even more effectively, though this idea itself was not combined with

adversarial training. It is this aspect of the work that is most related to what we study in this chapter.

Last, it is worth noting work examining the reproducibility of adversarial logit pairing [15]. In

[15], ALP was found to not actually be robust on ImageNet to multi-step white-box attacks with a

large number of iterations, continuing the trend of no models being robust on ImageNet. However, the

improved robustness of ALP on smaller datasets that are more commonly used was not refuted – we

also find this to be the case, providing further experimental evidence with attecks of up to 1,000 steps.

Thus, we believe that ALP shows some promise in advancing our understanding and effectiveness in

defending against adversarial examples.

3.3 Adversarial Logit Pairing and Logit Regularization

We now show how adversarial logit pairing [54] acts as a logit regularizer. For notational convenience,

denote `(i)c as the logit of the model for class c on example i in its original, unperturbed form, and ˜̀(i)
c as

the logit for the corresponding adversarial example. The logit pairing term in adversarial logit pairing

is a simple L2 loss:

L =
1

2
(`(i)c − ˜̀(i)

c)2 (3.3)

While it is obvious that minimizing this term will have the effect of making the original and adver-

sarial logits more similar in some capacity, what precise effect does it have on the model during train-

ing? To examine the effect of such a loss in gradient-based training, the dominant training paradigm

for almost all computer vision models today, we can look at the gradient of this loss term with respect

to the logits themselves:

∂L

∂`
(i)
c

= `(i)c − ˜̀(i)
c (3.4)

∂L

∂ ˜̀(i)
c

= ˜̀(i)
c − `(i)c (3.5)

26

Under the assumption that the adversarial example moves the model’s predictions away from the

correct label (as should be the case with any reasonable adversarial example, such as an untargeted

PGD-based attack), we will have that `(i)c > ˜̀(i)
c when c = y(i) is the correct category, and `(i)c < ˜̀(i)

c

otherwise1. Keeping in mind that model updates move in the direction opposite of the gradient, then the

update to the model’s weights will attempt to make the original logits smaller and the adversarial logits

larger when c = y(i) and will otherwise attempt to make the original logits larger and the adversarial

logits smaller.

However, it is not sufficient to examine this in isolation, as logit pairing is only one component

of a typical adverarial loss: it must be considered in the context of the adversarial training loss J̃ –

in particular, the cross-entropy loss used in J̃ for the adversarial example g(x(i)) already encourages

the adversarial logits to be higher for the correct category and smaller for all incorrect categories, and

furthermore the scale of the loss J̃ typically is an order of magnitude larger than the adversarial pairing

loss. Thus, we argue that the main effect of adversarial logit pairing is actually in the remaining two

types of updates, encouraging the logits of the original example to be smaller for the correct category

and larger for all incorrect categories – an effect which is essentially regularizing model logits in a

manner similar to “logit squeezing” [54] or label smoothing [109].

Examining this further, we can also take a different perspective by explicitly incorporating the scale

of the logits in the logit pairing term. If we factor out a shared scale factor γ from each logit, the logit

pairing term has the form

L =
1

2
(γ`(i)c − γ ˜̀(i)

c)2 (3.6)

implying that
∂L

∂γ
= γ(`(i)c − ˜̀(i)

c)2, (3.7)

Since (`
(i)
c − ˜̀(i)

c)2 is non-negative, this means that the model will always attempt to update the scale γ

of the logits in the opposite direction of its sign, which is necessarily an update moving γ toward zero

so long as the logits were not identical – in fact, if this were the only term in the loss, then it is easy

to see that γ = 0 would be a global minimizer of the loss. However, in practice this effect is partially

counterbalanced by the adversarial training term, which requires that logits across different categories

be different in order to minimize its cross-entropy loss.
1While it is theoretically possible that the logits for an incorrect category are smaller in a loss-maximizing adversarial

example, increasing their value, all else equal, will result in a higher loss, so `
(i)
c < ˜̀(i)

c will typically hold.

27

Given this interpretation, in this chapter we now explore four key questions: 1) Experimental ver-

ification of our analysis. In practice, how much of a logit regularization effect does ALP have? 2) Do

other forms of logit regularization have similar effects on adversarial robustness? If so, then an entire

family of methods for improving adversarial robustness will have been found. 3) Is it possible to decou-

ple adversarial logit pairing explicitly into a form where the effect of logit regularization and pairing

can be disentangled? 4) Finally, using these insights, can we discover even more robust models?

3.3.1 Experimental Evidence

Perhaps the most straightforward way to test our hypothesis is to examine the logits of a model trained

with ALP vs one trained with standard adversarial training. If our hypothesis is true, then the model

trained with ALP will have logits that are generally smaller in magnitude. We present the results of

this experiment in Figure 3.1(left), using an 18-layer ResNet [35] classifier trained on CIFAR-10 [58]

as our experimental testbed (see Sec. 3.5.1 for details).

It is indeed the case that the logits for a model trained with ALP are of smaller magnitude than

those of a model trained with PGD, with a variance reduction of the logits from 8.31 to 4.02 on the

original clean (non-adversarial) test data2. Though this provides evidence that ALP does have the

effect of regularizing logits, this data alone is not sufficient to determine if logit regularization is a key

mechanism in ALP’s improved adversarial robustness.

To answer this, we examine if standard adversarial training can be improved by explicitly regular-

izing the logits. If adversarial robustness can be improved, but similar improvements can not be made

to ALP, then at least some of the benefits of ALP can be attributed strictly to logit regularization. We

present the results of this experiment in Figure 3.1(right), implemented using the “logit squeezing”

form of regularization (L2-regularization on the logits).

We find that incorporating regularization on model logits is able to recover slightly more than half of

the total improvement from logit pairing, with a unimodal distribution – too little regularization has only

a small effect, and too much regularization approaches the point of being harmful. In contrast, when

added to a model already trained with ALP, regularizing the logits does not lead to any improvement at

all, and in fact hurts performance at all levels of regularization strength, likely due to the combination

of explicit logit regularization and the implicit regularization happening from ALP overpowering the
2The corresponding distributions on a set of PGD-based adversarial examples are very similar.

28

5 0 5 10
Logit value

0.00

0.05

0.10

0.15

0.20

0.25

Fr
eq

ue
nc

y

Logit distribution on clean test data
Logit Pairing
No Logit Pairing

10 3 10 2

Logit regularization

0.39

0.40

0.41

0.42

0.43

0.44

0.45

0.46

0.47

Ac
cu

ra
cy

 o
n

ad
ve

rs
ar

ia
l e

xa
m

pl
es

Logit regularization vs adversarial robustness
Logit Pairing
No Logit Pairing

Figure 3.1: Left: Distribution of logits on clean test data for models trained with and without logit
pairing. Right: Performance against a 10-step PGD attack for models trained with varying amounts
of logit regularization, with and without logit pairing. Dashed lines indicate accuracy on adversarial
examples without any logit regularization at all.

cross-entropy loss of adversarial training. This evidence makes clear that one of the key improvements

from logit pairing is due to a logit regularization effect.

We would like to emphasize that these results are not meant to diminish ALP in any sense – our

goals are to investigate the mechanism by which it works and explore if it can be generalized or im-

proved. Thus, given these results, it is worth examining other methods that have an effect of regularizing

logits in order to tell whether this is a more general phenomenon.

3.4 Other forms of logit regularization

Label Smoothing. Label smoothing is the process of replacing the one-hot training distribution of

labels with a softer distribution, where the probability of the correct class has been smoothed out onto

the incorrect classes [109]. Concretely, label smoothing uses the target distribution:

p(i)c =

1− s c = y(i)

s
C−1 c 6= y(i)

(3.8)

29

10 0 10 20 30
Logit value

0.00

0.05

0.10

0.15

0.20

0.25

Fr
e
q
u
e
n
cy

Logit distribution on adversarial test data

s = 0

0.25 0.00 0.25 0.50 0.75 1.00
Logit value

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Fr
e
q
u
e
n
cy

Logit distribution on adversarial test data

s = .75

5 0 5 10 15 20 25
Logit value

0.00

0.05

0.10

0.15

0.20

Fr
e
q
u
e
n
cy

Logit distribution on clean test data

s = 0

0.2 0.0 0.2 0.4 0.6 0.8 1.0
Logit value

0

5

10

15

20

25

30

35

40

Fr
e
q
u
e
n
cy

Logit distribution on clean test data

s = .75

0.0 0.2 0.4 0.6 0.8
Label smoothing

0.0

0.2

0.4

0.6

0.8

A
cc

u
ra

cy

Label smoothing vs adversarial robustness

Original test

PGD Attack

FGSM Attack

Figure 3.2: Left: Clean (“original test”) and adversarial accuracy on CIFAR-10 as a function of the
label smoothing strength. Note that models for this figure were trained exclusively on the original
training data – no adversarial examples were involved in the training procedure. Top-Right: Logit
distribution of model trained with no label smoothing (middle) and with label smoothing of s = .75
(right), evaluated on the original test images, showing the regularization effect that label smoothing
has on the logit distribution. Bottom-Right: Logit distributions when evaluated on PGD-based adver-
sarial examples, showing how the regularization effect of label smoothing also applies to adversarial
examples.

where p(i)c is the target probability for class c for example i, the number of categories is denoted by C,

and s ∈ [0, 1 − 1
C] is the smoothing strength. Label smoothing was originally introduced as a form of

regularization, designed to prevent models from being too confident about training examples, and had

the goal of improved generalization. Furthermore, it can be easily implemented as a preprocessing step

on the labels, and does not affect model training time in any significant way. Interestingly, Kurakin

et al. [61] found that incorporating a small amount of label smoothing present in a model trained on

ImageNet actually decreased adversarial robustness roughly by 1%. Here we find a different effect.

In Figure 3.2(left) we show the effect label smoothing has on the performance of a model trained

only on clean (i.e. non-adversarial) training data. Very surprisingly, models trained with label smooth-

ing only (i.e. no other defenses against adversarial examples) were nearly as robust to this 10-step

PGD attack as models trained with PGD-based adversarial training or adversarial logit pairing, both of

which take an order of magnitude more time to train – though in faireness we note that when PGD and

30

ALP-based models are trained only on adversarial examples rather than a mixture of clean and adver-

sarial data, their robustness exceeds this performance by around 5% (experiments not shown in figures).

Furthermore, this benefit of label smoothing comes at no significant loss in accuracy on unperturbed

test data, while generally adversarial training tends to trade off original vs adversarial performance.

Another curiosity is that adding in any label smoothing at all dramatically improves robustness to

FGSM-based adversaries (adding label smoothing of s = .01 brings accuracy up from 6.1% to 38.3%;

experiment not shown in figures), while PGD-based attacks saw much more gradual improvement with

label smoothing strength. While remarkable, this property of label smoothing on the loss surface is

eludes understanding, warranting further research.

Examining the logits themselves (Figure 3.2, right), we see a striking difference between the models

– the model trained with label smoothing both has a dramatically smaller dynamic range of logits –

roughly 1.2 vs. 20, a 16-fold decrease – and also presents a much more bimodal logit distribution

than the model trained without label smoothing. In other words, it has learned to predict extremely

consistent values for logits, a property that may contribute to its adversarial robustness. We observed

that this behavior held for all positive values of s, with a stronger effect the higher s was.

This behavior can be explained: when trained with no label smoothing, the cross-entropy loss used

in most models encourages model output to be as close to a one-hot distribution as possible, predicting

a probability of 1 for the correct category and 0 for all other categories. When viewed as logits instead

of probabilities, this corresponds to pushing the logits for the correct and incorrect categories as far

apart as possible. However, models trained with label smoothing are instead encouraged to produce a

soft distribution, with no probabilities too close to either 0 or 1, corresponding to a bounded target logit

difference which gets smaller with increasing s.

Additional experiments involving label smoothing are given in Section 3.5.

Mixed-Example Data Augmentation Recently, a new form of data augmentation was found that

stands in contrast to standard label-preserving data augmentation. Mixed-example data augmentation

consists of combining different training examples together, dramatically altering both the appearance

of the training examples and their labels. Introduced concurrently by multiple groups [124, 49, 111],

these types of data augmentation typically have the form of element-wise weighted averaging of two

input examples (typically images), with the training label also determined as a weighted average of

the original two training labels (represented as one-hot vectors). Besides making target labels soft (i.e.

not 1-of-K) during training time, these methods also encourage models to behave linearly between

31

examples, which may improve robustness to out of sample data. Interestingly, Zhang et al. [124] found

that this type of data augmentation improved robustness to FGSM-based attacks on ImageNet [86], but

Kannan et al. [54] found that the method did not improve robustness against a targeted attack with a

stronger PGD-based adversary.

Experimentally, we found evidence agreeing with both conclusions – when applying mixup [124],

we found a sizeable increase in robustness to FGSM adversaries, going from 6.1% on CIFAR-10 by

training without mixup to 30.8% with mixup, but did not observe a significant change when evaluated

against a PGD-based adversary. While robustness to a PGD adversary with only 5 steps increased by

a tiny amount (from 0.0% to 0.5%), robustness to a 10-step PGD adversary remained at 0%. In our

experiments, we use VH-mixup, the slightly improved version of mixup introduced by Summers and

Dinneen [103].

3.4.1 Decoupling Adversarial Logit Pairing

We have now considered alternate methods by which logits can be regularized. Now, we examine

how they interact with the logit regularization effect of adversarial logit pairing. Doing so requires

decoupling the logit pairing and logit regularization effects of ALP.

In adversarial logit pairing [54], the logit pairing term is implemented as an L2 loss:

L(f(x(i); θ), f(g(x(i)); θ)) = ‖f(x(i))− f(g(x(i)))‖2, (3.9)

though other losses such as an L1 or Huber loss are also possible. Expanding this creates a form that

makes the pairing and regularization terms evident:

L(f(x(i); θ), f(g(x(i)); θ)) =

‖f(x(i))‖2 − 2f(x(i))T f(g(x(i))) + ‖f(g(x(i)))‖2,
(3.10)

where the first and third terms are explicit logit regularization terms on f(x(i)) and f(g(x(i))), and the

logit pairing effect is only determined by the middle inner product. While using an L2 loss is a natural

loss for regularization purposes, the pairing term can be improved by considering a more general form:

32

L(f(x(i); θ), f(g(x(i)); θ)) =

h(f(x(i)), f(g(x(i)))) + β(‖f(x(i))‖2 + ‖f(g(x(i)))‖2),
(3.11)

where h has the express goal of making the logits more similar (with as little logit regularization as

possible), and the regularization terms have been grouped with a controllable weighting factor. There

are several natural choices for h, such as the Jensen-Shannon divergence, a cosine similarity, or any

similarity metric that does not have a significant regularization effect. We have found that simply taking

the cross entropy between the distributions induced by the logits was effective – depending on the actual

values of the logits, this can either still have a mild squeezing effect (if the logits are very different), a

mild expanding effect (if the logits are very similar), or something in between.

One implementation detail worth noting is that it can be difficult to reason about and set the relative

strengths of the pairing loss and adversarial training loss. To that end, we set the strength of the pairing

loss h as a constant fraction of the adversarial loss, implemented by setting the coefficient of the loss

as a constant multiplied by a non-differentiable version of the ratio between the losses.

By decomposing adversarial logit pairing explicitly into logit pairing and logit regularization terms

in this way, adversarial robustness to a 10-step PGD attack improves by an absolute 1.9% over ALP, or

5.6% over PGD-based adversarial training.

3.5 Additional experiments

In this section we present additional experiments on three datasets: The primary two datasets are

CIFAR-10 and CIFAR-100, which are datasets for 10-way and 100-way classification, respectively,

each with 50,000 examples, on which we evaluate both white-box and black-box adversarial attacks.

White-box attacks are ones in which the adversary has full access to a model’s architecture and weights,

while black-box attacks are ones in which this information is hidden to the adversary. Additionally, we

evaluate on the Street View House Numbers (SVHN) dataset [79], which is significantly larger in the

number of training examples (604,388) and whose 10 classes have an uneven distribution, with the

most common class roughly 3 times more common than the least common class.

33

Table 3.1: White-box accuracy of models on CIFAR-10.

Adversary

Training Method Natural FGSM
PGD

(5 steps)
PGD

(10 steps)
PGD

(20 steps)
Regular Training 87.4% 6.1% 0.0% 0.0% 0.0%
Label Smoothing 86.9% 54.7% 49.4% 41.7% 34.4%

PGD [73] 75.8% 50.5% 51.0% 46.1% 45.3%
ALP [54] 74.0% 52.6% 53.6% 49.1% 48.5%

LRM (ours) 68.5% 52.8% 53.8% 51.4% 51.0%

3.5.1 Implementation Details

In the experiments throughout this chapter on CIFAR-10/100, we used an 18-layer ResNet [35], equiv-

alent to the “simple” model of Madry et al. [73], with a weight decay of 2 · 10−4 and a momentum

optimizer with strength of 0.9. Standard data augmentation of random crops and horizontal flips was

used. After a warm up period of 5 epochs, the learning rate peaked at 0.1 and decayed by a factor

of 10 at 100 and 150 epochs, training for a total of 200 epochs for models not trained on adversarial

examples and 101 epochs for models using adversarial training – adversarial accuracy tends to increase

for a brief period of time after a learning rate decay, then quickly drop by a small amount, an empirical

finding also echoed by Schmidt et al. [91]. The minibatch size was 128.

Adversarial examples were constrained to a maximum L∞ norm of .03, and all PGD-based attacks

used a step size of 0.0078. For our implementation of adversarial logit pairing, on CIFAR-10 we used a

pairing coefficient of 0.5 as recommended by [54], and found a larger coefficient of 5.0 more effective

on CIFAR-100.

On SVHN, a smaller 8-layer ResNet was used for computational efficiency due to the scale of

the dataset, which is a considerable challenge to overcome with adversarial training. Models were

trained for 101 epochs, with a learning rate of .001 for the first 5 epochs, .01 until epoch 80, and .001

afterward. Data augmentation consisted of random crops after an initial 4 pixel padding. Adversarial

attacks on SVHN were performed with an L∞ constraint on the perturbation of 12/255 with a step size

of 3/255. All adversarial attacks were constructed using the CleverHans library [82], implemented in

TensorFlow [1], and all experiments were done on two Nvidia Geforce GTX 1080 Ti GPUs.

34

3.5.2 Towards a more robust model

Given these forms of logit regularization, perhaps the most natural question is whether they can be

combined to create an even more robust model. Thus, in this section we focus exclusively on making

a model (and comparable baselines) as robust as possible to PGD-based attacks. In particular, for

baseline methods (PGD-based adversarial training [73] and adversarial logit pairing [54]), we opt to

train exclusively on adversarial examples, effectively setting α = 0 in Equation 3.1, which roughly

trades off 4− 5% accuracy for clean test examples for a similar gain in adversarial performance.

To combine the logit regularization methods together, on CIFAR-10 and CIFAR-100 we use a

modest amount of label smoothing (s = 0.1) and use VH-mixup [103] on the input examples. For

the logit pairing formulation presented in Section 3.4.1, we found different hyperparameters worked

best on our two evaluation datasets. On CIFAR-10, we set β = 10−3, and set the ratio between the

adversarial training loss and the pairing loss to 0.125, which focuses the loss on keeping adversarial

and original examples similar. On CIFAR-100, the more challenging dataset, we use β = 3 · 10−5

and a ratio of 0.95, which allows the network to focus more on fitting the data while still maintaining

a balance with defending against adversarial examples. On SVHN, we set s = 0.2, use β = 10−4,

employ regular mixup [124] (which is more suitable for the imagery of SVHN), and use a ratio of 0.95,

similar to CIFAR-100. We note that these parameters were not tuned much due to resource constraints.

We refer to this combination simply as LRM (“Logit Regularization Methods”).

CIFAR-10 White-box performance on CIFAR-10 is shown in Table 3.1. LRM, achieves the highest

level of adversarial robustness of the methods considered for all PGD-based attacks, and to the best of

our knowledge represents the most robust method on CIFAR-10 to date. However, like other adversarial

defenses, this comes at the cost of performance on the original test set, which makes sense – from

the perspective of adversarial training, a clean test image is simply the center of the set of feasible

adversarial examples. Nonetheless, it is interesting that the tradeoff between adversarial and non-

adversarial performance can continue to be pushed further, with the optimal value of that tradeoff

dependent on application, i.e. whether worst-case performance is more important than performance on

the original unperturbed examples.

Next, black-box performance is shown in Table 3.2. As is standard in most black-box evalua-

tions of adversarial defenses, this is performed by generating adversarial examples with one model (the

“Source”) and evaluating them on a separate independently trained model (the “Target”). In this exper-

35

Table 3.2: Black-box accuracy of models on CIFAR-10.

Source

Target
Regular
Training

Label
Smoothing

PGD ALP LRM (ours)

Regular Training 26.8% 32.0% 75.1% 73.9% 67.3%
Label Smoothing 66.7% 67.3% 75.6% 74.2% 67.6%

PGD [73] 69.8% 69.1% 58.0% 57.9% 55.7%
ALP [54] 69.4% 68.8% 60.8% 59.3% 56.4%

LRM (ours) 71.5% 70.9% 60.5% 59.4% 54.3%

Table 3.3: White-box accuracy of models on CIFAR-100.

Adversary

Training Method Natural FGSM
PGD

(5 steps)
PGD

(10 steps)
PGD

(20 steps)
Regular Training 59.1% 2.3% 0.1% 0.0% 0.0%
Label Smoothing 55.0% 11.5% 2.3% 0.9% 0.2%

PGD [73] 50.2% 26.2% 27.2% 23.9% 23.6%
ALP [54] 44.9% 27.3% 28.3% 26.0% 25.9%

LRM (ours) 43.8% 28.1% 29.1% 26.8% 26.6%

iment, we use a 10-step PGD attack to generate adversarial examples. As found in other works [73],

the success of a black-box attack depends both on how similar the training procedure was between

the source and target models and on the strength of the source model – for example, LRM, uniformly

results in a stronger black-box attack than ALP [54], which itself is a uniformly stronger black-box

attack than adversarial training with PGD [73]. As such, using LRM, as the source mildly damages the

black-box defenses of PGD and ALP.

Interestingly, label smoothing was fairly effective as a black-box defense, being among the most

robust models across all different sources. In particular, label smoothing had the highest minimum

performance across sources (over 10% higher than any other method), which is particularly surprising

given its near-zero cost compared to the adversarially-trained models.

CIFAR-100 White-box performance on CIFAR-100 is presented in Table 3.3. Again, we find that

LRM achieves the highest level of adversarial robustness to all adversarial attacks, with ALP also

strictly better than PGD-based adversarial training. Interesting, though, we find that label smoothing

36

completely fails to all attacks on CIFAR-100, behaving almost completely differently than on CIFAR-

10. Although examining this was not the goal of our work, this does highlight the importance of

evaluating proposed adversarial defenses on multiple datasets.

The corresponding results for black-box attacks on CIFAR-100 are shown in Table 3.4, where we

again find clear differences across datasets. This time, the difference is that all methods perform much

more similarly to one another, with the exception of clear differences of transferring from PGD-trained

models to non-adversarially trained models.

SVHN We demonstrate performance against white-box attacks on SVHN in Table 3.5. Despite the

large differences in dataset scale, image type, and imbalance in class frequencies, we again find that

our method, LRM, is the most robust of all approaches on every adversarial attack, with patterns in the

performance of each defense very similar to the other datasets, providing additional evidence that our

methods and insights are generalizable.

3.5.3 Evaluating Stronger Attacks

Evaluating adversarial defenses is difficult to do correctly – since evaluating against any attack merely

provides an upper bound on adversarial robustness, it is critical to evaluate on the strongest attacks

available to make the bound as tight as possible. Furthermore, care must be taken to avoid gradient

masking or obfuscated gradients [3], which can lead to a false sense of security.

Here we evaluate white-box performance on CIFAR-10 with two very strong attacks: a 1,000-step

PGD adversary (the same attack that ALP succumbed to on ImageNet), and SPSA [113], a gradient-free

attack that is effective at uncovering gradient masking. Results are given in Table 3.6. Note that SPSA

is evaluated against a representative 1,000-image sample of the evaluation set for efficiency, since a full

evaluation would take roughly 90 hours, and that we use the same evaluation settings as provided in

[113].

We find nearly no difference when going from a 20-step to a 1,000-step PGD attack for all methods

except for label smoothing, which loses most of its robustness. This suggests that label smoothing,

while providing only a mild amount of worst-case adversarial robustness, can actually make the adver-

sarial optimization problem much more challenging, which we believe is also the underlying reason for

its effectiveness against black-box attacks. Based on this conjecture, we also evaluated label smoothing

37

Table 3.4: Black-box accuracy of models on CIFAR-100.

Source

Target
Regular
Training

Label
Smoothing

PGD ALP LRM (ours)

Regular Training 33.3% 31.7% 50.1% 44.7% 43.8%
Label Smoothing 37.0% 31.6% 50.0% 44.8% 43.9%

PGD [73] 37.6% 34.0% 33.4% 32.5% 32.4%
ALP [54] 39.7% 36.6% 33.6% 31.5% 32.1%

LRM (ours) 37.7% 33.4% 34.5% 33.0% 31.3%

Table 3.5: White-box accuracy of models on SVHN.

Adversary

Training Method Natural FGSM
PGD

(5 steps)
PGD

(10 steps)
PGD

(20 steps)
Regular Training 96.7% 14.8% 0.0% 0.0% 0.0%
Label Smoothing 97.0% 50.8% 15.1% 4.4% 1.3%

PGD [73] 85.3% 50.5% 47.3% 39.6% 38.0%
ALP [54] 82.5% 49.6% 47.1% 40.0% 38.6%

LRM (ours) 83.6% 51.5% 48.4% 40.9% 39.4%

as a black-box defense with a 1,000-step PGD attack, where we have found a much smaller drop in per-

formance, going from 67.3% to 60.8%, confirming that label smoothing still has its place in black-box

defenses. The exact mechanism by which label smoothing makes the search for adversarial examples

more difficult, however, remains elusive, which we think is an interesting avenue for further research.

On the other hand, an SPSA attack removes some of the difference in robustness between PGD,

ALP, and LRM. While this illustrates that ALP and LRM are likely doing some type of gradient mask-

ing in a way that PGD cannot detect, even with 1,000 iterations, it also illustrates that there is a real

gain in adversarial robustness even when considering strong gradient-free attacks.

3.6 Conclusion

In this chapter, we have shown the usefulness of logit regularization for improving the robustness of

neural models of computer vision to adversarial examples. We first presented an analysis of adversarial

logit pairing, showing that roughly half of its improvement over adversarial training can be attributed

38

Table 3.6: Evaluating models against the strongest white-box attacks on CIFAR-10. SPSA is evaluated
on a 1,000-image (10%) subsample, and a 20-step PGD attack is provided for context.

Adversary

Training Method
PGD

(20 steps)
PGD

(1,000 steps)
SPSA [113]

Regular Training 0.0% 0.0% 0.0%
Label Smoothing 34.4% 7.2% 8.9%

PGD [73] 45.3% 45.2% 45.4%
ALP [54] 48.5% 48.3% 46.1%

LRM (ours) 51.0% 51.1% 47.9%

to a non-obvious logit regularization effect. Based on this, we investigated two other forms of logit

regularization, demonstrating the benefits of both, and then presented an alternative method for adver-

sarial logit pairing that more cleanly decouples the logit pairing and logit regularization effects while

also improving performance.

By combining these logit regularization techniques together, we were able to create both a stronger

defense against white-box PGD-based attacks and also a stronger attack against PGD-based defenses,

both of which come at almost no additional cost to PGD-based adversarial training. We also demon-

strated the surprising strength of label smoothing as a black-box defense and its paradoxical weakness

to highly-optimized white-box attacks.

We anticipate that future work will push the limits of logit regularization even further to improve

defenses against adversarial examples, possibly drawing on techniques originally devised for other

purposes [84]. We also hope that these investigations will yield insights into training adversarially-

robust models without the overhead of multi-step adversarial training, an obstacle that has made it

challenge to scale up adversarial defenses to larger datasets without very large computational budgets.

39

4. Improving Batch Normalization

We now focus our attention on a different key component of modern deep learning, normalization

layers. In this chapter we predominantly study Batch Normalization [51], used extremely commonly

in computer vision. As in previous chapters, our goal is to advance the understanding of a key topic in

deep learning (Batch Normalization) and use the understanding to improve the technique itself. Here,

we identify four improvements to the generic form of Batch Normalization and the circumstances

under which they work, yielding performance gains across a wide range of settings while requiring no

additional computation during training. Most notably this includes a previously unstudied discrepancy

between its training and inference behavior.

4.1 Introduction

Neural networks have transformed machine learning, forming the backbone of models for tasks in

computer vision, natural language processing, and robotics, among many other domains [58, 33, 65,

106, 28]. A key component of many neural networks is the use of normalization layers such as Batch

Normalization [51], Group Normalization [121], or Layer Normalization [4], with Batch Normalization

the most commonly used for vision-based tasks. While the true reason why these methods work is still

an active area of research [90], normalization techniques typically serve the purpose of making neural

networks more amenable to optimization, allowing the training of very deep networks without the

use of careful initialization schemes [98, 125], custom nonlinearities [56], or other more complicated

techniques [122]. Even in situations where training without normalization layers is possible, their usage

can still aid generalization [125]. In short, normalization layers make neural networks train faster and

generalize better.

40

Despite this, it has been challenging to improve normalization layers. In the general case, a new

approach would need to be uniformly better than existing normalization methods, which has proven

difficult. It has even been difficult to tackle a simpler task: characterizing when specific changes to

common normalization approaches might yield benefits. In all, this has created an environment where

approaches such as Batch Normalization are still used as-is, unchanged since their creation.

In this chapter we identify four techniques to improve their usage of Batch Normalization, arguably

the most common method for normalization in neural networks. Taken together, these techniques apply

in all circumstances in which Batch Normalization is currently used, ranging from large to very small

batch sizes, including one method which is even useful when the batch size B = 1, and for each

technique we identify the circumstances under which it is expected to be of use. In summary, our

contributions are:

1. A way to more effectively use the current example during inference, fixing a discrepancy between

training and inference that had been previously overlooked,

2. Identifying Ghost Batch Normalization, a technique designed for very large-batch multi-GPU

training [42], as surprisingly effective even in the medium-batch, single-GPU regime,

3. Recognizing weight decay of the scaling and centering variables γ and β as a valuable source of

regularization, an unstudied detail typically neglected, and

4. Proposing a generalization of Batch and Group Normalization in the small-batch setting, ef-

fectively making use of cross-example information present in the minibatch even when such

information is not enough for effective normalization on its own.

Experimentally, we study the most common use-case of Batch Normalization: image classification,

which is fundamental to most visual problems in machine learning. In total, these four techniques can

have a surprisingly large effect, improving accuracy by over 6% on one of our benchmark datasets

while only changing the usage of Batch Normalization layers.

41

4.2 Related Work/Background on normalization methods

Most normalization approaches in neural networks, including Batch Normalization, have the general

form of normalizing their inputs xi to have a learnable mean and standard deviation:

x̂i = γ
xi − µi√
σ2i + ε

+ β (4.1)

where γ and β are the learnable parameters, typically initialized to 1 and 0, respectively. Where ap-

proaches typically differ is in how the mean µi and variance σ2i are calculated.

Batch Normalization [51], the pioneering work in normalization layers, defined µi and σ2i to be

calculated for each channel or feature map separately across a minibatch of data. For example, in a

convolutional layer, the mean and variance are computed across all spatial locations and training exam-

ples in a minibatch. During inference, because it is desirable to make inference behavior independent of

inference batch statistics (so that the output of a model during inference time for a given example does

not depend on which other examples are in the inference batch), the mean and variance are replaced

with a moving average of the mean and variance observed during training time. This is typically done

using an exponential moving average, e.g. µ̄new
i = 0.9999µ̄old

i + 0.0001µi, where µ̄i is the moving

average of the mean and µi is the mean for the current training batch. The effectiveness of Batch Nor-

malization is undeniable, playing a key role in nearly all state-of-the-art convolutional neural networks

since its discovery [109, 107, 35, 36, 127, 128, 44, 43, 89]. Despite this, there is still a fairly limited

understanding of Batch Normalization’s efficacy — while Batch Normalization’s original motivation

was to reduce internal covariate shift during training [51], recent work has instead proposed that its true

effectiveness stems from making the optimization landscape smoother [90].

One weakness of Batch Normalization is its critical dependence on having a reasonably large batch

size, due to the inherent approximation of estimating the mean and variance with a single batch of data.

Several works propose methods without this limitation: Layer Normalization [4], which has found use

in many natural language processing tasks [116], tackles this by calculating µi and σ2i over all channels,

rather than normalizing each channel independently, but does not calculate statistics across examples in

each batch. Instance Normalization [114], in contrast, only calculates µi and σ2i using the information

present in each channel, relying on the content of each channel at different spatial locations to provide

effective normalization statistics. Group Normalization [121] generalizes Layer and Instance Normal-

ization, calculating statistics in “groups” of channels, allowing for stronger normalization power than

42

Instance Normalization, but still allowing for each channel to contribute significantly to the statistics

used for its own normalization. The number of normalization groups per normalization layer is typi-

cally set to a global constant in group normalization, though alternatives such as specifying the number

of channels per group have also been tried [121].

Besides these most common approaches, many other forms of normalization also exist: Weight

Normalization [87] normalizes the weights of each layer instead of the inputs, parameterizing them in

terms of a vector giving the direction of the weights and an explicit scale, which must be initialized very

carefully. Decorrelated Batch Normalization [47] performs ZCA whitening [58] in its normalization

layer, and Iterative Normalization [48] makes it more efficient via a Newton iteration approach. Cho

and Lee analyze the weights in Batch Normalization from the perspective of a Riemannian manifold,

yielding new optimization and regularization methods that utilize the manifold’s geometry.

Targeting the small batch problem, Batch Renormalization [50] uses the moving average of batch

statistics to normalize during training, parameterized in such a way that gradients still propagate

through the minibatch mean and standard deviation, but introduces two new hyperparameters and still

suffers somewhat diminished performance in the small-batch setting. Guo et al. tackle the small batch

setting by aggregating normalization statistics over multiple forward passes.

Recently, Switchable Normalization [68] aims to learn a more effective normalizer by calculating µi
and σ2i as learned weighted combinations of the statistics computed from other normalization methods.

While flexible, care must be taken for two reasons: First, as the parameters are learned differentiably,

they are fundamentally aimed at minimizing the training loss, rather than improved generalization,

which typical hyperparameters are optimized for on validation sets. Second, the choice of which nor-

malizers to include in the weighted combination remains important. This results in Switchable Normal-

ization obtaining somewhat worse performance than Group Normalization for small batch sizes. Differ-

entiable Dynamic Normalization [69] fixes the latter point, learning an even more flexible normalization

layer. Beyond these, there are many approaches we omit for lack of space [66, 13, 41, 56, 122, 125].

4.3 Improving Normalization

In this section we detail four methods for improving Batch Normalization. We also refer readers to the

Appendix (Sec. A.3) for a discussion of methods which do not improve normalization layers (some-

times surprisingly so). For clarity, we choose to interleave descriptions of the methods with experi-

43

mental results, which aids in understanding each of the approaches as they are presented. We experi-

ment with four standard image-centric datasets in this section: CIFAR-100, SVHN, Caltech-256, and

ImageNet, and report results on validation datasets in order to fully describe each approach without

contaminating test-set results. We give results on test sets, and experimental details in Sec. 4.4.

4.3.1 Inference Example Weighing

Batch Normalization has a disparity in function between training and inference: As previously noted,

Batch Normalization calculates its normalization statistics (i.e. mean and variances) over each mini-

batch of data separately while training, but during inference a moving average of training statistics is

used, simulating the expected value of the normalization statistics. Resolving this disparity is a com-

mon theme among methods that have sought to replace Batch Normalization [4, 114, 87, 121, 50]. Here

we identify a key component of this training versus inference disparity which can be fixed within the

context of Batch Normalization itself, improving it in the general case: when using a moving average

during inference, each example does not contribute to its own normalization statistics.

To give an example of the effect this has, we consider the output range of Batch Normalization.

During training, due to the inclusion of each example in its own normalization statistics, it can be

shown1 that the minimum possible output of a Batch Normalization layer is:

min
x0,...,xB−1

γ
x0 − µi√
σ2i + ε

+ β = −γ
√
B − 1 + β (4.2)

with a corresponding maximum value of γ
√
B − 1 + β, where B is the batch size, and we assume

for simplicity that Batch Norm is being applied non-convolutionally. In contrast, during inference the

output range of Batch Normalization is unbounded, creating a discrepancy. Beyond being a theoretical

bound, in practice real networks actually do exceed this bound during inference: the output range of

a network with Batch Normalization is wider during inference than during training (see Sec. A.2 in

Appendix).

Fortunately, once this problem has been realized, it is possible to fix — we need only figure out

how to incorporate example statistics during inference. Denoting mx as the moving average over x and
1Proof in Appendix Sec. A.1

44

0.00 0.01 0.02 0.03 0.04 0.05 0.06
77.0

77.2

77.4

77.6

77.8

78.0

78.2

78.4

A
cc

.

0.8

0.9

1.0

1.1

1.2

1.3

Lo
ss

93.6

93.8

94.0

94.2

94.4

T
o
p

-5
 A

cc
.

ResNet-152

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
82.0

82.2

82.4

82.6

82.8

83.0

A
cc

.

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.80

Lo
ss

96.10

96.15

96.20

96.25

96.30

96.35

T
o
p

-5
 A

cc
.

NasNet-A

0.000 0.004 0.008 0.012 0.016 0.020
73.6

73.8

74.0

74.2

74.4

A
cc

.

1.12

1.13

1.14

1.15

1.16

1.17

1.18

1.19

1.20

Lo
ss

91.75

91.80

91.85

91.90

91.95

92.00

92.05

92.10

T
o
p

-5
 A

cc
.

MobileNetv2

Figure 4.1: Effect of the example-weighing hyperparameter α on ImageNet for ResNet-152, Mo-
bileNetV2, and NASNet-A, measuring top-1 and top-5 accuracies and the cross-entropy loss.

mx2 the corresponding moving average over x2, we apply the following normalization:

µi = αE[xi] + (1− α)mx

σ2i = (αE[x2i] + (1− α)mx2)− µ2i

x̂i = γ
xi − µi√
σ2i + ε

+ β

(4.3)

where α is the contribution of xi to the normalization statistics, and we have reparameterized the

variance as σ2i = E[x2i]− E[xi]
2.

Given this formulation, a natural question is the choice of the parameter α, where α = 0 cor-

responds to the classical inference setting of Batch Normalization and α = 1 replicates the setting of

techniques which do not use cross-image information in calculating normalization statistics. Intuitively,

it would make sense for the optimal value to be α = 1
B , since during training time an example occupies

exactly 1
B of the batch. However, this turns out to not be the case — instead, α is a hyperparameter best

optimized on a validation set, whose optimal value may depend the model, dataset, and metric being

optimized (see subsequent experiments for evidence). While counterintuitive, this can be explained by

the remaining set of differences between training and inference: for a basic yet fundamental example,

the fact that the model has been fit on the training set (also typically with data augmentation) may

produce systematically different normalization statistics between training and inference.

An advantage of this technique is that we can apply it retroactively to any model trained with Batch

Normalization, allowing us to verify its efficacy on a wide variety of models. In Fig. 4.1 we show

the effect of α on the ImageNet ILSVRC 2012 validation set [86] for three diverse models: ResNet-

45

0.70 0.75 0.80 0.85 0.90 0.95 1.00
73.0

73.2

73.4

73.6

73.8

74.0

A
cc

.

CIFAR-100 with Group Normalization

1.30

1.31

1.32

1.33

1.34

1.35

1.36

1.37

1.38

Lo
ss

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

98.66

98.68

98.70

98.72

98.74

A
cc

.

SVHN with Group Normalization

0.056

0.058

0.060

0.062

0.064

0.066

0.068

0.070

Lo
ss

0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000
46.2

46.4

46.6

46.8

47.0

47.2

A
cc

.

Caltech-256 with Group Normalization

3.15

3.16

3.17

3.18

3.19

3.20

3.21

Lo
ss

Figure 4.2: Effect of the example-weighing hyperparameter α for models trained with Group Normal-
ization on CIFAR-100, SVHN, and Caltech-256.

152 [36], MobileNetV2 [89], and NASNet-A Large [128]2. On ResNet-152, for example, proper setting

of α can increase accuracy by up to 0.6%, top-5 accuracy by 0.16%, and loss by a relative 4.7%, which

are all quite large effects given the simplicity of the approach, the competitiveness of ImageNet as a

benchmark, and the fact that the improvement is essentially “free” — it involves only modifying the

inference behavior of Batch Normalization layers, and does not require any re-training. Across models,

the optimal value for α was largest for NASNet-A, the most memory-intensive (and therefore smallest

batch size) model of the three. We refer the reader to the Appendix Sec. A.4 for additional plots with

larger ranges of α.

Surprisingly, it turns out that this approach can have positive effects on models trained without any

cross-image normalization at all, such as models trained with Group Normalization [121]. We demon-

strate this in Fig. 4.2, where we find that adding a tiny amount of information from the moving average

statistics can actually result in small improvements, with relatively larger improvements in accuracy on

Caltech-256 and cross entropy loss on CIFAR-100 and SVHN. Since adding in any information from

the moving averages at all represents a clear difference from the training setting of Group Normaliza-

tion, this finding is counterintuitive. Similar to the unintuitive optimal value for α, we hypothesize that

this effect is due to other differences in the settings of training and inference: for example, models

are generally trained on images with the application of data augmentation, such as random cropping.

During inference, though, images appear unperturbed, and it might be the case that incorporating in-

formation from the moving averages is a way of influencing the model’s intermediate activations to

be more similar to those of data augmented images, which it has been trained on. This mysterious

behavior may also point to more general approaches for resolving training-inference discrepancies, and

is worthy of further study.
2Models obtained from [96].

46

Last, we also note very recent work [99] which examines a similar approach for incorporating the

statistics of an example during inference time, using per-layer weights and optimizing with a more

involved procedure that encourages similar outputs to the training distribution.

Summary: Inference example weighing resolves one disparity between training and inference for

Batch Normalization, is uniformly beneficial across all models and very easy to tune to metrics of

interest, and can be used with any model trained with Batch Normalization, even retroactively.

4.3.2 Ghost Batch Normalization for Medium Batch Sizes

Ghost Batch Normalization, a technique originally developed for training with very large batch sizes

across many accelerators (e.g. GPUs) [42], consists of calculating normalization statistics on disjoint

subsets of each training batch. Concretely, with an overall batch size of B and a “ghost” batch size of

B′ such that B′ evenly divides B, the normalization statistics for example i are calculated as

µi =
1

B′

B∑
j=1

xj [

⌊
jB′

B

⌋
=

⌊
iB′

B

⌋
]

σ2i =
1

B′

B∑
j=1

x2j [

⌊
jB′

B

⌋
=

⌊
iB′

B

⌋
]− µ2i

(4.4)

where [·] is the Iverson bracket, with value 1 if its argument is true and 0 otherwise. Ghost Batch Nor-

malization was previously found to be an important factor in reducing the generalization gap between

large-batch and small-batch models [42], and has since been used by subsequent research rigorously

studying the large-batch regime [93]. Here, we show that it can also be useful in the medium-batch

setting3.

Why might Ghost Batch Normalization be useful? One reason is its power as a regularizer: due

to the stochasticity in normalization statistics caused by the random selection of minibatches during

training, Batch Normalization causes the representation of a training example to randomly change

every time it appears in a different batch of data. By decreasing the number of examples that the

normalization statistics are calculated over, Ghost Batch Normalization increases the variability of

these changes, thereby increasing the amount of regularization. Based on this hypothesis, we would
3We experiment with batch sizes up to 128 in this chapter.

47

2 4 8 16 32 64 128
Ghost Batch Size

72

73

74

75

76

Ac
cu

ra
cy

CIFAR-100

2 4 8 16 32 64 128
Ghost Batch Size

98.625

98.650

98.675

98.700

98.725

98.750

98.775

98.800

Ac
cu

ra
cy

SVHN

2 4 8 16 32
Ghost Batch Size

40.0

42.5

45.0

47.5

50.0

52.5

55.0

57.5

Ac
cu

ra
cy

Caltech-256

Figure 4.3: Accuracy vs. Ghost Batch Normalization size for CIFAR-100, SVHN, and Caltech-256.

expect to see a unimodal effect of the Ghost Batch Normalization size B′ on model performance — a

large value of B′ would offer somewhat diminished performance as a weaker regularizer, a very low

value of B′ would have excess regularization and lead to poor performance, and an intermediate value

would offer the best tradeoff of regularization strength.

We confirm this intuition in Fig. 4.3. Surprisingly, just using this one simple technique was capable

of improving performance by 5.8% on Caltech-256 and 0.84% on CIFAR-100, which is remarkable

given it has no additional cost during training. On SVHN, though, where baseline performance is

already a very high 98.79% and models do not overfit much, usage of Ghost Batch Normalization did

not result in an improvement, giving evidence that at least part of its effect is regularization in nature.

In practice, B′ may be treated as an additional hyperparameter to optimize.

As a bonus, Ghost Batch Normalization has a synergistic effect with inference example weighing —

it has the effect of making each example more important in calculating its own normalization statistics

48

CIFAR-100

Caltech-256

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
54.0

54.5

55.0

55.5

56.0

56.5

57.0

A
cc

.

Ghost Batch Size 16

2.7

2.8

2.9

3.0

3.1

3.2

3.3

Lo
ss

0.00 0.02 0.04 0.06 0.08 0.10
54.0

54.5

55.0

55.5

56.0

56.5

57.0

57.5

58.0

A
cc

.

Ghost Batch Size 8

2.6

2.7

2.8

2.9

3.0

3.1

3.2

3.3

Lo
ss

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
53

54

55

56

57

58

59

60

A
cc

.

Ghost Batch Size 4

2.5

2.6

2.7

2.8

2.9

3.0

3.1

3.2

3.3

3.4

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
30

35

40

45

50

55

A
cc

.

Ghost Batch Size 2

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0

70.5

71.0

71.5

72.0

72.5

73.0

73.5

74.0

A
cc

.

Ghost Batch Size 2

1.0

1.2

1.4

1.6

1.8

2.0

Lo
ss

0.0 0.1 0.2 0.3 0.4
72.0

72.5

73.0

73.5

74.0

74.5

75.0

75.5

76.0

A
cc

.

Ghost Batch Size 4

1.1

1.2

1.3

1.4

1.5

1.6

Lo
ss

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
72.0

72.5

73.0

73.5

74.0

74.5

75.0

75.5

76.0

A
cc

.

Ghost Batch Size 8

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

Lo
ss

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
73.0

73.5

74.0

74.5

75.0

75.5

76.0

76.5

77.0

A
cc

.

Ghost Batch Size 16

1.00

1.05

1.10

1.15

1.20

1.25

1.30

Lo
ss

SVHN

0.0 0.2 0.4 0.6 0.8 1.0

98.56

98.58

98.60

98.62

98.64

98.66

98.68

98.70

A
cc

.

Ghost Batch Size 2

0.064

0.066

0.068

0.070

0.072

0.074

0.076

0.078

0.080

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
98.40

98.45

98.50

98.55

98.60

98.65

98.70

98.75

A
cc

.

Ghost Batch Size 4

0.066

0.068

0.070

0.072

0.074

Lo
ss

0.0 0.2 0.4 0.6 0.8
98.40

98.45

98.50

98.55

98.60

98.65

98.70

98.75

A
cc

.

Ghost Batch Size 8

0.066

0.068

0.070

0.072

0.074

0.076

0.078

0.080

Lo
ss

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
98.40

98.45

98.50

98.55

98.60

98.65

98.70

98.75

98.80

A
cc

.

Ghost Batch Size 16

0.066

0.068

0.070

0.072

0.074

0.076

0.078

0.080

Lo
ss

Figure 4.4: The complementary effects of Inference Example Weighing (Sec. 4.3.1) and Ghost Batch
Normalization (Sec. 4.3.2) on CIFAR-100, SVHN, and Caltech-256.

µi and σ2i . This importance is even greater the smaller that B′ is, and it is precisely this effect that

inference example weighing is designed to correct for. We show these results in Fig. 4.4, where we

find increasing gain from inference example weighing as B′ is made smaller, a gain that is in addition

to the benefits of Ghost Batch Normalization itself. Interestingly, these examples also demonstrate that

accuracy and cross-entropy, the most commonly-used classification loss, are only partially correlated,

with the optimal values for the inference example weight α sometimes differing wildly between the

two (e.g. for SVHN).

Summary: Ghost Batch Normalization is beneficial for all but the smallest of batch sizes, has no

computational overhead, is straightforward to tune, and can be used in combination with inference

example weighing to great effect.

49

4.3.3 Batch Normalization and Weight Decay

Weight decay [60] is a regularization technique that multiplies the weight of a neural network after each

weight update from gradient descent by a factor of 1 − δ, and has a complex interaction with Batch

Normalization. At first, it may even seem paradoxical that weight decay has any effect in a network

trained with Batch Normalization, as scaling the weights immediately before a normalization layer by

any non-zero constant has mathematically almost no effect on the output of the normalization layer

(and no effect at all when ε = 0 in the normalization layer). However, weight decay actually has a

subtle effect on the effective learning rate of networks trained with Batch Normalization — without

weight decay, the weights in a batch-normalized network grow to have large magnitudes, which has an

inverse effect on the effective learning rate, hampering training [41, 115].

Here we turn our attention to the less studied scale and bias parameters common in most normal-

ization methods, γ and β. As far as we are aware, the effect of regularization on γ and β has not been

studied to any great extent — Wu and He briefly mention weight decay with these parameters, where

weight decay was used when training from scratch, but not fine-tuning, two other works [27, 35] have

this form of weight decay explicitly turned off, and He et al. encourage disabling weight decay on γ

and β, but ultimately find diminished performance by doing so.

Unlike weight decay on weights in e.g. convolutional layers, which typically directly precede

normalization layers, weight decay on γ and β can have a regularization effect so long as there is a

path in the network between the layer in question and the ultimate output of the network, as if such

paths do not pass through another normalization layer, then the weight decay is never “undone” by

normalization. This structure is only common in certain types of architectures; for example, Residual

Networks [35, 36] have such paths for many of their normalization layers due to the chaining of skip-

connections. However, Inception-style networks [109, 107] have no residual connections, and despite

the fact that each “Inception block” branches into multiple paths, every Batch Normalization layer other

than those in the very last block do not have a direct path to the network’s output.

We evaluated the effects of weight decay on γ and β on CIFAR-100 across 10 runs, where we found

that incorporating it improved accuracy by a small but significant 0.3% (P = 0.002). Interestingly,

even though γ has a multiplicative effect, we did not find it mattered whether γ was regularized to 0 or

1 (P = 0.46) — what was important was whether it had weight decay applied at all.

We did the same comparison on Caltech-256 with Inception-v3 and ResNet-50 networks, where

we found evidence that the network architecture plays a crucial effect: for Inception-v3, incorporating

50

weight decay on γ and β actually hurt performance by 0.13% (mean across 3 trials), while it improved

performance for the ResNet-50 network by 0.91%, supporting the hypothesis that the structure of paths

between layers and the network’s output are what matter in determining its utility.

On SVHN, where the baseline ResNet-18 already had a performance of 98.79%, we found a similar

pattern as with Ghost Batch Normalization — introducing this regularization produced no change since

the model was originally hardly overfitting at all.

Summary: Regularization in the form of weight decay on the normalization parameters γ and β can

be applied to any normalization layer, but is only effective in architectures with particular connectivity

properties like ResNets and in tasks for which models are already overfitting.

4.3.4 Generalizing Batch and Group Normalization for Small Batches

While Batch Normalization is very effective in the medium to large-batch setting, it still suffers when

not enough examples are available to calculate reliable normalization statistics. Although we have

shown that techniques such as Inference Example Weighing (Sec. 4.3.1) can help significantly with

this, it is still only a partial solution. At the same time, Group Normalization [121] was designed for a

batch size of B = 1 or greater, but ignores all cross-image information.

In order to generalize Batch and Group Normalization in the batch size B > 1 case, we propose

to expand the grouping mechanism of Group Normalization from being over only channels to being

over both channels and examples — that is, normalization statistics are calculated both within groups

of channels of each example and across examples in groups within each batch.

In principle, this would appear to introduce an additional hyperparameter on top of the number of

channel groups used by Group Normalization, both of which would need to be optimized by expensive

end-to-end runs of model training. However, in this case we can actually take advantage of the fact

that the target batch size is small: if the batch size B is ever large enough that having multiple groups

in the example dimension is useful, then it is also large enough to eschew usage of the channel groups

from Group Normalization, in a regime where either vanilla Batch Normalization or Ghost Batch Nor-

malization is more effective. Thus, when dealing with a small batch size, in practice we only need to

optimize over the same set of hyperparameters as Group Normalization.

To demonstrate, we target the extreme setting ofB = 2, and incorporate Inference Example Weigh-

ing to all approaches. For CIFAR-100, this approach improves validation set performance over a tuned

51

Group Normalization by 0.69% in top-1 accuracy (from 73.91% to 74.60%, average over three runs),

and on Caltech-256, performance dramatically improved by 5.0% (from 48.2% to 53.2%, average over

two runs). However, this approach has one downside: due to differences in feature statistics across

examples, when using only two examples the variability in the normalization statistics can still be quite

high, even when using multiple channels within each normalization group. As a result, a regularization

effect can occur, which may be undesirable for tasks which models are not overfitting much. As in

Sec. 4.3.2 and Sec. 4.3.3, we see this effect in SVHN, where this approach is actually ever so slightly

worse than Group Normalization on the validation set (from 98.75% to 98.73%). On such datasets and

tasks, it may be more fruitful to invest in higher-capacity models.

Summary: Combining Group and Batch Normalization leads to more accurate models in the setting

of batch sizes B > 1, and can have a regularization effect due to Batch Normalization’s variability in

statistics when calculated over small batch sizes.

4.4 Additional Experiments

4.4.1 Experimental Details

All results in Sec. 4.3 were performed on the validation datasets of each respective dataset (this section

examines test set performance after hyperparameters have been optimized). Of the six datasets we

experiment with, only ImageNet [86] and Flowers-102 [80] have their own pre-defined validation split,

so we constructed validation splits for the other datasets as follows: for CIFAR-100 [58], we randomly

took 40,000 of the 50,000 training images for the training split, and the remaining 10,000 as a validation

split. For SVHN [79], we similarly split the 604,388 non-test images in an 80-20% split for training

and validation. For Caltech-256, no canonical splits of any form are defined, so we used 40 images of

each of the 256 categories for training, 10 images for validation, and 30 for testing. For CUB-2011, we

used 25% of the given training data as a validation set.

The model used for CIFAR-100 and SVHN was ResNet-18 [36, 35] with 64, 128, 256, and 512

filters across blocks. For Caltech-256, a much larger Inception-v3 [109] model was used, and we

additionally experiment with ResNet-152 [36] on Flowers-102 and CUB-2011 in Sec. 4.4.3. All exper-

iments were done on two Nvidia Geforce GTX 1080 Ti GPUs.

52

4.4.2 Combining All Four: Improvements Across Batch Sizes

Here we show the end-to-end effect of these four improvements on the test sets of each dataset, com-

paring against both Batch and Group Normalization, with a batch size B = 128. We plot results for

CIFAR-100 and Caltech-256 in Fig. 4.5 (a), comparing against Group Normalization and an ideal-

ized Batch Normalization with constant performance across batch sizes (simulating if the problematic

dependence of Batch Norm on the batch size were completely solved). On CIFAR-100, we see im-

provements against the best available baseline across all batch sizes.

For medium to large batch sizes (B ≥ 4), improvements are driven by the combination of Ghost

Batch Normalization (Sec. 4.3.2), Inference Example Weighing (Sec. 4.3.1), and weight decay intro-

duced on γ and β (Sec. 4.3.3). To aid in distinguishing between these effects, we also plot the impact

of Ghost Batch Normalization alone, which we find particularly impactful as long as the batch size

isn’t too small (B > 2). Turning to very small batch sizes, for B = 1 improvements are due to the

introduced weight decay, and for B = 2 the generalization of Batch and Group Normalization leads to

the improvement (Sec. 4.3.4), with some additional effect from weight decay.

Improvements on Caltech-256 follow the same trends, but to greater magnitude, with a total in-

crease in performance of 6.5% over Batch Normalization and an increase of 5.9% over Group Normal-

ization for B = 2.

4.4.3 Transfer Learning

We also show the applicability of these approaches in the context of transfer learning, which we demon-

strate on the Flowers-102 [80] and CUB-2011 [118] datasets via fine-tuning a ResNet-152 model from

ImageNet. These tasks present several challenges: 1) the Flowers-102 data only contains 10 images

per category in the training set (and CUB-2011 only 30 examples per class), 2) pre-training models on

ImageNet is a very strong form of prior knowledge, and despite the small dataset size may heavily re-

duce the regularization effects of some of the techniques, and 3) we examine the setting of pre-training

with generic ImageNet models trained without any of these modifications, which gives an advantage to

both the generic Batch Normalization and Group Normalization, for which pre-trained models exist.

We plot results in Fig. 4.5 (b), where we find remarkable qualitative agreement of our non-transfer

learning results to this setting, despite the challenges. In total, on Flowers-102 our techniques were able

to improve upon Batch Normalization by 2.4% (from 91.0% to 93.4% top-1 accuracy, a 27% relative

53

1 2 4 8 16 32 64

Batch size

75

76

77

78

79

80

81

82

83

A
cc

u
ra

cy

CUB-2011

Batch Normalization (ideal)

Group Normalization

Ghost Batch Normalization

Ours

1 2 4 8 16 32

Batch size

44

46

48

50

52

54

56

58

A
cc

u
ra

cy

Caltech-256

Batch Normalization (ideal)

Group Normalization

Ghost Batch Normalization

Ours

1 2 4 8 16 32 64 128

Batch size

74.0

74.5

75.0

75.5

76.0

76.5

77.0

77.5

78.0

78.5

A
cc

u
ra

cy

CIFAR-100

Batch Normalization (ideal)

Group Normalization

Ghost Batch Normalization

Ours

1 2 4 8 16 32 64

Batch size

82

84

86

88

90

92

94

96

A
cc

u
ra

cy

Flowers-102

Batch Normalization (ideal)

Group Normalization

Ghost Batch Normalization

Ours

(a)

(b)

Figure 4.5: Total performance changes across batch sizes for CIFAR-100 and Caltech-256 (a) when
training from scratch, incorporating all proposed improvements to Batch Normalization. On the bottom
(b) is the same on Flowers-102 and CUB-2011, which employs transfer learning via fine-tuning from
ImageNet. Also shown within each plot is the performance of Group Normalization, an idealized Batch
Normalization that scales perfectly across batch sizes, and Ghost Batch Normalization (Sec. 4.3.2) by
itself, for which the x-axis represents the Ghost Batch Size B′.

reduction in error), and upon Group Normalization by 6.1% (from 87.3%, a 48% relative reduction in

error). On CUB-2011, which has more training data, we improved upon Batch Normalization by 1.4%

(from 81.1% to 82.4%) and Group Normalization by 3.8% (from 78.6%).

We anticipate that even further improvements might arise by additionally pre-training models with

some of these techniques (particularly Ghost Batch Normalization), as we were able to see a large

impact (roughly 5%) on Group Normalization by pre-training with a Group Normalization-based model

instead of Batch Normalization.

54

Table 4.1: Accuracy on CIFAR-100 with non-i.i.d. minibatches. B′ refers to the Ghost Batch Nor-
malization size (equivalent to the batch size for Batch Normalization and Batch Renormalization), and
“Batch Group Norm.” refers to our approach in Sec. 4.3.4. “Inf. Ex. Weight: Off” refers to using only
the moving averages for normalization statistics (i.e. α = 0), while “On” refers to tuning α based on
the validation set.

Method B′ Inf. Ex. Weight: Off Inf. Ex. Weight: On
Batch Norm 128 40.1 62.2

Batch ReNorm 128 69.0 69.0

Ghost Batch Norm

64 42.3 50.8
32 57.8 70.9
16 64.3 72.2
8 68.7 72.0
4 70.4 71.5
2 68.4 71.4

Batch Group Norm. 2 75.2 76.1

4.4.4 Non-i.i.d. minibatches

An implicit assumption in Batch Normalization is that training examples are sampled independently, so

that minibatch normalization statistics all follow roughly the same distribution and training statistics are

faithfully represented in the moving averages. However, in applications where training batches are not

sampled i.i.d., such as metric learning [81, 76] or hard negative mining [95], violating this assumption

may lead to undesired consequences in the model. Here, we test our approaches in this challenging

setting.

Following Batch Renormalization [50], we study the case where examples in a minibatch are sam-

pled from a small number of classes — specifically, we consider CIFAR-100, and study the extreme

case where each minibatch (B = 128) is comprised of examples from only four random categories

(sampled with replacement), each of which is represented with 32 examples in the minibatch. We

present results for Batch Normalization, Batch Renormalization, our generalization of Batch and Group

Normalization from Sec. 4.3.4 (“Batch Group Norm.”), and the full interaction of Ghost Batch Normal-

ization and Inference Example Weighing in Table 4.1. In this challenging setting, Inference Example

Weighing, Ghost Batch Normalization, and Batch Group Norm all have large effect, in many cases

halving the error rate of Batch Normalization. For example, Inference Example Weighing was able to

reduce the error rate by 20% without any retraining, and tuning Ghost Batch Normalization, even with-

55

out any inference modifications, was just as effective as Batch Renormalization, a technique partially

designed for the non-i.i.d. case. Even further, Batch Group Normalization was hardly affected at all by

the non-i.i.d. training distribution (76.1 vs 76.2 for i.i.d.). Last, it is interesting to note that Inference

Example Weighing had practically no effect on Batch Renormalization (improvement ≤ 0.1%), con-

firming Batch Renormalization’s effect in making models more robust to the use of training vs moving

average normalization statistics.

4.5 Conclusion

In this chapter, we have demonstrated four improvements to Batch Normalization applicable to all who

use it. These include: a method for leveraging the statistics of inference examples more effectively in

normalization statistics, fixing a discrepancy between training and inference with Batch Normalization;

demonstrating the surprisingly powerful effect of Ghost Batch Normalization for improving general-

ization of models without requiring very large batch sizes; investigating the previously unstudied effect

of weight decay on the scaling and shifting parameters γ and β; and introducing a new approach for

normalization in the small batch setting, generalizing and leveraging the strengths of both Batch and

Group Normalization. In each case, we have done our best to not only demonstrate the effect of the

method, but also provide guidance and evidence for precisely which cases in which it may be effective,

which we hope will aid in their applicability.

56

5. Nondeterminism and Instability

In this final chapter, we examine an issue present and implicit in each previous chapter: the role of non-

determinism in the optimization process of neural networks. The direct effect of nondeterminism is an

increase in uncertainty levels of performance, which makes it difficult to validate model improvements.

Here, we develop a protocol for testing the effects of nondeterminism, and demonstrate that all sources

of nondeterminism considered have similar effects across a wide range of model diversity measures.

Then, we identify the instability of model training as the key factor creating this effect, and develop

two approaches that reduce the effects of instability on run-to-run variability.

5.1 Introduction

Consider this common scenario: you have a baseline “current best” model, and are trying to improve it.

One of your experiments has produced a model whose metrics are slightly better than the baseline. Yet

you have your reservations — how do you know the improvement is “real” and not due to run-to-run

variability?

Similarly, consider hyperparameter optimization, in which many possible values exist for a set of

hyperparameters, with minor differences in performance between them. How do you pick the best

hyperparameters, and how can you be sure that you’ve actually picked wisely?

In both scenarios, the standard practice is to train multiple independent copies of your model to

understand its variability. While this helps address the problem, it is extremely wasteful, using more

computing power, increasing the time required for effective research, and making reproducibility diffi-

cult, all while still leaving some uncertainty.

Ultimately, the source of this problem is nondeterminism in model optimization — randomized

57

components of model training that cause each run to produce different models with their own perfor-

mance characteristics, even when given the same input. Nondeterminism itself occurs due to many

factors: while the most salient source is the random initialization of parameters, other sources exist,

including random shuffling of training data, stochasticity in data augmentation, explicit random opera-

tions (e.g. dropout [101]), asynchronous training [85], and even nondeterminism in low-level libraries

such as cuDNN [8]. While it is often possible to set random seeds to control for these factors and make

training deterministic (i.e. produce the same model weights every time training is done), doing so risks

overfitting to a given set of random seeds and may also lead to slower training (e.g. using cuDNN in a

deterministic mode is slower than when running nondeterministically).

Despite the clear impact nondeterminism has on the efficacy of modeling, relatively little attention

has been paid towards understanding its mechanisms. In this chapter, we establish an experimental

protocol for analyzing the impact of nondeterminism in model training, allowing us to quantify the

independent effect of each source of nondeterminism. In doing so, we make a surprising discovery:

each source has nearly the same effect on the variability of final model performance. Further, we

find each source produces models of similar diversity, as measured by correlations between model

predictions, functional changes in model performance while ensembling, and state-of-the-art methods

of model similarity [57]. To emphasize one particularly interesting result: nondeterminism in low-level

libraries like cuDNN can matter just as much with respect to model diversity and variability as varying

the entire network initialization.

We explain this mystery by demonstrating that it can be attributed to instability in optimizing neural

networks — when training with SGD-like approaches, we show that small changes to initial parameters

result in large changes to final parameter values. In fact, the instabilities in the optimization process

are extreme: changing a single weight by the smallest possible amount within machine precision (∼6 ·
10−11) produces nearly as much variability as all other sources combined. Therefore, any source of

nondeterminism with any effect at all on model weights inherits at least this level of variability.

Last, we present promising results in reducing the effects of instability on run-to-run variability.

While we find that many approaches result in no apparent change, we propose and demonstrate two

approaches that reduce model variability without any increase in model training time: accelerated

model ensembling and test-time augmentation. Together, these provide the first encouraging signs for

the tractability of this problem.

58

5.2 Related Work

Nondeterminism. Relatively little prior work has studied the effects of nondeterminism on model

optimization. Within reinforcement learning, nondeterminism is recognized as a significant barrier to

reproducibility and evaluating progress in the field [78, 37, 52, 71]. In the setting of supervised learning,

though, the focus of this chapter, the problem is much less studied. Madhyastha and Jain [72] aggregate

all sources of nondeterminism together into a single random seed and analyze the variability of model

attention and accuracy as a function of it across various NLP datasets. They also propose a method for

reducing this variability (see Sec. B.4 for details of our reproduction attempt). More common in the

field, results across multiple random seeds are reported [16], but the precise nature of nondeterminism’s

influence on variability goes unstudied.

Instability. We use the term “stability” analogously to numerical stability [38], in which a stable

algorithm is one for which the final output (converged model) does not vary much as the input (initial

parameters) are changed. In other contexts, the term “stability” has been used both in learning theory

[6] and in reference to vanishing and exploding gradients [32].

5.3 Nondeterminism

Many sources of nondeterminism exist in neural network optimization, each of affects the variability

of trained models. We begin with a very brief overview:

Parameter Initialization. When training a model, parameters without preset values are initial-

ized randomly according to a given distribution, e.g. a zero-mean Gaussian with variance determined

by the number of input connections to the layer [25, 34].

Data Shuffling. In stochastic gradient descent, the gradient is approximated on a random subset

of examples, commonly implemented by using small batches of data iteratively in a shuffled training

dataset [5]. Shuffling may happen either once, before training, or in between each epoch of training,

the variant we use in this chapter.

59

Data Augmentation. A common practice, data augmentation refers to randomly altering each

training example to artificially expand the training dataset [94]. For example, randomly flipping images

encourages invariance to left/right orientation.

Stochastic Regularization. Some types of regularization, such as Dropout [101], take the form

of stochastic operations internal to a model during training. Other instances of this include DropCon-

nect [119] and variable length backpropagation through time [75], among many others. When not

controlled for, these random operations can make training nondeterministic.

Low-level Operations. Often underlooked, many libraries that deep learning frameworks are

built on, such as cuDNN [8] typically run nondeterministically for performance reasons. This nonde-

terminism is small — in one test we performed it caused an output difference of 0.003%. In the case of

cuDNN, the library we test, it is possible to disable nondeterministic behavior at a speed penalty on the

order of ∼15%. However, unlike nondeterminism sources, it is not possible to “seed” this; it is only

possible to turn it on or off.

5.3.1 Protocol for Testing Effects of Nondeterminism

Performance Variability. Our protocol for testing the effects of sources of nondeterminism is

based on properly controlling for each source. Formally, suppose there are N sources of nondetermin-

ism, with source i controlled by seed Si. To test the effect of source i, we keep all values {Sj}j 6=i set

to a constant, and vary Si with R different values, where R is the number of independent training runs

performed. For sources of nondeterminism which cannot be effectively seeded, such as cuDNN, we

indicate one of these values as the deterministic value, which it must be set to when varying the other

sources of nondeterminism.

For example, denote S1 the seed for random parameter initialization, S2 for training data shuffling,

and S3 for cuDNN, where S3 = 1 is the deterministic value for cuDNN. To test the effect of random

parameter initialization, with a budget of R = 100 training runs, we set S3 to the deterministic value

of 1, S2 to an arbitrary constant (typically 1 for simplicity), and test 100 different values of S1. All

together, this corresponds to training models for each of (S1, S2, S3) ∈ {(i, 1, 1)}100i=1. To measure

variability of a particular evaluation metric (e.g. cross-entropy or accuracy, the standard metrics used

for classification), we calculate the standard deviation (across all R = 100 models) of the metric. Note

60

that it is also possible to test the effects of several sources of nondeterminism in tandem this way,

e.g. by considering (S1, S2, S3) ∈ {(i, i, 0)}Ri=1 to measure the joint effect of all three sources in this

example, though it is more challenging to measure more precise interactions between several sources

without running experiments for all possible combinations of random seeds.

Representation Diversity. We also examine differences in the representation of trained models,

complementary to variability in test set performance — this allows us to differentiate cases where

two sources of nondeterminism have similar performance variability but actually produce models with

disparate amounts of representational similarity. In order to rigorously examine this, we consider four

distinct analyses of the functional behavior of models:

The first and simplest metric we consider is the average disagreement between pairs of models, with

higher disagreement corresponding to higher diversity and variability. In contrast to our other metrics,

this considers only the argmax of a model’s predictions (i.e. the index of the prediction with highest

output value), which makes it the most limited but also the most interpretable of the group. This metric

has also been used recently to compare similarity in the context of network ensembles [20].

Second, we consider the average correlation between the predictions of two models, i.e. the expec-

tation (across pairs of models from the same nondeterminism source), of the correlation of predictions,

calculated across examples and classes. Concretely, for a classification task, the predicted logits from

each of R models are flattened into vectors of length N ∗C (with N test examples and C classes), and

we calculate the mean correlation coefficient of the predictions across all
(
R
2

)
pairs of models. We use

Spearman’s ρ for the correlation coefficient, but note that other metrics are possible and yield similar

conclusions. For this metric, a lower score indicates a more diverse set of models. This heuristic ac-

counts for model outputs beyond the argmax, allowing one to examine similarities in the full output

distribution of models.

The third analysis we perform examines the change in performance in ensembling two models

from the same source of nondeterminism. Intuitively, if a pair of models are completely redundant,

then ensembling them would result in no change in performance. However, if models actually learn

different representations, then ensembling should on average create an improvement (unless there is

a great difference in performance between the two, which is not the case in our experiments varying

random seeds), with a greater improvement the greater the diversity in a set of models. Denoting by

f(Si) some particular evaluation metric f calculated on the predictions of model Si, and Si+Sj

2 the

ensemble of models Si and Sj , this change is formally:

61

1(
R
2

) R∑
i=1

R∑
j=i+1

(
f

(
Si + Sj

2

)
− f(Si) + f(Sj)

2

)
(5.1)

Last, for a more detailed view of learned representations internal to a network, we consider a

state-of-the-art method for measuring the similarity of neural network representations, centered kernel

alignment (CKA) [57], which has previously been used to analyze models trained with different random

initializations, widths, and even entirely different architectures. Computing CKA between a pair of

models results in a score bounded above by 1, where 1 is perfect representational similarity between

models, and lower corresponds to greater dissimilarity. We use the linear version of CKA, which

Kornblith et al. found to perform similarly to more complicated RBF kernels.

5.3.2 Experiments in Image Classification

We begin our study of nondeterminism with the fundamental task of image classification. We execute

our protocol with CIFAR-10 [58] as a testbed, a 10-way classification dataset with 50,000 training

images of resolution 32 × 32 pixels and 10,000 for testing. In these initial experiments, we use a 14-

layer ResNet model [35], trained with a cosine learning rate decay [67] for 500 epochs with a maximum

learning rate of .40, three epochs of learning rate warmup, a batch size of 512, momentum of 0.9, and

weight decay of 5 · 10−4, obtaining a baseline accuracy of 90.0%. Data augmentation consists of

random crops and horizontal flips. All experiments were done on two NVIDIA Tesla V100 GPUs with

pytorch [83].

We show the results of our protocol in this setting in Table 5.1. Across all measures of performance

variability and representation diversity, what we find is surprising and clear — while there are slight

differences, each source of nondeterminism has very similar effects on the variability of final trained

models. In fact, random parameter initialization, arguably the most salient form of nondeterminism,

does not stand out based on any of these metrics, and even combinations of multiple sources of nonde-

terminism produce remarkably little difference — all are within a maximum of 20% (relative) of each

other. No nondeterminism source or combination of sources is even a factor of two more important

than any other across any metric.

Turning toward CKA and representational diversity on intermediate layers in the model, we plot

average CKA values across 6 representative layers in Fig. 5.1, done for pairwise combinations of 25

62

Table 5.1: The effect of each source of nondeterminism and several combinations of nondeterminism
sources for ResNet-14 on CIFAR-10. The second and third columns give the standard deviation of ac-
curacy and cross-entropy across 100 runs, varying only the nondeterminism source (700 trained models
total). Also given are error bars, corresponding to the standard deviation of each standard deviation.
The fourth, fifth, and sixth columns give the average percentage of examples models disagree on, the
average pairwise Spearman’s correlation coefficient between predictions, and the average change in
accuracy from ensembling two models, respectively (Sec. 5.3.1).

Nondeterminism Source
Accuracy Cross-Entropy Pairwise Pairwise Ensemble
SD (%) SD Disagree (%) Corr. ∆ (%)

Parameter Initialization 0.23± 0.02 0.0074± 0.0005 10.7 0.872 1.82
Data Shuffling 0.25± 0.02 0.0082± 0.0005 10.6 0.871 1.81
Data Augmentation 0.23± 0.02 0.0072± 0.0005 10.7 0.872 1.83
cuDNN 0.22± 0.01 0.0083± 0.0007 10.5 0.873 1.76
Data Shuffling + cuDNN 0.21± 0.01 0.0077± 0.0005 10.6 0.871 1.80
Data Shuffling + Aug. + cuDNN 0.22± 0.01 0.0074± 0.0005 10.7 0.871 1.84
All Nondeterminism Sources 0.26± 0.02 0.0072± 0.0005 10.7 0.871 1.82

Table 5.2: The effect of each source of nondeterminism for a QRNN on Penn Treebank; 100 runs per
row. Note that lower PPL is better for language modeling tasks, so changes in PPL from ensembling
are negative.

Nondeterminism Source PPL SD Pairwise Disagree (%) Ensemble PPL ∆

Parameter Initialization 0.20± 0.01 17.3 -2.07
Stochastic Operations 0.19± 0.01 17.3 -2.08
All Nondeterminism Sources 0.18± 0.01 17.4 -2.07

models (due to the cost of CKA). Consistent with other analyses, CKA reveals that while some differ-

ences in average representational similarity exist between nondeterminism sources, particularly in the

output of the first residual block (differences of up to 3.5%), by and large these differences are small,

easily dwarfed in size by differences across layers (differences of up to 13%).

5.3.3 Experiments in Language Modeling

Here we show that this phenomenon is not unique to image classification by applying the same ex-

perimental protocol to language modeling. For these experiments, we employ a small quasi-recurrent

neural network (QRNN) [7] on Penn Treebank [74], using the publicly available code of [75]. This

63

Conv1 ResBlock1 ResBlock2 ResBlock3 AvgPool Logits

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00
Param. Init
Data Shuffle
Data Aug.
cuDNN
Shuffle + cuDNN
Shuffle + Aug. + cuDNN
All sources

Figure 5.1: Average CKA representation similarity [57] for pairs of ResNet-14 models on CIFAR-10
across nondeterminism sources and a variety of network layers.

model uses a 256-dimensional word embedding, 512 hidden units per layer, and 3 layers of recurrent

units, obtaining a perplexity (PPL) of 75.49 on the Penn Treebank test set.

For this task, two sources of nondeterminism are relevant: random parameter initialization, and

stochastic operations, including a variation of dropout and variable length backpropagation through

time, which share a common seed. To measure performance variability, PPL is the most widely-

accepted metric, and for diversity in representation we focus on only two metrics (pairwise disagree-

ment and benefits from ensembling) because CKA was not designed for variable-length input and

standard computing libraries [117] are not efficient enough to calculate O(R2) correlation coefficients

with such large inputs.

We show results in Table 5.2, where we find almost no difference across all diversity metrics,

showing the phenomenon generalizes beyond image classification and ResNets.

64

0 100 200 300 400 500
Epoch

0.00

0.05

0.10

0.15

0.20

0.25

Ac
cu

ra
cy

 S
D

Data Aug.
Data Shuffling
cuDNN
All Nondeterminism Sources

Figure 5.2: The effect of the onset of nondeterminism on the variability of accuracy in converged
models. Each point corresponds to training 100 models deterministically for a certain number of epochs
(x-axis), then enabling a given source of nondeterminism by varying its seed starting from that epoch
and continuing through to the end of training. Epochs evaluated are {0, 50, 250, 400, 450, 480, 490,
495, 498}, with a linear interpolation shown.

5.3.4 Nondeterminism Throughout Training

One hypothesis for the this phenomenon’s cause is the sensitivity of optimization in the initial phase

of learning, which recent work has demonstrated in other contexts [2, 21]. With our experimental

protocol, this is straightforward to test: If this were the case, then training models identically for the

first N epochs and only then introducing nondeterminism would result in a significantly less variability

in trained models, measured across any metric of choice. Furthermore, by varying N , we can actually

determine when in training each source of nondeterminism has its effect (for sources that vary over the

course of training, i.e. not random parameter initialization).

We perform this experiment for the ResNet-14 model on CIFAR-10 in Fig. 5.2, where we find that

the beginning of training is not particularly sensitive to nondeterminism. Instead, model variability

is nearly as high when enabling nondeterminism even after 50 epochs, and we see only a gradual

reduction in final model variability as the onset of nondeterminism is moved later and later.

65

Table 5.3: The effect of instability — randomly changing a single weight by one bit during initialization
for ResNet-14 on CIFAR-10.

Nondeterminism Source
Accuracy Cross-Entropy Pairwise Pairwise Ensemble
SD (%) SD Disagree (%) Corr. ∆ (%)

Random Bit Change 0.21± 0.01 0.0068± 0.0004 10.6 0.874 1.82

5.4 Instability

Why does each source of nondeterminism have similar effects on model variability? To answer this

question, we find the smallest possible change that produces the same amount of variability, in the

process demonstrating the instability in optimizing neural networks.

5.4.1 Instability and Nondeterminism

To demonstrate, we perform a simple experiment: First we deterministically train a simple ResNet-14

model on CIFAR-10, achieving a test cross-entropy of 0.3519 and accuracy of 90.0%. Then, we train

another model in an identical fashion, with exactly equal settings for all sources of nondeterminism, but

one extremely small change: randomly pick a single weight in the first layer and change its value by the

smallest possible amount in a 32-bit floating point representation, i.e. an addition or subtraction of a

single bit in the least-significant digit. As an example, this could change a value from −0.0066514308

to −0.0066514313, a difference on the order of 5 · 10−10.

What happens when we optimize this model, different from the original by only a single bit? By

the end of the first epoch of training, with the learning rate still warming up, the new model already

differs in accuracy by 0.18% (25.74% vs 25.56%). In one more epoch the difference is a larger 2.33%

(33.45% vs 31.12%), and after three epochs, the difference is a staggering 10.42% (41.27% vs 30.85%).

Finally, at the end of training the model weights converge, the new model obtained an accuracy of

90.12% and a cross-entropy of 0.34335, substantially different from the original despite only a tiny

change in initialization. For another perspective, viewing the optimization process end-to-end, with the

initial parameters as the input and a given performance metric as the output, we have demonstrated a

condition number ‖δf‖‖δx‖ of 1.8 · 107 for cross-entropy and 2.6 · 108 for accuracy.

We can more rigorously test this using our protocol from Sec. 5.3 — this time, our source of

nondeterminism is randomly picking a different weight to change in each model training run, then

66

Table 5.4: The effect of instability for a QRNN on Penn Treebank. Also see Table 5.2 for comparison.

Nondeterminism Source PPL SD Pairwise Disagree (%) Ensemble PPL ∆

Random Bit Change 0.19± 0.01 17.7 -2.07

either incrementing or decrementing it to the next available floating-point value. We show the results

in Table 5.3 for image classification on CIFAR-10 (c.f. Table 5.1 for comparison) and Table 5.4 for

language modeling on Penn Treebank (c.f. Table 5.2), where we find that even this small change

produces roughly as much variability in model performance as every other source of nondeterminism.

From this, it is easy to see why every other source of nondeterminism has similar effects — so long

as nondeterminism produces any change in model weights, whether by changing the input slightly,

altering the gradient in some way, or any other effect, it will produce at least as much model variability

as caused by the instability of model optimization.

5.4.2 Instability and Depth

Instability occurs in networks of more than a single layer.

Due to convexity, linear models optimized with a cross-entropy loss and an appropriate learning

rate schedule always converge to a global minimum. However, in practice we find an even stronger

property: when initial weights are modified by a single bit, beyond simply converging to the same final

value, the entire optimization trajectory stays close to that of an unperturbed model, never differing by

more than a vanishingly small amount. At convergence, a set of linear models trained in this way with

only single random bit changes had a final accuracy SD of 0 (i.e. no changes in any test set predictions)

and cross-entropy SD of ∼1 · 10−7, far below that of any deeper model.

In contrast, instability occurs as soon as a single hidden layer was added, with an accuracy SD of

0.28 and cross-entropy SD of 0.0051 for a model with a fully-connected hidden layer, and an accuracy

SD of 0.14 and cross-entropy SD of 0.0022 when the hidden layer is convolutional, both a factor of

10,000 greater than the linear model. See Sec. B.1 and Sec. B.2 for full details and a visualization of

the effects of instability during training.

67

5.5 Reducing Variability

Here we identify and demonstrate two approaches that partially mitigate the variability caused by non-

determinism and instability. See the Sec. B.4 for learnings on approaches which did not reduce vari-

ability.

Accelerated Ensembling. As previously mentioned, the standard practice for mitigating run-to-

run variability is to train multiple independent copies of a model, gaining a more robust performance

estimate by measuring a metric of interest over multiple trials. Ensembling is a similar alternative ap-

proach, which shares the intuition of multiple independent training runs, but differs in that the predic-

tions themselves are averaged and the performance of the ensembled model itself is measured. How-

ever, since ensembling still requires training multiple model copies, is does not reduce the burden

caused by nondeterminism and instability.

To that end, we propose the use of accelerated ensembling techniques to reduce variability. Ac-

celerated ensembling is a recent research direction with a goal of mimicking a full model ensem-

ble but only requiring one training run, with a variety of techniques to achieve this goal under re-

search [45, 22, 120]. While such techniques typically underperform regular ensembles, which are

composed out of models trained independently, the nature of their accelerated training can reduce vari-

ability without incurring additional cost during training.

The approach we focus on is Snapshot Ensembles [45], which uses a cyclic learning rate schedule,

creating ensemble members when the learning rate goes to 0 (before rising again due to the cyclic

learning rate).

In Table 5.5, we compare a snapshot ensemble (“Acc. Ens.”) with 5 cycles in its learning rate (i.e.

model snapshots are taken after every 100 epochs of training) to ordinary ensembling on CIFAR-10

with all sources of nondeterminism enabled. Despite training only a single model, the accelerated en-

semble had variability in accuracy and cross-entropy comparable to an ensemble of two independently-

trained models, with other metrics comparable to those of even larger ensembles. Across measures,

accelerated ensembling reduces variability by an average of 48% relative.

Test-Time Data Augmentation. Test-time data augmentation (TTA) is the practice of augment-

ing test set examples using data augmentation, averaging model predictions made on each augmented

68

Table 5.5: Comparison of single and ensemble model variability on CIFAR-10 with proposed meth-
ods for reducing the effects of nondeterminism. For standard ensembles, N denotes the number of
constituent models, “Acc. Ens.” uses the Snapshot Ensemble method of accelerated ensembling, and
[Single|Acc. Ens.]/[Flip|Flip-Crop]-TTA use either horizontal flips or flips and crops for test-time aug-
mentation on top of either regular single models or an accelerated ensemble. Also shown is the train-
ing time and average relative reduction in variability across metrics compared to the baseline ‘Single
Model”. All results are based on 100 runs of model training.

Model
Training Accuracy Cross-Entropy Pairwise Pairwise Ensemble Variability

Cost SD (%) SD Disagree (%) Corr. ∆ (%) Reduction

Single Model 1× 0.26± 0.02 0.0072± 0.0005 10.7 0.871 1.82 n/a
Ensemble (N = 2) 2× 0.19± 0.02 0.0044± 0.0004 6.9 0.929 0.89 39%
Ensemble (N = 3) 3× 0.15± 0.02 0.0033± 0.0005 5.5 0.951 0.59 55%
Ensemble (N = 4) 4× 0.17± 0.02 0.0030± 0.0004 4.6 0.963 0.43 60%
Ensemble (N = 5) 5× 0.12± 0.02 0.0028± 0.0004 4.1 0.970 0.34 67%
Acc. Ens. 1× 0.19± 0.02 0.0044± 0.0003 6.1 0.957 0.63 48%
Single/Flip-TTA 1× 0.24± 0.02 0.0061± 0.0005 8.2 0.905 1.20 21%
Single/Flip-Crop-TTA 1× 0.19± 0.01 0.0049± 0.0004 6.9 0.922 0.92 37%
Acc. Ens./Flip-TTA 1× 0.15± 0.01 0.0039± 0.0003 5.0 0.967 0.45 58%
Acc. Ens./Flip-Crop-TTA 1× 0.16± 0.01 0.0033± 0.0002 4.6 0.972 0.38 61%

example, and is typically used to improve generalization [108]. TTA can be thought of as a form of

ensembling in data-space, since predictions of different augmented examples are ensembled together,

providing a parallel to the model-space averaging of standard ensembling, which partially mitigated

the variability due to nondeterminism.

In Table 5.5 (last four rows), we show results on CIFAR-10 with horizontal flip TTA and image

cropping TTA (details in Sec. B.3), and also experiment with combining accelerated ensembling with

TTA. Simple flip TTA reduces variability across all metrics (21% relative reduction on average), and

adding crops pushes this to 37%. Combined with accelerated model ensembling, this reduces variability

by 61%, while maintaining the same training budget as the baseline “Single Model”.

5.6 Generalization Experiments

In this section we detail additional experiments to show the generalization of our results on nondeter-

minism, instability, and methods to reduce variability to other datasets (MNIST, ImageNet) and model

architectures. We compile our main generalization results in Table 5.6, with additional results in Ap-

pendix B.

69

Table 5.6: Generalization experiments of nondeterminism and instability with other architectures on
CIFAR-10, ImageNet, and MNIST. For CIFAR-10 and MNIST, each row is computed from the statis-
tics of 100 trained models, and for ImageNet, each row is computed from 30 trained models. Within
each section the most relevant comparisons to make are between “Random Bit Change” and “All Non-
determinism Sources” to evaluate instability, and between “All Nondeterminism Sources”, “Acc. Ens.”,
and each TTA method to evaluate the efficacy of our proposals to mitigate the effects of nondetermin-
ism and instability (all TTA models have all sources of nondeterminism enabled). Notation follows
Tables 5.1 and 5.5.

Nondeterminism Source
Accuracy Cross-Entropy Pairwise Pairwise Ensemble

SD (%) SD Disagree (%) Corr. ∆ (%)

CIFAR-10: ResNet-6

Parameter Initialization 0.50± 0.04 0.0117± 0.0010 20.0 0.925 2.17
All Nondeterminism Sources 0.43± 0.03 0.0106± 0.0007 20.1 0.924 2.17
Random Bit Change 0.41± 0.02 0.0094± 0.0006 19.8 0.925 2.12
Single/Flip-Crop-TTA 0.44± 0.03 0.0096± 0.0006 15.6 0.949 1.41
Acc. Ens. 0.45± 0.03 0.0104± 0.0007 14.0 0.963 0.99
Acc. Ens./Flip-Crop-TTA 0.43± 0.03 0.0096± 0.0006 11.6 0.973 0.71

CIFAR-10: ResNet-18

Parameter Initialization 0.15± 0.01 0.0067± 0.0005 4.7 0.814 0.71
All Nondeterminism Sources 0.18± 0.01 0.0073± 0.0005 4.8 0.808 0.75
Random Bit Change 0.13± 0.01 0.0060± 0.0005 4.7 0.830 0.73
Single/Flip-Crop-TTA 0.14± 0.01 0.0047± 0.0003 3.4 0.851 0.41
Acc. Ens. 0.13± 0.01 0.0038± 0.0003 2.9 0.884 0.31
Acc. Ens./Flip-Crop-TTA 0.11± 0.01 0.0029± 0.0002 2.2 0.909 0.19

CIFAR-10: ShuffleNetv2-50%

Parameter Initialization 0.22± 0.01 0.0112± 0.0007 8.4 0.696 1.38
All Nondeterminism Sources 0.22± 0.02 0.0123± 0.0008 8.4 0.692 1.40
Random Bit Change 0.21± 0.01 0.0107± 0.0006 8.3 0.695 1.36
Single/Flip-Crop-TTA 0.18± 0.01 0.0093± 0.0007 6.5 0.762 0.90
Acc. Ens. 0.18± 0.01 0.0067± 0.0005 5.0 0.930 0.52
Acc. Ens./Flip-Crop-TTA 0.15± 0.01 0.0051± 0.0004 4.1 0.948 0.35

CIFAR-10: VGG-11

Parameter Initialization 0.20± 0.01 0.0063± 0.0004 6.6 0.807 0.91
All Nondeterminism Sources 0.18± 0.01 0.0065± 0.0004 6.6 0.806 0.94
Random Bit Change 0.16± 0.01 0.0060± 0.0004 6.5 0.811 0.89
Single/Flip-Crop-TTA 0.15± 0.01 0.0042± 0.0003 4.2 0.892 0.36
Acc. Ens. 0.13± 0.01 0.0041± 0.0003 4.1 0.914 0.39
Acc. Ens./Flip-Crop-TTA 0.11± 0.01 0.0026± 0.0002 2.8 0.951 0.17

MNIST

Parameter Initialization 0.047± 0.0036 0.0024± 0.0001 0.54 0.941 0.064
All Nondeterminism Sources 0.046± 0.0032 0.0022± 0.0001 0.56 0.939 0.068
Random Bit Change 0.035± 0.0026 0.0011± 0.0001 0.30 0.989 0.011
Single/Crop-TTA 0.039± 0.0025 0.0016± 0.0001 0.38 0.953 0.037
Acc. Ens. 0.050± 0.0031 0.0019± 0.0001 0.55 0.943 0.064
Acc. Ens./Crop-TTA 0.046± 0.0028 0.0013± 0.0001 0.40 0.956 0.039

ImageNet: ResNet-50 (5 epoch)

All Nondeterminism Sources 0.27± 0.03 0.0625± 0.0142 26.3 0.933 1.34
Random Bit Change 0.34± 0.05 0.0935± 0.0313 24.7 0.944 1.18
Single/Flip-TTA 0.27± 0.03 0.0604± 0.0137 23.6 0.942 1.04
Single/Crop-TTA 0.26± 0.03 0.0653± 0.0152 24.4 0.939 1.17
Single/Flip-Crop-TTA 0.26± 0.03 0.0636± 0.0146 22.3 0.946 0.95

70

CIFAR-10. On CIFAR-10, in addition to the ResNet-14 employed throughout this chapter, we

experiment with a smaller 6-layer variant, larger 18-layer variant, VGG-11 [98], and a 50%-capacity

ShuffleNetv2 [70]. As shown in Table 5.6, the observations around instability and its relationship

to nondeterminism generally hold for these architectures, with a close correspondence between the

magnitude of effects for a random bit change and each of the five metrics considered.

Turning towards our proposals (Sec. 5.5)for mitigating the effects of nondeterminism and instability

on model variability, we find across all model architectures that both accelerated ensembling and test-

time augmentation reduce variability across nearly all metrics, with perhaps larger relative reductions

for larger models and the pairwise metrics. Only the intersection of the smallest model (ResNet-6) and

metrics of performance variability (Accuracy SD and Cross-Entropy SD) was there no benefit.

MNIST. Experiments on MNIST [64], allow us to test whether our observations hold for tasks

with very high accuracy — 99.14% for our relatively simple baseline model, which has two convolution

and fully-connected layers. As before, we find similar effects of nondeterminism for parameter initial-

ization and all nondeterminism sources, including a comparable effect (albeit smaller) from a single

random bit change, highlighting that the instability of training extends even to datasets where the goal

is simpler and model performance is higher. Of note, though, is the relatively smaller effect of a single

bit change on pairwise metrics of diversity, further suggesting that the magnitude of instability might

be at least partially related to the interplay of model architecture, capacity, and degree of overfitting.

In terms of the mitigations against variability, only test-time augmentation appeared to significantly

help. For MNIST, the only augmentation employed was cropping, with a small 1-pixel padding (models

were trained with no data augmentation). While the fact that accelerated ensembling did not result in

improvements is not particularly important in practice (since MNIST models are fast to train), it is an

interesting result, which we hypothesize is also related to the degree of overfitting (similar to ResNet-6

on CIFAR-10).

ImageNet. For ImageNet, it is computationally prohibitive to run full training on the large num-

ber of models needed for a truly rigorous evaluation of nondeterminism and instability, so we perform

an approximate analysis by training multiple ResNet-50 models for 5 epochs, obtaining an average

top-1 accuracy of 56.8% on the ImageNet validation set — on par with a fully-trained AlexNet [59],

though considerably lower than a ResNet-50 trained to completion.

71

Of particular note, we find evidence supporting instability, with “Random Bit Change” having

comparable levels of variability compared to models trained with all nondeterminism sources, despite

only 5 epochs of training. For reducing variability, we focus our efforts on TTA due to the short

training time, where we find modest improvements for both flipping-based TTA and crop-based TTA

on pairwise metrics, with no clear pattern for Accuracy and Cross-Entropy SD (which have large error

bars).

5.7 Conclusion

In this chapter, we have shown two surprising facts: First, though conventional wisdom holds that run-

to-run variability in model performance is primarily determined by random parameter initialization,

many sources of nondeterminism actually result in similar levels of variability. Second, a key driver of

this phenomenon is the instability of model optimization, in which changes on the order of 10−10 in a

single weight at initialization can have as much effect as reinitializing all weights to completely random

values. We have also identified two approaches for reducing the variability in model performance and

representation without incurring any additional training cost.

We hope that our work sheds light on a complex phenomenon that affects all deep learning re-

searchers and inspires further research on improving optimization stability.

72

6. Conclusion

In this thesis, we have examined a range of key topics in deep learning, furthering the field’s under-

standing of each topic and using the understanding to generate technical advances that improve the state

of the art. In data augmentation, we have disproven the primary hypothesis for the efficacy of mixed-

example approaches, introducing new superior methods along the way. For adversarial robustness, we

have shown that logit pairing methods derive much of their benefit from logit regularization, extend-

ing and improving the approach via other logit regularization methods. Considering batch normaliza-

tion, we developed an understanding of its behavior during training and inference, and introduced four

unique changes that improve models using batch normalization across a variety of settings. Finally,

we examined the effects of nondeterminism on final trained models, showed that different sources of

nondeterminism produce similar diversity in models, identified that this is due to instability in model

optimization, and proposed two methods for reducing the effects of instability.

Though we have advanced the field’s understanding of these topics, further exciting research is

still possible and valuable. For example, developing a perfect data augmentation approach would

have nearly unlimited benefit, as it would allow training of models with essentially arbitrarily large

amounts of data. Alternatively, although we have improved adversarial robustness, a big gap still

exists between the worst-case and average-case performance of trained models. When it comes to

nondeterminism, while we have provided the first promising results at reducing run-to-run variability

in model performance, further advances are likely possible that would serve to reduce the computational

demands of iterating on deep learning model development. Even more generally, as long as progress

continues to be made in deep learning as a field, the need for deeper understanding will remain.

73

A. Appendix: Improving Batch
Normalization

A.1 Proof of Batch Normalization Output Bounds

Here we present a proof of Eq. 4.2. We first prove the bound as an inequality and then show that it is

tight. Without loss of generality, we assume that x0 is the minimum of {xi}B−1i=0 and that γ ≥ 0. Then

we want to show that

min
x0,...,xB−1

γ
x0 − µi√
σ2i + ε

+ β = −γ
√
B − 1 + β (A.1)

Expanding µi and σ2i (using the maximum likelihood estimator for σ2i), and canceling the scaling and

offset terms γ and β, we want to show

min
x0,...,xB−1

x0 − 1
B

∑B−1
i=0 xi√

1
B

∑B−1
i=0 (xi − 1

B

∑B−1
j=0 xj)

2 + ε
= −
√
B − 1 (A.2)

From here we assume without loss of generality that x0 = 0 – since the output of Batch Normalization

is invariant to an additive constant on all xi, we can subtract x0 from all xi and maintain the same value.

We also assume that all xi ≥ 0, then frame the minimum as a bound

− 1
B

∑B−1
i=0 xi√

1
B

∑B−1
i=0 (xi − 1

B

∑B−1
j=0 xj)

2 + ε
≥ −
√
B − 1 (A.3)

74

− 1

B

B−1∑
i=0

xi ≥ −

√√√√√B − 1

B

B−1∑
i=0

xi − 1

B

B−1∑
j=0

xj

2

+ ε (A.4)

− 1

B

B−1∑
i=0

xi ≥ −

√√√√√B − 1

B

B−1∑
i=0

x2i − 2xi
B

B−1∑
j=0

xj +
1

B2

B−1∑
j=0

xj

2+ ε (A.5)

B−1∑
i=0

xi ≤

√√√√√B−1∑
i=0

(B − 1)Bx2i − 2(B − 1)xi

B−1∑
j=0

xj +
B − 1

B

B−1∑
j=0

xj

2+ ε (A.6)

B−1∑
i=0

xi ≤

√√√√(B − 1)B

B−1∑
i=0

x2i − 2(B − 1)

(
B−1∑
i=0

xi

)2

+ (B − 1)

(
B−1∑
i=0

xi

)2

+ ε (A.7)

B−1∑
i=0

xi ≤

√√√√(B − 1)B
B−1∑
i=0

x2i − (B − 1)

(
B−1∑
i=0

xi

)2

+ ε (A.8)

(
B−1∑
i=0

xi

)2

≤ (B − 1)B
B−1∑
i=0

x2i − (B − 1)

(
B−1∑
i=0

xi

)2

+ ε (A.9)

B

(
B−1∑
i=0

xi

)2

≤ (B − 1)B
B−1∑
i=0

x2i + ε (A.10)

(
B−1∑
i=0

xi

)2

≤ (B − 1)

B−1∑
i=0

x2i + ε (A.11)

Using the fact that x0 = 0 and ε > 0, it suffices to show(
B−1∑
i=1

xi

)2

≤ (B − 1)

B−1∑
i=1

x2i (A.12)

With a change of variables, we have the more general(
N−1∑
i=0

xi

)2

≤ N
N−1∑
i=0

x2i (A.13)

75

1

N2

(
N−1∑
i=0

xi

)2

≤ 1

N

N−1∑
i=0

x2i (A.14)

E[x]2 ≤ E[x2] (A.15)

E[x2]− E[x]2 ≥ 0 (A.16)

which is simply an alternate form for the variance of x, which is always non-negative, completing the

bound.

To show that the bound is tight, we can set x0 = 0 and xi = a for all i > 0, where a is a

non-negative constant:

− 1
B

∑B−1
i=0 xi√

1
B

∑B−1
i=0 (xi − 1

B

∑B−1
j=0 xj)

2 + ε
(A.17)

− 1
B

∑B−1
i=1 a√

1
B

(
(B−1)2
B2 a2 +

∑B−1
i=1 (a− B−1

B a)2
)

+ ε

(A.18)

−B−1
B a√

1
B

(
(B−1)2
B2 a2 + (B − 1)a2

(
1− 2(B−1)

B + (B−1)2
B2

))
+ ε

(A.19)

−(B − 1)a

B

√
a2(B−1)

B

(
B−1
B2 + 1− 2B−1B + (B−1)2

B2

)
+ ε

(A.20)

−(B − 1)a√
a2(B − 1)

(
B−1
B +B − 2B + 2 + (B−1)2

B

)
+ ε

(A.21)

−(B − 1)a√
a2(B − 1)

(
B2−2B+1+B−1−B2+2B

B

)
+ ε

(A.22)

−(B − 1)a√
a2(B − 1) + ε

(A.23)

76

As a→∞ (or if ε = 0), then this approaches

−(B − 1)a

a
√

(B − 1)
(A.24)

which is simply

−
√

(B − 1) (A.25)

completing the proof.

A.2 Empirical Evidence of Batch Normalization Output Bounds

In Fig. A.1 we show the observed output ranges for the last Batch Normalization layer in our CIFAR-10

network (spatial resolution: 4× 4), plotting both the range during training and at inference time on the

CIFAR-10 test set. Different values of B were obtained by using different Ghost Batch Normalization

sizes, keeping in mind that B is determined by the product of the batch size and spatial dimensions.

At large values of B, it is unlikely that any network obtains a value even close to the bound of

Eq. 4.2, but as B gets smaller, the output range of the network during training becomes smaller in

magnitude, eventually being nearly tight with our bound — for example, for log(B) = 5, the theoretical

minimum is −5.57, while the network obtained a minimum of −5.30. However, the maximum and

minimum values obtained during inference on the test set show no clear pattern as B changes, and are

not subject to the training time bound, which is particularly noticeable for small values of B, where

values fall outside the training-time bounds.

A.3 Negative Results: Approaches That Didn’t Work.

Here we detail a handful of approaches which seemed intuitively promising but ultimately failed to

produce positive results.

Batch Normalization Moving Averages. In an attempt to resolve the other disparities Batch

Normalization has between its training and inference behaviors, we experimented with a handful of

different approaches for modifying the moving averages used during inference. First, since examples

77

5 6 7 8 9 10 11

log(B)

40

20

0

20

40

BN
 O

ut
pu

t R
an

ge

Bound during training
Observed during training
Observed during testing

Figure A.1: Range of output values obtained during inference on the CIFAR-10 test set, compared
with the range observed during training and the bound of Eq. 4.2. See text for details.

at inference time do not have data augmentation applied to them, we tried computing the moving

averages over examples without data augmentation (implemented by training the model for a few extra

epochs over non-augmented examples with a learning rate of 0, but while still updating the moving

average variables). This decreased accuracy on CIFAR-100 by roughly half a percent, though it did

yield mild improvements to the test set cross-entropy loss.

Next, we experimented with calculating the moving averages over the test set, not making use of

any of the test labels. Perhaps surprisingly, this behaved very similar to when moving averages were

calculated over the training examples (within 0.1% in accuracy and within 1% in cross-entropy), with

trends holding regardless of whether data augmentation was applied or not.

Adding Batch Normalization-like Stochasticity to Group Normalization. One of the hypothe-

ses for why Group Normalization generally performs slightly worse than Batch Normalization is the

regularization effect of Batch Normalization due to random minibatches producing variability in the

normalization statistics. Therefore, we tried introducing stochasticity to Group Normalization in a va-

riety of ways, none of which we could get to work well: 1) Adding gaussian noise to the normalization

statistics, where the noise is based on a moving average of the normalization statistics, 2) Using random

groupings of channels for calculating normalization statistics (optionally only doing randomization a

fraction of the time), and 3) changing the number of groups throughout the training procedure, either

as increasing or decreasing functions of training steps.

78

More Principled Group Size Computation. As part of generalizing Batch and Group Normal-

ization, we examined whether it was possible to determine the number of groups in each normalization

layer in a more principled way that simply specifying it as a constant throughout the network. For

example, one approach we had mild success with was setting the number of elements per group (height

× width × group size) to a constant, making the number of elements contributing to the normalization

statistics uniform across layers. However, we were unable to get any of these ideas to work in a way

that generalized properly across datasets. We also tried learning group sizes in a differentiable way

with Switchable Normalization, but found that this made models overfit too much.

A.4 Supplemental Inference Example Weighing Plots

In Figures A.2, A.3, and A.4 we present plots corresponding to Figures 4.1, 4.2, and 4.4 of the main

text, with larger ranges of the inference weight α. In the main text, we restricted the range of α to

values which showed off the tradeoff of α versus performance at a reasonably local scale, and these

figures show a larger scale for completeness in characterizing model behavior. While this behavior can

largely be extrapolated from the behavior for a smaller range of α, there are some interesting trends.

On ImageNet A.2, we see that only a small amount of inference example weighing is necessary

to get most of its benefit, and setting α to larger values corresponds to a regime quite different than

in training, smoothly decaying model performance as α becomes less and less appropriate. Similarly,

when applying inference example weighing to Group Normalization (Fig. A.3, while performance

intuitively decays as α moves farther and farther away from 1, a surprisingly large range of values for

α result in similar performance to Group Normalization, especially on SVHN. Lastly, when comparing

the effect of α on models trained with Ghost Batch Normalization (Fig. A.4, we clearly see that the

optimal value for α is decreasing with respect to the Ghost Batch Normalization size, with the possible

unusual exception of optimizing for loss on SVHN.

79

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

64

66

68

70

72

74

A
cc

.

1.2

1.4

1.6

1.8

2.0

2.2

Lo
ss

82

84

86

88

90

92

T
o
p

-5
 A

cc
.

MobileNetv2

0.00 0.02 0.04 0.06 0.08 0.10
72

73

74

75

76

77

78

A
cc

.

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Lo
ss

90.5

91.0

91.5

92.0

92.5

93.0

93.5

94.0

94.5

T
o
p

-5
 A

cc
.

ResNet-152

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
78

79

80

81

82

83

A
cc

.

0.75

0.80

0.85

0.90

0.95

1.00

Lo
ss

94.25

94.50

94.75

95.00

95.25

95.50

95.75

96.00

96.25

T
o
p

-5
 A

cc
.

NasNet-A

Figure A.2: Effect of the example-weighing hyperparameter α on ImageNet; supplemental version of
Fig. 4.1 with a larger range of α.

0.0 0.2 0.4 0.6 0.8 1.0

15

20

25

30

35

40

45

50

A
cc

.

Caltech-256 with Group Normalization

3

4

5

6

7

8

9

10

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0

90

92

94

96

98

100

A
cc

.

SVHN with Group Normalization

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0

30

40

50

60

70

80

A
cc

.

CIFAR-100 with Group Normalization

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Lo
ss

Figure A.3: Effect of the example-weighing hyperparameter α for models trained with Group Normal-
ization on CIFAR-100, SVHN, and Caltech-256; supplemental version of Fig. 4.2 with a larger range
of α.

80

CIFAR-100

Caltech-256

SVHN

0.0 0.2 0.4 0.6 0.8 1.0

30

40

50

60

70

80

A
cc

.

Ghost Batch Size 16

1.0

1.5

2.0

2.5

3.0

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0

45

50

55

60

65

70

75

80

A
cc

.

Ghost Batch Size 8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
60

62

64

66

68

70

72

74

76

78

A
cc

.

Ghost Batch Size 4

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0

70.5

71.0

71.5

72.0

72.5

73.0

73.5

74.0

A
cc

.

Ghost Batch Size 2

1.0

1.2

1.4

1.6

1.8

2.0

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

60

A
cc

.

Ghost Batch Size 16

3

4

5

6

7

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

60

A
cc

.

Ghost Batch Size 8

3

4

5

6

7

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

60

A
cc

.

Ghost Batch Size 4

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
30

35

40

45

50

55

A
cc

.

Ghost Batch Size 2

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
97.4

97.6

97.8

98.0

98.2

98.4

98.6

98.8

A
cc

.

Ghost Batch Size 16

0.06

0.08

0.10

0.12

0.14

0.16

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0

98.0

98.2

98.4

98.6

98.8

A
cc

.

Ghost Batch Size 8

0.065

0.070

0.075

0.080

0.085

0.090

0.095

0.100

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0
98.40

98.45

98.50

98.55

98.60

98.65

98.70

98.75

A
cc

.

Ghost Batch Size 4

0.066

0.068

0.070

0.072

0.074

Lo
ss

0.0 0.2 0.4 0.6 0.8 1.0

98.56

98.58

98.60

98.62

98.64

98.66

98.68

98.70

A
cc

.

Ghost Batch Size 2

0.064

0.066

0.068

0.070

0.072

0.074

0.076

0.078

0.080

Lo
ss

Figure A.4: The complementary effects of Inference Example Weighing and Ghost Batch Normaliza-
tion on CIFAR-100, SVHN, and Caltech-256; supplemental version of Fig. 4.4 with a larger range of
α.

81

B. Appendix: Nondeterminism and
Instability

B.1 Linear, 2-Layer, and ResNet-10 Results

In Table B.1 we include results for linear networks, 2-layer networks (1 hidden layer), and a ResNet-

10 on CIFAR-10. As noted in Sec. 5.4.2, parameter initialization generally has less effect for linear

models, and random bit changes in particular have nearly no effect on linear models, highlighting the

stability of SGD in optimizing linear models. Also of note is the relative smaller effect of a single bit

change for a 2-layer network where the hidden layer is convolutional — still much larger than for the

linear model, but significantly smaller than for any other non-linear model. This suggests a similar

effect to what was previously observed on MNIST (Table 5.6) in that degree of instability might be

related to the interplay of model, dataset, and the degree of overfitting.

Otherwise, these results follow the previous results, wherein each source of nondeterminism has

roughly the same effect as each other, and a majority of this is due to the instability of optimization,

evidenced by the high variability in models with only random bit changes at initialization. Test-time

augmentation also remains effective in reducing model variability as compared to “All Nondeterminism

Sources”, the setting TTA is applied to.

B.2 Impact of Random Bit Changes Over Time

In Fig. B.1 we plot the effect of a random bit change for a linear and single on CIFAR-10, illustrating

the effect of instability as described in Sec. 5.4. In the first few epochs of training, we observe that the

82

Table B.1: Linear, 2-layer, and ResNet-10 experiments on CIFAR-10.

Nondeterminism Source
Accuracy Cross-Entropy Pairwise Pairwise Ensemble
SD (%) SD Disagree (%) Corr. ∆ (%)

CIFAR-10: Linear model

Parameter Initialization 0.03± 2e-3 0.0002± 1e-5 0.5 0.997 -4e-3
All Nondeterminism Sources 0.10± 0.01 0.0007± 4e-5 5.5 0.996 0.06
Random Bit Change 0.00± 0.00 1e-7± 1e-8 0.0 1.000 0.00
Single/Flip-Crop-TTA 0.05± 3e-3 0.0001± 1e-5 0.9 0.998 -3e-3

CIFAR-10: One hidden layer (fully-connected)

Parameter Initialization 0.31± 0.02 0.0051± 0.0003 24.2 0.941 1.38
All Nondeterminism Sources 0.30± 0.02 0.0054± 0.0004 24.9 0.937 1.49
Random Bit Change 0.28± 0.02 0.0051± 0.0004 23.4 0.945 1.32
Single/Flip-Crop-TTA 0.15± 0.01 0.0017± 0.0001 7.1 0.993 0.15

CIFAR-10: One hidden layer (convolutional)

Parameter Initialization 0.26± 0.02 0.0040± 0.0003 12.5 0.974 0.64
All Nondeterminism Sources 0.22± 0.01 0.0042± 0.0003 12.7 0.973 0.68
Random Bit Change 0.14± 0.01 0.0022± 0.0002 6.4 0.993 0.18
Single/Flip-Crop-TTA 0.19± 0.01 0.0033± 0.0002 7.5 0.989 0.24

CIFAR-10: ResNet-10

Parameter Initialization 0.23± 0.01 0.0060± 0.0003 13.7 0.912 2.13
All Nondeterminism Sources 0.23± 0.01 0.0065± 0.0004 13.6 0.911 2.13
Random Bit Change 0.25± 0.02 0.0065± 0.0005 13.5 0.913 2.08
Single/Flip-Crop-TTA 0.24± 0.02 0.0047± 0.0003 9.5 0.943 1.22
Acc. Ens. 0.23± 0.01 0.0047± 0.0003 8.8 0.962 0.96
Acc. Ens./Flip-Crop-TTA 0.18± 0.01 0.0035± 0.0002 6.7 0.973 0.58

83

standard deviation and range of cross-entropy for the model with one hidden layer quickly grows, only

eventually decreasing much later in training as the model’s parameters converges toward their final

values. On the other hand, for linear models, the standard deviation consistently remains 5 or more

orders of magnitude lower throughout training.

B.3 Test-Time Augmentation Details

CIFAR-10. On CIFAR-10, in addition to TTA with horizontal flipping (i.e. ensembling model

predictions on the original image with its horizontally-flipped version), we also used a form of TTA

with cropping. Our usage of crop-based TTA was based on the version of cropping used as data

augmentation during model training, in which each image was zero-padded by four pixels along each

side, after which a random 32× 32 crop was drawn. For TTA, we use all of these possible crops, along

with their horizontally-flipped versions, to make a total of 162 ((4 · 2 + 1)2 · 2) augmented versions of

the original image.

ImageNet. On ImageNet, the standard evaluation protocol we use for our experiments first resizes

each image to have its smaller side have length 256, after which the center 224 × 224 crop is taken.

For TTA, besides the horizontal image flipping used in CIFAR-10, we also experimented with crops

(‘Crop-TTA‘ and ‘Flip-Crop-TTA‘) as follows: after each image is resized to have its smaller side

length 256, a central 256 × 256 crop is taken, and then 9 crops of size 224 × 224 are taken in a 3 × 3

grid, starting from the top-left, and where the spacing between crops in the grid is 16 pixels.

B.4 Approaches that don’t reduce instability

In the process of finding an approach that reduces run-to-run variability of models (Sec. 5.5), we experi-

mented with many approaches which all failed to make a dent in improving variability and stability. For

the benefit of the field, here we provide our experiences with these approaches which did not succeed

in improving stability, despite the intuitive arguments for why they might help.

Learning rate and duration of training. Noticing that the effects of nondeterminism seemed to

accumulate during the course of training (Fig. 5.2), it seemed reasonable that varying the learning rate

84

0 100 200 300 400 500

Epochs trained

1.4

1.6

1.8

2.0

2.2

Cr
os

s-
En

tro
py

Linear
One hidden layer (FC)

0 100 200 300 400 500

Epochs trained
10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Cr
os

s-
En

tro
py

 S
D

2 4 6 8 10

Epochs trained
1.7

1.8

1.9

2.0

2.1

2.2

Cr
os

s-
En

tro
py

Linear
One hidden layer (FC)

Figure B.1: The impact of a random bit change during initialization for linear models vs 2-layer models
with a single fully-connected hidden layer, where row 1 considers the full 500 epochs of training, and
row 2 zooms in on the first 10 epochs. The left column of each row gives the range of cross-entropy
values for 100 models in the middle 95th percentile of cross-entropy, plotted at each epoch. The right
column of each row presents the standard deviation of these models.

85

or duration of training might have an effect. However, varying the duration of training from anywhere

between 50 and 2,000 epochs on CIFAR-10 all produced models with a similar variance in performance

as the results in the rest of this work (which used 500 epochs), even though the absolute performance

differed by up to ∼2%.

We show these results in Table B.2. In general, increasing the number of epochs or changing the

learning rate did not change the variability in performance (Accuracy SD; Cross-Entropy SD) much,

with only a very slight increase in variability as the number of epochs grew to extremely large values

(i.e. 2,000 epochs). There were slightly larger changes in pairwise representation-based metrics, where

training longer again increased run-to-run variability. However, none of these attempts actually reduced

variability; they only served to potentially make it larger.

As part of these experiments, we also verified the effects of instability with only 200 epochs of

training and the effectiveness of accelerated ensembling techniques (“Acc. Ens.”) with this reduced

training time, given in the last three rows of Table B.2.

Using a different optimizer. Since instability and nondeterminism are both a property of op-

timization, it is conceivable that use of a different optimizer might be able to lessen the degree of

instability in model training. We experimented with SGD using various values of momentum, ranging

from 0 for pure SGD to 0.999 for a momentum-driven optimizer, but none succeeded in reduce insta-

bility. In addition, we experimented with Adam [55], picked as a representative of the class of adaptive

learning rate algorithms, but this, too, had no effect on stability.

Aggressive Stochastic Weight Averaging. Inspired by the success found by Madhyastha and

Jain, we tried Aggressive Stochastic Weight Averaging (ASWA), a variant of SWA [53]. However, we

could not get the model to converge to a reasonable degree of performance with the original formulation

due to update sizes that decreased too rapidly, and though we were able to modify it to converge

successfully, the output variance remained as high as the other models.

Gradient Clipping. With the intuition that instability might be caused by spurious gradients of

large magnitude, we experimented with clipping the norm of gradients (using pytorch’s implemen-

tation of torch.nn.utils.clip_grad.clip_grad_norm_. Like other approaches, though,

this had no effect on model variability.

86

Table B.2: Experiments varying the learning rate and number of epochs for ResNet-14 on CIFAR-
10. In each row, the experimental setting is abbreviated by [sources of nondeterminism]/[maximum
learning rate]/[number of epochs] N=[number of models trained], with the exception of the last row,
which is a Snapshot ensemble but otherwise follows the same format.

Setting Accuracy Cross-Entropy Pairwise Pairwise Ensemble
SD (%) SD Disagree (%) Corr. ∆ (%)

All Sources/.40/50 (N=20) 0.31± 0.04 0.0070± 0.0007 11.4 0.922 1.54
All Sources/.40/100 (N=20) 0.26± 0.04 0.0068± 0.0015 10.8 0.909 1.71
All Sources/.40/250 (N=20) 0.19± 0.03 0.0054± 0.0009 10.7 0.889 1.78
All Sources/.40/500 (N=100) 0.26± 0.02 0.0072± 0.0005 10.7 0.871 1.82
All Sources/.40/2000 (N=20) 0.24± 0.02 0.0096± 0.0013 11.2 0.828 2.08
Shuffle/.40/500 (N=100) 0.25± 0.02 0.0082± 0.0005 10.6 0.871 1.81
Shuffle/.20/500 (N=100) 0.23± 0.02 0.0071± 0.0005 11.0 0.858 1.95
Shuffle/.20/1000 (N=100) 0.21± 0.02 0.0088± 0.0005 11.1 0.837 2.02
Shuffle/.10/500 (N=100) 0.20± 0.01 0.0076± 0.0005 11.6 0.845 2.08
Shuffle/.10/2000 (N=100) 0.24± 0.02 0.0100± 0.0006 11.6 0.801 2.19
Param. Init/.40/500 (N=100) 0.23± 0.02 0.0074± 0.0005 10.7 0.872 1.82
Param. Init/.20/500 (N=100) 0.23± 0.02 0.0084± 0.0005 11.0 0.859 1.97
Param. Init/.20/1000 (N=100) 0.25± 0.02 0.0095± 0.0007 11.1 0.836 2.06
Param. Init/.10/500 (N=100) 0.26± 0.02 0.0083± 0.0005 11.7 0.844 2.13
Param. Init/.10/2000 (N=100) 0.22± 0.01 0.0093± 0.0008 11.6 0.800 2.18
All Sources/.40/200 (N=100) 0.23± 0.02 0.0076± 0.0004 10.6 0.895 1.75
Random Bit/.40/200 (N=100) 0.21± 0.01 0.0067± 0.0004 10.3 0.897 1.70
Acc. Ens./All Sources/.40/200 (N=100) 0.21± 0.01 0.0046± 0.0003 6.6 0.963 0.68

87

Table B.3: The effects of accelerated model ensembling on Penn Treebank; 100 runs per row. “Acc.
Ens.” indicates accelerated ensembling, and the trailing number in each setting name is the number of
epochs models are trained for.

Setting PPL SD Pairwise Disagree (%) Ensemble PPL ∆

All Nondeterminism Sources/500 0.18± 0.01 17.4 -2.07
Acc. Ens./All Sources/500 0.21± 0.02 13.7 -1.33
All Nondeterminism Sources/1000 0.17± 0.01 17.6 -2.08
Acc. Ens./All Sources/1000 0.16± 0.01 14.1 -1.34

Weight Augmentation. A very experimental approach, to reduce instability we experimented

with taking an averaged gradient around the current set of parameters at each step, approximated by

sampling a random weight offset before doing a forward or backward pass through the model. In-

tuitively, this might encourage optimization to not be too sensitive to the current value of weights;

however, in practice this simply didn’t affect the variance or stability of the model.

B.5 Accelerated Ensembling in Language Modeling

Although the accelerated ensembling technique we employed in Sec. 5.5, Snapshot Ensembles [45],

were only designed for image classification, we have also experimented with their usage for language

modeling (see Sec. 5.3.3 for problem setup). We present results in Table B.3, where we additionally

compare models trained for 500 and 1000 epochs. In both cases, accelerated ensembling resulted in

lower model variability when considering pairwise metrics (reducing the fraction of tokens models

disagreed on and reducing the PPL improvement from ensembling). However, the variability in PPL

was more mixed, and in fact we note that the accelerated ensembles actually had higher average PPL

than their counterparts (e.g. 75.0 for the accelerated ensemble vs 73.0 for the regular model), indicating

that alternative accelerated ensembling techniques may be warranted for language modeling.

B.6 Subtleties in Evaluation

While we have done our best to make our experimental protocol straightforward and easy to interpret,

one subtlety arises when interpreting results. First, recall that in our example from Sec. 5.3.1, testing

88

the effects of random initialization corresponded to training models for (S1, S2, S3) ∈ {(i, 1, 1)}Ri=1,

where S1 is the seed for random initialization, S2 is the seed for training data shuffling, and S3 is set

to 1 to indicate the deterministic mode for cuDNN. The subtlety arises in that the resulting distribu-

tion of (S1, S2, S3) ∈ {(i, 1, 1)}Ri=1 is not necessarily the same as the distribution where S2 is set to

a different arbitrary constant value, e.g. S2 = 2. Due to this, there may be minor discrepancies when

comparing the diversity in performance between two different sources of nondeterminism (albeit un-

likely to change general conclusions). Combined with the natural sampling variability implicit in only

training a finite number of models, this can lead to paradoxical results such as the standard deviation

for a particular metric being slightly higher for a random bit change as compared to an entirely different

random parameter initialization. While we have separately validated that the general conclusions of our

results hold when varying a few of these constant factors (i.e. running experiments where S2 is set to

2 and 3, in this example), it is difficult to resolve the discrepancy entirely without models according to

the full cross-product of random seeds, which is prohibitive due to the exponential number of required

computation.

89

References

[1] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu

Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for

large-scale machine learning. In OSDI, volume 16, pages 265–283, 2016.

[2] Alessandro Achille, Matteo Rovere, and Stefano Soatto. Critical learning periods in deep neural

networks. In International Conference on Learning Representations, 2019.

[3] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense

of security: Circumventing defenses to adversarial examples. In International Conference on

Machine Learning, 2018.

[4] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint

arXiv:1607.06450, 2016.

[5] Léon Bottou. Stochastic gradient descent tricks. In Neural networks: Tricks of the trade, pages

421–436. Springer, 2012.

[6] Olivier Bousquet and André Elisseeff. Stability and generalization. Journal of machine learning

research, 2(Mar):499–526, 2002.

[7] James Bradbury, Stephen Merity, Caiming Xiong, and Richard Socher. Quasi-recurrent neural

networks. arXiv preprint arXiv:1611.01576, 2016.

[8] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan

Catanzaro, and Evan Shelhamer. cudnn: Efficient primitives for deep learning. arXiv preprint

arXiv:1410.0759, 2014.

90

[9] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel

Kuksa. Natural language processing (almost) from scratch. Journal of Machine Learning Re-

search, 12(Aug):2493–2537, 2011.

[10] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:

Learning augmentation policies from data. arXiv preprint arXiv:1805.09501, 2018.

[11] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of

control, signals and systems, 2(4):303–314, 1989.

[12] Nilesh Dalvi, Pedro Domingos, Sumit Sanghai, Deepak Verma, et al. Adversarial classification.

In Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery

and data mining, pages 99–108. ACM, 2004.

[13] Lucas Deecke, Iain Murray, and Hakan Bilen. Mode normalization. In International Conference

on Learning Representations.

[14] Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural net-

works with cutout. arXiv preprint arXiv:1708.04552, 2017.

[15] Logan Engstrom, Andrew Ilyas, and Anish Athalye. Evaluating and understanding the robust-

ness of adversarial logit pairing. arXiv preprint arXiv:1807.10272, 2018.

[16] Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vincent,

and Samy Bengio. Why does unsupervised pre-training help deep learning? Journal of Machine

Learning Research, 11(Feb):625–660, 2010.

[17] Andre Esteva, Brett Kuprel, Roberto A Novoa, Justin Ko, Susan M Swetter, Helen M Blau, and

Sebastian Thrun. Dermatologist-level classification of skin cancer with deep neural networks.

Nature, 542(7639):115, 2017.

[18] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao, Atul

Prakash, Tadayoshi Kohno, and Dawn Song. Robust physical-world attacks on deep learning

visual classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 1625–1634, 2018.

91

[19] Samuel G. Finlayson, John D. Bowers, Joichi Ito, Jonathan L. Zittrain, Andrew L. Beam, and

Isaac S. Kohane. Adversarial attacks on medical machine learning. Science, 363(6433):1287–

1289, 2019.

[20] Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan. Deep ensembles: A loss landscape

perspective. arXiv preprint arXiv:1912.02757, 2019.

[21] Jonathan Frankle, David J Schwab, and Ari S Morcos. The early phase of neural network

training. In International Conference on Learning Representations, 2020.

[22] Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wilson.

Loss surfaces, mode connectivity, and fast ensembling of dnns. In Advances in Neural Informa-

tion Processing Systems, pages 8789–8798, 2018.

[23] Xavier Gastaldi. Shake-shake regularization. arXiv preprint arXiv:1705.07485, 2017.

[24] Justin Gilmer, Ryan P Adams, Ian Goodfellow, David Andersen, and George E Dahl. Motivating

the rules of the game for adversarial example research. arXiv preprint arXiv:1807.06732, 2018.

[25] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward

neural networks. In Proceedings of the thirteenth international conference on artificial intelli-

gence and statistics, pages 249–256, 2010.

[26] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversar-

ial examples. In International Conference on Learning Representations, 2015.

[27] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,

Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training ima-

genet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

[28] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with deep

recurrent neural networks. In 2013 IEEE international conference on acoustics, speech and

signal processing, pages 6645–6649. IEEE, 2013.

[29] Gregory Griffin, Alex Holub, and Pietro Perona. Caltech-256 object category dataset. 2007.

[30] Yanyang Gu, Jun Zhou, and Bin Qian. Melanoma detection based on mahalanobis distance

learning and constrained graph regularized nonnegative matrix factorization. In Applications of

Computer Vision (WACV), 2017 IEEE Winter Conference on, pages 797–805. IEEE, 2017.

92

[31] Varun Gulshan, Lily Peng, Marc Coram, Martin C Stumpe, Derek Wu, Arunachalam

Narayanaswamy, Subhashini Venugopalan, Kasumi Widner, Tom Madams, Jorge Cuadros, et al.

Development and validation of a deep learning algorithm for detection of diabetic retinopathy in

retinal fundus photographs. Jama, 316(22):2402–2410, 2016.

[32] Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. Inverse Problems,

34(1):014004, 2017.

[33] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of

the IEEE international conference on computer vision, pages 2961–2969, 2017.

[34] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Sur-

passing human-level performance on imagenet classification. In Proceedings of the IEEE inter-

national conference on computer vision, pages 1026–1034, 2015.

[35] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image

recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 770–778, 2016.

[36] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual

networks. In European Conference on Computer Vision, pages 630–645. Springer, 2016.

[37] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David

Meger. Deep reinforcement learning that matters. In Thirty-Second AAAI Conference on Ar-

tificial Intelligence, 2018.

[38] Nicholas J Higham. Accuracy and stability of numerical algorithms. SIAM, 2002.

[39] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep Jaitly,

Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, et al. Deep neural net-

works for acoustic modeling in speech recognition: The shared views of four research groups.

IEEE Signal Processing Magazine, 29(6):82–97, 2012.

[40] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.

arXiv preprint arXiv:1503.02531, 2015.

93

[41] Elad Hoffer, Ron Banner, Itay Golan, and Daniel Soudry. Norm matters: efficient and accu-

rate normalization schemes in deep networks. In Advances in Neural Information Processing

Systems, pages 2164–2174, 2018.

[42] Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing the gen-

eralization gap in large batch training of neural networks. In Advances in Neural Information

Processing Systems, pages 1731–1741, 2017.

[43] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias

Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural net-

works for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

[44] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 7132–7141, 2018.

[45] Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E Hopcroft, and Kilian Q Weinberger.

Snapshot ensembles: Train 1, get m for free. arXiv preprint arXiv:1704.00109, 2017.

[46] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with

stochastic depth. In European Conference on Computer Vision, pages 646–661. Springer, 2016.

[47] Lei Huang, Dawei Yang, Bo Lang, and Jia Deng. Decorrelated batch normalization. In Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 791–800,

2018.

[48] Lei Huang, Yi Zhou, Fan Zhu, Li Liu, and Ling Shao. Iterative normalization: Beyond standard-

ization towards efficient whitening. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 4874–4883, 2019.

[49] Hiroshi Inoue. Data augmentation by pairing samples for images classification. arXiv preprint

arXiv:1801.02929, 2018.

[50] Sergey Ioffe. Batch renormalization: Towards reducing minibatch dependence in batch-

normalized models. In Advances in Neural Information Processing Systems, pages 1945–1953,

2017.

94

[51] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training

by reducing internal covariate shift. In In Proceedings of The 32nd International Conference on

Machine Learning, pages 448–456, 2015.

[52] Riashat Islam, Peter Henderson, Maziar Gomrokchi, and Doina Precup. Reproducibility

of benchmarked deep reinforcement learning tasks for continuous control. arXiv preprint

arXiv:1708.04133, 2017.

[53] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon

Wilson. Averaging weights leads to wider optima and better generalization. arXiv preprint

arXiv:1803.05407, 2018.

[54] Harini Kannan, Alexey Kurakin, and Ian Goodfellow. Adversarial logit pairing. arXiv preprint

arXiv:1803.06373, 2018.

[55] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

[56] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing

neural networks. In Advances in neural information processing systems, pages 971–980, 2017.

[57] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural

network representations revisited. arXiv preprint arXiv:1905.00414, 2019.

[58] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.

2009.

[59] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep

convolutional neural networks. In Advances in neural information processing systems, pages

1097–1105, 2012.

[60] Anders Krogh and John A Hertz. A simple weight decay can improve generalization. In Ad-

vances in neural information processing systems, pages 950–957, 1992.

[61] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical world.

arXiv preprint arXiv:1607.02533, 2016.

[62] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. Beyond bags of features: Spatial pyramid

matching for recognizing natural scene categories. In null, pages 2169–2178. IEEE, 2006.

95

[63] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne

Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition.

Neural computation, 1(4):541–551, 1989.

[64] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied

to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[65] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep

visuomotor policies. The Journal of Machine Learning Research, 17(1):1334–1373, 2016.

[66] Etai Littwin and Lior Wolf. Regularizing by the variance of the activations’ sample-variances.

In Advances in Neural Information Processing Systems, pages 2119–2129, 2018.

[67] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv

preprint arXiv:1608.03983, 2016.

[68] Ping Luo, Jiamin Ren, and Zhanglin Peng. Differentiable learning-to-normalize via switchable

normalization. In International Conference on Learning Representations.

[69] Ping Luo, Peng Zhanglin, Shao Wenqi, Zhang Ruimao, Ren Jiamin, and Wu Lingyun. Differen-

tiable dynamic normalization for learning deep representation. In International Conference on

Machine Learning, pages 4203–4211, 2019.

[70] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines

for efficient cnn architecture design. In Proceedings of the European conference on computer

vision (ECCV), pages 116–131, 2018.

[71] Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and

Michael Bowling. Revisiting the arcade learning environment: Evaluation protocols and open

problems for general agents. Journal of Artificial Intelligence Research, 61:523–562, 2018.

[72] Pranava Madhyastha and Rishabh Jain. On model stability as a function of random seed. In

Conference on Computational Natural Language Learning, pages 929–939, 2019.

[73] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.

Towards deep learning models resistant to adversarial attacks. In International Conference on

Learning Representations, 2018.

96

[74] Mitchell Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated

corpus of english: The penn treebank. 1993.

[75] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing lstm

language models. arXiv preprint arXiv:1708.02182, 2017.

[76] Yair Movshovitz-Attias, Alexander Toshev, Thomas K Leung, Sergey Ioffe, and Saurabh Singh.

No fuss distance metric learning using proxies. In Proceedings of the IEEE International Con-

ference on Computer Vision, pages 360–368, 2017.

[77] Asim Munawar, Phongtharin Vinayavekhin, and Giovanni De Magistris. Spatio-temporal

anomaly detection for industrial robots through prediction in unsupervised feature space. In

Applications of Computer Vision (WACV), 2017 IEEE Winter Conference on, pages 1017–1025.

IEEE, 2017.

[78] Prabhat Nagarajan, Garrett Warnell, and Peter Stone. The impact of nondeterminism on repro-

ducibility in deep reinforcement learning. 2018.

[79] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Read-

ing digits in natural images with unsupervised feature learning. 2011.

[80] M-E. Nilsback and A. Zisserman. Automated flower classification over a large number of

classes. In Proceedings of the Indian Conference on Computer Vision, Graphics and Image

Processing, Dec 2008.

[81] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio Savarese. Deep metric learning via lifted

structured feature embedding. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 4004–4012, 2016.

[82] Nicolas Papernot, Fartash Faghri, Nicholas Carlini, Ian Goodfellow, Reuben Feinman, Alexey

Kurakin, Cihang Xie, Yash Sharma, Tom Brown, Aurko Roy, Alexander Matyasko, Vahid Be-

hzadan, Karen Hambardzumyan, Zhishuai Zhang, Yi-Lin Juang, Zhi Li, Ryan Sheatsley, Ab-

hibhav Garg, Jonathan Uesato, Willi Gierke, Yinpeng Dong, David Berthelot, Paul Hendricks,

Jonas Rauber, and Rujun Long. Technical report on the cleverhans v2.1.0 adversarial examples

library. arXiv preprint arXiv:1610.00768, 2018.

97

[83] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative

style, high-performance deep learning library. In Advances in Neural Information Processing

Systems, pages 8024–8035, 2019.

[84] Gabriel Pereyra, George Tucker, Jan Chorowski, Łukasz Kaiser, and Geoffrey Hinton. Regular-

izing neural networks by penalizing confident output distributions. In International Conference

on Learning Representations, 2017.

[85] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A lock-free ap-

proach to parallelizing stochastic gradient descent. In Advances in neural information processing

systems, pages 693–701, 2011.

[86] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng

Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual

recognition challenge. International Journal of Computer Vision, 115(3):211–252, 2015.

[87] Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to accel-

erate training of deep neural networks. In Advances in Neural Information Processing Systems,

pages 901–909, 2016.

[88] Pouya Samangouei, Maya Kabkab, and Rama Chellappa. Defense-gan: Protecting classifiers

against adversarial attacks using generative models. In International Conference on Learning

Representations, 2018.

[89] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.

Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 4510–4520, 2018.

[90] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch

normalization help optimization? In Advances in Neural Information Processing Systems, pages

2488–2498, 2018.

[91] Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, and Aleksander Madry.

Adversarially robust generalization requires more data. In Advances in Neural Information Pro-

cessing Systems, 2018.

98

[92] Andrew W Senior, Richard Evans, John Jumper, James Kirkpatrick, Laurent Sifre, Tim Green,

Chongli Qin, Augustin Žı́dek, Alexander WR Nelson, Alex Bridgland, et al. Improved protein

structure prediction using potentials from deep learning. Nature, 577(7792):706–710, 2020.

[93] Christopher J Shallue, Jaehoon Lee, Joe Antognini, Jascha Sohl-Dickstein, Roy Frostig, and

George E Dahl. Measuring the effects of data parallelism on neural network training. arXiv

preprint arXiv:1811.03600, 2018.

[94] Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep

learning. Journal of Big Data, 6(1):1–48, 2019.

[95] Abhinav Shrivastava, Abhinav Gupta, and Ross Girshick. Training region-based object detectors

with online hard example mining. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 761–769, 2016.

[96] N. Silberman and S. Guadarrama. Tensorflow-slim image classification model library. https:

//github.com/tensorflow/models/tree/master/research/slim.

[97] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van

Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanc-

tot, et al. Mastering the game of go with deep neural networks and tree search. nature,

529(7587):484–489, 2016.

[98] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale

image recognition. In International Conference on Learning Representations.

[99] Saurabh Singh and Abhinav Shrivastava. Evalnorm: Estimating batch normalization statistics

for evaluation. In Proceedings of the IEEE International Conference on Computer Vision, pages

3633–3641, 2019.

[100] Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Ermon, and Nate Kushman. Pixelde-

fend: Leveraging generative models to understand and defend against adversarial examples. In

International Conference on Learning Representations, 2018.

[101] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.

Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine

Learning Research, 15(1):1929–1958, 2014.

99

https://github.com/tensorflow/models/tree/master/research/slim
https://github.com/tensorflow/models/tree/master/research/slim

[102] Cecilia Summers and Michael J Dinneen. Improved adversarial robustness via logit regulariza-

tion methods. arXiv preprint arXiv:1906.03749, 2019.

[103] Cecilia Summers and Michael J Dinneen. Improved mixed-example data augmentation. In IEEE

Winter Conference on Applications of Computer Vision, 2019.

[104] Cecilia Summers and Michael J Dinneen. Four things everyone should know to improve batch

normalization. In International Conference on Learning Representations, 2020.

[105] Cecilia Summers and Michael J Dinneen. Nondeterminism and instability in neural network

optimization. In International Conference on Machine Learning, 2021.

[106] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural net-

works. In Advances in neural information processing systems, pages 3104–3112, 2014.

[107] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi. Inception-v4,

inception-resnet and the impact of residual connections on learning. In Thirty-First AAAI Con-

ference on Artificial Intelligence, 2017.

[108] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,

Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.

In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1–9,

2015.

[109] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-

ing the inception architecture for computer vision. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 2818–2826, 2016.

[110] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Good-

fellow, and Rob Fergus. Intriguing properties of neural networks. In International Conference

on Learning Representations, 2014.

[111] Yuji Tokozume, Yoshitaka Ushiku, and Tatsuya Harada. Between-class learning for image clas-

sification. In Computer Vision and Pattern Recognition, 2018.

[112] Yuji Tokozume, Yoshitaka Ushiku, and Tatsuya Harada. Learning from between-class examples

for deep sound recognition. In International Conference on Learning Representations, 2018.

100

[113] Jonathan Uesato, Brendan O’Donoghue, Aaron van den Oord, and Pushmeet Kohli. Adversarial

risk and the dangers of evaluating against weak attacks. arXiv preprint arXiv:1802.05666, 2018.

[114] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing

ingredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

[115] Twan van Laarhoven. L2 regularization versus batch and weight normalization. arXiv preprint

arXiv:1706.05350, 2017.

[116] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information

processing systems, pages 5998–6008, 2017.

[117] Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David Cour-

napeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, et al. Scipy 1.0:

fundamental algorithms for scientific computing in python. Nature methods, 17(3):261–272,

2020.

[118] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-

ucsd birds-200-2011 dataset. 2011.

[119] Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. Regularization of neural

networks using dropconnect. In International conference on machine learning, pages 1058–

1066, 2013.

[120] Yeming Wen, Dustin Tran, and Jimmy Ba. Batchensemble: an alternative approach to efficient

ensemble and lifelong learning. In International Conference on Learning Representations, 2020.

[121] Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European Conference

on Computer Vision (ECCV), pages 3–19, 2018.

[122] Lechao Xiao, Yasaman Bahri, Jascha Sohl-Dickstein, Samuel S Schoenholz, and Jeffrey Pen-

nington. Dynamical isometry and a mean field theory of cnns: How to train 10,000-layer vanilla

convolutional neural networks. In International Conference on Machine Learning, 2018.

[123] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual

transformations for deep neural networks. In Computer Vision and Pattern Recognition (CVPR),

2017 IEEE Conference on, pages 5987–5995. IEEE, 2017.

101

[124] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond

empirical risk minimization. In International Conference on Learning Representations, 2018.

[125] Hongyi Zhang, Yann N. Dauphin, and Tengyu Ma. Fixup initialization: Residual learning with-

out normalization. In International Conference on Learning Representations.

[126] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data

augmentation. arXiv preprint arXiv:1708.04896, 2017.

[127] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. In Inter-

national Conference on Learning Representations.

[128] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architec-

tures for scalable image recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 8697–8710, 2018.

102

	List of Tables
	List of Figures
	Introduction
	Mixed-Example Data Augmentation
	Introduction
	Related Work
	Methods
	General Formulation
	Linearity-Based Methods
	Non-Linear Methods

	Experiments
	Implementation Details
	Results

	Conclusion

	Logit Regularization for Adversarial Robustness
	Introduction
	Overview of Adversarial Training
	Adversarial Logit Pairing and Logit Regularization
	Experimental Evidence

	Other forms of logit regularization
	Decoupling Adversarial Logit Pairing

	Additional experiments
	Implementation Details
	Towards a more robust model
	Evaluating Stronger Attacks

	Conclusion

	Improving Batch Normalization
	Introduction
	Related Work/Background on normalization methods
	Improving Normalization
	Inference Example Weighing
	Ghost Batch Normalization for Medium Batch Sizes
	Batch Normalization and Weight Decay
	Generalizing Batch and Group Normalization for Small Batches

	Additional Experiments
	Experimental Details
	Combining All Four: Improvements Across Batch Sizes
	Transfer Learning
	Non-i.i.d. minibatches

	Conclusion

	Nondeterminism and Instability
	Introduction
	Related Work
	Nondeterminism
	Protocol for Testing Effects of Nondeterminism
	Experiments in Image Classification
	Experiments in Language Modeling
	Nondeterminism Throughout Training

	Instability
	Instability and Nondeterminism
	Instability and Depth

	Reducing Variability
	Generalization Experiments
	Conclusion

	Conclusion
	Appendix: Improving Batch Normalization
	Proof of Batch Normalization Output Bounds
	Empirical Evidence of Batch Normalization Output Bounds
	Negative Results: Approaches That Didn't Work.
	Supplemental Inference Example Weighing Plots

	Appendix: Nondeterminism and Instability
	Linear, 2-Layer, and ResNet-10 Results
	Impact of Random Bit Changes Over Time
	Test-Time Augmentation Details
	Approaches that don't reduce instability
	Accelerated Ensembling in Language Modeling
	Subtleties in Evaluation

	References

