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Abstract

Neural networks have attracted a lot of attention from both academia and industry

due to their success in challenging tasks such as machine vision, speech recognition

and natural language processing. However, in order to achieve good performance

on supervised learning tasks, neural networks have to be trained on large amounts

of labelled training data. This often requires human experts to painstakingly label

every single example in the data. The labelling process can be costly and time

consuming. Even though labelled data can be scarce and expensive to collect in

practice, unlabelled data are usually available in abundance. The goal of this thesis

is to improve the generalisation performance of neural networks on classification

tasks by utilising the unlabelled data. This thesis studies three strategies to tackle

this problem: pretraining, semi-supervised learning and active learning.

In this thesis, we propose a self-supervised pretraining method for tabular data

that learns to identify real data from randomly shuffled data. Then the weights

learned in the pretraining are reused as initial weights for the original task on the

labelled training set. In the second piece of work, we break the common assumption

in semi-supervised learning that the labelled data and unlabelled data come from the

same distribution. We empirically show that novel classes in unlabelled data can lead

to a degradation in generalisation performance for semi-supervised algorithms. We

propose a 1-nearest-neighbour based method to assign a weight to each unlabelled

example in order to reduce the negative effect of novel classes in unlabelled data.

Lastly, we propose a new uncertainty-based active learning method specifically for

neural networks trained using stochastic gradient descent by querying examples

whose predictions change the most during the training. Experimental results show

that the proposed method is more effective when a large labelled training set is

already available. We also show that different types of active learning methods

perform differently under different settings. It suggests that to fully evaluate the
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characteristics of an active learning algorithm, experiments under a wide range of

settings are required.
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1
Introduction

Neural networks have attracted a lot of attention from both academia and industry

due to their success in different machine learning tasks. Recurrent neural networks

(RNNs) have been successfully applied to speech recognition and natural language

translation [39, 98, 113]. Convolutional neural networks (CNNs) have been the

winning models for many machine vision challenges [40, 44, 67]. Fully-connected

neural networks (FNNs) were shown to be effective at identifying exotic particles

without features hand-engineered by physicists [3]. The success of these supervised-

learning systems relies on an enormous amount of labelled training data. Clean and

labelled training data are not always easy and cheap to obtain in many domains.

For example, collecting labelled training data for medical applications usually re-

quires hiring domain experts to manually tag training examples. The World Health

Organisation (WHO) reported that pneumonia resulted in more than 2 million

deaths in children under 5 years old [95]. Developing a system that can accurately

and reliably detect pneumonia can improve the speed and accuracy of diagnosis of

pneumonia. Kermany et al. [55] applied neural networks in detecting pneumonia

from chest X-ray images. The training data contain 5232 images (3883 positive and

1349 negative). They achieved an accuracy of 92.8% on the test set (390 positive

1



2 Introduction

and 234 negative). In order to improve the accuracy, a lot more labelled training

examples are required for supervised learning. However, data labelling can be an

expensive and time-consuming practice.

Fortunately, although labelled data can be difficult to obtain, unlabelled data

are usually readily available in abundance. Therefore, it is desirable to develop

machine learning systems that can take advantage of this abundance of unlabelled

data. This motivates us to study how unlabelled data can be used to improve the

generalisation performance of a classifier.

1.1 Problem Definition

In this thesis we define generalisation as the ability to generalise a learned classifier

on future unseen data with the same distribution as the training data. Generalisation

is measured using test accuracy (accuracy on the test set) throughout this thesis.

The test set has the same distribution as the labelled training set.

In supervised learning, the goal is to train a classifier on a labelled dataset and

make accurate predictions on future unseen data. The learning scenario we study

in this thesis consists of both a labelled dataset L and an unlabelled dataset

U . The labelled dataset is a set containing pairs of examples and labels: L =

{(x1, y1), ..., (x|L|, y|L|)}. We use i to denote the index of a labelled example. The

unlabelled dataset is a set of examples without labels: U = {x|L|+1, ..., x|L|+|U |}. We

use j to denote the index of an unlabelled example. Both the labelled dataset and

the unlabelled data come from the same task (for example, image recognition). The

goal of this thesis is to improve the generalisation performance of neural networks

on classification tasks with unlabelled data.

1.2 Outline

In order to improve the generalisation of neural networks, we study three different

strategies of utilising the unlabelled data: pretraining, semi-supervised learning and

active learning.

One of the earliest approaches of utilising unlabelled data to improve the perfor-

mance of neural networks on supervised tasks is pretraining [5, 46, 92]. However, the

main goal was to improve the training stability of neural networks, instead of the

generalisation performance. Figure 1.1 demonstrates a typical pretraining process.
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L Unlabelled data

U

Machine learning model

Pretrained model

Labelled data

Pretrain

Reuse weights

Fine-tune

Figure 1.1: Pretraining.

During the pretraining, a model is learned from the unlabelled data. The learned

weights are then reused as initial weights of the final model and fine-tuned on the

labelled dataset. Pretraining assumes that the weights learned in the pretraining

process are useful for the original supervised task. In Chapter 4, we propose a pre-

training method that is supervised in nature by automatically creating a labelled

dataset from the unlabelled data. The goal is to improve the generalisation per-

formance on the original classification task by using the learned weights as initial

weights.

L Unlabelled data

U

Machine learning model

Labelled data

Train Train

Figure 1.2: Semi-supervised learning.
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Pretraining is a two-phase strategy of utilising unlabelled data. Semi-supervised

learning provides a one-phase strategy for taking advantage of the unlabelled data.

In semi-supervised learning, a classifier can be trained on labelled data and unla-

belled data simultaneously (shown in Figure 1.2). This is achieved by optimising a

loss function that utilises both labelled data and unlabelled data. Semi-supervised

learning assumes that the unlabelled data comes from the same distribution as the

labelled data. However, this assumption may not hold in practice. We will show in

Chapter 5, the presence of novel classes in the unlabelled data can degrade the per-

formance of semi-supervised algorithms for neural networks. We propose a general

distance-based weighting framework and a 1-nearest-neighbour-based implementa-

tion that assigns weights to unlabelled data in order to reduce the impact of novel

classes.

L Unlabelled data

U

Machine learning model

Labelled data

Select Train

Oracle (e.g. human annotator)

Query Annotate

Figure 1.3: Active learning.

Another strategy of improving the generalisation performance of a classifier using

unlabelled data is simply labelling more data. Strategically selecting unlabelled data

to be queried and added to the labelled dataset is called active learning. A typical

active learning cycle is shown in Figure 1.3. A model trained on the available labelled

data is used to select examples from the unlabelled dataset (the dashed line indicates

that not all active learning algorithms require a trained model). The selected exam-

ples are then sent to an oracle, typically a human annotator, for annotation. The

additional labelled data are added to the labelled training set. The model is then

retrained on the updated training set. Most literature focuses on the improvement
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of generalisation performance when the labelled dataset is small, possibly due to the

common evaluation methods used. In Chapter 6, we show that different types of

active learning methods perform differently under different settings. It means that

an active learning algorithm optimised for small labelled dataset may not be as effec-

tive when the labelled dataset is already big. We propose a new uncertainty-based

active learning framework and an implementation of it, inspired by recent research

on the convergence property of neural networks [86, 110, 117, 124]. The proposed

method is more effective when the initial labelled dataset is large. An active learning

algorithm that is more effective when labelled dataset is large is desirable, because

practitioners usually want to continuously improve the generalisation of their models

even after the models are in production.

1.3 Research Questions

We answer the following questions for each of the strategies we study throughout

this thesis:

Pretraining

1. How do the initial weights affect the generalisation performance of a neural

network?

2. How can we create a supervised pretraining task from the unlabelled data to

pretrain a model, and then reuse the learned weights as initial weights in order

to improve the generalisation on the original supervised task?

Semi-supervised learning

1. How do novel classes in unlabelled data affect the generalisation performance

of semi-supervised algorithms for neural networks?

2. How can we come up with a method to mitigate the negative effect of novel

classes on the generalisation performance of neural networks?

Active learning

1. How do different types of active learning methods perform under different

settings on the number of initial labelled examples and the number of queried
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examples?

2. How can we apply recent theoretical and empirical studies on the convergence

properties of neural networks to active learning?

1.4 Scope

This thesis only focuses on the generalisation performance of neural networks on

classification tasks. We do not study other machine learning tasks, such as regres-

sion, in this thesis. We also do not consider multi-label classification, where an

example can have multiple labels. An example can only have one class label in this

thesis.

As the title suggests, we focus on neural networks in this thesis. Other types of

machine learning classifiers are not considered in our research. The architecture of a

neural network is a form of inductive bias, so it can have an impact on the generalisa-

tion performance. However, designing novel architectures is not a goal of this thesis.

Additionally, we do not use state-of-the-art architectures or any data augmentation

techniques in our experiments. We do not intend to achieve state-of-the-art results

on any specific datasets. In order to answer our proposed research questions, we

only need to make sure all the variables (including the architectures used) are con-

sistent in all competing methods. Therefore, we used simple architectures in our

experiments to reduce the computational cost.

A common approach to improving the generalisation of neural networks when

the labelled training set is small is transfer learning. However, transfer learning

requires a large labelled dataset from a different but related task, apart from the

original labelled dataset. This violates the problem definition of this thesis (only

one labelled dataset and one unlabelled dataset from the same task are available).

Therefore, transfer learning is not considered in this thesis.

1.5 Objectives

In order to answer our proposed research questions, we define the following objectives

for this thesis:
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Pretraining

1. To demonstrate the effect of initialisation on the generalisation of neural net-

works.

2. Propose a supervised pretraining method to improve the generalisation of neu-

ral networks.

3. Evaluate the proposed pretraining method against a standard initialisation

method commonly used for modern neural networks.

Semi-supervised learning

1. Conduct empirical study on the effect of novel classes on the performance of

semi-supervised algorithms for neural networks.

2. Propose a method to mitigate the negative effect of novel classes in unlabelled

data when applying semi-supervised learning algorithms.

3. Evaluate the effectiveness of the proposed method.

Active learning

1. Conduct experiments to test different types of active learning methods under

different settings.

2. Propose a new active learning method motivated by the recent research on the

convergence property of neural networks.

3. Evaluate the proposed active learning method against other benchmarks under

different settings.

1.6 Contributions

This thesis makes the following contributions:

Pretraining

• We demonstrate that initialisation does affect the generalisation performance

of neural networks. We show that “bad” initial weights can lower the test accu-

racy of a neural network. The evaluation results on our proposed pretraining
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method suggest that “good” initial weights can improve the generalisation

performance especially when the labelled training set is small.

• We propose a supervised pretraining method for tabular data. The proposed

method creates a binary classification task for the pretraining automatically

from the unlabelled data. It creates a shuffled dataset by randomly permuting

each feature independently. The pretraining trains a model to identify the

real data from the shuffled data. The experimental results show that the

pretraining leads to better test accuracy when the labelled training set is

small.

Semi-supervised learning

• We empirically show that the presence of novel classes in the unlabelled data

can lead to degradation in generalisation performance of semi-supervised learn-

ing algorithms.

• We propose a distance-based weighting framework that assigns weights to un-

labelled data. This framework assumes that the unlabelled examples that

are far away from the labelled examples are more likely to belong to the novel

classes, and should be assigned lower weights in training. The proposed frame-

work can be applied to any semi-supervised learning algorithm that includes

unlabelled data in the loss function.

• We propose a 1-nearest-neighbour based implementation of the framework.

The experimental results show that when the proposed method is applied

to semi-supervised algorithms, the degradation in generalisation performance

caused by novel classes becomes statistically insignificant.

Active learning

• We propose a new uncertainty-based active learning framework for neural net-

works that selects examples whose model outputs fluctuate the most during

training. This framework assumes that the unlabelled examples whose model

outputs fluctuate the most during training are more difficult to learn, and

therefore are more useful to be added to the labelled set.

• We propose an implementation of the framework that queries unlabelled ex-

amples whose predictions change the most during training. The experimental
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results show that the proposed method is more effective when the initial la-

belled dataset is large. We think this active learning setting where a large

labelled dataset is already available has been overlooked due to the common

evaluation methods used in the literature.

• We empirically show that different types of active learning algorithms perform

differently under different settings. This suggests that researchers should eval-

uate their proposed active learning algorithms under a wide range of settings

in order to reveal the characteristics of the algorithms. A more comprehensive

evaluation can also motivate researchers to design active learning algorithms

optimised for specific settings.

1.7 Thesis Structure

The rest of the thesis is structured as follows:

• Chapter 2: Preliminary Overview of Neural Networks. This chapter intro-

duces preliminary concepts that help the reader understand later chapters.

We first explain what an artificial neural network is. Then we introduce main

components found in modern neural networks.

• Chapter 3: Literature Review. This chapter reviews relevant literature on im-

proving the generalisation of classifiers using unlabelled data. We first review

related works on using pretraining to improve the generalisation of neural

networks. Then we review important semi-supervised algorithms for neural

networks. Finally, we discuss relevant literature on active learning.

• Chapter 4: Supervised Pretraining with Unlabelled Data. In this chapter, we

demonstrate that the initial weights can affect the generalisation of neural

networks. We then describe the proposed pretraining method before discussing

the experimental results.

• Chapter 5: Investigating the Effect of Novel Classes in Semi-Supervised Learn-

ing. This chapter breaks the common assumption in semi-supervised learn-

ing that the unlabelled data come from the same distribution as the labelled

training data. We empirically investigate whether the presence of novel classes
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affect the performance of semi-supervised learning algorithms for neural net-

works. We then propose a method to reduce the effect of novel classes on the

performance of semi-supervised learning algorithms.

• Chapter 6: Measuring Output Fluctuation During Training for Active Learn-

ing. In this chapter, we propose a new active learning method inspired by the

recent theoretical and empirical works on the convergence property of neural

networks. We evaluate the proposed method against different types of active

learning methods under different settings by changing the number of initial

labelled examples and the number of queried examples.

• Chapter 7: Conclusion. We conclude the thesis by highlighting our achieve-

ments and contributions, pointing out limitations of our research and finally

discussing potential future works.



2
Preliminary Overview of Neural

Networks

2.1 Overview

In this chapter, we briefly introduce what a neural network is and describe the

important components of a typical neural network. Generally speaking, all neural

networks have an input layer, at least one hidden layer and an output layer. The

input layer connects the input (data) to the hidden layer. Hidden layers perform

nonlinear transformations of their input by using nonlinear activation functions.

Nonlinear activation function is an important reason why a neural network can rep-

resent nonlinear functions. Different activation functions have different properties

and can affect both the representation capacity and the optimisation of neural net-

works. Activation functions are discussed in detail in Section 2.5. The output layer

is used to change the size of its input to the desired number of output units. In

classification tasks, the output layer is also used to transform its input into a proba-

bility distribution over the different classes. A loss function is then applied to the

output of the output layer to evaluate how accurate the predictions are against true

11
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labels. Each layer is connected to at least another layer with a set of weights. The

same activation functions, output functions and loss functions can be used across

different types of neural networks. Different types of neural networks mainly differ

in how the layers are connected to each other. In other words, different neural net-

works have different structures of weights that connect the layers together. This is

called the architecture of neural networks.

Output layer

Hidden layer

Input

Figure 2.1: A two-layer FNN with one hidden layer. The input has four dimen-
sions. The hidden layer and the output layer have three and two units
respectively.

2.2 Architecture

The simplest architecture in neural networks is fully-connected neural network

(FNN). FNN is a type of feedforward neural network, which does not allow

cyclic connections among units or layers. In FNN, each unit is connected to every

unit in the next layer, but not to units in its own layer. Some literature refers to

this type of neural network as multi-layer perceptron (MLP). This is a mis-

nomer, since perceptron is a linear classifier. A multi-layer perceptron is still a

linear classifier. However, the name MLP is almost always used to refer to a non-

linear multi-layer FNN. Figure 2.1 is an example of a simple two-layer FNN. In this
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example, the input of the network has four dimensions. Each of the dimensions in

the input is connected to every unit in the hidden layer. Each of the three hidden

units is connected to all of the output units. Note that units in the same layer

are not connected to each other, and each layer is always connected to the next

neighbour layer (there are no skip connections). Each connection in the network

has a weight associated with it. Generally speaking, the magnitude of the weight

indicates the importance of the connection between two units. The input to a unit

in the next layer is a weighted sum of the values of all the units in the current layer.

Each unit apart from the input units also has a bias that needs to be added to the

sum. For example, let us denote the four input values as x1, x2, x3 and x4, the bias

of the first hidden unit as b and the weights for the incoming connections to this

hidden unit as w1, w2, w3 and w4. The input to this hidden unit (z) is calculated as

below:

z = w1x1 + w2x2 + w3x3 + w4x4 + b.

Each hidden unit has an activation function f , which takes as input the weighted

sum of the output values of units from the previous layer. The output of the first

hidden unit in our example is therefore f(z). The activation function is usually

nonlinear. If a linear activation is used for every hidden unit, then the output of

the entire network is also linear. This means we can only learn a linear function

regardless of the size of the neural network. Activation functions are discussed in

detail in Section 2.5.

Convolutional neural network (CNN) is also a type of feedforward neural

network that is widely used in machine vision tasks. LeCun et al. [70] first proposed

the idea of using convolution operations on image data to learn feature extractors by

taking advantage of the fact that the pixels in natural images are locally related to

each other. The idea was successfully applied in the handwritten digit recognition

task [71]. The network architecture proposed in this work has been known as LeNet.

LeNet has a series of blocks that contain a convolutional layer and a pooling layer.

The convolutional layer applies convolution operations on an image or the output

of the previous layer. The pooling layer downsamples the output of the convolu-

tional layer. Convolution makes the model translation equivariant for the locations

of features learned. It means that if a transformation is applied to an image and

then convolution is applied to the same image, the result is the same as what we

would get if we applied the convolution before the transformation. However, con-
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volution does not necessarily make the model equivariant to other transformations

like scale or rotation. Pooling introduces partial translation invariance to some

small translations. It means that the output of pooling can be the same even if

the input changes slightly. The basic ideas of LeNet have been applied at much

larger scales in architectures used in the ImageNet Large Scale Visual Recognition

Challenges (ILSVCRs) [23], such as AlexNet [67], VGG [108], GoogLeNet [114] and

ResNet [44]. A layer in a CNN or feedforward network in general only connects to

the next layer after it. This is true for all the architectures mentioned above except

ResNet. ResNet has skip connections that connect layers that are not next to each

other. These skip connections allow gradient information to propagate more easily

in deep networks.

Both CNN and FNN are feedforward neural networks that do not have cyclic

connections. Recurrent neural network (RNN) is a type of neural network

in which cyclic connections are allowed. RNNs are designed to learn sequential

relationships in the data. However, RNNs had been shown to be really difficult

to train to learn long-term dependencies, until the invention of long short-term

memory (LSTM) [47] and its variations [14, 33, 62, 126]. We do not explain RNNs

in detail here, since they were not used in our studies. Note that architecture

design is not a goal of the research reported in this thesis, hence we used simple

architectures in our experiments to reduce the computational cost.

2.3 Output Function

The output function of a neural network is usually one of three forms: linear,

sigmoid and softmax. Let W be the weight matrix between the output layer and

the hidden layer before the output layer. Let ~h be the output vector of the hidden

layer and b be the bias for the output unit. The linear output is calculated as follows:

ŷ = W ᵀ~h+ b.

Linear output is used when we expect the output to be distributed according to the

Gaussian distribution. We usually use this linear output function in regression tasks

and the networks usually only have one output unit. If the output is a Bernoulli

distribution, we usually use sigmoid as the output function. There is also only one
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output unit in this case. The sigmoid output is computed as follows:

z = W ᵀ~h+ b, and

ŷ =
1

1 + exp(−z)
.

Sigmoid output function is suited for binary classification problems. It squashes the

input into the range of [0, 1]. If the output is larger than a threshold, we predict the

example to be positive, otherwise we predict it to be negative. If the classification

problem has more than two classes, a softmax output function can be used. In this

case, the number of the output units is equal to the number of classes. Softmax

output for one output unit is calculated as follows:

ŷk =
exp(zk)∑
c exp(zc)

where k is the kth output unit, zk is the weighted sum of the incoming signals for the

kth output unit and zc is the weighted sum of the incoming signals for any output

unit c. The class with the highest output value is the predicted class. We use the

softmax function as the output function in this thesis unless specified otherwise,

because we mainly deal with classification problems.

2.4 Loss Function

A neural network also needs a loss function that quantifies how accurate its pre-

dictions are. Note that the loss function is usually not the same metric used to

evaluate a neural network. This is also true for other types of machine learning

models. This happens when we cannot apply an efficient optimisation algorithm

to optimise the evaluation metric directly. For instance, a common metric used to

evaluate a classifier is accuracy, but the most efficient optimisation algorithms for

training neural networks cannot be used to directly optimise accuracy on a training

set. The common optimisation algorithms for neural networks all require gradient

information, however, accuracy is not a smooth and continuous function that these

algorithms can operate on. Common optimisation algorithms in neural networks are

reviewed in Section 2.7.

A loss function should be able to indicate how well a model is fitting the data,

and it should be a function that can be optimised efficiently. Most of the commonly
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used loss functions in neural networks are derived using cross-entropy according

to the Maximum Likelihood Estimation (MLE). The specific form of the loss

function depends on the choice of the output function. If the output is a linear

function, the loss function will take the form

J =
1

m

m∑
i=1

(ŷi − yi)2

where yi is the ground truth, ŷi is the predicted output, and m is the number of

instances in the data set. If the output is a sigmoid or softmax, then the loss function

becomes

J = − 1

m

m∑
i=1

C∑
c=1

(yiclog(ŷic))

where yic is the ground truth (usually a binary value) for class c of example i, ŷic is

the predicted probability for class c of example i and C is the total number of classes.

This is the loss function used through out this thesis unless specified otherwise.

2.5 Activation Function

The choice of activation function for the hidden units is important when designing

a neural network. Activation functions need to be nonlinear, otherwise the whole

neural network can only represent a linear function. Before the prevalent usage of

rectified linear units (ReLU), the sigmoid function

f(z) =
1

1 + exp(−z)

and the hyperbolic tangent function

f(z) =
exp(z)− exp(−z)

exp(z) + exp(−z)

were the mostly used activation functions. The output of the sigmoid function is

in the range of [0, 1] and [−1, 1] for hyperbolic tangent function. Both of these

functions saturate when the magnitude of z is large. The large saturation region

is a major draw back of these activation functions when a gradient-based learning

algorithm is used. The gradient for either of the functions reaches zero when z is

large in magnitude; no gradient information is able to flow to the early layers, this
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stagnates the training. To overcome this problem, researchers started initialising

the weights using layer-wise unsupervised learning [5, 46, 92].

It was later discovered that if ReLU is used as the activation function, one can

simply train a neural network using purely supervised training without unsuper-

vised pretraining to achieve high accuracy, provided that a large labelled dataset is

available [36]. ReLU takes the form of f(z) = max{0, z}. ReLU has now become

the default activation function to use because of its ease to optimise and fast com-

putation. The right half of ReLU is a linear function and the left half is a constant

zero. Empirically, the flat left half of ReLU is usually not a problem for training

when the model depth is not too big. However, the flat region of ReLU can result

in “dead neurons” when the model is big or the choice of initial weights is poor.

“Dead neurons” is a phenomenon where the activation values are stuck in the flat

region of the activation function so that the network stops learning. To solve this

problem, different variations of piece-wise linear activation functions have been de-

veloped. Note that although the ReLU activation function is not differentiable at

z = 0, in practice we can simply set the derivative at this point to 0 or the slope of

the linear part. The same treatment of non-differentiable points can be applied to

other variations of piece-wise linear activation functions.

Softplus is a smoothed version of ReLU: f(z) = ln(1 + exp(z)) so that any-

where on the function is differentiable [87]. However, Glorot et al. [36] found that

ReLU produced better results than softplus. Maas et al. [78] introduced leaky

ReLU: f(z) = max(0, z)+a min(0, z) where a is a small constant value (e.g. 0.01).

He et al. [43] adopted the idea of leaky ReLU but made a a learnable parameter

(parametric ReLU). They showed that by carefully choosing the parameter in

leaky ReLU, one could get better results than the regular ReLU. But the parameter

tuning process can be tedious. Parametric ReLU is able to learn the parameter from

data.

Clevert et al. [16] introduced the exponential linear unit (ELU): f(z) =

max(0, z)+a(exp(z)−1). They claimed that the negative values of ELU pushes the

mean activation values to zero where the gradient is well behaved. This has the effect

of batch normalisation [52] but without its expensive computation. According to

their experiments, ELU gives faster training and better generalisation for networks

with more than 5 layers than ReLU and leaky ReLU. Built on top of the idea of ELU,

Klambauer et al. [60] proposed self-normalising neural network (SNN) using

scaled exponential linear units (SELU): f(z) = λ(max(0, z) + a(exp(z)− 1)).



18 Preliminary Overview of Neural Networks

They derived the values for a and λ using stable and attracting fixed point theory.

They theoretically proved that as long as activation values are close to zero mean and

unit variance, as it propagates to deeper layers, the activation values will converge

to zero mean and unit variance.

Goodfellow et al. [38] introduced maxout to work with the dropout [111] reg-

ularisation method. Instead of a two-piece linear function like ReLU, maxout has

k linear pieces. Maxout is defined as f(~z) = max(zi) where i ∈ k. One maxout

unit can approximate any convex function up to a certain degree of error. The

high representation capacity of the maxout unit means it should be used with more

regularisation methods. Dropout is usually applied when maxout units are used.

Although we have seen a lot of research efforts in coming up with new activation

functions in recent years, it still remains difficult to know which activation function

to use in a particular application without experimenting. Currently, we do not have

good theoretical guidance on the choice of what activation function to use. Empiri-

cally speaking, ReLU is a good default activation function to start with if the depth

of the network is not too big. If during training, the neural network is experiencing

the “dead neuron” phenomenon, activation functions such as leaky ReLU, paramet-

ric ReLU, ELU can be experimented with. Unless specified otherwise, we always

use ReLU as the activation function in our experiments.

2.6 Initialisation

As described in the previous sections, neural networks have weighted connections

that connect all the layers together. When we train a neural network, we essentially

update these weights connecting the layers (optimisation methods used to train neu-

ral networks are discussed in Section 2.7). This means we need to set initial weights

for a neural network before the training starts. This is called initialisation. Deep

neural networks are notoriously sensitive to initialisation [35, 43, 112]. Poor initial-

isation can lead to poor generalisation, difficulty in training or numerical problems.

We will discuss some of the research on initialising neural networks in this section.

First of all, we need to make sure the units in the same layer are initialised

with different weights, otherwise these weights will always be updated in the same

direction with the same magnitude. This is known as “symmetry breaking”.

We usually initialise weights using either a Gaussian distribution with zero mean

and small standard deviation or an uniform distribution with a limited range of
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values to draw from. LeCun et al. [72] recommended using a normal distribution

with mean 0 and standard deviation 1√
p
, where p is the number of units in the

current layer. Glorot and Bengio [35] derived a way to initialise weights using the

following uniform distribution

W ∼ Uniform

(
−
√

6

q + p
,

√
6

q + p

)
where W is the weights, q and p are the number of units in the previous layer and the

next layer. They derived this method by assuming only linear activation functions

are used, and attempting to initialise the weights in such a way that the variances

of activation values and gradient across all layers are the same at the beginning of

training. Despite the unrealistic assumption on the linear activation function, this

initialisation works well in practice. Using the same idea, He et al. [43] derived an

initialisation method specifically for the ReLU activation function

W ∼ Normal

(
0,

√
2

q

)
or

W ∼ Uniform

(
−
√

6

q
,

√
6

q

)
where q is the number of units in the previous layer. This initialisation method

has been shown to be effective even for really deep networks using ReLU where the

Glorot and Bengio [35] method fails [43].

Saxe et al. [100] recommended initialising weights to random orthogonal ma-

trices. However one needs to carefully choose the gain factor when a nonlinear

activation function is used. Mishkin and Matas [82] proposed a method called layer-

sequential unit-variance (LSUV) initialisation. LSUV firstly initialises the weights

with orthonormal matrices, and then normalises the activation values of each layer

to have a variance of 1. Krähenbühl et al. [63] also developed a data-dependent

initialisation method for convolutional neural networks in an attempt to make all

the weights change at roughly the same rate.

All of the works on initialisation mentioned above have been focusing on sta-

bilising and accelerating the training process. Initialisation of neural networks is a

difficult problem to study due to the complex nature of the loss (cost) surface and

its optimisation dynamics. It is even more difficult to conduct research on initiali-
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sation with regard to the generalisation of neural networks. It is possible that even

though the above methods can successfully improve the stability and speed of train-

ing, they may not provide the best generalisation performance in neural networks.

More research efforts need to be devoted to exploring the connection between the

initialisation and the generalisation of neural networks.

2.7 Optimisation

When training a neural network, we want to optimise the weights connecting the

layers to minimise the value of a loss function (described in Section 2.4) given the

data and true labels. If the loss surface is convex, we can solve the optimisation

problem analytically. However, the loss surface of a neural network is almost al-

ways non-convex with many local minimums and saddle points, so we have to use

an iterative algorithm to update the parameters. There is no guarantee that the

model will converge. Even when it does converge, we cannot know if the model has

converged to the global minimum or a local minimum.

The most commonly used optimisation methods in training neural networks are

all different variants of gradient descent. The word “gradient” simply means the

partial derivatives of a loss function with respect to a vector of variables. In machine

learning we usually have to optimise more than one parameter especially in deep

neural networks. A gradient descent algorithm makes small steps in the direction of

the negative gradient. Let f be a function of variable w, we denote the derivative of

f with respect to w as ∇wf(w). Then the weight update rule of gradient descent is

w′ = w − lr∇wf(w)

where lr is the learning rate. The learning rate determines the step size we take

in the weight update.

We have seen how to update a weight parameter given its derivative, but we

also need an efficient algorithm to calculate these derivatives in a neural network.

Backpropagation [97] is such an algorithm that can compute the partial derivatives

of all the weight parameters in a neural network by doing only one forward pass and

one backward pass. Backpropagation is basically an application of the chain rule of

calculus. We use Figure 2.2 as an example to briefly illustrate how backpropagation

works. Let ~z1 and ~z2 be the weighted sum of the unit values of ~x and ~h: ~z1 = W ᵀ
1 ~x
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and ~z2 = W ᵀ
2
~h. Let ~h = f(~z1) and ~y = g(~z2).

W
2

W
1

h⃗

x⃗

y⃗

Figure 2.2: An example of a forward pass, where ~y is the output units, ~h and ~x are
hidden units and input units respectively, and W1 and W2 are weight
matrices of the network.

In the first step of backpropagation algorithm, we do a forward pass to calculate

the values of the output units ~y, and compute the value of the loss function J based

on ~y. Then we compute the partial derivatives of J with respect to ~y: ∇~yJ . The

gradient of ~z2 is ∇ ~z2J = ∇ ~z2~y �∇~yJ . The gradient of the weights W2 is therefore

∇W2J = ~h∇ ~z2J . The gradient of ~h is the weighted sum of the gradient of ~z2:

W2∇ ~z2J . By applying the same chain rule, the gradient of W1 is ∇W1J = ~x∇ ~z1J ,

where ∇ ~z1J = ∇ ~z1
~h�∇~hJ . We usually do not need to compute gradients for input

~x because we are not trying to optimise the input values.

The most commonly used optimisation algorithm is probably stochastic gra-

dient descent (SGD). The weight update rule is

θ ← θ − lr∇θ(
1

m

m∑
i=1

J(yi, ŷi))
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where lr is the learning rate and m is the batch size. When m is the size of the

training set, this is basically a full-batch version of gradient descent. In practice,

we rarely use the full-batch version of gradient descent because it does not scale

well with regard to the size of the training set. When m is 1, it becomes the online

version of gradient descent. The learning can become less stable when using online

gradient descent, so we usually use the mini-batch version of the algorithm. SGD

introduces noise in the estimation of gradient through random sampling of mini-

batches. Because of this, it is common in practice to reduce the learning rate over

time as the training goes on when using SGD. Smith and Le [109] showed that the

noise introduced by mini-batches actually helps with generalisation and the optimal

batch size is proportional to the learning rate and the size of the training set.

Although SGD is a popular optimisation method in neural network, it has its

disadvantages. Learning can be slow and unstable if the noise in the gradient is

high. And if the Hessian matrix of the loss function is ill conditioned, SGD tends

to zigzag on the cost surface instead of taking a smooth and direct path to the

minimum. Polyak [90] introduced momentum to help solve these problems. The

update rule for SGD with momentum is

v ← εv − lr∇θ(
1

m

m∑
i=1

J(yi, ŷi))

θ ← θ + v

where v is velocity, ε is the momentum parameter and lr is the learning rate. The

larger ε is compared to lr, the more the previous gradients will affect the direction of

the current weight update. Momentum draws inspiration from physics. Imagine a

ball is travelling at a speed of v on a surface. The friction of the surface determines

the momentum parameter ε. If the surface is completely smooth, ε would be 1.

If the surface is not smooth, the ball will continue moving in the same direction

until its speed decreases to zero. The second term in the velocity update rule is

like another force applied to the ball that can potentially change the direction and

magnitude of the velocity of the travelling ball. A slight variant of the momentum

method called Nesterov momentum was later introduced by Sutskever et al. [112].

The only difference in Nesterov momentum is that the current velocity is applied to

the weights before the gradient is computed.

Jacobs [53] proposed a method to adaptively adjust the learning rate for each
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weight during training. If the partial derivative of a weight parameter changes sign,

then the learning rate is decreased. We increase learning rate for a weight parameter

if its derivative does not change sign. Recently, more advanced methods with adap-

tive learning rates have been developed. AdaGrad [28] accumulates the squared

derivatives for weight parameters and scales the learning rates inversely proportional

to the the accumulated squared derivatives. However, AdaGrad works the best for

convex problems. RMSProp [45] modifies AdaGrad by using an exponentially

weighted moving average to accumulate the squared gradient. Zeiler [128] intro-

duced AdaDelta to address two drawbacks of AdaGrad: sensitivity to the choice

of global learning rate and the continual decay of learning rates during the training.

Adam draws inspirations from both the momentum method and RMSProp and at-

tempts to adaptively adjust momentum instead of learning rate [57]. Similar to the

choice of activation functions, we currently do not know which optimisation method

is the best for a particular dataset without experimenting.

All the optimisation algorithms we have discussed are first-order methods. There

are also many methods that take second-order derivatives into consideration. How-

ever, second-order optimisation methods are not commonly used in training deep

neural networks mainly due to their poor scalability and convergence requirements

[71]. Optimisation is not the centre of our research and we will not be using second-

order optimisation methods in our research, so we are not reviewing them here.

Unless specified otherwise, we always use SGD in our research.

2.7.1 Normalisation

Another important advancement in neural networks in the last few years is the

invention of different normalisation methods that are designed to stabilise the train-

ing of deep models. When the depth of a neural network is big, the variance of

the activation values and gradient values becomes large. This can result in training

problems such as vanishing gradients or exploding activation values. Researchers

attempted to solve this problem by using carefully designed initialisation, the usage

of ReLU and a small learning rate. However, even though the initialisation meth-

ods described in Section 2.6 are designed to stabilise the training of deep neural

networks, they only impose this stabilising property at the initialisation and the

first few training iterations. The stabilising effect provided by good initialisation

may not continue afterwards. The usage of ReLU and its variants helps reduce the
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problem of vanishing gradients, however, the stability of training very big models is

still a problem. And using small learning rates obviously slows down the learning

process.

Shimodaira [128] described a problem encountered in learning systems called co-

variate shift. Covariate shift happens when the input distribution of a learning

system changes all the time and the model has to constantly adapt to new distri-

butions. Inspired by this work, Ioffe and Szegedy [52] discussed the idea that treats

each layer of a neural network as the input to the remaining sub-network, and pro-

posed batch normalisation to normalise the activation values across examples in

a mini-batch and therefore reduce the covariate shift during training. Batch nor-

malisation can be applied to the input of a nonlinear layer or the output. It is

necessary to experiment both to decide which approach works better for a specific

problem. Even though it was proposed to stabilise the training for deep networks,

batch normalisation has also been shown to have a regularisation effect [52].

Despite its effectiveness on feedforward neural networks, batch normalisation is

difficult to apply to recurrent neural networks and the effectiveness is dependent on

the batch size. Weight normalisation attempts to stabilise training deep neural

networks by normalising the weights instead of the input or the output of activation

functions [99]. Unlike batch normalisation, weight normalisation is a deterministic

method and does not depend on mini-batches. Layer normalisation is another

normalisation method that does not depend on mini-batches [2]. The difference

between layer normalisation and batch normalisation is that layer normalisation

computes the mean and standard deviation from all the inputs to a layer for a

single training example, while batch normalisation computes these parameters from

a batch of examples for each unit in a layer. Both weight normalisation and layer

normalisation can be applied to recurrent neural networks.

2.8 Regularisation

In the previous sections, we reviewed recent advancements in improving training

deep neural networks. However, optimisation in neural network, and machine learn-

ing in general, is different to optimisation in mathematics. In machine learning, the

goal of optimisation is usually not to minimise the loss function for the training set.

In other words, fitting the training data perfectly is not always desirable in machine

learning. The goal of training on a training set is to learn a model that generalises
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on future unseen data. When the representation capacity of a model is large, and

the training data is noisy or small in size, the model is prone to overfitting. A simple

way to tell if a model is overfitting is check the training accuracy and compare it

to the validation accuracy. If training accuracy is high but validation accuracy is

low, then this is usually overfitting. However, if both training and validation accu-

racy are low then this is underfitting. The representation capacity of a deep neural

network makes it prone to overfitting. In this section, we review commonly used

regularisation methods to reduce overfitting in neural networks.

A common method used to reduce overfitting in neural networks is adding a

penalty term to the loss function to limit the capacity of the model.

J ′(θ, x, y) = J(θ, x, y) + aJpenalty(θ)

where J is the loss function that depends on the parameters θ, input values x and

true labels y. The second term is a penalty function Jpenalty depending on the model

parameters multiplied by a hyperparameter a. Commonly used penalty functions

include L2 norm and L1 norm. The assumption here is that the smaller the norm of

the weights, the “simpler” the model is. This method is often called weight decay.

Using L1 norm as the penalty term usually results in a lot of weight parameters

reaching zero. This can be useful if a network with sparse connections is desirable.

Another common regularisation method is early stopping. When the capacity

of a model is big enough, the model can eventually fit the training data perfectly.

This is usually not desirable for most problems. We can use a validation set to

determine when to stop the training before it fits the data perfectly. Usually we

stop the training if the validation accuracy stops increasing for a certain number of

weight updates, and save the model that gives the best validation accuracy. Even

though validation accuracy is a commonly used metric in early stopping, other

metrics can be used.

Dropout is an interesting regularisation method that draws inspiration from

bagging in ensemble learning [111]. In bagging we use models with high represen-

tation capacity (high variance) and train each of them on a sample of the training

data. Prediction is generated by averaging or voting of the outputs generated by the

ensemble of models. The idea is that if the models in the ensemble make different

types of mistakes, by combining them together the variance of the ensemble will

be smaller than the individual models in the ensemble. However, bagging is not
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practical for large neural networks due to the high computational cost of training

neural networks. Dropout can be seen as an extreme version of bagging where sub-

networks in a large network are trained on different samples of the training data.

During training, dropout sets a different portion of the units to zero for each it-

eration. Dropout can be applied to all types of neural networks. When applying

dropout we usually have to use a large neural network and a large amount of la-

belled training data should be available. Dropout was shown to be less effective

when training data is limited and it makes the training slower [111].

The best way to make a model with high representation capacity generalise is to

train it on a big set of training data. However, labelled data is not always available

and can be expensive to obtain. In this case, data augmentation can be used to

artificially generate more training data. Data augmentation generates more data

by modifying the original data in such a way that the classes of the data do not

change. Data augmentation is effective and easy to implement for image recognition.

Techniques such as rotation, stretching and mirroring can be applied to the original

data to generate new images. Szegedy et al. [115] introduced a way to generate

adversarial examples for image recognition problem. These adversarial examples

were generated using gradient descent and backpropagation, but the input values

were updated instead of the weights in order to increase the loss function. These

generated images look just like the original images to a human, but a convolutional

neural network will misclassify these adversarial examples. Training on this kind

of adversarial examples was shown to improve the generalisation and stability of a

neural network [37, 115].

Unsupervised pretraining was used to help solve the training problems of neural

networks before ReLU became a popular activation function [5, 46, 92]. However,

it was later discovered that unsupervised pretraining actually improves generalisa-

tion when labelled training data is limited [30]. When labelled data for a task is

limited, supervised pretraining on a different but related task can also improve the

generalisation of the original task [127].

2.9 Summary

In this chapter, we introduced what a neural network is and reviewed important com-

ponents found in modern neural networks. They provide the essential background

for understanding the remaining chapters of this thesis. We only consider FNN and
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CNN architectures in this thesis. Because we only study classification problems,

we use softmax as the output function and cross-entropy as the supervised loss

function. Unless specified otherwise, we use ReLU as the activation function, the

standard SGD as the optimisation algorithm and the initialisation method defined

in He et al. [43]. We do not use any data augmentation technique in our exper-

iments, since obtaining state-of-the-art results on benchmark datasets is not our

goal. Having a simpler experimental setup makes interpreting the results easier.
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Literature Review

3.1 Overview

This chapter reviews related works on three different strategies for using unlabelled

data to improve the generalisation of neural networks. Section 3.2 reviews pre-

training methods that learn reusable model parameters or feature representations.

Section 3.3 reviews semi-supervised learning algorithms for neural networks. Some

literature considers pretraining as a type of semi-supervised learning. We review

them as two different strategies in this chapter for the following reasons. Pretrain-

ing typically involves at least two training phases, while modern semi-supervised

algorithms for neural networks have only one phase. Semi-supervised algorithms

reviewed in this chapter optimise a combined loss that has a supervised part and a

part for the unlabelled data. Pretraining on the other hand optimises a single loss

function in each training phase. The goal of pretraining in a classification task is

typically to learn a “better” set of initial weights than random weights. Lastly, Sec-

tion 3.4 reviews different active learning methods that strategically select unlabelled

data to be labelled. Active learning is useful when resources are available to collect

more labelled data. The three strategies reviewed in this chapter are not mutually

28
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exclusive to each other. In practice, one can experiment with combining all three

strategies in order to make full use of the unlabelled data.

3.2 Pretraining

Pretraining is a general practice that trains a model on a related task, before reusing

the learned weights or the latent feature representations on the original supervised

learning task. If the related task is unsupervised in nature, it is referred to as unsu-

pervised pretraining. If the related task is supervised in nature, but the supervision

is derived directly from the unlabelled data, we call it self-supervised pretraining. If

the related task is for a different domain or dataset, this is transfer learning. Ta-

ble 3.1 shows a summary of related research on different types of pretraining. We

will discuss these three types of pretraining in the following sections.

3.2.1 Unsupervised Pretraining

Unsupervised pretraining uses unsupervised models or generative models to learn

latent features or model weights from unlabelled data. In early unsupervised pre-

training methods, Restricted Boltzmann Machines and Autoencoders were used as

layer-wise pretraining to initialise deep neural networks [5, 46, 92]. The learned

layers were stacked together to form the initial weights of a deeper model. The

model was then fine-tuned on the labelled data using supervised training. This

two-phase learning procedure was done to solve the “vanishing gradient” problem

in training deep neural networks, before piece-wise linear activation functions were

widely adopted. It was later discovered that unsupervised pretraining was helpful

in improving the generalisation performance on MNIST [71] when labelled training

data were limited [30]. However, Dosovitskiy et al. [27] reported that the unsuper-

vised pretraining using Autoencoders did not outperform random initial weights on

harder datasets such as CIFAR [66].
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Recently, Generative Adversarial Networks (GANs) have also been used to learn

reusable weights and feature representations [26, 91]. These methods train a GAN

for image generation on unlabelled data, the weights or the latent features in the

learned GAN can be used in a downstream task by fine tuning the weights with

labelled data or applying a classifier on the features. However, Donahue et al. [26]

reported that self-supervised pretraining outperformed the unsupervised pretraining

(including methods using GAN) on datasets with higher-resolution images.

3.2.2 Self-Supervised Pretraining

Self-supervised pretraining applies supervised learning on a pretext task on the un-

labelled data. A pretext task is a supervised task but the supervision (label infor-

mation) is derived from the unlabelled data. For instance, a pretext task for images

can be predicting the rotation applied to an image [34]. Dosovitskiy et al. [27]

create multiple patches given an image using different transformation methods. A

classifier is then trained to predict the transformation applied. Doersch et al. [25]

extract a patch randomly from an image, they then extract multiple neighbouring

but non-overlapping patches with tiny perturbations. A classifier is trained to pre-

dict the location of the neighbouring patches. Just like other pretraining methods,

the learned weights and features from the pretext task can be reused or fine-tuned

in the original task. The pretext task like prediction rotation can be trained with

the original supervised task simultaneously on the same model without having to

use a two-phase procedure.

3.2.3 Transfer Learning

When labelled data for a dataset are limited, pretraining on a different but related

labelled dataset was found to improve the generalisation on the original dataset [127].

If the two datasets are similar to each other, then the weights learned on one dataset

is highly transferable to the other dataset. For example, the weights of a model

trained to recognise dogs are reusable to initialise a model that will be trained to

recognise wolves. If two datasets are distant from each other, the weights or features

learned from one dataset are less useful for the other dataset. For example, a model

trained on images of whales is less transferable to the problem of recognising wolves.

This is especially true for the top layers, because the top layers in a neural network

tend to learn more specific and higher-level features for a dataset. The lower layers
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usually learn more lower-level features that are less specific to a dataset. Note that

the pretraining task in transfer learning can be unsupervised learning as well. In this

case, only unlabelled data from a different domain or dataset are required. Because

transfer learning requires access to a different dataset or domain, this is a departure

from the learning scenario studied in this thesis. In this thesis, we focus on the

setting where the labelled data and the large pool of unlabelled data come from

a single dataset and the same domain. We do not consider learning with multiple

domains or different datasets. Therefore, we will not provide a detailed literature

review on transfer learning and its applications in this thesis.

3.3 Semi-Supervised Learning

Semi-supervised learning (SSL) is different from supervised learning and unsuper-

vised learning in that an algorithm is provided with both labelled data and unla-

belled data. Semi-supervised learning can be transductive or inductive in nature [13].

In transductive learning, the goal is to make predictions on the unlabelled data given

the labelled data. No explicit model or function is learned in transductive learn-

ing. Algorithms for transductive semi-supervised learning typically construct graphs

based on similarity between data examples, and then propagate the label informa-

tion from labelled data to unlabelled data. Contrary to transductive learning, an

inductive learning algorithm learns an explicit model using both labelled and un-

labelled data and performs predictions on future unseen data. In this thesis, we

only focus on inductive semi-supervised learning, because our goal is to improve the

generalisation of the learned neural network model by utilising unlabelled data. For

anyone interested in transductive learning, Chapelle et al. [13] provide a detailed

review on semi-supervised algorithms in the transductive setting.

3.3.1 Assumptions in Semi-Supervised Learning

The ultimate goal of semi-supervised learning, regardless if it is inductive or trans-

ductive, is to infer the posterior probability P (y|x) given an example x. In order for

semi-supervised learning to improve on the generalisation performance of supervised

learning, it is necessary that the information about the marginal probability of an

example P (x) is useful for the inference of P (y|x). If this condition is not met,

the additional unlabelled data will not improve the generalisation of a classifier.
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Chapelle et al. [13] formulated three common assumptions found in semi-supervised

learning algorithms. We explain these three assumptions below.

The Smoothness Assumption

One of the commonly used assumptions in semi-supervised learning is the smoothness

assumption. The smoothness assumption states that if two data points are close

in the input space, the outputs of a model on the two data points should also

be close. The smoothness assumption can be applied to both classification tasks

and regression tasks. However, we only consider classification in this thesis. In

classification tasks, we can interpret the smoothness assumption as if two examples

are similar to each other then they are likely to share the same label.

The Cluster Assumption

The cluster assumption states that if two data points belong to the same cluster,

they are also likely to belong to the same class. The cluster assumption is related to

the smoothness assumption, because data points in the same cluster are likely to be

similar to each other. The cluster assumption also implies that the target decision

boundary should lie in the low-density regions [13]. If a decision boundary can exist

in dense regions of the data, we no longer can assume that data points in the same

cluster belong to the same class.

The Manifold Assumption

The manifold assumption is related to the cluster assumption, but is used for high-

dimensional data. The datasets found in machine learning tasks can be of high

dimensionality, such as images. The manifold assumption states that the original

high-dimensional data lie on low-dimensional manifolds, and the data points that

lie on the same manifold are likely to belong to the same class. The manifold

assumption is useful whenever the curse of dimensionality comes into play. This

affects the performance of algorithms that require distance computation, such as

the graph-based methods used in the transductive setting and the methods that

need density estimation. The manifold assumption suggests that dimensionality

reduction techniques can be applied to obtain a lower-dimensional representation of

the data before applying these semi-supervised algorithms.
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3.3.2 Semi-Supervised Learning for Neural Networks

There is a rich body of literature on semi-supervised learning, it is not plausible to re-

view all of them in this thesis. Instead, we will only review the semi-supervised algo-

rithms specifically designed for neural networks in this section. The semi-supervised

methods reviewed in this section are listed in Table 3.2 with their assumptions.

Table 3.2: Assumptions of semi-supervised methods in neural networks.

Methods Assumptions

Smoothness Cluster Manifold

Pseudo-Label [73] •

Ladder Network [93] •

Γ-model [93] •

Π-model [69] •

Temporal Ensembling [69] •

Mean Teacher [116] •

Virtual Adversarial Training [85, 84] •

MixMatch [7] • •

ReMixMatch [6] • •

Deep Generative Model [59] • •

Pseudo-Label

Pseudo-Label [73] is a simple method that assigns “pseudo-labels” to unlabelled data

using the model predictions, and then the model is trained on both the labelled data

and the “pseudo-labelled” data. This process is repeated after each epoch or training

step. Because the model predictions in the early stage of training are less reliable,

the weights of the “pseudo-labelled” data are increased as the training goes on.

This type of semi-supervised learning is also called self-training. Lee [73] showed

that Pseudo-Label has an implicit effect of entropy regularisation. It attempts to

minimise the entropy of the distribution of the predicted probabilities for unlabelled

data. This indicates that Pseudo-Label is an application of the cluster assumption.
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Ladder Network

As discussed in Section 3.2, pretraining of neural network layers using Denoising

Autoencoders [120] has been shown to improve the generalisation performance. In-

spired by this, Ladder Network [93] is proposed to combine Denoising Autoencoders

with supervised training in a single phase. In other words, a separate pretraining

phase is not needed before training on the labelled data. Ladder Network does

this by combining the standard supervised loss with the reconstruction loss used in

Denoising Autoencoders into a single loss function. The training process optimises

the combined loss function on both the labelled and unlabelled data at the same

time. A Ladder Network is comprised of two encoders and one decoder. One of

the encoders is fed with clean data, the other is injected with Gaussian noise to the

input of each of its layers. The decoder attempts to reconstruct the clean input of

each layer. The discrepancy between the reconstructed input and the clean input

is computed as the reconstruction loss. The final layer of the clean encoder can be

used as input to a classifier for making predictions.

Ladder Network can be simplified by only computing the reconstruction loss on

the last layer, instead of every layer of the network. This is referred to as the Γ-

model [93]. The advantage of the Γ-model is that it can be applied to any feedforward

network structure without having to implement the decoder. Consequently, the

computation cost is also reduced. However, the generalisation performance was

shown to be inferior than the full Ladder Network when the labelled dataset was

small [93]. The difference in generalisation performance was reduced as the labelled

dataset became larger.

Self-Ensembling

Laine and Aila [69] proposed the Π-model, that computes two different model

outputs given a single input example by using stochastic data augmentation and

dropout [111] during training, in addition to injecting Gaussian noise to the input.

The Π-model then computes the difference between the two model outputs as the

unsupervised loss. The unsupervised loss is minimised along with the supervised

loss at the same time during training. The Π-model is similar to the Γ-model [93].

However, the Π-model does not have the corrupted encoder. It uses the same model

to produce two different outputs from the same input by perturbing the input and

using dropout.
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Laine and Aila [69] also proposed Temporal Ensembling, a slight variation to the

Π-model. In the Π-model, the two outputs are both computed from the same model

during training. Temporal Ensembling keeps an exponential moving average of the

model outputs across epochs as the “target output”. The output of the current

model given an input is then compared against this exponential moving average

“target output”. Laine and Aila [69] claimed this is more stable than the Π-model.

The experimental results did show that Temporal Ensembling outperformed the

Π-model by a small margin.

Mean Teacher

The problem with Temporal Ensemble [69] is that the storage or memory required

to store the exponential moving average values grows linearly with the size of the

training data (including unlabelled data). Mean Teacher [116] solves this problem by

keeping an exponential moving average of the models (weights in a neural network)

instead of model outputs. Now the memory requirements do not change with the size

of the data. The unsupervised loss is then computed by calculating the difference

between the current model output and the output of the exponential moving average

model given an input example.

Virtual Adversarial Training

All the methods mentioned above perturb inputs by injecting isotropic Gaussian

noise or applying random data augmentations. Virtual Adversarial Training [85,

84] attempts to inject tiny perturbations that are expected to affect the model

output the most by using the idea of adversarial training [37]. Virtual Adversarial

Training computes these tiny perturbations by applying gradient descent on the

input space while holding the model constant. This optimisation process finds the

small perturbation to the given input that changes the model output the most. The

unsupervised loss computes the difference between the model output of the original

input and the output of the input injected with the “adversarial perturbation”. Just

like the other methods mentioned above, this unsupervised loss is minimised along

with the supervised loss at the same time during training.
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MixMatch

Most of the methods above apply the smoothness assumption. They assume that

small perturbations to the input should not change the model prediction. Pseudo-

Label is an application of the cluster assumption. MixMatch [7] attempts to combine

the smoothness assumption, the cluster assumption and weight decay. The smooth-

ness assumption is applied by using consistency loss on perturbed inputs like most

other methods above. For the cluster assumption, MixMatch uses a sharpening func-

tion to reduce the entropy of the prediction distribution given the average prediction

over multiple augmentations when computing the pseudo labels. This encourages

the model’s output distribution to be low-entropy.

ReMixMatch

ReMixMatch [6] is a variant of MixMatch [7]. First, ReMixMatch attempts to align

the prediction distribution on the unlabelled data to the distribution of the class

labels of the labelled data. The second change is called augmentation anchoring, in

which the predictions of weakly augmented unlabelled data are used as targets for

the same data applied with stronger augmentations.

Deep Generative Model

Kingma et al. [59] proposed to use Variational Autoencoder [58] to learn a low-

dimensional feature representation of the original data. The learned features can

then be used as input to a classifier in supervised training. The features can also

be used to improve the distance computation in some semi-supervised algorithms

commonly found in transductive learning. This is an application of the Manifold

Assumption. Kingma et al. [59] also proposed a probabilistic model that treats the

labels of unlabelled data as a latent variable. It assumes the data is generated by

the latent features as in standard Variational Autoencoders [58] and the latent class

label. Lastly, Kingma et al. [59] showed that these two methods can be combined into

a two-phase algorithm. In the first phase, the low-dimensional latent features are

learned using Variational Autoencoder [58]. In the second phase, the probabilistic

model is learned using the latent features instead of the original data.
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3.4 Active Learning

Active learning is a subfield of machine learning that attempts to efficiently obtain

more labelled training data by selecting unlabelled examples to be labelled by an

oracle (for example, a human annotator). A classifier is then trained with the

additional labelled data. The goal is to improve the generalisation of the classifier

as much as possible given a certain budget of unlabelled examples to be queried.

3.4.1 Active Learning Settings

Depending on the learning scenarios, active learning has been studied under three

general settings: membership query synthesis, stream-based selective sampling and

pool-based active learning [103].

Membership Query Synthesis

Membership query synthesis generates new examples from the input space to be

labelled [4, 56]. The advantage of membership query synthesis is that it can query

examples from the entire input space. It can be used to potentially create training

examples that are useful but rare in the natural world. However, the performance of

membership query synthesis is dependent on the generator used. It is possible that

a lot of the generated examples never occur in nature, even though they belong to

the input space. For instance, the input space of a 256 × 256 image is enormous,

but natural images are only a small subset of all the possible images. A bad image

generator can generate images that cannot be recognised by human annotators. On

the other hand, a generator that is trained to generate realistic examples might not

be able to generate a diverse set of examples. A generator that always generates

similar examples that are representative of the training data is not useful for ac-

tive learning. If one can design a generator that generates realistic, diverse and

informative examples, membership query synthesis can be useful and valuable in

some applications where edge cases are rare or expensive to obtain. For instance, a

learning-based autonomous driving system requires an enormous amount of train-

ing data, especially the edge cases. An edge case in this scenario usually means an

environment that is unpredictable and difficult for the system to deal with. These

edge cases can be rare and costly to obtain when they do occur. Therefore, collect-

ing edge cases is a challenging problem. Developing an effective membership query
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synthesis system can help solve this problem.

Stream-Based Selective Sampling

Stream-based selective sampling assumes a stream of unlabelled data, for each in-

coming example in the stream it decides whether to query the example or discard

it [18, 20]. Active learning methods belonging to this category differ in their query

strategy. A query strategy defines a measure used to evaluate each unlabelled exam-

ple and, a threshold for determining which examples to query based on the evalua-

tion. Query strategies, especially the measures used to evaluate unlabelled examples,

are discussed more in detail in Section 3.4.2.

The threshold used to determine if an example is to be queried can be a user

provided hyperparameter or computed by the algorithm itself. The more naive and

simpler approach is asking the user to set a threshold. This is a popular approach in

active learning literature. The problem with this approach is that the threshold can

be difficult or not intuitive to set. It can take some time and experience for users

to learn how to set the threshold. Additionally, unlike pure supervised learning, we

usually do not have a big validation set to tune the hyperparameters in active learn-

ing. Dasgupta et al. [21] is an example that derives its threshold in a principled way.

Like Cohn et al. [18] it utilises the idea of version space [83] to find regions where

two models of the same model class disagree the most. The threshold is determined

by deriving the bound of the empirical error differences of the two models. In most

active learning methods the threshold does not change for each example. Ienco et

al. [51] uses a stochastic threshold by multiplying the user specified threshold by a

random number drawn from a Normal distribution N(0, 1) for each example. The

introduced randomness allows the algorithm to occasionally select examples that

are far from the decision boundary. This helps increase the diversity of the selected

examples.

Stream-based selective sampling is suitable for data stream environment. A

data stream is an infinite and continuous sequence of data examples. The speed

of the incoming stream are different for different applications, and it can vary in

different time periods. What makes data streams even more challenging is that the

distribution of the data can change over time. Due to these challenges, researchers

have proposed active learning methods specifically designed for data streams [50, 51,

64]. Ienco et al. [50] proposes a two-phase clustering-based active learning method:

ACLStream. ACLStream clusters a batch of incoming data examples, and ranks
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the clusters based on the homogeneity of the predictions of the examples in each

cluster. A cluster whose predictions are more balanced (less homogeneous) is ranked

higher. The assumption is that a less homogeneous cluster covers a more difficult

region of the data. Starting from the least homogeneous cluster, ACLStream ranks

the examples in each cluster based on their uncertainty, and selects the top portion

of the examples in each cluster until the budget is reached. Ienco et al. [51] proposes

to only select examples from dense areas and it selects the most uncertain examples

from these areas. When the distribution changes in the data stream, the performance

of a classifier might degrade over time. Krawczyk et al. [64] attempts to solve this

issue by utilising drift detection to select evolving examples to be labelled, so that

the classifier can be retrained on the most up-to-date data.

Pool-Based Active Learning

Pool-based active learning assumes that there is a small set of labelled data and

a large pool of unlabelled data. Pool-based active learning can be applied to a

wide variety of applications, where an abundance of unlabelled data can be easily

obtained. This is true for most machine vision tasks, speech recognition, text classi-

fication, etc. In stream-based active learning each example is evaluated sequentially

and usually independently from other examples. The advantage is that the pro-

cessing time and memory are small. However, this means that we have to decide

whether to query an example without knowing if there will be more informative

examples in the remaining stream. Consequently, the performance of stream-based

active learning is dependent on the order in which the data examples are evaluated.

Pool-based active learning avoids this problem by evaluating a large pool of unla-

belled data at once, and ranks all the examples according to a certain measure. It

then chooses the top example or a batch of top examples to be labelled. It is called

batch-mode active learning when an algorithm selects a batch of examples at

once to be labelled, instead of doing it one at a time. Pool-based active learning is

the most common active learning setting in the literature. We review pool-based

active learning methods in Section 3.4.2 when we discuss different query strategies.

3.4.2 Query Strategies

Different active learning methods adopt different measures for evaluating unlabelled

data. These measures typically consider one of (or a combination of) the following



3.4 Active Learning 41

three criteria: informativeness, representativeness and diversity. A visualisation of

the taxonomy of active learning query strategies is shown in Figure 3.1.

Uncertainty Query-by-committee

Expected model change
Query-by-committee

Expected error reduction

DensityCore-set selection

Informativeness

Diversity Representativeness

Entropy

Determinantal Point Process

Active learning strategies

Figure 3.1: Taxonomy of active learning query strategies.

A general strategy can have different sub-strategies. Each active learning method

has its own implementation of a sub-strategy or a combination of multiple strategies.

We will review some important works for each of the query strategies in the following

sections.

Informativeness

Many informativeness-based active learning methods attempt to select data ex-

amples that are most likely to reduce the uncertainty of the model. These

methods assume that the example the current model is most uncertain about

is most useful to improve the model’s generalisation performance. The sim-

plest uncertainty-based method selects the examples the model is least confident
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about [19, 31, 51, 76, 103, 104]. Confidence is formally defined as follows:

Confidence(xj) = maxP (ŷc|xj, θ) (3.1)

It is the maximum posterior probability of any class ŷc, given an unlabelled example

xj and the model θ. An alternative method for measuring uncertainty is computing

the margin between the posterior probabilities of the two most likely classes [11, 31,

51]:

Margin(xj) = P (ŷc1|xj, θ)− P (ŷc2|xj, θ) (3.2)

Margin-based methods select examples whose margins are the smallest. Confidence

only considers the posterior probability of the most likely class, while margin takes

into account the two most likely classes. Ienco et al. [51] experimented with both

margin-based and confidence-based uncertainty in their proposed method, and found

that margin outperformed confidence in most cases. Entropy [107] can also be used

to measure uncertainty [10, 48, 103, 121]:

Entropy(xj) = −
C∑
c=1

P (ŷc|xj, θ) logP (ŷc|xj, θ) (3.3)

It measures the entropy of the distribution of the entire posterior probabilities.

However, it is not difficult to conceive a scenario where entropy would not work as

a definition of uncertainty. For instance, suppose we have a classification task with

6 classes, and two posterior probability distributions for x1 and x2 respectively:

P (ŷ∀c∈C |x1, θ) = [0.5, 0.45, 0.0125, 0.0125, 0.0125, 0.0125]

P (ŷ∀c∈C |x2, θ) = [0.5, 0.1, 0.1, 0.1, 0.1, 0.1]

The entropy values for the two distributions are:

Entropy(x1) = 0.925

Entropy(x2) = 1.498

According to the entropy values, the model is more uncertain about example x2.

However, one can argue that the model is actually more uncertain about example

x1, since it has a difficult time determining between the two most likely classes. A

margin-based active learning method would choose x1 over x2 in this case.
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Query-by-committee [106] is another way to identify uncertain or informative

examples. Generally speaking, query-by-committee methods define uncertainty as

the degree of disagreement among the models in an ensemble. Dagan and Engel-

son [20] propose to measure the disagreement using vote entropy :

V ote entropy(xj) = −
C∑
c=1

V (ŷc,xj)

K
log

V (ŷc,xj)

K
(3.4)

where V (ŷc,xj) is the number of votes for a specific class ŷc for example xj, and K is

the number of committee members. Kullback Leibler (KL) divergence [79] has been

used to measure disagreement as well:

Average KL divergence(xj) =
1

K

K∑
k=1

D(Pθk‖Pκ) (3.5)

where:

D(Pθk‖Pκ) =
C∑
c=1

P (ŷc|xj, θk)log
P (ŷc|xj, θk)
P (ŷc|xj, κ)

(3.6)

where

P (ŷc|xj, κ) =
1

K

K∑
k=1

P (ŷc|xj, θk) (3.7)

P (ŷc|xj, κ) is the average posterior distribution of the committee for example xj.

D(Pθk‖Pκ) is the KL divergence between the distributions of a committee member

and the committee average. Intuitively, average KL divergence measures the average

difference in posterior distributions between committee members and the committee

average. The examples with higher average KL divergence values are considered to

be more uncertain among committee members and therefore are more informative.

Query-by-committee methods can be computationally expensive when we use a large

committee and, each committee member takes a long time to train and takes up

a lot of memory space. Because each member in the committee can be trained

independently from each other, distributed training on many computers in parallel

can be used to significantly reduce the running time. However, this means it is not

a plausible method when computing resources are limited.

Another way to identify informative examples is by computing the expected

model change if we add an instance to the labelled data pool. Settles et al. [105]

and Käding et al. [54] define expected model change as the expected gradient
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length:

Expected gradient length(xj) =
C∑
c=1

P (ŷc|xj, θ)‖∆J(L+<xj ,yc>, θ)‖ (3.8)

where J is the loss function, and L+<xj ,yc> is the labelled data set L with the new

training example < xj, yc >. We do not know the true label for xj, we simply as-

sign a label to xj as if it were ground truth and add the training example to the

labelled data. The model is trained with the additional example. We then compute

the magnitude of the gradient, ‖∆J(L+<xj ,yc>, θ)‖. This is repeated for each class,

and then the expected gradient length is computed by multiplying the magnitude of

gradient with the posterior probability, P (ŷc|xj, θ). This method is also computa-

tionally expensive, because we have to compute the gradient for each available class

and we have to do it for all of the unlabelled examples. If the model has already

converged before on training data L, the gradient ∆J(L, θ) is 0. Therefore, we can

reduce the computational cost by computing gradient only on < xj, yc > instead of

the entire training set L+<xj ,yc>.

Expected error reduction based query strategy is similar to expected model

change, but instead of selecting examples that minimise the expected model change it

chooses examples that minimise the expected error of the model. This query strategy

is computationally expensive. Roy and McCallum [94] proposed to use Monte Carlo

sampling to estimate the expected error of the model on a labelled validation set

in order to reduce the computational cost. This query strategy can be applied to

different types of classifiers as long as the classifier provides a way to estimate the

posterior label probabilities. However, the estimated posterior probabilities can be

inaccurate especially when the labelled training set is small [12]. Furthermore, in

order to obtain a reliable estimation of the expected error reduction, one would

need a big validation set that is representative of the data. This is not always

feasible in practice. We usually use active learning exactly because there is a lack of

labelled data. Krempl et al. [65] proposed a probabilistic approach to estimate the

expected gain in performance without using a validation set by modelling the label

and posterior probability as random variables. However, the proposed method only

works for datasets with binary classes. Kottke et al. [61] extended this approach to

multi-class datasets.
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Representativeness

Representativeness-based active learning methods query examples that are most

representative of the data. This is usually done by selecting examples from the

dense regions of the data. One of the most common ways to define density for

an example is to compute the average similarity between this example and all the

other examples [103]. Only the examples with high average similarity scores are

queried. Ebert et al. [29] proposed to build a k-nearest neighbour graph weighted

using a Gaussian kernel. It then selects the examples that have many edges with

high weights. This method assumes that the examples that have many edges with

high weights are most representative of the data. It avoids sampling outliers and

noises points in the data.

Most active learning methods that use representativeness in their query strategy

usually combine representativeness with informativeness. They choose examples

that are informative and also representative of the data. McCallum and Nigam [80]

combined density with query-by-committee to query examples in dense regions of the

data and have the highest disagreement among members of the ensemble. Krempl et

al. [65] and Kottke et al. [61] compute density weighted expected gain in performance

when querying examples. Ienco et al. [51] used a two stage active learning method

to select examples with high uncertainty scores only from dense regions of the data.

Huang et al. [49] proposed a method specifically for support vector machines that

combines uncertainty and representativeness.

Diversity

Diversity is another active learning strategy used to query examples. The goal is

to make sure the pool of labelled examples are as diverse as possible. Sener and

Savarese [101] consider the active learning problem as a core-set selection problem.

In core-set selection, a subset of the data is selected such that a model learned over

this subset of data is just as good as a model trained on the whole data. Intuitively,

it tries to choose a set of cluster centers such that the greatest distance between an

example and its nearest center is minimised. However, this problem is NP-Hard.

Sener and Savarese [101] proposed a greedy algorithm to greedily select an example

with the highest minimal distance to any other example. This proposed method

does not use labels at all, therefore it can be used to initialise the labelled training

set. Additionally, they also proposed a more robust version of the algorithm against
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outliers.

Wei et al. [122] formulated the active learning problem as an optimisation prob-

lem for submodular functions using Naive Bayes and Nearest Neighbour classifiers

as examples. A submodular function is a set function where the growth of its value

decreases as the size of the set increases. Submodular functions naturally model

diminishing returns. Entropy can be shown to be a submodular function. Maximis-

ing the entropy promotes diversity. Unfortunately, maximisation of a submodular

function is NP-Hard. However, a greedy algorithm with almost linear complexity

can be used to approximate the results [81]. Wei et al. [122] proposed to select

a candidate set first using uncertainty based active learning, then select a diverse

subset from the candidate set. This approach can reduce the problem of selecting

similar examples in the same batch.

An approach related to submodular functions is Determinantal Point Processes

(DPP) [9, 68]. DPP is a probabilistic model that naturally models negative corre-

lations, and offers exact algorithms for sampling, marginalisation, conditioning, and

other inference tasks. A DPP models the probability distribution of all the possible

subsets of a ground set. In active learning, we are usually interested in a specific

type of DPP called k-DPP, where all the subsets must have the same cardinality

of k. Sampling of k-DPP over the unlabelled data gives us a diverse subset of k

examples from the unlabelled data. However, the exact sampling can be inefficient

due to the computational complexity of eigendecomposition. Moreover, the size of

the sample must be smaller than the rank of the kernel matrix used. In order to

accelerate the computation, approximate algorithms have to be used [9, 68].

3.5 Summary

This chapter reviews research on improving the generalisation of neural networks

using three different strategies: pretraining, semi-supervised learning and active

learning. Pretraining trains a model on a different task and then reuses the learned

weights or features on the original task. Semi-supervised learning regularises the

model by adding an unsupervised loss to the supervised loss during training. Active

learning strategically selects unlabelled data to be labelled and added to the labelled

data set.

Most of the early works on pretraining were aimed to improve the stability

of training by using unsupervised pretraining. More recent works on pretraining



3.5 Summary 47

pretrains a model using a supervised pretext task whose supervision is automatically

created from the data. However, a pretext task is specific to a task or even a dataset.

A pretext task that works on one dataset or one type of task may not be suitable

for a different dataset or task. Most of the research on self-supervised pretraining

focuses on image and text data. In Chapter 4, we propose a pretraining method for

tabular data.

All of the literature on semi-supervised learning reviewed in this chapter assumes

that the unlabelled data come from the same distribution as the labelled data. This

assumption may not hold in practice. Chapter 5 empirically investigates what would

happen if we break this assumption.

There has been a rich body of literature on active learning. However, most of

it is not specifically designed for neural networks. Additionally, almost all of the

literature on active learning focuses on improving the generalisation of a classifier

when labelled dataset is small. Not enough attention is paid to improving a clas-

sifier when there is already a large labelled dataset. In Chapter 6, we propose an

uncertainty-based active learning method specifically for neural networks that is

more competitive when the initial labelled dataset is large.



4
Supervised Pretraining with

Unlabelled Data

4.1 Overview

Apart from novel network architectures, the success of neural networks is a result of

many advancements in the basic components such as activation functions and initial-

isation. During the training process deep neural networks are sensitive to the initial

weights. A poor choice of initial weights can result in slow training speed, “van-

ishing gradient”, “dead neurons” or even numerical problems. A few initialisation

methods have been proposed to stabilise the training process [35, 43, 82]. However,

they do not aim to improve the generalisation of neural networks. It is possible

that even though these methods can successfully improve the stability and speed of

training, they are not necessarily effective for improving the generalisation of neural

networks. Initialisation of neural networks is a difficult problem to study due to the

complex nature of the cost surface and the optimisation dynamics. However, more

research needs to be devoted to exploring the connection between the initialisation

and the generalisation of neural networks. We argue that the initialisation affects

48
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the generalisation of neural networks. Intuitively speaking, the initial weights of a

neural network can be thought of as the prior of a model. If this intuition is correct,

the choice of initial weights would have a bigger effect on the learned model after

training, when there is a lack of labelled training data. Hence, studying the effect of

initialisation on generalisation is valuable for domains where labelled data are either

costly or difficult to collect.

This chapter answers the following two research questions:

1. How do the initial weights affect the generalisation performance of a neural

network?

2. How can we create a supervised pretraining task from the unlabelled data to

pretrain a model, and then reuse the learned weights as initial weights in order

to improve the generalisation on the original supervised task?

The main contributions of this chapter are listed below:

• We firstly demonstrate that initialisation affects the generalisation perfor-

mance of neural networks. A poorly initialised model can lead to a lower

test accuracy.

• We propose a supervised pretraining method that improves the generalisation

of neural networks on tabular data when labelled data is limited, by taking

advantage of unlabelled data.

The proposed method trains a neural network to distinguish real data from

shuffled data. The learned weights are reused as initial weights when training on

the labelled training data. The intuition is that during the pretraining, the model

has to learn joint distributions of the real data in order to identify real data points

from shuffled ones. And the learned weights might be a better prior than standard

initialisation methods that sample values from normal or uniform distributions. The

improvement in generalisation by using the proposed method is shown to be more

obvious when there is a lack of labelled data and the class separation is small.

Experimental results also suggest that the proposed pretraining is most effective

when the data has high dimensionality and contains noisy features. We only consider

binary classification problems in this work. We measure generalisation using test

accuracy in all our experiments.
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The rest of the chapter is organised as follows. Section 4.2 introduces some

background information about research on the initialisation of neural networks. In

Section 4.3, we demonstrate the initialisation of neural networks affects generalisa-

tion. In Section 4.4, we propose a supervised pretraining method to improve the

generalisation of FNNs on binary classification problems. We conducted experiments

on both UCI datasets and synthetic datasets to evaluate the proposed method in

Section 4.5 and Section 4.6. In Section 4.7, we discuss some issues with the proposed

pretraining method. Finally, we summarise this chapter in Section 4.8.

4.2 Background

Glorot and Bengio [35] derived a way to initialise weights depending on the number of

input units and output units of a layer. They derived this method by assuming only

linear activation functions are used, and attempting to initialise the weights in such a

way that the variances of activation values and gradient across all layers are the same

at the beginning of training. Despite the unrealistic assumption of a linear activation

function, this initialisation works well in practice. Using the same idea, He et

al. [43] derived an initialisation method specifically for the ReLU activation function

depending on the number of input units of a layer. It draws weight values from a

normal distribution with mean value of 0 and the standard deviation sqrt(2/fan in),

where fan in is the number of input units of a layer. We call this initialisation

method he normal. They showed that he normal performed well even for really

deep networks using ReLU while the Glorot and Bengio method [35] failed.

Unsupervised methods such as restricted Boltzmann machines and autoencoders

were used as layer-wise pretraining to initialise deep neural networks [5, 46, 92]. This

was done to solve the “vanishing gradient” problem in training deep neural networks,

before piece-wise linear activation functions were widely adopted. It was later dis-

covered that unsupervised pretraining has a regularisation effect on MNIST [71]

when labelled training data is limited [30]. However, it has been shown that the

unsupervised pretraining is not as effective on harder datasets with high-resolution

images [26, 27].
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Figure 4.1: Machine learning represented as a search process. The area inside the
elliptical boundary is the representation capacity of the model chosen.
The circular dots are different model (parameter) states a learning algo-
rithm has visited. The square is the initial state of the model while the
triangle is the final state of the model.

4.3 Initialisation Affects Generalisation

Most machine learning problems can be reduced to search problems, especially when

an iterative learning algorithm is used to find the final model. A search problem

usually consists of a search space, an initial state, a target state and a search algo-

rithm. Figure 4.1 describes training neural networks as a search process. The area

inside the ellipse represents the representation capacity of a neural network. The

larger the neural network, the bigger the representation capacity and the larger the

search space. The square represents the initial state of the model and the triangle is

the final state of the model. The circular dots are the model states the learning algo-

rithm has visited. The model search space can be discrete or continuous. However,

the search space in training neural networks is usually continuous. Additionally, the

search space or representation capacity of a neural network is not completely inde-

pendent of the search process. The bigger and more complex a neural network is,

the more difficult it is to train. So the representation capacity can potentially affect

where the model will end up while holding the initial state and learning algorithm

constant.

Unlike many search problems where the target state is known, we usually do

not know the target state in machine learning. In the case of neural networks, we

cannot analytically find the optimal model state due to the non-convex loss surface.

So iterative optimisation algorithms are used in training neural networks. The most

common learning algorithms in training neural networks are stochastic gradient
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descent and its variants. The first order derivatives of the model parameters are

used as a heuristic for determining the next step. Obviously, different learning

algorithms can result in different final models even if both the search space and

initial state are kept the same.

Another factor that affects the final state of the search space is the initial state

of the model. Different initial weights can lead a neural network to converging to

different states, as illustrated in Figure 4.1. We argue that initialisation affects

the generalisation of neural networks, especially when the training data is limited.

The initial weights of a neural network can be seen as the prior of the model. The

choice of the initial weights does not affect the generalisation much if there is plenty

of training data, as long as the initial weights do not lead to training problems.

However, when there is a lack of training data, the prior will have a larger effect

on the final state of the model. Note that the size of the training data required

is relative to the difficulty of the dataset and the classifier used. A more difficult

dataset usually requires more training data to achieve a satisfactory performance.

A classifier that tends to overfit also requires more training data. Figure 4.2 shows

the plots of the functions learned by training four fully-connected networks to fit the

same two data points but with different initial weights and activation functions. The

two data points were (0.1, 0.1) and (0.5, 0.5). All four of the models had 128 units

in each of the first two layers and one output unit. The initial weights were drawn

from truncated normal distribution with mean of 0 and different standard deviation

values (0.004 and 0.4). Any value that was more than two standard deviations away

from the mean was discarded. All biases were set to 0. We used both rectified linear

unit (ReLU) and hyperbolic tangent (tanh) as activation functions. We trained the

model until the training loss became 0 and plotted the model. It can be seen that

when the standard deviation of the initial weights is small, the learned function is

relatively simple. When the standard deviation of the initial weights is big, the final

model is more “complex” and less likely to generalise well on unseen data.

Similar experiments cannot be applied to real datasets and larger networks,

because initial weights drawn from a normal distribution with a large standard de-

viation leads to various training problems such as “dead neurons” and exploded

activation values. Inspired by transfer learning [127], we decided to learn inappro-

priate initial weights for the original classification task by pretraining a model on

randomly shuffled data. More specifically, we shuffled the attribute values of the

original data and randomly attached labels to the shuffled data according to the
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Figure 4.2: Plots of the functions learned by training a three-layer fully-connected
neural network to fit two data points (0.1, 0.1) and (0.5, 0.5), with dif-
ferent initial weights and activation functions. The activation functions
used were ReLU and tanh. The initial weights were drawn from normal
distributions with different mean and standard deviation values.

uniform distribution. We obtained a set of weights by training a model on this

shuffled data. We expected this set of weights to be a poor prior for the original

classification problem and thus would lead to lower test accuracy. When training a

model on the shuffled data, we used he normal as the initialisation method. These

learned weights were then used as initial weights when training on the original data.

We then compared the model initialised with these transferred weights against the

model initialised using he normal [43].

We carried out the experiments on four different datasets: BanknoteID, MAGIC,

Waveform and Waveform noise. Details of these datasets can be found in Section 4.5.

We used a five-layer fully connected network for all the experiments. Each layer has

1024 units except the last layer. The last layer is a softmax layer. The architecture

is reported in Table 4.3. The activation function used was ReLU. We used the full-

batch gradient descent with a constant learning rate of 0.01. We chose the number

of epochs to make sure both models had converged. The number of epochs we used

for each dataset can be found in the second column of Table 4.4. The training on
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the shuffled data was run 10000 epochs for all the cases. We ran each experiment

10 times. Figure 4.3 shows the distribution of test accuracies obtained using the

transferred initial weights and he normal on four datasets. As can be seen, in all

four cases, the model initialised with the transferred weights performed worse.
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Figure 4.3: Comparison of the model initialised with transferred weights (red)
against the model initialised with he normal (blue) in terms of test ac-
curacy. We ran each case 10 times.

In this section, we demonstrated that a poorly initialised model does indeed

lead to lower test accuracy. In the next section, we propose a supervised pretrain-

ing method that improves generalisation, especially when labelled training data is

limited.

4.4 Supervised Pretraining

We propose a supervised pretraining method that takes advantage of unlabelled

data to improve the generalisation of the original classification problem. The under-

lying assumption of this method is that the weights learned during the supervised
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pretraining are a good prior for the original classification problem. This can happen

if the pretrained model contains information about the joint distributions of the

attributes in the original data.

The pretraining phase is basically a binary classification that attempts to identify

real data from shuffled data. Shuffled data does not provide us with real patterns

but instead are considered as noise. The learned weights are then reused in the

original classification problem.

Table 4.1: An example of how the pretraining data is generated. Table (a) is the
original unlabelled data and Table (b) is the labelled training data. Table
(c) is the shuffled unlabelled data. Note that no data point in the shuffled
data is from the unlabelled data. Table (d) is the pretraining data. The
pretraining data is created by stacking the original unlabelled data and
shuffled data, and labelling them as 1 and 0 respectively.

(a) unlabelled data

Attr 1 Attr 2 Attr 3
1 1 1
2 2 2
3 3 3

(b) Labelled data

Attr 1 Attr 2 Attr 3 Label
4 4 4 1
5 5 5 0

(c) Shuffled data

Attr 1 Attr 2 Attr 3
1 2 3
2 3 1
3 1 2

(d) Pretraining data

Attr 1 Attr 2 Attr 3 Label
1 1 1 1
2 2 2 1
3 3 3 1
1 2 3 0
2 3 1 0
3 1 2 0

We discuss the supervised pretraining method in detail here.

1. We start by randomly shuffling the attribute values of the unlabelled data

across rows. Each attribute is shuffled independently from other attributes.

This is to break the joint distributions of the original data, but to keep the dis-

tributions of individual attributes unchanged. Table 4.1(a) shows an example

of unlabelled data and Table 4.1(c) shows an example of shuffled data. Note

that the shuffling is random, so there can be many different examples of shuf-

fled data generated from the same unlabelled data. In our implementation,
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we ensured that there was no original real data points in the shuffled data due

to chance collision. Any data points in the shuffled data that collided with

the original data were replaced by new shuffled data points. This was done to

avoid confusing the model during the pretraining process. Note that labelled

training data can be added to the unlabelled data after taking out the labels,

in order to create a larger set of unlabelled data. A shuffled dataset can then

be created from this enlarged unlabelled dataset.

2. The unlabelled data and shuffled data are stacked together. Then all the real

data points are assigned one label and all the shuffled data points are assigned

a different label. This is the pretraining data used in our method. The specific

values being used as labels do not matter, as long as all the real data points

are assigned the same label and all the shuffled data points are assigned a

different label. This is because one hot encoding is used to encode the labels

in our models. In our implementation, the real data is labelled as 1 and the

shuffled data is labelled as 0. The pretraining data always has a balanced class

distribution. Table 4.1(d) shows an example of pretraining data.

3. The pretraining data is then split into a training set and a validation set using

stratified sampling. In our implementation, 70% of the pretraining data was

used as training data and the rest was used as a validation set.

4. During the pretraining, a neural network model is trained on the pretrain-

ing data. The validation set is used to stop the pretraining early. For the

pretraining, the model was initialised using he normal in our implementation.

5. Finally, the weights learned in the pretraining are reused as initial weights

when training a model on the labelled training data shown in Table 4.1(b).

This is sometimes called transfer learning, where weights learned in one prob-

lem are transferred to another problem [127]. In our implementation, all the

layers except the last one were transferred from the pretrained model. The

last layer was replaced with weights initialised using he normal. We did not

freeze any layers during training.

Note that the negative instances in the pretraining data are generated by shuffling

the attribute values of the original data. So the distributions of the attributes in the

shuffled data are exactly the same as the original data, but the joint distributions
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of the attributes are different. By training the model to distinguish real data from

the shuffled data, we hypothesise that the model has to learn the joint distributions

between attributes. We also postulate that if the weights learned during pretraining

are a better prior than commonly used initialisation methods such as he normal,

then they should lead to better generalisation.

4.5 Experiments on UCI datasets

We conducted experiments on four UCI datasets to evaluate the proposed su-

pervised pretraining against the he normal [43] initialisation method. The goal

of the experiments is to test if the proposed supervised pretraining leads to

higher test accuracy compared to the he normal initialisation. All the datasets

were obtained from the UCI repository [24]. In our experiments, we simu-

late a learning environment where labelled training data is limited but there is

plenty of unlabelled data. The source code and data can be found on GitHub:

github.com/superRookie007/supervised pretraining.

Table 4.2: Data information. Note that the second column reports the numbers of
the labelled training examples, not the sizes of the full datasets.

Dataset # Labelled Examples Class1 Class2 # Attributes

BanknoteID 288 55.5% 44.5% 4

BanknoteID small 10 55.5% 44.5% 4

MAGIC 3995 64.8% 35.2% 10

MAGIC small 10 64.8% 35.2% 10

Waveform 702 49.3% 50.7% 21

Waveform small 10 49.3% 50.7% 21

Waveform noise 695 50.0% 50.0% 40

Waveform noise small 10 50.0% 50.0% 40

Datasets

BanknoteID is a dataset for identifying genuine banknotes from the forged ban-

knotes. It has four continuous variables and 1372 data points in total. MAGIC

is a simulated dataset for discovering primary gammas from the hadronic showers

initiated by cosmic rays. It has 10 continuous variables and 19020 data points in
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total. Both Waveform and Waveform noise are datasets for identifying different

types of waves. Waveform has 20 attributes while Waveform noise has 19 additional

noisy variables drawn from a standard normal distribution. Both of them have

5000 examples in total. The original datasets of Waveform and Waveform noise

have three classes. We extracted two classes (class 1 and class 2) from the original

datasets and treated them as binary classification problems. So the Waveform and

Waveform noise datasets in our experiments have 3343 and 3308 instances in total

respectively.

Preprocessing

Thirty percent (30%) of the data was used as the test set. The remaining data was

split into labelled training data (21%) and unlabelled data (49%). Additionally, we

created a smaller training set with only 10 instances for each of the four datasets by

sampling the labelled training data. When sampling the datasets, we used stratified

sampling. Table 4.2 shows some data characteristics of the training sets. When

creating the pretraining data for our experiments, we combined the training data

(ignoring the labels) and unlabelled data, and then applied the method described

earlier in Section 4.4 to this combined data. This gave us an even bigger pretraining

dataset. The pretraining data was scaled to a range [0, 1], then the same scaling

parameters were applied to the test set.

Table 4.3: The FNN architecture used in the experiments.

Layer Parameters

Dense input dimension → 1024, ReLU
Dense 1024 → 1024, ReLU
Dense 1024 → 1024, ReLU
Dense 1024 → 1024, ReLU
Softmax 1024 → 2

Setup

We used a five-layer fully connected network for all the experiments. The architec-

ture used is reported in Table 4.3. Each layer has 1024 units except the last layer.

The last layer is a softmax layer. The activation function used was ReLU. We used
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the standard full-batch gradient descent with a constant learning rate. Because the

learning rate can potentially affect the generalisation of neural networks, we used

the same constant learning rate of 0.01 for all the experiments. We chose the number

of epochs to make sure both models had converged. We consider the model has con-

verged if the training loss stops decreasing and the training accuracy reaches 100%.

In practice, a validation set is usually used to terminate the training early to avoid

overfitting. However, we trained the models until convergence because we wanted a

fair stopping criterion for both cases, and we wanted to eliminate the generalisation

effect and uncertainty of early stopping in the results. The number of epochs we

used for each training set can be found in the second column of Table 4.4. Further-

more, the pretraining data was split into a training set (70%) and a validation set

(30%). The pretraining stopped if the validation accuracy stopped increasing for

the subsequent 100 epochs, and the model with the best validation accuracy was

saved. We did not fine tune which layers to reuse or freeze the reused weights for a

few epochs before updating them. We always transferred all the weights except the

last layer and did not freeze any layer during training. The same experiment was

run 10 times on each dataset. The experiments were all implemented using Keras

[15] with the Tensorflow [1] backend.

Results

The metric we used to measure generalisation was accuracy on the test set. We

have evaluated all the models with F1-Score, AUC-ROC and Cohen’s Kappa [17],

but they always moved in line with the test accuracy in this experiment. They did

not add interesting information to the results, so they are not reported here. How-

ever, the results on these measures can be found in Appendix A. The experimental

results on test accuracy are shown in Table 4.4. The higher mean test accuracy

is shown in bold, but the difference is not necessarily statistically significant. As

expected, the test accuracy is generally higher when the training set is larger. And

the standard deviation of the test accuracy tends to be larger when limited training

data is available. The base models tend to have much lower training loss while the

pretrained models tend to have lower test loss. When there is not a lack of labelled

training data, there is no clear improvement on generalisation using the supervised

pretraining. On BanknoteID and Waveform noise, the pretraining actually hurt the

generalisation. However, when the training set is small, only 10 instances in this

case, the mean test accuracy for BanknoteID and Waveform noise of the pretrained
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Table 4.4: Comparison of the model initialised using the supervised pretraining
method (Pretrained) against the model initialised with he normal (Base).
We ran each case 10 times. The training accuracy reached 100% for all
the runs.

Data Epochs Method Train loss Test loss Test acc.

BanknoteID 10000
Base 9.78E-04 ±2.57E-05 5.79E-02 ±1.38E-03 99.32% ±0.28%

Pretrained 1.04E-02 ±2.99E-04 4.30E-02 ±5.53E-03 98.74% ±0.39%

BanknoteID small 5000
Base 1.93E-04 ±5.40E-06 9.02E-01 ±3.16E-02 82.18% ±0.80%

Pretrained 1.96E-02 ±7.88E-04 6.13E-01 ±2.67E-02 82.45% ±0.81%

MAGIC 100000
Base 4.15E-03 ±4.88E-04 9.15E-01 ±1.71E-02 85.42% ±0.23%

Pretrained 8.59E-03 ±3.21E-03 7.12E-01 ±2.54E-02 85.69% ±0.27%

MAGIC small 5000
Base 2.37E-04 ±3.93E-06 1.22E+00 ±5.87E-02 78.12% ±0.20%

Pretrained 2.04E-02 ±7.59E-04 7.20E-01 ±3.54E-02 78.62% ±0.51%

Waveform 20000
Base 5.71E-04 ±3.82E-05 3.02E-01 ±6.99E-03 94.10% ±0.25%

Pretrained 9.89E-03 ±6.39E-03 2.36E-01 ±1.24E-02 94.38% ±0.25%

Waveform small 10000
Base 8.97E-02 ±2.83E-01 4.06E-01 ±3.02E-02 88.48% ±0.58%

Pretrained 1.02E-02 ±2.20E-04 4.13E-01 ±2.96E-02 89.10% ±0.67%

Waveform noise 20000
Base 3.13E-04 ±1.70E-05 3.15E-01 ±9.78E-03 94.72% ±0.30%

Pretrained 1.38E-02 ±6.81E-03 2.23E-01 ±9.31E-03 94.54% ±0.34%

Waveform noise small 10000
Base 4.85E-05 ±1.35E-06 6.33E-01 ±4.43E-02 82.38% ±0.57%

Pretrained 1.01E-02 ±4.17E-04 5.03E-01 ±1.58E-01 86.97% ±3.33%

model became higher than that of the base model. It is interesting that the improve-

ment in generalisation by using the pretraining was big on Waveform noise small,

but this was not the case on Waveform small. Recall the difference between Wave-

form noise and Waveform is that Waveform noise has 19 additional noisy features

drawn from the standard normal distribution. It is not clear if the difference in

the results was caused by the increased dimensionality or the additional noisy fea-

tures. We conducted further experiments on synthetic data in order to investigate

when the supervised pretraining helps improve generalisation. These experiments

are presented in the next section.

4.6 Experiments on Synthetic Datasets

The experiments discussed here investigate the circumstances, where the proposed

pretraining holds an advantage over the he normal initialisation in terms of test

accuracy. More specifically, we test the effect of data dimensionality, different types
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of noisy features, size of labelled training data and distance between class clusters on

the performance of the proposed pretraining. All the experiments were conducted

on synthetic datasets generated using the make classification API in sklearn library.

This is an adapted implementation of the algorithm used to generate the “Madelon”

dataset [42].

Firstly, we test how data dimensionality, noisy features and redundant features

affect the effectiveness of the supervised pretraining compared to he normal. We

generated 6 different datasets. All of the datasets have only two classes and have

balanced class distribution. Each of the raw datasets had 10000 instances. The

class sep parameter was set to 0.01 for all datasets (the smaller the class sep, the

more difficult the classification). We applied the same preprocessing as the previous

experiment. But in this experiment, we sampled a training set with 50 instances for

each dataset. All the other experiment setups were exactly the same as described

in Section 4.5. The characteristics of the 6 datasets are described below.

• Informative 10 has 10 attributes and all of the attributes are informative for

the classification task.

• Informative 20 has 20 attributes and all of the them are informative.

• Redundant 20 has 20 attributes, but 10 of them are the exact copy of the other

10 informative attributes.

• In Std normal 20, 10 of the 20 attributes are random values drawn from the

standard normal distribution (mean 0, standard deviation 1), while the other

10 are informative.

• In Normal 20, 10 of the attributes are drawn from normal distributions whose

means and standard deviations are kept the same as the other 10 informative

attributes.

• In Shuffled 20, instead of drawn randomly from normal distributions, the 10

noisy attributes are simply shuffled informative attributes (the distribution

of each of the noisy attributes is the same as the corresponding informative

attribute).

The results are shown in Table 4.5. The base models for Informative 10 and

Redundant 20 performed similarly. This is not too surprising considering Redun-

dant 20 basically concatenated two copies of the features in Informative 10 together.
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Table 4.5: Investigating the effect of dimensionality, noisy and redundant features
on the performance of the supervised pretraining. We ran each case 10
times and all of the models were trained for 10000 epochs.

Data Method Train loss Train acc. Test loss Test acc.

Informative 10
Base 6.50E-04 ±2.46E-05 100.00% 5.79E-01 ±6.89E-02 84.48% ±1.37%

Pretrained 1.02E-02 ±1.41E-04 100.00% 1.43E-01 ±2.69E-02 96.24% ±0.77%

Informative 20
Base 3.56E-04 ±1.76E-05 100.00% 1.82E+00 ±7.84E-02 63.61% ±0.72%

Pretrained 1.03E-02 ±2.87E-04 100.00% 4.71E-01 ±1.02E-01 87.19% ±2.64%

Redundant 20
Base 6.07E-04 ±2.50E-05 100.00% 5.86E-01 ±4.82E-02 84.41% ±0.93%

Pretrained1 1.10E-02 ±7.33E-04 100.00% 4.64E-01 ±4.32E-02 85.48% ±1.35%

Std normal 20
Base 3.87E-04 ±2.01E-05 100.00% 2.40E+00 ±7.50E-02 59.94% ±0.64%

Pretrained 1.02E-02 ±2.83E-04 100.00% 2.13E-01 ±3.53E-02 94.18% ±1.09%

Normal 20
Base 4.12E-04 ±1.43E-05 100.00% 1.24E+00 ±5.77E-02 65.40% ±0.92%

Pretrained 1.02E-02 ±1.60E-04 100.00% 1.84E-01 ±2.92E-02 94.93% ±0.87%

Shuffled 20
Base 3.42E-04 ±1.35E-05 100.00% 2.42E+00 ±8.56E-02 57.95% ±0.39%

Pretrained 1.02E-02 ±1.15E-04 100.00% 1.74E-01 ±2.34E-02 95.19% ±0.55%

Compared to Informative 10, Redundant 20 neither has any additional information

nor lacks any useful information. The improvement on generalisation using the su-

pervised pretraining was around 11% on Informative 10. But for Redundant 20, the

pretrained model failed to converge in 4 out of 10 runs. And there is no obvious

improvement on test accuracy when pretraining is used. The generalisation gain

on Informative 20 was more than 20%, while the gain on the Std normal 20 was

around 34%. The biggest gain (around 37%) occurred in Shuffled 20 dataset. The

results suggest that both the increased dimensionality and the noisiness of the ad-

ditional features both contribute to the generalisation improvement we observed on

Waveform noise small in the previous experiment.

Next, we investigated how the size of labelled training data and the class sep-

aration would affect the generalisation advantage of the proposed pretraining over

the he normal initialisation. The experimental setup was exactly the same as the

previous experiments, except the datasets used. When testing the effect of the size

of labelled training data, we held all other factors constant including the class sep-

aration (class sep = 0.01) and unlabelled data. The data had 10 attributes and all

of them were informative. We tested six labelled training sets with 10, 50, 100, 500,

1000 and 5000 instances respectively. We ran each experiment 10 times. The results

1When running the pretrained model of Redundant 20, 4 out of 10 runs failed to converge, the



4.7 Discussion 63

Te
st 

ac
cu

ra
cy

(a) Size of training set

Te
st 

ac
cu

ra
cy

(b) Class separation

Figure 4.4: Comparison of the model trained with supervised pretraining (red)
against the model initialised with he normal (blue) in terms of test accu-
racy. The plots show the distributions of test accuracy. Each experiment
was run 10 times.

can be found in Figure 4.4(a). The results show that as the size of labelled training

data increases, the advantage of the pretraining gets smaller. And as expected, as

the training set gets larger, the standard deviation of test accuracy shrinks. Finally,

we tested the effect of class separation. Class separation in this case means the dis-

tance between classes. The smaller the class separation, the harder the classification.

We created three datasets with three different levels of class separation by setting

the class sep parameter to 0.01, 1, 1.5, 2 and 5 respectively. All of the datasets had

only 10 informative attributes. The labelled training sets had 50 instances for these

experiments. Again, all the other experiment setups were the same as described

earlier. Figure 4.4(b) shows the results of these experiments. The pretraining had

the biggest gain in test accuracy over he normal when the class separation is 0.01.

However, as the class separation gets larger the advantage becomes smaller. Both

of these experiments support the hypothesis that what we are learning during pre-

training is a good prior for the model. The advantage of a good prior is larger when

the data size is small and when the classification problem is difficult.

4.7 Discussion

By inspecting the results closely, we noticed that the standard deviation of the test

accuracy for the pretrained model was bigger than the base model without pretrain-

ing for a few cases. This is contradictory to the findings in unsupervised pretraining.

results shown here were collected from the 6 converged runs.
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Unsupervised pretraining was shown to help lower the variance of test accuracy [30].

The results in Table 4.4 are not statistically significant. One possible explanation

for this might be the weights learned during the pretraining across different runs

were very different. Recall that we used a pretraining validation set to stop the

pretraining. Another way to do this is to run the pretraining using different epochs

and choose the epoch that gives the best validation accuracy on the original classi-

fication problem. Then we can run the experiments multiple times using this fixed

number of epochs. This may be a more stable method. Another possible explanation

for the large standard deviation is the small size of the training data. The stan-

dard deviation of the test accuracy tends to be larger when training data is small.

The difficulty of the classification problem may also affect the statistical significance

of the results. As the experiments on synthetic data indicate, the advantage of

the proposed pretraining method disappears when the clusters are far apart from

each other. The complexity of the target decision boundary that separates different

classes may also affect the effectiveness of the pretraining method. Lastly, we also

expect label noise in the data to reduce the advantage provided by the pretraining.

The exact reasons why the proposed method is more effective on certain datasets

need to be explored further.

The pretraining phase means more training time. The proposed pretraining only

adds a small amount of additional training time in our experiments. For instance, the

pretraining phase for the MAGIC dataset took on average 241 seconds, about 4.67%

of the average total training time of 5061 seconds. The computational complexity

of the random permutation of features is O(dim ∗ perm), where dim is the number

of features in the data and perm is the complexity of the random permutation on

a single feature. Suppose the vanilla stochastic gradient descent and a simple fully-

connected neural network (with the same number of hidden nodes in all layers) are

used, the complexity of pretraining is O(epochs ∗ batch ∗ (l ∗M)), where l is the

number of layers, M is the complexity of matrix multiplication, epoch is the number

of epochs to train the model for and batch is the batch size (the number of examples

in a batch). Note that the number of epochs required for the training to converge

depends on the size and complexity of the data and the chosen architecture. It

also depends on the hyperparameters such as learning rate and batch size. Larger

and more complex models and data generally take longer to converge. However,

the pretrained models can be potentially reused multiple times and for multiple

downstream tasks. This means that the time and cost spent on pretraining can be
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amortised for the downstream tasks.

Note that in all of our experiments, we did not fine tune the pretraining or

the weight transferring process. One can possibly improve the results further by

carefully and tediously choosing when to stop the pretraining, which layers to reuse

and whether to freeze some layers for a certain number of epochs. Our main goal

is to show that the proposed method can help improve generalisation when only

limited training data is available, instead of achieving state-of-the-art result on a

particular dataset. We used the same experimental setup across all the experiments

(except number of epochs) to not bias any particular setting.

The proposed pretraining requires well-defined features. This makes the pro-

posed method more suitable for tabular data. To apply the proposed pretraining to

unstructured data such as images and audio clips, one can firstly extract manually-

engineered features from the raw and unstructured data, and then apply the pro-

posed pretraining method on the extracted features. Alternatively, techniques such

as autoencoders can be used to learn features from the raw data before applying the

proposed pretraining.

4.8 Summary

Current default initialisation methods such as he normal are designed to stabilise

the training, especially for deep neural networks. However, they are not necessarily

optimal for generalisation. When labelled data is limited, the choice of initial weights

becomes more important in deciding what final model we will end up with. Note

that a training set can be large but still be limited if the task is difficult. We

demonstrated that inappropriate initial weights of neural networks do indeed lead to

lower test accuracy. We then proposed a supervised pretraining method to improve

the generalisation in binary classification problems for tabular data. During the

pretraining, a model is learned to identify real data from shuffled data. Then the

learned weights are reused in the original problem. Based on the experimental results

on four UCI datasets and synthetic datasets, the supervised pretraining leads to

higher test accuracy than he normal initialisation, when there is a lack of labelled

training data. The experiments on synthetic datasets showed that the proposed

supervised pretraining is more effective on datasets with higher dimensionality and

noisy features. Finally, the proposed method has a bigger advantage over he normal

in terms of test accuracy when the class separation is small.



5
Investigating the Effect of Novel

Classes in Semi-Supervised Learning

5.1 Overview

Neural networks have been successfully applied to challenging tasks such as image or

speech recognition. However, in order to achieve good performance, it is necessary to

have a large amount of labelled training data. This requires humans to painstakingly

label many examples. The labelling process can be costly and time consuming. To

address this issue, many different semi-supervised learning (SSL) algorithms have

been proposed in recent years [59, 69, 73, 93, 116]. The reported results on some

of the benchmark datasets for semi-supervised learning using a small amount of

labelled examples are approaching the performance of supervised learning with all

the examples labelled. For instance, Tarvainen and Valpola (2017) managed to

achieve an error rate of 9.11% on ImageNet 2012 with only 10% of the instances

being labelled [116].

Most research on semi-supervised learning assumes that the distribution of unla-

belled data is the same as the distribution of labelled data. However, this assumption

66
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does not always hold in practice. We use semi-supervised learning when we do not

have the resources to label all of the available data. This means that we cannot check

all the data points to make sure they are only from the classes we are interested

in. Therefore novel classes might be present in the unlabelled data when we apply

semi-supervised learning in practice. We define novel classes as classes that are

only present in the unlabelled training data, but not in the labelled data (including

test data). We assume future unseen data will always be from the same distribution

as the labelled training data. Hence, our test datasets only contain classes that are

present in the labelled training data. Note that our learning scenario is different

to that of novelty detection [8] and domain shift or transfer [96], where the future

unseen data can be distributed differently from the labelled training data.

We answer two research questions in this chapter:

1. How do novel classes in unlabelled data affect the generalisation performance

of semi-supervised algorithms for neural networks?

2. How can we come up with a method to mitigate the negative effect of novel

classes on the generalisation performance of neural networks?

By answering these questions, we make the following contributions:

• We empirically show that the presence of novel classes can degrade the per-

formance of semi-supervised algorithms for neural networks.

• We propose a distance-based weighting framework that assigns weights to un-

labelled data according to the distance between an unlabelled example and

the labelled dataset. This framework assumes that the unlabelled examples

that are far away from the labelled examples are more likely to belong to the

novel classes, and should be assigned lower weights in training.

• We propose a 1-nearest-neighbour based implementation of the framework.

The experimental results show that when the proposed method is applied

to semi-supervised algorithms, the degradation in generalisation performance

caused by novel classes becomes statistically insignificant. The proposed

method can be applied to any semi-supervised learning algorithm that includes

unlabelled data in the loss function.

The rest of the chapter is organized as follows. In Section 5.2, we introduce two

semi-supervised learning algorithms that are used in our experiments. We propose a
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method to reduce the effect of novel classes in Section 5.3. In Section 5.4, we describe

the experiments designed to address the two research questions. We analyze the

experimental results in Section 5.5. We give further discussions on our experiments

as well as drawbacks of our proposed method in Section 5.6. Finally, we summarise

this chapter in Section 5.7.

5.2 Background

We use Pseudo-Label [73] and Mean Teacher [116] as two example algorithms in

our experiments to investigate the effect of novel classes in semi-supervised learning

for neural networks. Pseudo-Label is based on the cluster assumption while Mean

Teacher is based on the smoothness assumption (assumptions in semi-supervised

learning are reviewed in Section 3.3). We limit the scope of this research to self-

training based methods such as Pseudo-Label and Mean Teacher. We leave the

experimentation with other types of semi-supervised learning to future research. In

this section, we describe how both Pseudo-Label and Mean Teacher work.

5.2.1 Pseudo-Label

Pseudo-Label [73] is a self-training based semi-supervised learning method [73].

Pseudo-labels are defined as predictions made by the current model for unlabelled

data. The Pseudo-Label method treats these pseudo-labels as true labels for the un-

labelled data during training. Pseudo-labels are updated after each epoch. So the

training process is similar to that of supervised training, except that pseudo-labels

are used for the unlabelled data instead of true labels. Cross-entropy loss is usually

used for classification problems in supervised learning. Let us define cross-entropy

loss as

H(y, ŷ) = −
C∑
c=1

yc log ŷc (5.1)

where y is the class label encoded in one-hot encoding, ŷ is the model output and

C is the number of classes. Then the loss function for Pseudo-Label is defined as

J =
1

m

m∑
i=1

H(yi, ŷi) + a(t)
1

m′

m′∑
j=1

H(y′j, ŷj) (5.2)
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where m is the number of labelled examples and m′ is the number of unlabelled

examples. The class label for the ith labelled example is denoted by yi while y′j

denotes the pseudo-label for the jth unlabelled example. Model outputs for the

labelled and unlabelled examples are denoted by ŷi and ŷj respectively. The first

term in Equation 5.2 corresponds to the cross-entropy loss for the labelled data, and

the second term is the cross-entropy loss for the unlabelled data. The importance of

the loss related to unlabelled data is controlled by a hyperparameter a(t). Intuitively

speaking, the second term of the loss function tries to reduce the difference between

the predictions of the current model and that of the model in the previous epoch

on unlabelled data. The scheduling of the hyperparameter a(t) is important when

applying Pseudo-Label. If a(t) is set too high in the beginning, the model will fail

to learn because the model is likely to be bad at prediction initially. We use a

scheduling function to schedule a(t) as defined in Lee [73].

a(t) =


0 if t < T1
t−T1
T2−T1a if T1 ≤ t < T2

a if T2 ≤ t

where a, T1 and T2 are set by users, and t is the current training epoch. So a(t) is

initially set to be 0, and gradually increased after each epoch before being set to be

the user selected a for the remaining epochs. Lee [73] showed that Pseudo-Label has

an effect of entropy regularisation on MNIST dataset, which provides an explanation

for the success of Pseudo-Label.

5.2.2 Mean Teacher

Mean Teacher [116] is also a self-training based semi-supervised method. Mean

Teacher keeps an exponential moving average (EMA) of the model that is considered

as the teacher model. Mean Teacher then tries to reduce the difference between the

student model (current model) and the teacher model. The rationale for using a

EMA model as the teacher model is that the EMA model provides more stable

“target” outputs. The loss function of Mean Teacher is defined as

J =
1

m

m∑
i=1

H(yi, ŷi) + a(t)
1

2(m+m′)

m+m′∑
j=1

(ŷj − ŷj ′)2 (5.3)
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where ŷ is the output of the student model, and ŷ′ is the output of the teacher

model (the exponential moving average of the student model). The first term in

the loss function is the cross-entropy loss of the labelled data. The second term is

the mean squared error (MSE) that measures the distance between the outputs of

the student model and the teacher model. Again, a hyperparameter a(t) is used

to balance the two losses. Mean Teacher uses a Gaussian ramp-up function to

schedule hyperparameter a(t) as defined in Tarvainen and Valpola [116] and Laine

and Aila [69]. It is defined as follows.

a(t) =

a ∗ exp[−5(1− t
T

)2] if t ≤ T

a if t > T

where t is the current epoch, T is the ramp-up period chosen by user, and a is

the base parameter also set by user. We applied the same ramp-up function in our

implementation of Mean Teacher. Apart from a, Mean Teacher introduced another

hyperparameter, the EMA decay rate η, that controls the coefficient λ in EMA.

λ(s) = min(1− 1

s+ 1
, η)

where s is the training step (number of weight updates) and η is chosen by user.

λ(s) controls the importance of the EMA model relative to the current model when

updating the teacher model. Note that in Mean Teacher, the teacher model is

updated for each training step instead of each epoch. The above function indicates

that we use the true average of the models learned so far as the teacher model in

the beginning, before we start using the EMA model.

5.3 Distance Based Weighting Framework

As described in Section 5.2, Pseudo-Label and Mean Teacher attempt to train the

current model (student model) to match the predictions (outputs) of the model in

the last epoch (teacher model) for unlabelled data. The existence of novel classes

in the unlabelled data can potentially push the decision boundary away from the

one learned using clean unlabelled data. The experimental results in Section 5.4.1

suggest that the presence of novel classes can hurt the performance of the algo-



5.3 Distance Based Weighting Framework 71

rithms. In this section, we propose a distance based weighting framework and our

implementation of it to reduce the negative effect of novel classes.

We attempt to reduce the negative effect of novel classes by assigning individual

weights to unlabelled data. The intuition is simple: if we can lower the weights of

the novel examples in the training loss, these novel examples will have less impact

on the training. Our proposed framework works as follows.

1. Compute the distance dj for each unlabelled data point to the known classes.

2. Apply a function to transform distance dj into weight wj.

3. Assign weight wj to each unlabelled data point in the loss function.

The specific implementation of this framework depends on the definitions of distance

dj and transformation function that transforms the distance into a weight. We

assume that the distance to the known classes is higher for an example from the

novel classes. The transformation function should transform high-distance values

into low-weight values, and ideally be bounded to a certain range. Next, we describe

our implementation of this framework.

Table 5.1: Architecture A. The architecture used for MNIST and Fashion-MNIST.

Layer Parameters

Input 28 × 28 grayscale images
Convolutional 20 filters, 5 × 5, valid padding, ReLU
Pooling Maxpool 2 × 2
Convolutional 50 filters, 5 × 5, valid padding, ReLU
Pooling Maxpool 2 × 2
Dense 800 → 500, ReLU
Softmax 500 → 5

5.3.1 1-Nearest-Neighbour Based Weighting

We define the distance dj as the Euclidean distance between an unlabelled example

and its closest neighbour in the labelled training data. Hence, we essentially run

a 1-Nearest-Neighbour (1NN) algorithm with the labelled data being the training

set, and compute the 1NN distance dj for each unlabelled example. Note that we

basically have n clusters, where n is the number of labelled examples in the training
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set. The centroid for each cluster is one of the labelled examples. We then need to

define a function to transform all the distances into weights.

A naive way to transform distance into a weight can be defined as follows.

wj = 1− scale(dj)

where scale normalises dj to the range [0, 1] within its cluster. This transformation

is unlikely to work. Because it always assigns 0 to the unlabelled example that is

furthest away from its centroid, regardless of the value of the distance. However, it is

possible that every unlabelled example is close to the centroid (labelled example) and

belongs to the same class, hence all of the unlabelled examples should be assigned

large weights. We use the following transformation instead:

wj =
1

exp(βdj)
(5.4)

where β is a hyperparameter that controls how quickly the weight approaches zero as

the distance increases. Using this transformation we can avoid the problem described

above. The pseudocode for computing the weights is shown in Algorithm 1.

Algorithm 1 Computing the weights for unlabelled data using 1-nearest-neighbour

Require: L,U, β
1: for xj ∈ U do
2: Compute the distance dj = min

xi∈L
distance(xj, xi)

3: Compute the weight wj = 1
exp(βdj)

4: end for

Lastly, we apply the computed weights to the loss function. For instance, the

loss function for Pseudo-Label now becomes

J =
1

m

m∑
i=1

H(yi, ŷi) + a(t)
1

m′

m′∑
j=1

wjH(y′j, ŷj) (5.5)

where wj is weight for the jth unlabelled example. And the loss function for Mean-

Teacher is now

J =
1

m

m∑
i=1

H(yi, ŷi) + a(t)
1

2(m+m′)

m+m′∑
j=1

wj(ŷj − ŷj ′)2 (5.6)
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where wj is the weight for the jth example. The experiments designed to evaluate

the proposed method are explained in Section 5.4.2, and the experimental results

are analysed in Section 5.5.2.

5.4 Experimental Setup

In this section, we describe the experiments that investigate the effect of novel

classes on Pseudo-Label and Mean Teacher, and test the effectiveness of the proposed

method in reducing the effect of novel classes. All the experiments were implemented

in Pytorch [89]1. All the hyperparameters used in the experiments are reported in

Appendix B. The experimental results are discussed in Section 5.5.

Table 5.2: Architecture B. The architecture used for CIFAR-10.

Layer Parameters

Input 32 × 32 RGB images
Convolutional 32 filters, 3 × 3, same padding, ReLU
Convolutional 32 filters, 3 × 3, valid padding, ReLU
Pooling Maxpool 2 × 2
Convolutional 64 filters, 3 × 3, same padding, ReLU
Convolutional 64 filters, 3 × 3, valid padding, ReLU
Pooling Maxpool 2 × 2
Dense 2304 → 512, ReLU
Softmax 512 → 5

5.4.1 Experiments to Demonstrate the Effect of Novel

Classes

We conducted experiments on three popular image-recognition datasets:

MNIST [71], Fashion-MNIST [123] and CIFAR-10 [66]. The characteristics of these

datasets and the preprocessing are explained below.

• MNIST is a 28 × 28 grayscale image dataset of handwritten digits. The

dataset contains 60,000 training images and 10,000 test images. There are 10

classes in total (0 to 9). The classes are distributed evenly. In our experi-

ments, a validation set containing 5,000 images is created from the training

1The source code can be found on GitHub: https://github.com/superRookie007/novel-classes-
ssl. Supplementary materials and additional experimental results are also published there.
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images using stratified sampling. This leaves 55,000 images for training. We

treat classes {5, 6, 7, 8, 9} as novel classes. This means the labelled training

set, validation set and test set only contain classes {0, 1, 2, 3, 4}, while the

unlabelled data includes all classes. The validation set and test set are around

half of their original sizes after taking out the novel classes. The number of

labelled examples in the labelled training set is set to 50.

• Fashion-MNIST follows the same format and structure as MNIST, but it

contains fashion items instead of handwritten digits. The ten classes are t-

shirt/top, trousers, pullover, dress, coat, sandal, shirt, sneaker, bag and ankle

boot. Again, we created a validation set containing 5,000 examples (including

novel classes) from the 60,000 training images. Classes {sandal, shirt, sneaker,

bag, ankle boot} are considered as novel classes. The number of labelled

examples in the labelled training set is set to 100.

• CIFAR-10 is a 32 × 32 RGB image dataset. There are 50,000 training images

and 10,000 test images. There are 10 balanced classes: airplane, automobile,

bird, cat, deer, dog, frog, horse, ship and truck. We split the training images

into a validation set of 5,000 examples (including novel classes) and a training

set of 45,000 examples. Classes {dog, frog, horse, ship, truck} are treated as

novel classes. The labelled training set has 3000 examples.

An unlabelled dataset is pure if it does not contain any example from the novel

classes. A dirty unlabelled dataset includes all the examples from the novel classes.

For each dataset, we experimented with three training scenarios as follows.

• Exclude: supervised training without unlabelled data.

• Include pure: semi-supervised training with pure unlabelled data.

• Include dirty : semi-supervised training with dirty unlabelled data.

Each experiment was run 50 times for MNIST and Fashion-MNIST, and 20 times

for CIFAR-10 because of the much longer training time. The seed for splitting the

training data into labelled and unlabelled data was different in each run. The seeds

were kept the same for each of the three training scenarios.

Both Pseudo-Label and Mean Teacher are model or architecture agnostic. This

means that we can use whatever architecture we want with these algorithms without
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changing the rest of the code. We used Architecture A defined in Table 5.1 for

MNIST and Fashion-MNIST. Architecture B defined in Table 5.2 is used for CIFAR-

10. We use the standard mini-batch stochastic gradient descent (SGD) to train our

models. We use a batch size of 100 for all our experiments. The following learning

rate scheduler is used:

lr(t) = lr × γt

where lr is the base learning rate set by the user, t is the current epoch and γ is the

multiplicative factor of the learning rate decay process. All hyperparameters were

set using validation sets. The specific hyperparameters used in each experiment can

be found in Appendix B. Experimental results are discussed in Section 5.5.1. All

results were obtained from the test sets.

Note that the architectures used in this paper are different from the ones used in

the original papers. We used simple architectures to limit the computing power and

running time for our experiments. It is possible that different architectures can po-

tentially change how novel classes affect these algorithms. However, this is a different

research question and we will leave it to future research. Lee [73] applied unsuper-

vised pretraining in addition to the Pseudo-Label algorithm in order to improve the

performance further. Data augmentation was applied in the original implementation

of Mean Teacher [116]. We do not apply any data augmentation or unsupervised

pretraining in our implementation, because our goal is not to achieve state-of-the-

art results on benchmark datasets. The additional complexity only makes it more

difficult to interpret the experimental results. We only intend to test if novel classes

have any negative effect on the performance of semi-supervised algorithms, while

holding other factors constant.

5.4.2 Evaluation of the Proposed Method

We evaluated the proposed method using both Pseudo-Label and Mean Teacher

on MNIST [71], Fashion-MNIST [123] and CIFAR-10 [66]. The data processing is

exactly the same as described in Section 5.4.1. The only difference is that we have

to compute the weight for each unlabelled data point using the proposed method.

And we now have an additional hyperparameter β to tune.

Note that when we apply the 1-Nearest-Neighbour algorithm, we can use raw im-

ages or low-dimensional vector representations of the images. Since distance based

methods suffer from the curse of dimensionality, we postulate that we can get bet-
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ter performance if dimensionality reduction is applied beforehand. We tested using

Variational Autoencoder (VAE) [58] to learn low-dimensional representations from

the images, and then applied the 1-Nearest-Neighbour to these representations. For

MNIST and Fashion-MNIST, we used a simple multi-layer perceptron (MLP) based

encoder and decoder as introduced by Kingma and Welling [58]. The dimensionality

of the hidden representation was set to 10. For CIFAR-10, we used convolutional

encoder and transposed convolution for up-sampling in the decoder. The dimen-

sionality of the vector representation for CIFAR-10 was set to 20.

To test the effectiveness of the proposed method, we apply the computed weights

in Pseudo-Label and Mean Teacher, and check if this improves the performance

on include dirty where novel classes are present in unlabelled data. We add two

additional training scenarios to our experiments as follows.

• With weights raw : weights are computed using raw images, and model is

trained with dirty unlabelled data.

• With weights vae: weights are computed using low-dimensional representa-

tions learned using VAE, and model is trained with dirty unlabelled data.

Both with weights raw and with weights vae were trained using the same dirty un-

labelled data on which include dirty was trained. Similar to the experiments in

Section 5.4.1, we ran each experiment 50 times for MNIST and Fashion-MNIST,

and 20 times for CIFAR-10 due to longer training time. The data seed was dif-

ferent for each run. We used the same set of seeds across all experiments. Again,

all hyperparameters were set using validation sets, the hyperparameters used in

each experiment can be found in Appendix B. Experimental results are reported in

Section 5.5.2. All the results reported were obtained from the test sets.

5.5 Experimental Results

In this section, we discuss the experimental results obtained from the experiments

described in the last section. Test accuracy results for Pseudo-Label and Mean

Teacher are reported in Tables 5.3 and 5.4 respectively. Since the differences in

test accuracies across different settings are small, we provide more detailed analysis

of the results using the Friedman test and Nemenyi post-hoc test in the next two

subsections. Demšar [22] provides a great discussion on Friedman and Nemenyi tests

along with other statistical tests for comparing classifiers.
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Table 5.3: All the experimental results in the paper for Pseudo-Label. It shows
the mean and standard deviation of test accuracy for each dataset and
experiment setting.

MNIST Fashion-MNIST CIFAR-10
exclude 93.63% ±1.51% 77.15% ±1.56% 63.85% ±1.20%
include pure 94.52% ±1.71% 77.02% ±1.99% 65.37% ±1.19%
include dirty 92.15% ±2.27% 76.14% ±2.02% 64.45% ±1.11%
with weights raw 92.74% ±2.11% 77.01% ±1.55% 65.14% ±1.01%
with weights vae 93.79% ±1.39% 76.86% ±1.76% 65.88% ±1.22%

Table 5.4: All the experimental results in the paper for Mean Teacher. It shows
the mean and standard deviation of test accuracy for each dataset and
experiment setting.

MNIST Fashion-MNIST CIFAR-10
exclude 93.63% ±1.51% 77.15% ±1.56% 63.85% ±1.20%
include pure 94.06% ±1.68% 78.58% ±1.93% 66.56% ±0.96%
include dirty 92.97% ±2.03% 76.95% ±2.04% 64.94% ±1.32%
with weights raw 93.11% ±1.99% 77.19% ±1.83% 66.04% ±1.11%
with weights vae 93.42% ±1.46% 77.14% ±1.85% 66.24% ±0.84%

5.5.1 Effect of Novel Classes

To find out if novel classes really affect the performance, we used the Friedman

test (p = 0.05) to test if the test accuracies under the three different settings (in-

clude pure, include dirty and exclude) are statistically different for each dataset.

The details of different settings can be found in Section 5.4. The test suggested

that the distributions of test accuracies are indeed different. Then we performed

the Nemenyi post-hoc test for pairwise comparisons. We used 0.05 as the confidence

level. The results for the Nemenyi tests are shown as CD graphs in Figure 5.1 for

Pseudo-Label and Figure 5.2 for Mean Teacher. The CD graph shows the average

ranking of each setting. The lower the ranking the better. The difference in average

ranking is statistically significant if there is no bold line connecting the two settings.

The mean and standard deviation of test accuracy are shown in parenthesis.

Figure 5.1 shows that include dirty is statistically significantly worse than ex-

clude and include pure on both MNIST and Fashion-MNIST for Pseduo-Label. For

CIFAR-10, there is no significant difference between include dirty and exclude, but

include dirty is still significantly worse than include pure. The results for Mean
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1 2 3

include_pure(94.52%, 1.71%)
exclude(93.63%, 1.51%)

include_dirty(92.15%, 2.27%)

CD(0.47)

(a) Pseudo-Label on MNIST

1 2 3

include_pure(77.02%, 1.99%)
exclude(77.15%, 1.56%)

include_dirty(76.14%, 2.02%)

CD(0.47)

(b) Pseudo-Label on Fashion-MNIST

1 2 3

include_pure(65.37%, 1.19%)
exclude(63.85%, 1.20%)

include_dirty(64.45%, 1.11%)

CD(0.74)

(c) Pseudo-Label on CIFAR-10

Figure 5.1: Comparison of supervised training without unlabelled data, Pseudo-
Label with clean unlabelled data and Pseudo-Label with dirty unlabelled
data on MNIST (a), Fashion-MNIST(b) and CIFAR-10 (c).

Teacher are shown in Figure 5.2. For all three datasets, include dirty is not signifi-

cantly different from exclude, but it is significantly worse than include pure.

Overall, we can clearly see that novel classes in unlabelled data have a negative

effect on the performance of Pseudo-Label and Mean Teacher. When novel classes

are present in the unlabelled data, the performance of these algorithms is signifi-

cantly lower than that trained using clean unlabelled data without novel classes.

5.5.2 Effectiveness of 1NN Based Weighting

We have shown that the presence of novel classes lower the performance of Pseudo-

Label and Mean Teacher, we now test if our proposed weighting method can reduce

this negative effect. Figure 5.3 shows the Nemenyi test results for Pseudo-Label. For

all three datasets, with weights vae consistently outperformed include dirty. This

means that when the low-dimensional representations are used for weight com-

putation, our proposed method improved the performance of Pseudo-Label when

novel classes are present. When raw images were used to compute the weights,
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include_pure(94.06%, 1.68%)
exclude(93.63%, 1.51%)

include_dirty(92.97%, 2.03%)

CD(0.47)

(a) Mean Teacher on MNIST

1 2 3

include_pure(78.58%, 1.93%)
exclude(77.15%, 1.56%)

include_dirty(76.95%, 2.04%)

CD(0.47)

(b) Mean Teacher on Fashion-MNIST

1 2 3

include_pure(66.56%, 0.96%)
include_dirty(64.94%, 1.32%)

exclude(63.85%, 1.20%)

CD(0.74)

(c) Mean Teacher on CIFAR-10

Figure 5.2: Comparison of supervised training without unlabelled data, Mean
Teacher with clean unlabelled data and Mean Teacher with dirty un-
labelled data on MNIST (a), Fashion-MNIST(b) and CIFAR-10 (c).

our proposed method did improve the average ranking, but the improvement is not

statistically significant for all datasets. There is no significant difference between

with weights vae and include pure for all three datasets. This suggests that with

our proposed weighting method, the performance of Pseudo-Label does not suffer

significantly when novel classes are present in unlabelled data.

The experimental results for Mean Teacher are shown in Figure 5.4. For MNIST,

with weights vae is not significantly better than include dirty, but is statistically the

same as include pure. Include pure is significantly better than all the other three set-

tings on Fashion-MNIST. Include dirty performed significantly worse than the other

settings on CIFAR-10 and include pure is statistically the same as with weights vae

and with weights raw.

Overall, when our proposed method is applied to Pseudo-Label and Mean

Teacher, the performance does not suffer as much when novel classes are present.

There is actually no significant difference in performance regardless of the presence

of novel classes except for one out of the 6 cases (when Mean Teacher was used on
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1 2 3 4

include_pure(94.52%, 1.71%)
with_weights_vae(93.79%, 1.39%) with_weights_raw(92.74%, 2.11%)

include_dirty(92.15%, 2.27%)

CD(0.66)

(a) Pseudo-Label on MNIST

1 2 3 4

include_pure(77.02%, 1.99%)
with_weights_vae(76.86%, 1.76%) with_weights_raw(77.01%, 1.55%)

include_dirty(76.14%, 2.02%)

CD(0.66)

(b) Pseudo-Label on Fashion-MNIST

1 2 3 4

with_weights_vae(65.88%, 1.22%)
with_weights_raw(65.14%, 1.01%) include_pure(65.37%, 1.19%)

include_dirty(64.45%, 1.11%)

CD(1.05)

(c) Pseudo-Label on CIFAR-10

Figure 5.3: Comparison of Pseudo-Label models trained in the following conditions:
dirty unlabelled data without weights, dirty unlabelled data with weights
computed from raw images, dirty unlabelled data with weights computed
from low-dimensional representations and clean unlabelled data without
weights.

Fashion-MNIST in Figure 5.4), when our proposed method is used. The advantage

of using low-dimensional representations over raw images to compute the weights is

not statistically significant, according to our experimental results.

5.6 Discussion

The experimental results in Section 5.5.1 suggest that novel classes in unlabelled

data can hurt the performance of semi-supervised learning algorithms. This is in

agreement with the findings by Oliver et al. [88]. Oliver et al. [88] evaluated semi-

supervised algorithms in fair and realistic settings. The implementations of all the

algorithms evaluated used the same architectures, data augmentations, and optimi-

sation methods. They showed that the supervised baselines used in semi-supervised
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1 2 3 4

include_pure(94.06%, 1.68%)
with_weights_vae(93.42%, 1.46%) with_weights_raw(93.11%, 1.99%)

include_dirty(92.97%, 2.03%)

CD(0.66)

(a) Mean Teacher on MNIST

1 2 3 4

include_pure(78.58%, 1.93%)
with_weights_vae(77.14%, 1.85%) with_weights_raw(77.19%, 1.83%)

include_dirty(76.95%, 2.04%)

CD(0.66)

(b) Mean Teacher on Fashion-MNIST

1 2 3 4

include_pure(66.56%, 0.96%)
with_weights_vae(66.24%, 0.84%) with_weights_raw(66.04%, 1.11%)

include_dirty(64.94%, 1.32%)

CD(1.05)

(c) Mean Teacher on CIFAR-10

Figure 5.4: Comparison of Mean Teacher models trained in the following conditions:
dirty unlabelled data without weights, dirty unlabelled data with weights
computed from raw images, dirty unlabelled data with weights computed
from low-dimensional representations and clean unlabelled data without
weights.

learning literature were too weak. In their implementation, the gap between semi-

supervised training and the supervised baseline was much smaller than the results

reported in the original research. They also studied the effect of distribution mis-

match between the labelled data and the unlabelled data. They found that adding

unlabelled data from the novel classes can hurt the performance. While Oliver et

al. [88] only tested the effect of novel classes on CIFAR-10, we also conducted exper-

iments on MNIST and Fashion-MNIST. In addition to demonstrating the negative

effect of novel classes, we also propose the first novel solution for reducing this effect.

Oliver et al. [88] did not re-tune the hyperparameters for the experiments that

included novel classes, however, we did tune the a hyperparameter while holding

other parameters unchanged. The hyperparameter a controls the importance of the

regulating term in the loss function. It is essentially a universal weight applied

to all the unlabelled data. If we lower a, apart from reducing the negative effect
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of novel classes, it will also lower the positive effect of the rest of the unlabelled

data. Figure 5.5 shows the comparison of Mean Teacher models with different a

values (holding other hyperparameters constant) trained on CIFAR-10 with novel

classes. The a value of 50 was used in our experiments in Section 5.5.1. Lowering

the hyperparameter a did not improve the performance of Mean Teacher. Hence,

we need to assign individual weights to each unlabelled example to keep the benefit

of the clean unlabelled data and at the same time weaken the impact of the novel

classes.

1 2 3 4

a=50 (64.94%, 1.32%)
a=0.5 (65.04%, 1.12%) a=10 (64.82%, 1.35%)

a=1 (64.83%, 1.14%)

CD(1.05)

Figure 5.5: Mean Teacher models with different a values were trained on CIFAR-10
with dirty unlabelled data. We used a value of 50 in our experiments in
Section 5.4.1.

According to the experimental results in Section 5.5.2, the advantage provided

by learning low-dimensional representations of images when computing weights over

using raw images is not significant. It could be due to the hyperparameter tuning

or the choice of architectures. The advantage can potentially be bigger when more

advanced architectures are used in training the VAE. It would be interesting to

explore other unsupervised learning algorithms to learn the latent representations.

A major downside of using raw images to compute weights and distances is the

running time due to the big dimensionality of raw images. The brute force method

for computing distances has a time complexity of O(|U | ∗ |L| ∗ dim), where |U | and

|L| are the sizes of the unlabelled and labelled sets, and dim is the dimensionality of

the data. This is an obstacle if we have to compute the weights frequently. Learning

latent representation by training an autoencoder takes time. However, this training

time can be amortised since we can reuse the encoder every time we compute weights.

We only tested the proposed method on Pseudo-Label and Mean Teacher, however,

it can also be applied to other semi-supervised learning algorithms.

We have so far shown that the proposed method can improve the accuracy of

Pseudo-Label and Mean Teacher when novel classes are present in the unlabelled

data. However, it is not clear whether the improvement is a result of the reduced

negative effect of the novel classes or the gain provided by the individual weights



5.6 Discussion 83

on the clean unlabelled data. In order to answer this question, we applied the

proposed method to both Pseudo-Label and Mean Teacher on CIFAR-10 with clean

unlabelled data. We only used the implementation that computes weights using

the VAE encodings instead of the raw images, because this implementation always

had better average rankings in the previous experiments. The experiments were

repeated 20 times. The results are shown in Figure 5.6. The proposed method

did not improve the test accuracy when the unlabelled data was clean (without

novel classes) for both Pseudo-Label and Mean Teacher. This suggests that the

improvement on accuracy when the unlabelled data contains novel classes is due to

the reduced negative effect of the novel classes in the unlabelled data.

1 2 3

include_pure(65.37%, 1.19%)
include_pure_weights(65.30%, 0.93%)

exclude(63.85%, 1.20%)

CD(0.74)

(a) Pseudo-Label on CIFAR-10

1 2 3

include_pure(66.56%, 0.96%)
include_pure_weights(66.26%, 0.81%)

exclude(63.85%, 1.20%)

CD(0.74)

(b) Mean Teacher on CIFAR-10

Figure 5.6: Comparison of models trained in the following conditions: supervised
training without unlabelled data (exclude), semi-supervised training on
clean unlabelled data (include pure) and semi-supervised learning with
weights computed from low-dimensional representations on clean unla-
belled data (include pure weights).

Lastly, we introduced a hyperparameter β in our proposed method. A valida-

tion set is needed to tune β along with other hyperparameters in semi-supervised

algorithms. In order to be confident that the tuned hyperparameters will work well

on future unseen data, the validation set has to be sufficiently large. We only use

semi-supervised algorithms when labelled data is scarce. It is possible that we will

have larger gain in performance by using most of the labelled data as training data

instead of validation set. However, in most of the literature on semi-supervised

learning the validation set used is usually larger than the labelled training set. This

problem has been studied in Oliver et al. [88].
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5.7 Summary

Even though it is a common practice to assume unlabelled data has the same distri-

bution as the labelled data in semi-supervised learning literature, this assumption is

not always true in practice. In this chapter, we empirically showed that novel classes

in unlabelled data can hurt the generalisation performance of semi-supervised learn-

ing algorithms. We then proposed a 1-nearest-neighbour based method to assign

weights to unlabelled data, in order to reduce the negative effect of novel classes.

The experimental results showed that when our proposed method is applied to

Pseudo-Label and Mean Teacher, the decrease in performance due to the presence

of novel classes becomes statistically insignificant. This suggests that assigning in-

dividual weights to unlabelled data is a promising approach to dealing with novel

classes in semi-supervised learning.



6
Measuring Output Fluctuation

During Training for Active Learning

6.1 Overview

An obvious strategy to improve the generalisation of a classifier, when the labelled

training set is small but there is an abundant pool of unlabelled data available, is col-

lecting more labelled data. A simple strategy is to sample unlabelled data randomly

and label the sampled examples. However, doing so may be inefficient and wasteful,

because not all examples are equally useful in improving the performance of the

classifier. Additionally, labelling can be a time-consuming and expensive practice.

Ideally, we should only query data examples that are more likely to improve the

performance of a classifier. This is called active learning, whose goal is to improve

the performance of a machine learning model as much as possible by strategically

querying as few examples as possible. Different types of active learning and specific

algorithms are reviewed in Chapter 3.4.

We consider a specific type of active learning in this chapter: pool-based ac-

tive learning. In pool-based active learning, a small amount of labelled data and a

85
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large pool of unlabelled data are available. All examples in the unlabelled data are

evaluated at once before each query, unlike stream-based active learning where un-

labelled examples are evaluated individually, independently and sequentially. This

allows us to evaluate each example against all the other examples and only select

the top examples. Because it evaluates unlabelled examples sequentially and inde-

pendently from each other, stream-based active learning is affected by the order in

which the examples are evaluated.

We also only consider batch-mode active learning, where a batch of examples

are queried at once and added to the labelled dataset. Selecting a single example

to be labelled and added to the training set at a time is not practical for classifiers

like neural networks due to their long training time.

All active learning methods have their own measures to evaluate unlabelled data.

In Chapter 3.4, we categorise the measures studied in the literature into three general

categories: informativeness, representativeness and diversity. Informativeness-based

methods select examples that are most likely to reduce the uncertainty or expected

error of the model [11, 31, 51, 74, 75]. Representativeness-based methods select

examples that are most representative of the data [29, 79, 102, 104]. Diversity-

based methods attempt to select examples that are a diverse cover of the data [9,

101]. There are also many methods that attempt to combine informativeness with

representativeness or diversity [49, 51, 61, 65, 77].

To the best of our knowledge, most literature on active learning evaluates algo-

rithms in one of two ways. The first one is running active learning for multiple rounds

and plotting the accuracy of the model trained after each round of active learning.

The active learning method that provides the fastest improvement on accuracy is

considered the winner. The second evaluation method only runs active learning once

and tests the statistical difference among the competing algorithms. However, the

number of initial labelled examples and the budget size are almost always arbitrarily

chosen without any explanation. We think these types of evaluation methods have

limitations. The second method only shows the results on a particular experimental

setting. It does not inform us what would happen in other settings. The first one

only tells us which method can improve the performance of a classifier the fastest

from no or few labelled examples. However, one might still be interested in applying

active learning when the labelled training set is large and the model’s predictions

are already accurate. For instance, even after a model is deployed in production

a company would most likely still want to improve on it continuously. Since the
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model is good enough to be in production, it means there must be a big training

set already. Active learning methods that accelerate the performance of a classifier

the fastest when labelled dataset is small are not necessarily as effective when there

is already a big labelled dataset available. In order to improve on a model that is

already accurate, we usually have to find edge cases and those examples that are in

the difficult regions of the data. We believe this particular setting of active learning

has been overlooked by most active learning literature.

This chapter answers the following research questions:

1. How do different types of active learning methods perform under different

settings on the number of initial labelled examples and the number of queried

examples?

2. How can we apply recent theoretical and empirical studies on the convergence

properties of neural networks to active learning?

In this chapter, we make the following contributions:

• We propose a new active learning framework for neural networks trained using

stochastic gradient descent (SGD), that selects examples whose model outputs

fluctuate the most during training. This framework assumes that the unla-

belled examples whose model outputs fluctuate the most during training are

more difficult to learn, and therefore are more useful to be added to the labelled

set.

• We propose an implementation of the framework that queries unlabelled ex-

amples whose predictions change the most during training. The experimental

results show that the proposed method is more effective when the initial la-

belled dataset is large.

• We empirically show that different types of active learning algorithms per-

form differently under different settings. This suggests that active learning

algorithms should be evaluated under different settings in order to fully un-

derstand their characteristics.

The rest of this chapter is organised as follows. Section 6.2 discusses the moti-

vation of our proposed active learning method. Section 6.3 introduces our proposed

active learning framework that measures output fluctuation during training. Sec-

tion 6.4 reports several implementations of the framework that did not outperform
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uniform sampling. Section 6.5 introduces our final proposed implementation of the

framework. Section 6.6 describes the setup of the experiments. Section 6.7 anal-

yses the experimental results. We discuss some interesting patterns in the results

and limitations of our proposed method. Finally, we summarise this chapter in

Section 6.9.

6.2 Motivation

Because our goal is to propose an active learning method that improves the gen-

eralisation of neural networks, it pays to draw some inspiration from studies on

the generalisation of neural networks. Although researchers still do not have a

consensus on how exactly neural networks generalise, trying to understand the gen-

eralisation properties of neural networks has been an active research area in recent

years. Among the recently published interesting and promising theoretical works on

neural networks, we are most interested in the studies on the convergence of neural

networks trained using gradient descent or stochastic gradient descent [86, 110, 124].

Soundry et al. [110] and Nacson et al. [86] studied the convergence of linear fully-

connected neural networks with exponential-tailed loss functions (a family of loss

functions such as exponential, logistic and cross-entropy loss) trained using gradient

descent on linearly separable problem. They found that under these conditions the

classifier converges to the L2 maximum-margin solution. The L2 maximum-margin

solution is equivalent to a hard-margin support vector machine classifier with a L2

penalty on the parameters. It means that the linear fully-connected neural network

behaves like a hard-margin support vector machine when trained under these con-

ditions, and gradient descent has an implicit regularisation effect on the model. Xu

et al. [124] studied the convergence of both gradient descent and stochastic gradient

descent with non-linear ReLU networks on binary linearly separable problems. They

found that due to the non-convex nature of the loss function for an ReLU network,

the model is not guaranteed to converge. But when it does converge, it converges

to either the global or local maximum-margin solution.

These theoretical results seem to be supported by some empirical works. Toneva

et al. [117] empirically investigated the “example forgetting” phenomenon during

training deep neural networks. They defined unforgettable examples as the ex-

amples that once learned (correct prediction) are never forgotten during the training.

The examples that are forgotten (wrong prediction) after having been learned are
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forgettable examples. They found that most of the examples in simple datasets

are unforgettable examples (91.7% in MNIST [71]), while a much smaller portion

of a hard dataset are unforgettable (31.3% in CIFAR-10 [66]). Furthermore, the

authors tested the performance of a deep neural network trained on CIFAR-10 with

unforgettable examples gradually being removed. They found that The model’s per-

formance did not suffer even after more than 30% of the data were removed from

the training set (less than 0.2% drop in accuracy). On MNIST, the performance

was maintained even after 80% of the training data were removed. These results

suggest a lot of the examples (unforgettable examples) in the data are not useful for

the generalisation of neural networks. Mostly the forgettable examples are useful

for the generalisation of neural networks. The forgettable examples seem to play

the role of support vectors as in support vector machine. This suggests that for-

gettable examples are likely to be near the target decision boundary of a dataset.

Yaghoobzadeh et al. [125] applied these findings to increase the robustness of nat-

ural language understanding models in a natural language inference task by fine

tuning the models with only forgettable examples. All of these empirical results are

in support of the theoretical findings explained above.

Both the theoretical and empirical results make us question if active learning

methods based on representativeness or diversity alone are really suitable for neu-

ral networks trained using gradient descent or its variants, especially when there

is a large training set and the model already has a high test accuracy. Pure

representativeness-based methods typically choose examples in the dense regions

of the data while diversity-based methods select examples to cover the entire space

of the data. These methods are expected to be more effective when labelled data is

scarce and exploration of the space is more important. However, the effectiveness

of these methods are expected to drop when the labelled dataset is large. This is

because the exploration of the data space is less important when there is already

a large labelled dataset. Furthermore, the decision boundary of the model trained

on the large labelled dataset should be close to the target decision boundary. As

explained before, the forgettable examples are likely to be around the target de-

cision boundary. However methods based on representativeness or diversity would

still choose examples that are far away from the decision boundary (unforgettable

examples).

Uncertainty-based active learning methods like margin and confidence (defined

in Chapter 3.4.2) choose examples close to the decision boundary of the current
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model. This means that their performance depends on the current model. If the

current model is accurate, then the selected examples are close to the target decision

boundary (forgettable examples). When the current model is less accurate (trained

on a smaller labelled dataset), the selected examples are less likely to be forgettable

examples. Because they only select examples around the decision boundary of the

current model, uncertainty-based methods lack the ability to explore the data space.

Therefore, we expect uncertainty-based active learning methods to be less effective

when the labelled dataset is small.

In light of the theoretical and empirical findings discussed above, an ideal active

learning method for neural networks trained using gradient descent or its variants

should select instances from the forgettable regions of the data. Unfortunately, we

usually cannot tell which examples are forgettable just by visualising the data. Even

if it were possible, it would not be a feasible practice at a large scale. We have to

find a way to estimate how likely an unlabelled example is to be forgettable. We

propose to estimate the forgettable regions by measuring the output fluctuation

of the unlabelled data during training. We propose a new active learning framework

for measuring output fluctuation in Section 6.3. Section 6.4 reports several failed

attempts at implementing the framework. In Section 6.5, we propose an implemen-

tation that measures the prediction changes of unlabelled data during training.

6.3 Framework for Measuring Output Fluctua-

tion During Training

Inspired by the theoretical and empirical results described in Section 6.2, we pro-

pose a new active learning framework that queries the unlabelled examples whose

model outputs fluctuate the most during training. The framework assumes that the

examples whose model outputs fluctuate the most during training are more likely

to be forgettable examples. This framework can be considered as an approximation

of the method used in Toneva et al. [117] to find forgettable examples. All labels

for a dataset are available in Toneva et al. [117], while we only have a small labelled

dataset. We can only train a model on the small labelled dataset, therefore the

learned model is less accurate. Toneva et al. [117] counts the number of times the

model forgets the true label of an example during training. However, labels are not

available to the unlabelled data in our learning scenario. In order to solve this prob-
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lem, we approximate this by accumulating the distance between two consecutive

model outputs on the same example after each epoch during training.

Algorithm 2 Framework of measuring output fluctuation for unlabelled data

Require: L,U, epochs, skip
1: fluctuation[j]← 0, j ∈ U
2: pre outputs[j]← 0, j ∈ U
3: for t← 0 to epochs do
4: if t > skip then
5: for example j ∈ U do
6: compute outputs[j]
7: compute distancej ← distance(pre outputs[j], outputs[j])
8: fluctuation[j]← fluctuation[j] + distancej
9: pre outputs[j]← outputs[j]

10: end for
11: end if
12: gradient update model on L
13: end for

The general framework is shown in Algorithm 2. It requires a labelled dataset

L, an unlabelled dataset U , the number of epochs to train the model and a user

specified parameter skip. Lines 1-2 initialise the fluctuation scores and previous

outputs. For each epoch, we compute the current outputs for all the unlabelled data

and calculate the distances between the previous outputs and the current outputs.

Then the distances are accumulated for all the unlabelled data. Lastly, the model

is updated on the labelled dataset L for one epoch. This process is repeated until

the training is complete. We only accumulate the distances if the current epoch is

larger than user specified skip. This is done to avoid the large swings in outputs

during the first a few epochs caused by random initial weights of the model.

Algorithm 2 is only a framework of our proposed method. The specific imple-

mentation depends on the definition of model output and the choice of distance

function. We will discuss some of the implementations we have tried in Section 6.4,

before introducing our final proposed implementation in Section 6.5.

6.4 Preliminary Implementations

This section details the implementations we tried but which failed to outperform

uniform sampling. We defined the model output for an unlabelled example j to



92 Measuring Output Fluctuation During Training for Active Learning

be the probability output of the softmax output layer, Pj, or the input of the

softmax layer, Zj (introduced in Chapter 2.3). We experimented with both because

the squashing effect of the softmax function affects the distance computation in a

non-linear way.

The first distance function we tested was squared L2 norm (squared Euclidean

distance). It is computed as follows:

squared L2(P t
j , P

t−1
j ) =

C∑
c=1

(ptcj − pt−1cj )2, or

squared L2(Zt
j , Z

t−1
j ) =

C∑
c=1

(ztcj − zt−1cj )2

where C is the number of classes, t is the current epoch and j is the index of the

unlabelled example. We also experimented with Kullback-Leibler divergence (KL-

divergence) and symmetrised KL-divergence:

kl div(P t
j ‖ P t−1

j ) =
C∑
c=1

ptcjlog(
ptcj

pt−1cj

)

sym kl div(P t
j ‖ P t−1

j ) =
C∑
c=1

ptcjlog(
ptcj

pt−1cj

) +
C∑
c=1

pt−1cj log(
pt−1cj

ptcj
)

where kl div(P t
j ‖ P t−1

j ) measures the divergence of the current output P t
j from

the previous output P t−1
j . Because KL-divergence is asymmetric, we also experi-

mented with symmetrised KL-divergence. KL-divergence measures the divergence

of a probability distribution from another reference probability distribution, there-

fore only the softmax outputs are used in the computation of KL-divergence and

symmetrised KL-divergence.

All of these implementations did not outperform uniform sampling in our exper-

iments. All of these measures of fluctuation have a common problem that they do

not care about the direction of change in the output. We use Figure 6.1 to illustrate

why this is a problem. There are two data points A and B, and two decision bound-

aries, classifier 1 and classifier 2, representing a classifier at different time stamps

during training. Most of the methods mentioned above cannot distinguish between

moving from classifier 1 to classifier 2 and moving from classifier 2 to classifier 1.

In other words, the distance between the model outputs are the same regardless
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classifer1

classifer2

A

B

Figure 6.1: A and B are two different data points. The decision boundary of a
classifier moves during training. The decision boundaries at different
epochs are represented by classifier 1 (solid line) and classifier 2 (dashed
line).

whether the classifier moved from classifier 1 to classifier 2 or from classifier 2 to

classifier 1. However, if the classifier moved from classifier 1 to classifier 2 it is

now more confident (confidence and other measures of uncertainty are defined in

Section 3.4.2) about its prediction of example A, we therefore should reduce the

likelihood of querying example A. We should increase the chance of querying A if

the classifier moved from classifier 2 to classifier 1, because the model has become

less confident about example A. Suppose the model has changed from classifier 1 to

classifier 2. The change of model output for example A is likely to be larger than

that for example B. This is because the model’s confidence of example B has not

changed much (although the prediction has changed), while it has changed a lot for

example A. However, one should actually pick example B over example A, since the

prediction of B has changed while the prediction for A has stayed the same and even

has become more confident.
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6.5 Prediction Fluctuation as Uncertainty Mea-

sure

This section introduces our proposed implementation of measuring output fluctu-

ation. The failed attempts suggest that the direction of change in model outputs

and whether it results in a change in prediction are really important in measuring

output fluctuation. A simple and seemingly crude way to solve this problem is mea-

suring the prediction fluctuation of unlabelled data during training. In measuring

prediction fluctuation, we count the number of times the prediction of each unla-

belled example changes during training. We essentially define model output as the

prediction for an example. The distance function returns 1 if the current predic-

tion changes from the last prediction, and returns 0 otherwise. We then query the

examples with the highest number of prediction changes during training.

Algorithm 3 Measuring prediction fluctuation for unlabelled data

Require: L,U, epochs, skip
1: pred changes[j]← 0, j ∈ U
2: pre pred[j]← 0, j ∈ U
3: for t← 0 to epochs do
4: if t > skip then
5: for example j ∈ U do
6: compute ŷj
7: if ŷj 6= pre pred[j] then
8: pred changes[j]← pred changes[j] + 1
9: end if

10: pre pred[j]← ŷj
11: end for
12: end if
13: gradient update model on L
14: end for

Measuring prediction fluctuation during training is related to ensemble or com-

mittee based active learning method. Each model after each epoch can be seen as a

member of the ensemble. If the members of the “temporal ensemble” disagree with

each other on the prediction of an example, the prediction fluctuation must also be

high. However, prediction fluctuation is also different from ensemble based active

learning method in that it takes into account the information about the sequence of

predictions. Suppose there are two sequences of predictions with the same length:

“1111122222” and “1212121212”. Standard ensemble methods would consider the
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two sequences as exactly the same, even though the second sequence fluctuates much

more. This is why we do not use prediction disagreement or vote entropy to compute

prediction fluctuation.
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Figure 6.2: Plots of the distributions of the number of prediction changes occurred
during training for MNIST, Fashion-MNIST and CIFAR-10. Pictures on
the right show the zoomed-in portions of the plots. The classifiers were
trained with 100 labelled examples for all three datasets.

The pseudo code for measuring prediction fluctuation for unlabelled data is

shown in Algorithm 3. Lines 1-2 initialise containers used to accumulate prediction
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changes and store previous predictions. During training, the current predictions for

unlabelled data are computed and compared to previous predictions. If the predic-

tion for an unlabelled example has changed, we add 1 to the prediction change score

for that example. Again, we skip the first few epochs before we start accumulating

prediction changes. The process is repeated until the training is complete.

Figure 6.2 shows the distributions of the number of prediction changes which

occurred during training for MNIST [71], Fashion-MNIST [123] and CIFAR-10 [66].

The plots are based on a single run. The models were trained using only 100 labelled

examples for all three datasets. For a simple dataset like MNIST, the majority of the

examples did not have many prediction changes during training. The examples in

the slightly harder dataset, Fashion-MNIST, tend to have more prediction changes.

For the hardest dataset out of the three, CIFAR-10, the distribution looks completely

different. The distribution is more balanced and is skewed towards higher number

of changes. This agrees with the findings in Toneva et al. [117]. The examples in

the harder datasets tend to have more prediction changes during training, while the

examples in the easier datasets have less prediction changes.

The proposed method of measuring prediction fluctuation is an uncertainty based

active learning method. It defines uncertainty as the number of times the prediction

of an unlabelled example changes during training. It tends to choose examples

around the final decision boundary just like other uncertainty based methods like

selecting examples with the least confidence or with the smallest margins between

the highest probabilities and the second highest probabilities. Additionally, it also

favours the examples that the model is likely to forget during training. This is

beneficial because the examples that are closest to the decision boundary are not

necessarily the most difficult to learn (the easiest to forget).

The performance of the proposed method depends on the available labelled train-

ing data. When the labelled dataset is really small, the proposed method would fail

to explore all of the regions close to the target decision boundary and may lead to

poor estimation of forgettable examples. Therefore, we expect the proposed method

to be more effective when a large labelled dataset is available. Experiments and

analyses have been conducted to evaluate the proposed method against different

types of active learning methods. We describe the experimental setup in Section 6.6

and analyse the experimental results in Section 6.7.
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1 2 3 4 5 6

proposed(90.14%, 0.78%)
margin(90.01%, 0.92%)

kcenter_greedy(88.35%, 1.05%) uniform(86.98%, 1.06%)
no_AL(81.38%, 1.80%)
graph_density(78.70%, 2.32%)

CD(1.07)

(a) 100 initial labelled examples

1 2 3 4 5 6

margin(94.37%, 0.49%)
proposed(94.29%, 0.43%)

kcenter_greedy(93.18%, 0.51%) uniform(92.61%, 0.59%)
no_AL(91.95%, 0.61%)
graph_density(91.74%, 0.69%)

CD(1.07)

(b) 500 initial labelled examples

1 2 3 4 5 6

margin(95.75%, 0.30%)
proposed(95.70%, 0.31%)

kcenter_greedy(95.10%, 0.33%) uniform(94.69%, 0.36%)
graph_density(94.38%, 0.36%)
no_AL(94.37%, 0.40%)

CD(1.07)

(c) 1000 initial labelled examples

1 2 3 4 5 6

proposed(97.95%, 0.13%)
margin(97.94%, 0.12%)

kcenter_greedy(97.80%, 0.12%) graph_density(97.72%, 0.12%)
no_AL(97.70%, 0.15%)
uniform(97.70%, 0.14%)

CD(1.07)

(d) 5000 initial labelled examples

1 2 3 4 5 6

proposed(98.49%, 0.09%)
margin(98.49%, 0.11%)

kcenter_greedy(98.42%, 0.11%) uniform(98.37%, 0.11%)
graph_density(98.38%, 0.11%)
no_AL(98.36%, 0.12%)

CD(1.07)

(e) 10000 initial labelled examples

Figure 6.3: Comparison of active learning algorithms on MNIST. The number of
queried examples is held constant at 100 while changing the number of
initial labelled examples.
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proposed(90.14%, 0.78%)
margin(90.01%, 0.92%)

kcenter_greedy(88.35%, 1.05%) uniform(86.98%, 1.06%)
no_AL(81.38%, 1.80%)
graph_density(78.70%, 2.32%)

CD(1.07)

(a) 100 queried examples

1 2 3 4 5 6

proposed(94.76%, 0.42%)
margin(94.64%, 0.47%)

kcenter_greedy(94.20%, 0.41%) uniform(92.55%, 0.51%)
no_AL(81.38%, 1.80%)
graph_density(78.51%, 1.91%)

CD(1.07)

(b) 500 queried examples
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margin(96.18%, 0.32%)
kcenter_greedy(96.12%, 0.27%)

proposed(95.96%, 0.49%) uniform(94.66%, 0.36%)
no_AL(81.38%, 1.80%)
graph_density(80.52%, 1.62%)

CD(1.07)

(c) 1000 queried examples

1 2 3 4 5 6

kcenter_greedy(98.42%, 0.10%)
margin(98.27%, 0.16%)

proposed(98.04%, 0.17%) uniform(97.69%, 0.14%)
graph_density(94.35%, 0.47%)
no_AL(81.38%, 1.80%)

CD(1.07)

(d) 5000 queried examples

1 2 3 4 5 6

kcenter_greedy(98.83%, 0.07%)
margin(98.76%, 0.12%)

proposed(98.47%, 0.20%) uniform(98.37%, 0.10%)
graph_density(98.32%, 0.07%)
no_AL(81.38%, 1.80%)

CD(1.07)

(e) 10000 queried examples

Figure 6.4: Comparison of active learning algorithms on MNIST. The number of ini-
tial labelled examples is held constant at 100 while changing the number
of queried examples.
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6.6 Experimental Setup

In this section, we describe the experiments conducted to evaluate the effectiveness

of the proposed active learning method against various baseline algorithms. The

experimental results are discussed in Section 6.7.

6.6.1 Baselines

We compared the proposed active learning method against baselines using different

types of query strategies. The algorithms evaluated in our experiments are listed

below. The details of the baseline algorithms are reviewed in Section 3.4.

• proposed. This is our proposed uncertainty-based active learning method. It

chooses the examples whose predictions change the most during training.

• margin. We used the margin algorithm as a representative for uncertainty-

based query strategies. We chose margin over confidence as a measure of

uncertainty, because Ienco et al. [51] found that margin-based uncertainty out-

performed confidence-based uncertainty in most of their experiments. Margin

computes the margin between the posterior probabilities of the two most likely

classes and chooses the examples that have the smallest margins.

• kcenter greedy. This is a diversity-based active learning method. We used

the greedy version of the algorithm proposed by Sener and Savarese [101]. It

greedily selects an example with the highest minimal distance to any other

example.

• graph density. This is a density-based method proposed by Ebert et al. [29]. It

builds a k-nearest neighbour graph weighted by a Gaussian kernel and selects

the examples that have many edges with high weights.

• uniform. This is a baseline that randomly selects unlabelled examples accord-

ing to the uniform distribution.

• no AL. We also added the results of pure supervised learning using the initial

labelled training sets without any active learning in our evaluation. This

helps determine if the additional data queried by an active learning algorithm

actually improve the accuracy.
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proposed(98.49%, 0.09%)
margin(98.49%, 0.11%)

kcenter_greedy(98.42%, 0.11%) uniform(98.37%, 0.11%)
graph_density(98.38%, 0.11%)
no_AL(98.36%, 0.12%)

CD(1.07)

(a) 100 queried examples
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proposed(98.75%, 0.08%)
margin(98.73%, 0.08%)

kcenter_greedy(98.50%, 0.10%) uniform(98.41%, 0.11%)
graph_density(98.36%, 0.11%)
no_AL(98.36%, 0.12%)

CD(1.07)

(b) 500 queried examples
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margin(98.88%, 0.08%)
proposed(98.87%, 0.08%)

kcenter_greedy(98.61%, 0.10%) uniform(98.45%, 0.12%)
no_AL(98.36%, 0.12%)
graph_density(98.37%, 0.10%)

CD(1.07)

(c) 1000 queried examples
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margin(99.13%, 0.06%)
proposed(99.08%, 0.07%)

kcenter_greedy(98.88%, 0.07%) uniform(98.66%, 0.10%)
graph_density(98.48%, 0.11%)
no_AL(98.36%, 0.12%)

CD(1.07)

(d) 5000 queried examples

1 2 3 4 5 6

margin(99.17%, 0.06%)
proposed(99.07%, 0.06%)

kcenter_greedy(98.99%, 0.06%) uniform(98.81%, 0.09%)
graph_density(98.78%, 0.07%)
no_AL(98.36%, 0.12%)

CD(1.07)

(e) 10000 queried examples

Figure 6.5: Comparison of active learning algorithms on MNIST. The number of
initial labelled examples is held constant at 10000 while changing the
number of queried examples.
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uniform(71.85%, 1.51%) kcenter_greedy(71.55%, 1.30%)
graph_density(68.92%, 1.60%)
no_AL(67.52%, 2.26%)

CD(1.07)

(a) 100 initial labelled examples
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margin(79.28%, 0.71%)
proposed(78.99%, 0.81%)

kcenter_greedy(78.40%, 0.93%) uniform(78.27%, 1.01%)
graph_density(78.08%, 0.80%)
no_AL(77.31%, 1.05%)

CD(1.07)

(b) 500 initial labelled examples
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margin(81.71%, 0.58%)
proposed(81.60%, 0.71%)

kcenter_greedy(81.25%, 0.65%) uniform(81.17%, 0.69%)
graph_density(81.09%, 0.70%)
no_AL(80.65%, 0.70%)

CD(1.07)

(c) 1000 initial labelled examples
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margin(86.16%, 0.46%)
proposed(86.17%, 0.36%)

kcenter_greedy(86.10%, 0.35%) graph_density(85.99%, 0.55%)
uniform(86.02%, 0.38%)
no_AL(86.02%, 0.35%)

CD(1.07)

(d) 5000 initial labelled examples
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margin(87.81%, 0.37%)
proposed(87.83%, 0.35%)

kcenter_greedy(87.78%, 0.48%) graph_density(87.70%, 0.49%)
uniform(87.72%, 0.34%)
no_AL(87.70%, 0.34%)

CD(1.07)

(e) 10000 initial labelled examples

Figure 6.6: Comparison of active learning algorithms on Fashion-MNIST. The num-
ber of queried examples is held constant at 100 while changing the num-
ber of initial labelled examples.
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6.6.2 Datasets

We conducted experiments on the same image-recognition datasets used in Sec-

tion 5.4: MNIST [71], Fashion-MNIST [123] and CIFAR-10 [66]. The basic charac-

teristics of these datasets and the preprocessing are explained below.

• MNIST is a 28 × 28 grayscale image dataset of handwritten digits with 10

evenly distributed classes. The test set has 10,000 labelled images. We created

a validation set of 5,000 labelled images used for hyperparameter tuning. The

remaining 55,000 images were used for simulating active learning.

• Fashion-MNIST uses the same format and structure as MNIST, but it

contains fashion items instead of handwritten digits. The ten classes are t-

shirt/top, trousers, pullover, dress, coat, sandal, shirt, sneaker, bag and ankle

boot. The test set contains 10,000 images. Again, we created a validation set

containing 5,000 examples. This left us 55,000 images for training.

• CIFAR-10 is a 32 × 32 RGB image dataset. There are 10 balanced classes:

airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck. There

are 10,000 test images. The validation set has 5,000 images. The remaining

45,000 images were used for training.

These datasets are originally intended for pure supervised learning. All of the im-

ages are labelled. However, active learning requires a pool of unlabelled data. We

simulated this by splitting the training data into a labelled training set and a pool

of unlabelled data by removing the labels for the remaining images. Finally, the

pixel values of an image were normalised to the range of [0, 1].

6.6.3 Evaluation Method

As explained in Section 6.1, the common evaluation methods found in most active

learning literature have their limitations. Some researchers report results after one

round of active learning, but the number of initial labelled examples or the number

of examples to query are arbitrarily chosen. Other researchers perform multiple

rounds of active learning, and report the results after each round of active learning.

The problem with this evaluation method is that there are two variables at each

round of active learning: the algorithm and the labelled set. Even though this

evaluation shows the rate of change in performance across multiple rounds of active
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learning, it does not tell us how competitive an algorithm is given different numbers

of labelled examples. Additionally, researchers usually do not vary the number of

initial labelled examples or the number of examples to sample. This means we have

no idea how the algorithms would perform under other settings.

In order to avoid the limitations mentioned above and test the characteristics of

the evaluated algorithms, we conducted three sets of experiments for each dataset.

We only ran one round of active learning in our experiments but with different

settings on the number of initial labelled examples and the number of examples to

query. The details are explained below.

Varying Initial Labelled Examples

In the first set of experiments, we varied the number of initial labelled examples

while holding the the number of examples to query constant. These experiments

can tell us how competitive an algorithm is given different sizes of labelled training

set.

For both MNIST and Fashion-MNIST, we held the number to query constant

at 100, and set the number of initial labelled examples to 100, 500, 1000, 5000 and

10000. For CIFAR-10, we set the number to query constant at 500, and varied the

number of initial labelled examples with 100, 500, 1000, 5000 and 10000. Because

CIFAR-10 is a much harder dataset, a small number of additional training examples

are unlikely to result in a significant improvement in accuracy. Note that all the

remaining examples in the training set were treated as unlabelled data by removing

their labels.

Varying Number to Query When Labelled Set Is Small

In the second set of experiments, we set the number of labelled examples at 100 and

changed the number to query with the values of 100, 500, 1000, 5000 and 10000.

These experiments can tell us how the performance of an algorithm changes with

the number to query when the labelled set is small.

Varying Number to Query When Labelled Set Is Big

In the third set of experiments, we set the number of labelled examples at 10000

and varied the number of queried examples with the values of 100, 500, 1000, 5000
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and 10000. These experiments tell us how the performance of an algorithm changes

with the number to query when the labelled set is big.

These experiments make sure that the only variable in comparing the algorithms

in a specific setting is the algorithms themselves. The experimental results should re-

veal much more information about the evaluated algorithms than the common eval-

uation methods. For MNIST and Fashion-MNIST, each experiment was repeated

50 times with different seeds. Each experiment was run 20 times for CIFAR-10,

because of the much longer training time. The seed changes the split of labelled set

and unlabelled set.

6.6.4 Implementation Detail

We used the same architectures defined in Table 5.1 and Table 5.2 for MNIST,

Fashion-MNIST and CIFAR-10 respectively. We used the vanilla stochastic gra-

dient descent with a constant learning rate in training. Both kcenter greedy and

graph density require distance computation. We used Variational Autoencoder

(VAE) [58] to reduce the dimensionality of the images just like we did in Sec-

tion 5.4.2. For MNIST and Fashion-MNIST, we used a simple multi-layer perceptron

(MLP) based encoder and decoder as proposed in Kingma and Welling [58]. The

dimensionality of the hidden representation was set to 10. For CIFAR-10, we used

a convolutional encoder and transposed convolution for up-sampling in the decoder.

The dimensionality of the vector representation for CIFAR-10 was set to 20. The

validation sets were used to tune the hyperparameters. All the experiments were

implemented in Pytorch [89]. The hyperparameters used in the experiments are

reported in Appendix C. The implementation of the proposed method can be found

on GitHub: https://github.com/superRookie007/pred-change-al.

6.7 Experimental Results

In this section, we discuss the experimental results of the experiments described in

the previous section. The results are presented in CD (Critical Difference) graphs 1.

A CD graph is a graphical presentation of the Nemenyi test [22]. Nemenyi test

is a post-hoc rank-based statistical test that compares multiple algorithms at the

same time. We used 0.05 as the confidence level. The CD graph shows the average

1All of the results are also reported in the tables in Appendix D
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ranking of each algorithm. The lower the ranking the better. The difference in

average ranking is statistically significant if there is no bold line connecting the

two algorithms. The mean and standard deviation of test accuracy are shown in

parenthesis. The test accuracy was computed after training the model with the

additional queried examples, apart from no AL (no active learning was applied).

For instance, if the initial number of labelled examples is 100 and the number of

queried examples is 100, then the test accuracy is obtained from the model that is

trained on both the initial labelled data and the queried data (200 labelled examples

in total). The test accuracy for no AL is computed from the model only trained on

the 100 initial labelled examples. We will analyse the experimental results for each

dataset separately.

6.7.1 MNIST

We discuss the experimental results on MNIST for each experiment in this section.

Varying Initial Labelled Examples

Figure 6.3 shows the results of the experiments on MNIST that varied the number of

initial labelled examples while holding the queried examples constant at 100. Both

uncertainty-based methods, margin and proposed, outperformed the other methods

significantly in all cases. We had expected kcenter greedy, graph density and uniform

to perform better when the initial labelled set is small, because these methods choose

examples to be diverse or representative of the data. They provide better exploration

of the data when labelled training set is small. One possible explanation of this

observation is that the MNIST dataset is really simple; even 100 labelled examples

are enough to train model with high accuracy. Uncertainty-based active learning

methods lack the ability of exploring the entire data space, because they tend to

choose examples close to the current decision boundary. However, exploration is

not as important when the initial dataset is large or the current model is already

accurate.

The additional labelled examples queried by both kcenter greedy and uniform

significantly outperformed no AL when the number of initial labelled examples was

small. However, as the size of the initial labelled set increased, the differences

disappeared. This behaviour was expected, because data exploration provides less

value when the initial labelled dataset is already big. The method graph density
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failed to improve the model trained on the initial labelled data in all cases with the

settings in this set of experiments.

1 2 3 4 5 6

proposed(73.58%, 1.52%)
margin(73.13%, 1.43%)

uniform(71.85%, 1.51%) kcenter_greedy(71.55%, 1.30%)
graph_density(68.92%, 1.60%)
no_AL(67.52%, 2.26%)

CD(1.07)

(a) 100 queried examples

1 2 3 4 5 6

margin(80.05%, 0.94%)
proposed(79.26%, 1.37%)

uniform(78.40%, 0.90%) kcenter_greedy(76.11%, 0.93%)
graph_density(71.59%, 1.43%)
no_AL(67.52%, 2.26%)

CD(1.07)

(b) 500 queried examples

1 2 3 4 5 6

margin(82.21%, 0.76%)
proposed(81.76%, 1.15%)

uniform(81.17%, 0.57%) kcenter_greedy(79.25%, 0.92%)
graph_density(73.90%, 1.17%)
no_AL(67.52%, 2.26%)

CD(1.07)

(c) 1000 queried examples

1 2 3 4 5 6

margin(86.65%, 0.56%)
proposed(86.31%, 0.49%)

uniform(86.02%, 0.43%) kcenter_greedy(85.43%, 0.46%)
graph_density(84.59%, 0.47%)
no_AL(67.52%, 2.26%)

CD(1.07)

(d) 5000 queried examples

1 2 3 4 5 6

margin(88.16%, 0.49%)
graph_density(87.99%, 0.28%)

proposed(87.95%, 0.31%) kcenter_greedy(87.68%, 0.52%)
uniform(87.70%, 0.41%)
no_AL(67.52%, 2.26%)

CD(1.07)

(e) 10000 queried examples

Figure 6.7: Comparison of active learning algorithms on Fashion-MNIST. The num-
ber of initial labelled examples is held constant at 100 while changing
the number of queried examples.
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proposed(87.83%, 0.35%)

kcenter_greedy(87.78%, 0.48%) graph_density(87.70%, 0.49%)
uniform(87.72%, 0.34%)
no_AL(87.70%, 0.34%)

CD(1.07)

(a) 100 queried examples
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proposed(88.11%, 0.35%)
margin(87.87%, 1.46%)

kcenter_greedy(87.99%, 0.50%) uniform(87.82%, 0.48%)
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no_AL(87.70%, 0.34%)
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(b) 500 queried examples
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margin(88.36%, 0.33%)

kcenter_greedy(88.09%, 0.34%) uniform(87.83%, 0.76%)
graph_density(87.81%, 0.34%)
no_AL(87.70%, 0.34%)

CD(1.07)

(c) 1000 queried examples
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margin(89.87%, 0.25%)
proposed(89.63%, 1.40%)

kcenter_greedy(89.02%, 0.34%) uniform(88.62%, 0.32%)
graph_density(88.36%, 0.62%)
no_AL(87.70%, 0.34%)

CD(1.07)

(d) 5000 queried examples
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proposed(90.65%, 0.27%)
margin(90.67%, 0.24%)

kcenter_greedy(89.56%, 0.32%) uniform(89.25%, 0.34%)
graph_density(89.26%, 0.28%)
no_AL(87.70%, 0.34%)

CD(1.07)

(e) 10000 queried examples

Figure 6.8: Comparison of active learning algorithms on Fashion-MNIST. The num-
ber of initial labelled examples is held constant at 10000 while changing
the number of queried examples.
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Varying Number to Query When Labelled Set Is Small

The experimental results on MNIST with different numbers of queried examples

while holding the number of initial labelled examples constant at 100 are shown in

Figure 6.4. The uncertainty-based methods, proposed and margin outperformed the

other methods significantly when only 100 examples were queried. However, the

performance of the diversity-based method kcenter greedy improved as the number

of queried examples increased, while the advantage of proposed disappeared. The

method graph density did not provide improvement on models trained on the initial

labelled sets when the number of labelled examples was small. The method margin

was always among the group of the most effective methods.

Varying Number to Query When Labelled Set Is Big

Figure 6.5 shows the experimental results on MNIST with different numbers of

queried examples when the number of initial labelled examples was 10000. The av-

erage ranking of proposed was the best when the number of queried example was 100

and 500. The average rankings of proposed and margin swapped when the number

of queried examples was large. However, there was no statistically significant differ-

ence between proposed and margin in all cases. When 10000 examples were queried,

the advantage of proposed over kcenter greedy became insignificant. Methods uni-

form and graph density only improved the test accuracy of the model trained on

the initial labelled set when a large amount of examples were queried.

6.7.2 Fashion-MNIST

This section analyses the results on Fashion-MNIST for each experiment.

Varying Initial Labelled Examples

Figure 6.6 shows the results on Fashion-MNIST with different numbers of initial

labelled examples when the number of queried examples was 100. Methods proposed

and margin were among the best performing methods when the number of initial

labelled examples was small. The advantage of these methods disappeared as the

number of initial labelled examples increased. There was no significant difference

among all methods when the initial labelled set was big (5000 or 10000 initial labelled
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examples). Furthermore, no method managed to significantly outperform the model

trained on 5000 or 10000 initial labelled examples.
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margin(28.47%, 1.55%) kcenter_greedy(25.72%, 1.30%)
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no_AL(18.35%, 2.59%)

CD(1.69)

(a) 100 initial labelled examples
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proposed(33.23%, 1.46%)
margin(32.51%, 1.52%)

uniform(31.57%, 2.40%) kcenter_greedy(30.71%, 1.46%)
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no_AL(28.24%, 0.94%)
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(b) 500 initial labelled examples
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proposed(35.28%, 1.39%) graph_density(34.51%, 1.66%)
kcenter_greedy(33.71%, 1.89%)
no_AL(32.84%, 1.16%)

CD(1.69)

(c) 1000 initial labelled examples
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proposed(45.78%, 1.17%)
uniform(45.72%, 0.88%)
margin(45.56%, 1.38%) kcenter_greedy(45.28%, 1.12%)

graph_density(44.86%, 1.27%)
no_AL(44.77%, 1.09%)

CD(1.69)

(d) 5000 initial labelled examples
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proposed(51.70%, 0.83%)
kcenter_greedy(51.28%, 0.83%)

uniform(51.07%, 0.92%) margin(50.73%, 1.33%)
graph_density(51.04%, 0.92%)
no_AL(50.73%, 0.87%)

CD(1.69)

(e) 10000 initial labelled examples

Figure 6.9: Comparison of active learning algorithms on CIFAR-10. The number of
queried examples is held constant at 500 while changing the number of
initial labelled examples.
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(a) 100 queried examples
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proposed(28.86%, 1.68%)

margin(28.47%, 1.55%) kcenter_greedy(25.72%, 1.30%)
graph_density(25.08%, 1.99%)
no_AL(18.35%, 2.59%)

CD(1.69)

(b) 500 queried examples
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uniform(33.01%, 1.25%)
margin(31.96%, 5.47%)

proposed(32.82%, 1.35%) graph_density(28.49%, 1.46%)
kcenter_greedy(28.81%, 0.97%)
no_AL(18.35%, 2.59%)

CD(1.69)

(c) 1000 queried examples
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uniform(44.57%, 1.04%)
margin(44.45%, 1.20%)

graph_density(44.05%, 1.29%) proposed(43.52%, 1.61%)
kcenter_greedy(40.50%, 0.88%)
no_AL(18.35%, 2.59%)

CD(1.69)

(d) 5000 queried examples
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graph_density(50.61%, 0.75%)
uniform(50.68%, 1.05%)
margin(50.25%, 0.77%) proposed(50.14%, 1.41%)

kcenter_greedy(47.04%, 1.14%)
no_AL(18.35%, 2.59%)

CD(1.69)

(e) 10000 queried examples

Figure 6.10: Comparison of active learning algorithms on CIFAR-10. The number
of initial labelled examples is held constant at 100 while changing the
number of queried examples.
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Varying Number to Query When Labelled Set Is Small

Figure 6.7 presents the experimental results on Fashion-MNIST with different num-

ber of queried examples when the number of initial labelled examples was 100. The

proposed method had the best ranking when only 100 examples were sampled even

though the difference between proposed and margin was not significant. Interest-

ingly, even though there was no significant difference between graph density and

no AL when the number of queried examples was small, graph density was among

the most effective methods when 10000 examples were queried.

Varying Number to Query When Labelled Set Is Big

Figure 6.8 shows the experimental results on Fashion-MNIST with different number

of queried examples when the number of initial labelled examples was 10000. No

method significantly outperformed the model trained on the initial labelled set when

only 100 examples were queried. Both proposed and margin outperformed the other

methods when the number of queried examples was 1000 and higher. As the number

of queried examples increased, all the other active learning methods also started to

provide significant improvement over the model trained on the initial labelled set.

6.7.3 CIFAR-10

This section analyses the results on CIFAR-10 for each experiment.

Varying Initial Labelled Examples

Figure 6.9 shows the results on CIFAR-10 with different number of initial labelled

examples while the number of queried examples was 500. Methods uniform, proposed

and margin significantly outperformed the other methods when the initial labelled

set only had 100 examples. As the number of initial labelled examples increased,

the differences among all the methods gradually shrank. Eventually, no method

was significantly better than any other method when the number of initial labelled

examples was 10000.

Varying Number to Query When Labelled Set Is Small

The results on CIFAR-10 with different number of queried examples when the initial

number of labelled examples was 100 were shown in Figure 6.10. Methods proposed,
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1 2 3 4 5 6

uniform(51.17%, 0.65%)
proposed(51.17%, 0.79%)

kcenter_greedy(50.95%, 1.10%) margin(50.79%, 1.14%)
no_AL(50.73%, 0.87%)
graph_density(50.81%, 0.78%)

CD(1.69)

(a) 100 queried examples

1 2 3 4 5 6

proposed(51.70%, 0.83%)
kcenter_greedy(51.28%, 0.83%)

uniform(51.07%, 0.92%) margin(50.73%, 1.33%)
graph_density(51.04%, 0.92%)
no_AL(50.73%, 0.87%)

CD(1.69)

(b) 500 queried examples

1 2 3 4 5 6

proposed(51.95%, 0.71%)
uniform(51.81%, 0.84%)
margin(51.76%, 1.01%) kcenter_greedy(51.72%, 0.92%)

graph_density(51.42%, 0.97%)
no_AL(50.73%, 0.87%)

CD(1.69)

(c) 1000 queried examples

1 2 3 4 5 6

proposed(55.72%, 1.33%)
margin(55.44%, 0.95%)

graph_density(54.65%, 0.80%) uniform(54.62%, 0.94%)
kcenter_greedy(53.77%, 1.19%)
no_AL(50.73%, 0.87%)

CD(1.69)

(d) 5000 queried examples

1 2 3 4 5 6

proposed(59.19%, 1.39%)
margin(58.64%, 0.91%)

uniform(57.73%, 0.82%) graph_density(57.60%, 0.88%)
kcenter_greedy(56.92%, 0.98%)
no_AL(50.73%, 0.87%)

CD(1.69)

(e) 10000 queried examples

Figure 6.11: Comparison of active learning algorithms on CIFAR-10. The number
of initial labelled examples is held constant at 10000 while changing the
number of queried examples.

margin and uniform were always in the group of best performing methods. The

average ranking of proposed dropped gradually as the number of queried examples
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increased. The performance of graph density improved when the number of queried

examples was large. When 10000 examples were queried, graph density had the best

average ranking.

The CD graphs show that Kcenter greedy was never significantly different from

no AL in all cases in terms of average ranking across 20 runs. Note that this does

not necessarily mean kcenter greedy did not significantly improve the test accuracy

over no AL. In fact, kcenter greedy did improve the accuracy significantly when the

number of queried examples was large. For instance, the p-value for paired t-test on

no AL and kcenter greedy is 1.69e-18 when 5000 examples are queried. The p-value

is 5.89e-21 when 10000 examples are queried. The Nemenyi test is a rank-based

test. If the average ranking between two algorithms is smaller than the critical dif-

ference (CD), the Nemenyi test considers the difference between the two algorithms

insignificant. In this case, kcenter greedy was consistently outperformed by other

active learning methods, its average ranking was never significantly difference from

that of no AL (ranked 6th).

Varying Number to Query When Labelled Set Is Big

Figure 6.11 shows the experimental results on CIFAR-10 with different number of

queried examples when the number of initial labelled examples was 10000. There

was no significant difference among all the methods when only 100 or 500 examples

were queried. As the number of queried examples increased, proposed and margin

gradually pulled ahead from the rest of the methods. When 10000 examples were

queried, proposed was significantly better than all the other methods except margin.

6.8 Discussion

We observed some interesting and consistent patterns from the experimental results

on three different datasets. When the number of queried examples is held constant,

as the size of the initial labelled set increases the performances of all algorithms

gradually converge together. This is because if the labelled training examples are

abundant additional labelled examples are unlikely to improve the results further.

The methods based on diversity and density such as kcenter greedy and graph density

are more effective when the number of initial labelled examples is small and the

number of queried examples is large. However, they may not be both effective on
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the same dataset. For instance, kcenter greedy performs better than graph density

in most cases on MNIST. However, graph density outperforms kcenter greedy on

CIFAR-10 when the number of initial labelled examples is 100 and the number

of queried examples is over 1000. The uncertainty-based methods (margin and

proposed) are most effective when the initial labelled set is big. Overall, the results

show that different types of query strategies are suitable for different active learning

settings. This suggests that active learning algorithms should be evaluated under

different settings. Otherwise the evaluation cannot show the full characteristics

of the algorithms. Practitioners would have no idea if a winning algorithm in a

particular setting would also be effective in their use cases.

The algorithms kcenter greedy and graph density were not as effective at improv-

ing the generalisation performance as we expected, especially when the labelled set

was small. They both require distance computation. Hence, the features or encod-

ings used for computing the distance can have a big influence on the effectiveness of

these algorithms. It is possible that by using more advanced dimensionality reduc-

tion techniques or learning better encodings once can improve their performances.

1 2 3 4 5 6

uniform(28.94%, 1.38%)
proposed(28.86%, 1.68%)

margin(28.47%, 1.55%) kcenter_greedy(25.72%, 1.30%)
graph_density(25.08%, 1.99%)
no_AL(18.35%, 2.59%)

CD(1.69)

(a) Architecture used in the experiments (a variant of LeNet)

1 2 3 4 5 6

proposed(33.49%, 1.06%)
uniform(32.96%, 0.85%)
margin(32.90%, 0.61%) graph_density(29.87%, 0.94%)

kcenter_greedy(28.22%, 0.78%)
no_AL(22.71%, 1.20%)

CD(1.69)

(b) ResNet18

Figure 6.12: Comparison of the results using ResNet18 and the original architecture
used in the experiments on CIFAR-10. The number of initial labelled
examples is 100 and the number of queried examples is 500.

We did not use a state-of-the-art architecture (architecture used is defined in

Table 5.2) on CIFAR-10 in order to reduce the computational cost. It was not our

goal to achieve state-of-the-art results on certain datasets. We only wanted to keep
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all factors consistent for all algorithms in the evaluation. In order to make sure the

choice of architecture would not have a big impact on the experimental results, we

compared the architecture used in our experiments against ResNet18 [44] on CIFAR-

10 when the number of initial labelled examples was 100 and the number of queried

examples is 500. The results are shown in Figure 6.12. The test accuracies have

increased for all algorithms but the statistical test results are similar to before. The

only major difference is graph density becomes statistically significantly better than

no AL when ResNet18 is used. We expect this to be consistent in other settings.

The test accuracies would increase but the statistical test results would not change

drastically.

A limitation of the proposed active learning method is its computation complex-

ity: O(|U | ∗ epochs ∗ Υ), where |U | is the number of unlabelled examples, epochs

is the number of epochs and Υ is the computation cost for making one prediction.

Data parallelism with multiple machines and GPU acceleration can reduce the run-

ning time on really large unlabelled dataset, however, it would require expensive

computing equipment. In comparison, the margin active learning method has a

computational complexity of O(|U | ∗Υ).

Another potential drawback of the proposed method is that it might select ex-

amples in the regions of the data with high Bayes error rates. Bayes error rate is the

theoretical optimal error rate achievable for any classifier on a given classification

problem; it is the irreducible error of a classification problem [32, 118, 119]. The

examples in the region of high Bayes error rate are likely to be difficult to learn and

are forgettable. However, it is unlikely to improve the generalisation performance

of a model by adding these examples to the labelled dataset.

6.9 Summary

In this chapter we have proposed a new uncertainty-based active learning method

that queries the examples with the highest prediction changes during training. The

proposed method is motivated by the theoretical studies that show neural networks

tend to converge to maximum-margin solutions and the empirical observation that

the performance of a neural network is mainly determined by the forgettable exam-

ples in a dataset. The experimental results showed that the proposed method and

the margin-based algorithm were more effective compared to the diversity-based al-

gorithm (kcenter greedy) and the density-based algorithm (graph density) when the
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initial labelled dataset was large.

Our experiments revealed that different active learning algorithms prefer dif-

ferent active learning settings. A winning algorithm in one setting may not be

as effective on the same data but with a different setting. This strongly suggests

that active learning algorithms should be evaluated in a wide range of settings. A

more comprehensive evaluation may also motivate the active learning community to

design algorithms that are optimised for specific settings.



7
Conclusion

This thesis focuses on improving the generalisation of neural networks using unla-

belled data. In particular, we study three different strategies of utilising unlabelled

data in order to achieve this goal: pretraining, semi-supervised learning and active

learning. In this chapter, we conclude this thesis by detailing our achievements,

discussing the limitations of the thesis and proposing potential future works.

7.1 Achievements and Contributions

The following list highlights the major achievements of this thesis:

Chapter 4

• We empirically showed that the initial weights have an impact on the gener-

alisation of neural networks. Ill-initialised neural networks can lead to lower

test accuracy even though there is no instability issue during training.

• We proposed a supervised pretraining method that automatically creates a

labelled training set for the pretraining task from unlabelled data. The pre-

117
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training task trains a model to identify the real data from the randomly shuffled

data. The learned weights are then reused as initial weights and fine-tuned

on the labelled dataset. The experimental results show that the proposed

pretraining method can improve the generalisation performance, especially

when the labelled dataset is small. The experimental results on synthetic data

suggest that this supervised pretraining works best on datasets with higher

dimensionality and noisy features.

Chapter 5

• We broke the common assumption in semi-supervised learning that the labelled

data and unlabelled data come from the same distribution. We empirically

showed that the presence of novel classes in the unlabelled data can degrade the

generalisation performance of semi-supervised algorithms for neural networks.

• We proposed a general distance-based weighting framework that assigns

weights to unlabelled data according to how far away they are from the la-

belled data. The framework assumes that the unlabelled data that are further

away from the labelled data are more likely to belong to the novel classes, and

therefore should be assigned smaller weights during training. The proposed

framework can be applied to any semi-supervised learning algorithms that op-

timise a combined loss of a supervised loss function (with labels as an input)

on the labelled data and an unsupervised loss function (without using labels)

on the unlabelled data.

• We proposed a 1-nearest-neighbour based implementation of the proposed

framework. It defines the distance between an unlabelled example and the la-

belled data as the smallest distance between this unlabelled example and any

example in the labelled dataset. The experimental results show that when the

proposed method is applied to Pseudo-Label [73] and Mean Teacher [116],

the degradation in the generalisation performance due to the presence of

novel classes becomes statistically insignificant. This indicates that assign-

ing weights to unlabelled data based on the distances between them and the

labelled data is a promising approach in dealing with the problem of novel

classes in semi-supervised learning.
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Chapter 6

• We proposed a new uncertainty-based active learning framework for neural

networks that queries examples whose model outputs fluctuate the most during

training. This framework assumes that the unlabelled examples whose model

outputs fluctuate the most are more likely to be near the decision boundary

and are also more difficult to learn. Therefore, adding these examples to the

labelled dataset are more likely to be useful for improving the generalisation

of the model.

• We proposed a specific implementation of the framework that selects examples

whose predictions change the most during the training. It is an approximation

of the method used in Toneva et al. [117] to compute “forgettable” examples

in supervised learning. The experimental results suggest that the proposed

method is most effective when the initial labelled training set is large. Most

of the literature on active learning focus on improving the performance of a

classifier when the initial labelled dataset is small. However, we think the

setting where a large labelled dataset is already available should not be over-

looked. Practitioners usually want to continuously improve the generalisation

performance of a classifier even after the classifier is deployed.

• Our experiments also show that different types of active learning methods

perform differently under different settings with different number of initial la-

belled examples and number of queried examples. It suggests that to fully

evaluate the characteristics of an active learning algorithm, experiments un-

der a wide range of settings are required. A more comprehensive evaluation

method can also potentially motivate researchers to come up with algorithms

optimised for specific settings. Furthermore, it helps practitioners choose the

most suitable algorithm given a specific setting.

7.2 Limitations

There are some limitations of the methods proposed in this thesis. We discuss them

below.

• Although our proposed supervised pretraining method has been shown to work

really well on certain datasets, we do not know exactly when and why it would
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be most effective. The proposed method also cannot be applied directly to

other types of data such as images and texts. This seems to be a common lim-

itation of self-supervised pretraining. The pretext task used in the pretraining

is usually specific to the type of data or task at hand.

• The method we proposed to mitigate the effect of novel classes in semi-

supervised learning requires distance computation between the unlabelled data

and the labelled data. This means the effectiveness depends on the features

used to compute the distance. Distance computation can be a problem if

the dimensionality of the data is large due to “curse of dimensionality”. To

solve this, a dimensionality reduction technique has to be applied. The ef-

fectiveness also depends on the size of the labelled dataset. The larger the

labelled dataset is, the more accurate we can compute the similarity between

the labelled dataset and any unlabelled example.

• A potential limitation of the proposed active learning method is that it might

choose examples in the regions of high Bayes error rates [32, 118, 119]. Bayes

error rate is the theoretical lowest error rate achievable by any classifier on a

given classification problem. Even though the examples in the region of high

Bayes error rate are difficult to learn, adding them to the labelled dataset is

unlikely to improve the test error significantly.

• Finally, a limitation shared by almost all literature on machine learning with

no or small amount of labelled data is hyperparameter tuning. We categorise

hyperparameters into two categories: explicit and implicit. An explicit hyper-

parameter is a hyperparameter required explicitly by an algorithm and has

to be specified by an user. An example of explicit hyperparameter is learn-

ing rate. An implicit hyperparameter is implicit in nature. For instance, the

margin active learning method does not have any explicit hyperparameters.

However, its performance depends on the learned model. The model itself is an

implicit hyperparameter. This means that the choice of architecture, learning

rate and even the number of epochs can all have an impact on its performance.

Like most other literature, we tuned the hyperparameters in our experiments

using a validation set. However, a large validation set is often not available in

practice. A set of hyperparameters that are optimised for a small validation

set may not be as effective on future unseen data. There is no clear solution to
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this problem when the labelled dataset is really small. This problem deserves

more attention and research efforts from the research community.

7.3 Future Directions

Here, we identify and propose potential future directions based on the research

reported in this thesis.

Data agnostic pretraining

Most of the current self-supervised pretraining methods are data specific in that the

pretext task can only be used in a specific type of data or task (for instance, images

for image recognition). Our proposed pretraining method currently only works on

tabular data. In future works, we would like to propose a pretraining framework

that can be applied to different types of data and tasks.

Investigate further on novel classes in semi-supervised learning

An important work in the future is to investigate when novel classes can have a

larger impact on the performance of semi-supervised learning algorithms. Synthetic

data can be useful for this type of work, because we can control the properties

of the data. It is also worth exploring other methods in order to deal with novel

classes in semi-supervised learning. Existing outlier detection and novelty detection

techniques can be potentially applied to deal with novel classes in unlabelled data.

Active learning designed for semi-supervised learning algorithms

Currently, the semi-supervised learning literature and active learning literature are

mostly independent from each other. Chapter 3.3 introduces three different as-

sumptions applied in common semi-supervised learning algorithms. Can we design

an active learning algorithm for a specific semi-supervised learning algorithm by ex-

ploiting its assumptions? It is possible that this purposely designed active learning

algorithm is more effective when used with the semi-supervised algorithm than sim-

ply running an off-the-shelf active learning algorithm on top of the semi-supervised

algorithm.
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Unbalanced class distribution

Like most other literature on semi-supervised learning and active learning, the

datasets in our experiments have balanced class distributions. Considering that

datasets used in practice do not always have balanced class distributions, it is worth

investigating what would happen if the datasets are extremely unbalanced.

Alternative definition and measurement of generalisation

This thesis studies methods that improve the generalisation of neural networks using

unlabelled data. We define generalisation as the ability to make accurate predictions

on future unseen data. The generalisation is measured as test accuracy. However,

there might be other types of generalisation that are worth studying. Guo et al. [41]

observed that modern neural networks are poorly calibrated even though they have

high test accuracy. A model is poorly calibrated if its output probabilities do not

reflect the ground truth correctness likelihood. This can be a problem if the output

probability is used as a measure of the confidence of the model on a prediction. If

a model is poorly calibrated, we cannot trust its output probabilities even though

the model has a high test accuracy. Guo et al. [41] claim that although modern

neural networks have high test accuracies, they are actually overfitting the training

data in terms of output probabilities. In other words, even if a model can generalise

well if we measure generalisation using the accuracy of predictions, but at the same

time this model might generalise poorly if we measure generalisation with the accu-

racy of output probabilities. Therefore, a potential research direction that is worth

exploring is using unlabelled data to improve the calibration of neural networks.



References

[1] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-

jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,

Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Lev-
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Appendix

A Additional results for Experiments in Sec-

tion 4.5

Table A.1 reports additional results for experiments described in Section 4.5, mea-

sured using AUC-ROC, F1-Score and Cohen’s Kappa.

Table A.1: Comparison of the model initialised using the supervised pretraining
method (Pretrained) against the model initialised with he normal (Base).

Data Method AUC-ROC F1-Score Cohen’s Kappa

BanknoteID
Base 9.97E-01 ±7.04E-04 9.94E-01 ±3.30E-03 9.87E-01 ±6.61E-03

Pretrained 9.96E-01 ±1.36E-04 9.86E-01 ±3.21E-03 9.71E-01 ±6.42E-03

BanknoteID small
Base 9.06E-01 ±2.51E-03 8.51E-01 ±1.17E-03 7.02E-01 ±2.40E-03

Pretrained 9.09E-01 ±2.16E-03 8.57E-01 ±2.54E-03 7.12E-01 ±5.77E-03

MAGIC
Base 9.00E-01 ±1.44E-03 8.36E-01 ±3.40E-03 6.74E-01 ±4.40E-03

Pretrained 9.05E-01 ±1.07E-03 8.41E-01 ±1.53E-03 6.81E-01 ±3.28E-03

MAGIC small
Base 8.78E-01 ±1.14E-03 7.96E-01 ±2.03E-03 5.91E-01 ±4.07E-03

Pretrained 8.80E-01 ±5.24E-03 7.99E-01 ±5.26E-03 5.99E-01 ±1.05E-02

Waveform
Base 9.89E-01 ±3.39E-04 9.41E-01 ±1.50E-03 8.81E-01 ±3.00E-03

Pretrained 9.90E-01 ±4.07E-04 9.44E-01 ±7.97E-04 8.88E-01 ±1.59E-03

Waveform small
Base 9.82E-01 ±6.30E-04 9.25E-01 ±3.96E-03 8.49E-01 ±7.91E-03

Pretrained 9.84E-01 ±1.47E-03 9.33E-01 ±1.49E-03 8.67E-01 ±2.98E-03

Waveform noise
Base 9.90E-01 ±5.53E-04 9.47E-01 ±3.26E-03 8.93E-01 ±6.53E-03

Pretrained 9.89E-01 ±4.78E-04 9.44E-01 ±4.19E-03 8.88E-01 ±8.38E-03

Waveform noise small
Base 9.84E-01 ±1.23E-03 9.26E-01 ±4.36E-03 8.53E-01 ±8.71E-03

Pretrained 9.89E-01 ±2.56E-04 9.40E-01 ±1.69E-03 8.79E-01 ±3.37E-03
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B Hyperparameters for Experiments in Sec-

tion 5.4

All the hyperparameters used in the experiments in Section 5.4 are reported here.

All hyperparameters were chosen based on the validation results. When tuning

hyperparameters we set the data seed to 0 in all cases. Data seed only affects the

split of labelled training data and unlabelled training data, it does not change the

validation set or the test set.

B.1 Hyperparameters for Pseudo-Label

Table B.1 and Table B.2 show the hyperparameters used for Pseudo-Label in exper-

iments of Section 5.4.1. Table B.3 and Table B.4 show the hyperparameters used

for Pseudo-Label in experiments of Section 5.4.2.

Table B.1: Hyperparameters used for Pseudo-Label when unlabelled data is clean.

Hyperparameter MNIST Fashion-MNIST CIFAR-10
a 1.000 5.000 1.000
lr 0.100 0.100 0.001
γ 0.990 0.900 0.900

Table B.2: Hyperparameters used for Pseudo-Label when unlabelled data is dirty.

Hyperparameter MNIST Fashion-MNIST CIFAR-10
a 1.000 5.000 1.000
lr 0.100 0.100 0.001
γ 0.990 0.900 0.900

Table B.3: Hyperparameters used for Pseudo-Label with weights calculated from
raw images when unlabelled data is dirty.

Hyperparameter MNIST Fashion-MNIST CIFAR-10
a 1.000 0.500 1.000
lr 0.100 0.100 0.001
γ 0.990 0.900 0.900
β 10.000 10.000 20.000



B Hyperparameters for Experiments in Section 5.4 139

Table B.4: Hyperparameters used for Pseudo-Label with weights calculated from
encodings when unlabelled data is dirty.

Hyperparameter MNIST Fashion-MNIST CIFAR-10
a 1.000 0.500 1.000
lr 0.100 0.100 0.001
γ 0.990 0.900 0.900
β 10.000 5.000 5.000

B.2 Hyperparameters for Mean Teacher

Table B.5 and Table B.6 show the hyperparameters used for Mean Teacher in ex-

periments of Section 5.4.1. Table B.7 and Table B.8 show the hyperparameters used

for Mean Teacher in experiments of Section 5.4.2.

Table B.5: Hyperparameters used for Mean Teacher when unlabelled data is clean.

Hyperparameter MNIST Fashion-MNIST CIFAR-10
a 5.000 50.000 100.000
T 10.000 10.000 10.000
lr 0.300 0.100 0.001
γ 0.999 0.990 0.900
η 0.900 0.900 0.995

Table B.6: Hyperparameters used for Mean Teacher when unlabelled data is dirty.

Hyperparameter MNIST Fashion-MNIST CIFAR-10
a 5.000 50.000 50.000
T 10.000 10.000 10.000
lr 0.300 0.100 0.001
γ 0.999 0.990 0.900
η 0.900 0.900 0.995
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Table B.7: Hyperparameters used for Mean Teacher with weights calculated from
raw images when unlabelled data is dirty.

Hyperparameter MNIST Fashion-MNIST CIFAR-10
a 5.000 1.000 100.000
T 10.000 10.000 10.000
lr 0.300 0.100 0.001
γ 0.999 0.990 0.900
η 0.900 0.900 0.999
β 10.000 10.000 2.000

Table B.8: Hyperparameters used for Mean Teacher with weights calculated from
encodings when unlabelled data is dirty.

Hyperparameter MNIST Fashion-MNIST CIFAR-10
a 50.000 50.000 100.000
T 10.000 10.000 10.000
lr 0.300 0.100 0.001
γ 0.999 0.990 0.900
η 0.900 0.900 0.999
β 10.000 3.000 2.000
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C Hyperparameters for Experiments in Sec-

tion 6.6

The hyperparameters used in the experiments in Section 6.6 are reported here for

reproducibility. The number of queried examples is denoted as num queried, and

the number of initial labelled examples is referred to as num init. The value “-” in

the tables indicates that this setting was not used in our experiments.

C.1 MNIST

For MNIST dataset, we set learning rate lr to 0.1. The total epochs used for all

experiments is 500. Table C.1 reports the skip value used in all experiments.

Table C.1: The hyperparameter skip used for experiments on MNIST. The lr used
is 0.1, the total epochs is 500.

num init num queried
100 500 1000 5000 10000

100 300 200 100 100 0
500 150 - - - -

1000 100 - - - -
5000 0 - - - -

10000 0 0 0 0 0

Table C.2: The total epochs used for experiments on Fashion-MNIST. The lr used
is 0.3.

num init num queried
100 500 1000 5000 10000

100 500 500 500 500 500
500 500 - - - -

1000 400 - - - -
5000 300 - - - -

10000 300 300 300 300 300

C.2 Fashion-MNIST

For Fashion-MNIST dataset, the learning rate lr used is 0.3 for all experiments.

Table C.2 reports the total epochs used in the experiments, and Table C.3 reports
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the skip value used.

Table C.3: The hyperparameter skip used for experiments on Fashion-MNIST. The
lr used is 0.3.

num init num queried
100 500 1000 5000 10000

100 400 200 200 200 200
500 100 - - - -

1000 300 - - - -
5000 100 - - - -

10000 0 0 0 0 0

C.3 CIFAR-10

For CIFAR-10 dataset, the learning rate lr used is 0.05 for all experiments. Table C.4

reports the total epochs used in the experiments, and Table C.5 reports the skip

value used.

Table C.4: The total epochs used for experiments on CIFAR-10. The lr used is 0.05.

num init num queried
100 500 1000 5000 10000

100 800 800 800 800 800
500 - 500 - - -

1000 - 400 - - -
5000 - 300 - - -

10000 300 300 300 300 300

Table C.5: The hyperparameter skip used for experiments on CIFAR-10. The lr
used is 0.05.

num init num queried
100 500 1000 5000 10000

100 600 500 600 500 500
500 - 300 - - -

1000 - 300 - - -
5000 - 200 - - -

10000 50 150 100 0 0



D Experimental Results for Section 6.7 143

D Experimental Results for Section 6.7

Below are all the experimental results reported in Section 6.7, where num queried

is the number of queried examples and num init is the number of initial labelled

examples. The tables report the mean test accuracies and the standard deviations

in parentheses. The value “-” indicates that this setting was not used in our exper-

iments.

D.1 MNIST

Table D.1: Experimental results on MNIST without using active learning (no AL).

num init test accuracy
100 81.38% (1.80%)
500 91.95% (0.61%)

1000 94.37% (0.40%)
5000 97.70% (0.15%)

10000 98.36% (0.12%)

Table D.2: Experimental results on MNIST using uniform.

num init num queried
100 500 1000 5000 10000

100 86.98% (1.06%) 92.55% (0.51%) 94.66% (0.36%) 97.69% (0.14%) 98.37% (0.10%)
500 92.61% (0.59%) - - - -

1000 94.69% (0.36%) - - - -
5000 97.70% (0.14%) - - - -

10000 98.37% (0.11%) 98.41% (0.11%) 98.45% (0.12%) 98.66% (0.10%) 98.81% (0.09%)

Table D.3: Experimental results on MNIST using kcenter greedy.

num init num queried
100 500 1000 5000 10000

100 88.35% (1.05%) 94.20% (0.41%) 96.12% (0.27%) 98.42% (0.10%) 98.83% (0.07%)
500 93.18% (0.51%) - - - -

1000 95.10% (0.33%) - - - -
5000 97.80% (0.12%) - - - -

10000 98.42% (0.11%) 98.50% (0.10%) 98.61% (0.10%) 98.88% (0.07%) 98.99% (0.06%)



144 Appendix

Table D.4: Experimental results on MNIST using graph density.

num init num queried
100 500 1000 5000 10000

100 78.70% (2.32%) 78.51% (1.91%) 80.52% (1.62%) 94.35% (0.47%) 98.32% (0.07%)
500 91.74% (0.69%) - - - -

1000 94.38% (0.36%) - - - -
5000 97.72% (0.12%) - - - -

10000 98.38% (0.11%) 98.36% (0.11%) 98.37% (0.10%) 98.48% (0.11%) 98.78% (0.07%)

Table D.5: Experimental results on MNIST using margin.

num init num queried
100 500 1000 5000 10000

100 90.01% (0.92%) 94.64% (0.47%) 96.18% (0.32%) 98.27% (0.16%) 98.76% (0.12%)
500 94.37% (0.49%) - - - -

1000 95.75% (0.30%) - - - -
5000 97.94% (0.12%) - - - -

10000 98.49% (0.11%) 98.73% (0.08%) 98.88% (0.08%) 99.13% (0.06%) 99.17% (0.06%)

Table D.6: Experimental results on MNIST using proposed.

num init num queried
100 500 1000 5000 10000

100 90.14% (0.78%) 94.76% (0.42%) 95.96% (0.49%) 98.04% (0.17%) 98.47% (0.20%)
500 94.29% (0.43%) - - - -

1000 95.70% (0.31%) - - - -
5000 97.95% (0.13%) - - - -

10000 98.49% (0.09%) 98.75% (0.08%) 98.87% (0.08%) 99.08% (0.07%) 99.07% (0.06%)
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D.2 Fashion-MNIST

Table D.7: Experimental results on Fashion-MNIST without using active learning
(no AL).

num init test accuracy
100 67.52% (2.26%)
500 77.31% (1.05%)

1000 80.65% (0.70%)
5000 86.02% (0.35%)

10000 87.70% (0.34%)

Table D.8: Experimental results on Fashion-MNIST using uniform.

num init num queried
100 500 1000 5000 10000

100 71.85% (1.51%) 78.40% (0.90%) 81.17% (0.57%) 86.02% (0.43%) 87.70% (0.41%)
500 78.27% (1.01%) - - - -

1000 81.17% (0.69%) - - - -
5000 86.02% (0.38%) - - - -

10000 87.72% (0.34%) 87.82% (0.48%) 87.83% (0.76%) 88.62% (0.32%) 89.25% (0.34%)

Table D.9: Experimental results on Fashion-MNIST using kcenter greedy.

num init num queried
100 500 1000 5000 10000

100 71.55% (1.30%) 76.11% (0.93%) 79.25% (0.92%) 85.43% (0.46%) 87.68% (0.52%)
500 78.40% (0.93%) - - - -

1000 81.25% (0.65%) - - - -
5000 86.10% (0.35%) - - - -

10000 87.78% (0.48%) 87.99% (0.50%) 88.09% (0.34%) 89.02% (0.34%) 89.56% (0.32%)

Table D.10: Experimental results on Fashion-MNIST using graph density.

num init num queried
100 500 1000 5000 10000

100 68.92% (1.60%) 71.59% (1.43%) 73.90% (1.17%) 84.59% (0.47%) 87.99% (0.28%)
500 78.08% (0.80%) - - - -

1000 81.09% (0.70%) - - - -
5000 85.99% (0.55%) - - - -

10000 87.70% (0.49%) 87.81% (0.38%) 87.81% (0.34%) 88.36% (0.62%) 89.26% (0.28%)
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Table D.11: Experimental results on Fashion-MNIST using margin.

num init num queried
100 500 1000 5000 10000

100 73.13% (1.43%) 80.05% (0.94%) 82.21% (0.76%) 86.65% (0.56%) 88.16% (0.49%)
500 79.28% (0.71%) - - - -

1000 81.71% (0.58%) - - - -
5000 86.16% (0.46%) - - - -

10000 87.81% (0.37%) 87.87% (1.46%) 88.36% (0.33%) 89.87% (0.25%) 90.67% (0.24%)

Table D.12: Experimental results on Fashion-MNIST using proposed.

num init num queried
100 500 1000 5000 10000

100 73.58% (1.52%) 79.26% (1.37%) 81.76% (1.15%) 86.31% (0.49%) 87.95% (0.31%)
500 78.99% (0.81%) - - - -

1000 81.60% (0.71%) - - - -
5000 86.17% (0.36%) - - - -

10000 87.83% (0.35%) 88.11% (0.35%) 88.52% (0.30%) 89.63% (1.40%) 90.65% (0.27%)

D.3 CIFAR-10

Table D.13: Experimental results on CIFAR-10 without using active learning
(no AL).

num init test accuracy
100 18.35% (2.59%)
500 28.24% (0.94%)

1000 32.84% (1.16%)
5000 44.77% (1.09%)

10000 50.73% (0.87%)

Table D.14: Experimental results on CIFAR-10 using uniform.

num init num queried
100 500 1000 5000 10000

100 21.48% (1.87%) 28.94% (1.38%) 33.01% (1.25%) 44.57% (1.04%) 50.68% (1.05%)
500 - 31.57% (2.40%) - - -

1000 - 35.60% (1.42%) - - -
5000 - 45.72% (0.88%) - - -

10000 51.17% (0.65%) 51.07% (0.92%) 51.81% (0.84%) 54.62% (0.94%) 57.73% (0.82%)
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Table D.15: Experimental results on CIFAR-10 using kcenter greedy.

num init num queried
100 500 1000 5000 10000

100 19.72% (2.10%) 25.72% (1.30%) 28.81% (0.97%) 40.50% (0.88%) 47.04% (1.14%)
500 - 30.71% (1.46%) - - -

1000 - 33.71% (1.89%) - - -
5000 - 45.28% (1.12%) - - -

10000 50.95% (1.10%) 51.28% (0.83%) 51.72% (0.92%) 53.77% (1.19%) 56.92% (0.98%)

Table D.16: Experimental results on CIFAR-10 using graph density.

num init num queried
100 500 1000 5000 10000

100 21.25% (2.12%) 25.08% (1.99%) 28.49% (1.46%) 44.05% (1.29%) 50.61% (0.75%)
500 - 28.59% (4.81%) - - -

1000 - 34.51% (1.66%) - - -
5000 - 44.86% (1.27%) - - -

10000 50.81% (0.78%) 51.04% (0.92%) 51.42% (0.97%) 54.65% (0.80%) 57.60% (0.88%)

Table D.17: Experimental results on CIFAR-10 using margin.

num init num queried
100 500 1000 5000 10000

100 22.00% (1.27%) 28.47% (1.55%) 31.96% (5.47%) 44.45% (1.20%) 50.25% (0.77%)
500 - 32.51% (1.52%) - - -

1000 - 35.50% (2.15%) - - -
5000 - 45.56% (1.38%) - - -

10000 50.79% (1.14%) 50.73% (1.33%) 51.76% (1.01%) 55.44% (0.95%) 58.64% (0.91%)

Table D.18: Experimental results on CIFAR-10 using proposed.

num init num queried
100 500 1000 5000 10000

100 22.29% (1.41%) 28.86% (1.68%) 32.82% (1.35%) 43.52% (1.61%) 50.14% (1.41%)
500 - 33.23% (1.46%) - - -

1000 - 35.28% (1.39%) - - -
5000 - 45.78% (1.17%) - - -

10000 51.17% (0.79%) 51.70% (0.83%) 51.95% (0.71%) 55.72% (1.33%) 59.19% (1.39%)
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