
Algebraic Membership Obfuscation

by

Trey Li

Department of Mathematics

University of Auckland

A thesis submitted in fulfillment of the requirements for the degree of

Doctor of Philosophy in Mathematics, the University of Auckland, 2021.

ABSTRACT

An algebraic set is the solution set of a system of algebraic equations. The usual way
to determine if a point is in an algebraic set is to determine if the point satisfies all the
equations. This dissertation studies how to give membership testing of an algebraic set
without selling out the equations.

The discrete logarithm problem (DLP) is reduced to the subset product problem
(SP). The twin subset product problem (TSP) with respect to twin points is defined.
The multiple subset product problem (MSP) with respect to relative points is defined.
A lattice attack to low density MSP with identical points is given. In order to avoid the
attack, the subset product with errors problem (SPE) is proposed. SP is reduced to
SPE. The twin subset product with errors problem (TSPE) is proposed. The multiple
subset product with errors problem (MSPE) is proposed. With a DLP algorithm,
MSPE can be converted into a similar form to the learning with errors problem (LWE).
The ideal subset product with errors problem (ISPE) is proposed. SPE, TSPE, MSPE
and ISPE are conjectured to be post-quantum hard.

A new obfuscation for small superset and big subset testing is given based on SP.
A new obfuscation for conjunctions is given based on TSP. The new obfuscations are
more elegant than the previous works.

An obfuscation for algebraic set membership testing is given based on small superset
obfuscation. This is the first solution to tackle the problem in great generality.

From algebraic membership obfuscation, a general obfuscation method is given to deal
with membership problems in generic topological spaces. Topology is generalized to
genology, giving a more flexible way to represent mathematical objects that have finite
generators. The general method gives a new view to look at several open problems,
revealing a fundamental relation between these seemingly unrelated problems.

ii

ACKNOWLEDGMENTS

I have kept in mind a big list of people to thank, which this page is too small to contain.
Then I decided to go the other way and make it as simple as possible. Anyone who is
not named here does not mean that I forgot you.

I am eternally grateful to my supervisor Steven D. Galbraith for his immense support
and guidance during my PhD journey. I appreciate all his help at all the key moments
and all the beautiful elements he brings into my life.

I would like to thank my colleges Yan Bo Ti, Lukas Zobernig, Samuel Dobson, Yi-Fu
Lai as well as Shujie Cui, Shalini Banerjee and my co-supervisor Giovanni Russello for
being great people to work with.

I would like to thank Ron Steinfeld and Felipe Voloch who indirectly inspired me on
some works of this dissertation.

I would like to thank Mark Zhandry and Amin Sakzad for their comments and ques-
tions.

I would like to thank the anonymous conference reviewers for their unusually abun-
dant and enlightening comments by which I was quite touched.

I would like to thank Libin Wang and Xiaoping Du for their support of my PhD.

I would like to thank my family for their support of my study.

I give my gratitude to everyone I love and everyone who loves me.

iii

CONTENTS

1 Introduction 1

2 Mathematical Background 5
2.1 Topology . 5
2.2 Algebraic Geometry . 5
2.3 Algebraic Number Theory . 7
2.4 Metric Theory . 7
2.5 Measure Theory . 8
2.6 Representation Theory . 8
2.7 Lattice Theory . 8
2.8 Function Obfuscation . 9

3 Subset Product with Errors 14
3.1 Subset Product . 14
3.2 Twin Subset Product . 19
3.3 Multiple Subset Product . 20
3.4 Subset Product With Errors . 29

4 Small Superset Obfuscation 32
4.1 Small Superset Testing . 32
4.2 Small Superset Obfuscation . 35

5 Algebraic Membership Obfuscation 49
5.1 Algebraic Membership Testing 50
5.2 Algebraic Membership Obfuscation 53

6 A General Method 60
6.1 Object Representation . 61
6.2 Object Randomization . 63
6.3 Matching Obfuscation . 64

7 New Views and New Problems 65
7.1 Vector Subspace and Lattice Membership 65
7.2 Subscheme and Submanifold Membership 66

iv

7.3 Metric Ball and Measure Box Membership 66
7.4 Subgroup and Ideal Membership 67

8 Future Work 69

v

Chapter 1

INTRODUCTION

The goal of this dissertation is to introduce algebraic geometry to function obfuscation
by obfuscating algebraic set membership.

The motivation of function obfuscation is to hide a function without affecting its
usage. As we all know, a function f is a relation that associates each element x of a
set X to a single element y of another set Y . It is uniquely identified by the set of all
pairs (x; f(x)). A function that can be executed by an algorithm is called a computable
function. A computable function may be computed by different programs or circuits.
Some programs or circuits are easy to understand and some are not. Given a function
computed by f , we would like to find an algorithm O to convert f into O(f) such that
O(f) is functionally equivalent to f but hard to understand. We call O an obfuscator
and O(f) an obfuscated function.

The strongest notion of obfuscation is virtual black-box (VBB) [BGIRSVY01], as well
as its various variants [GK05; BBCKPS14; WZ17]. It requires to hide all predicates of
f beyond what is leaked by black-box access to the function. This is the most we can
hide about f without affecting its functionality. However VBB is impossible to achieve
for general functions. Hence in the same paper the authors proposed a weaker notion
called indistinguishability obfusction (iO). It avoids the impossibility of VBB and has
been proved to be the best-possible obfuscation [GR07] under certain restrictions.

Since the births of VBB and iO, the research has been divided into two paths: spe-
cial purpose obfuscation and general purpose obfuscation. Special purpose obfuscation
obfuscates restricted kinds of functions. For example, point functions [Can97; Wee05],
conjunctions [BVWW16; BKMPRS18; BLMZ19], fuzzy Hamming distance matching
functions [GZ19], big subset functions [BW19], small superset functions [BCJJLM-
MMR19], hyperplane membership functions [CRV10], finite automatas [GZ20], compute-
and-compare functions [WZ17; GKW17], etc. [LPS04]. General purpose obfuscation
aims at obfuscating general functions in a uniform way. Milestone works on this line
include [GGH13; GGHRSW13; SW14; AJ15; BV15; Lin16].

Compared to VBB and iO, input-hiding [BBCKPS14] is really the main security
property of interest in many applications such as password checks and biometric au-
thentication. It is also a notion that is mathematically more intuitive than VBB and

1

iO. It simply aims at hiding the fiber of a particular element in the codomain of the
function. It is traditionally defined as hiding the fiber of 1 of a Boolean function.
It therefore is a notion only for evasive functions [BBCKPS14], which are the kind of
Boolean functions that have a relatively small fiber of 1 compared to the entire domain.
The kind of algebraic set membership functions of interest are also evasive.

Now we give motivation to algebraic geometry problems. In short it is due to its
significantly important relations with many important areas.

During history, from the early introduction of coordinate geometry by René Descartes
and Pierre de Fermat, to the algebraization through commutative algebra by David
Hilbert, and then to the foundation recasting using sheaf theory by Jean-Pierre Serre
and Alexander Grothendieck, algebraic geometry makes itself a bridge between many
important disciplines such as analytic geometry and topology.

As the fundamental object of study in algebraic geometry, algebraic sets have deep
connections to the central objects in other disciplines such as analytic subspaces and
topological subspaces. By Chow’s theorem, all closed analytic subspaces are actually al-
gebraic sets. In particular, all projective complex manifolds are algebraic sets, meaning
that they are all given by the zero locus of a finite number of homogeneous polynomials.
Jean-Pierre Serre’s GAGA theorems further give general results to associate categories
of algebraic sets with categories of analytic spaces, unifying the study of analytic ge-
ometry with algebraic geometry. Also, algebraic subsets are closed sets of the Zariski
topology on the variety. By generalizing the base ring of the variety to the spectrum of
an arbitrary commutative ring the variety is converted into a scheme, giving it a much
more fruitful structure to study.

Also notice that these connections do not only have interest in pure mathematics,
they have had important applications in broad areas such as physics, cosmology, biology,
computer science, etc.

Due to the significance of algebraic geometry, this dissertation attempts to introduce
algebraic geometry problems to function obfuscation. To achieve this, we aim at two
targets: (1) input-hiding obfuscation for algebraic set membership, and (2) a general
obfuscation method for objects that are comparable to algebraic sets.

Following is the roadmap to achieve the two targets.

Chapter 2 gives mathematical preliminaries.

Chapter 3 gives a family of computational problems that serve as a tool set for match-
ing obfuscation, which is a component of the general method introduced in Chapter 6.

2

In particular, the discrete logarithm problem (DLP) is reduced to the subset product
problem (SP). The twin subset product problem (TSP) and the multiple subset product
problem (MSP) are proposed. A quantum attack to low density MSP is presented. In
order to avoid this attack, the subset product with errors problem (SPE) is proposed,
as well as its twin and multi-instance versions called the twin subset product with er-
rors problem (TSPE) and the multiple subset product with errors problem (MSPE).
SPE is at least as hard as SP. With a DLP algorithm, MSPE can be converted into
the multiple subset sum with errors problem (MSSE), which has a similar form to the
learning with errors problem (LWE). The ideal version of SPE is also given, which is
called the ideal subset product with errors problem (ISPE). Post-quantum hardness of
SPE, TSPE, MSPE and ISPE are conjectured.

From Chapter 4 on, we start our journey to the general method which consists of three
components: object representation, object randomization and matching obfuscation.
We study them backwards.

Chapter 4 studies matching obfuscation. In particular, small superset as well as big
subset functions for r � n=2�p�n ln 2 are obfuscated using SP, where r is the maximal
difference of sizes allowed between an accepting input set and the set being obfuscated.
Small superset obfuscation serves as a building block of the algebraic set membership
obfuscation.

Chapter 5 studies object randomization. The algebraic set membership obfuscation
is proposed in this chapter. The idea to allow membership testing of an algebraic set
without leaking its ideal is to mix the ideal generators with some dummy polynomials
such that a point is in the algebraic set if and only if all real generators vanish at
the point. Let � be the security parameter, q be the order of the ground field, ` be
the number of monomials of bounded degree, and m be the number of polynomial
equations. The obfuscation method solves the algebraic set membership obfuscation
problem for prime powers q � 2 and �=log2 q < m < `.

Chapter 6 studies object representation. The general obfuscation method is proposed
in this chapter. The fundamental idea to generalize the algebraic set membership
obfuscation is to view algebraic sets as closed sets of the Zariski topology, and that an
algebraic set of an ideal is the intersection of the algebraic sets of the ideal generators.
Beyond this view algebraic set membership is immediately extended to membership
problems of open subsets of generic topological spaces. To better describe the generality
of the method, topology is generalized to “genology” to describe the daily concept of
“generation” in mathematics, giving a more flexible way to represent mathematical

3

objects that have finite generators.

Chapter 7 discusses related problems, showing how the general obfuscation method
provides new views to these problems and how these seemingly unrelated problems are
actually related via the algebraic set membership problem. Till then the goal of this
dissertation is fulfilled.

Chapter 8 discusses future work.

4

Chapter 2

MATHEMATICAL BACKGROUND

This chapter gives necessary mathematical background to this dissertation.

2.1 Topology

Let X be a set. A topology � on X is a collection of subsets of X containing ∅ and X

and that is closed under finite and infinite unions and finite intersections. The elements
of � are called open sets. The complement XnS of an open set S 2 � is called a closed
set. We also call them open subsets and closed subsets of X, respectively. The pair
(X; �) is called a topological space. We sometimes simply call X a topological space,
with � implied.

Let X;Y be two topological spaces. A function f : X ! Y is continuous if the
preimage f�1(S) of every open set S of Y is an open set of X. A homeomorphism
(also called bicontinuous function) is a continuous function f : X ! Y between
topological spaces that is bijective and has continuous inverse f�1.

A manifold M is a topological space that is locally Euclidean, i.e., every point on M

has an open neighborhood that is homeomorphic to an open ball of the Euclidean space
Rn. A map is said to be smooth if it is arbitrary differentiable. A smooth manifold
is a manifold that has smooth structure, that is, a topological space that has an open
cover fU�g with homeomorphisms '� : U� ! Rn such that on each intersection U�\U�,
the maps '� � '�1� : Rn ! Rn are all smooth maps.

2.2 Algebraic Geometry

Affine Algebraic Geometry Let k be an algebraic closed field. Let k[x1; : : : ; xn]
be the polynomial ring in n variables over k. The n-dimensional affine space over k
is the set of n-tuples An

k = kn = f(x1; : : : ; xn) : xi 2 kg.
Let J be an ideal of k[x1; : : : ; xn]. We denote V (J) to be the set of common roots

x 2 An
k of the polynomials in J . Let X be a subset of An

k . We denote I(X) to be the
set of polynomials f 2 k[x1; : : : ; xn] vanish everywhere in X.

5

A subset X � An
k is an algebraic set (also called algebraic variety) if X = V (I)

for some ideal I � k[x1; : : : ; xn]. Every ideal I � k[x1; : : : ; xn] is finitely generated,
denoted I = (f1; : : : ; fm), where fi 2 I. Every algebraic set is finitely generated,
denoted V (I) = V (f1; : : : ; fm) = V (f1) \ � � � \ V (fm).

Projective Algebraic Geometry The n-dimensional projective space over k is
the set of (n + 1)-tuples Pnk = kn+1nf0g=�, where � is the equivalence relation given
by (x0; : : : ; xn) � (�x0; : : : ; �xn) for � 2 knf0g.

An ideal I � k[x0; : : : ; xn] is homogeneous if it is generated by homogeneous poly-
nomials. We define V (J) and I(X) similar to the affine case, with the only difference
that the ideals here are homogeneous ideals. Projective algebraic sets and ideals satisfy
similar properties as discussed in the affine case.

Sheaves and Schemes Let X be a topological space. A presheaf F on X assigns
to each open set U of X a set F(U), also denoted �(U;F), and to every pair of open
sets U � V � X a restriction map resV;U : F(V) ! F(U) satisfying: (1) resU;U :

F(U) ! F(U) is the identity map on F(U); and (2) resW;V � resV;U = resW;U for open
sets U � V �W � X. The restriction resV;U(s) of an element s 2 F(V) is also denoted
sjU .

A sheaf is a presheaf such that for any open covering U = fUigi2I of an open set U :
(1) (locality) the equality sjUi= tjUi of the restrictions of s; t 2 F(U) implies the equality
s = t of the original elements, for all Ui 2 U ; and (2) (gluing) if a section si 2 F(Ui) is
given for every Ui such that for each pair Ui; Uj the restrictions sijUi\Uj= sjjUi\Uj , then
there is a section s 2 F(U) such that sjUi= si for each i 2 I.

Let x 2 X and i be the inclusion of the subspace fxg into X. Let F be a sheaf on
on X. Then the stalk of F at x, denoted Fx, is the inverse image sheaf i�1F , i.e.,
Fx = i�1F(fxg).

Let X be a topological space and OX be a sheaf of rings on X. A ringed space is a
pair (X;OX). We call OX the structure sheaf of X. A locally ringed space is a ringed
space (X;OX) such that all stalks of the structure sheaf OX are local rings.

Let R be a commutative ring. The spectrum Spec(R) of R is the set of all prime
ideals of R. An affine scheme is any locally ringed space isomorphic to Spec(R). A
scheme is a locally ringed space X admitting a covering by open sets which are affine
schemes.

6

Let I be an ideal of R and VI be the set of prime ideals of R containing I. The Zariski
topology on Spec(R) is the collection fVIg of VI for all I � R. The Zariski topology
on a variety is a topology with its closed sets the algebraic subsets of the variety.

2.3 Algebraic Number Theory

A complex number is an algebraic number if it is a root of some nonzero polynomial
over Q (or equivalently, over Z if we clear out the denominators). A number field is a
field k = Q(�1; : : : ; �n) for finitely many algebraic numbers �i.

A complex number is an algebraic integer if it is a root of some monic polynomial
over Z. Let B be the set of algebraic integers. The order of a number field k is the
ring Ok := k \ B, also called the ring of integers of k.

Let R be a commutative ring with unity. An ideal p � R is a prime ideal if and
only if ab 2 p implies a 2 p or b 2 p. A Dedekind domain is an integral domain R

of which every nonzero proper ideal a � R factors into prime ideals a = pe11 � � � penn and
the factorization is unique up to the order of factors. Ok is a Dedekind domain. Hence
every nonzero ideal a � Ok has a unique factorization a = pe11 � � � penn .

Let R be a commutative ring with unity. Two ideals a; b � R are coprime if and
only if a+ b = R. The product of coprime ideals equals their intersection: ab = a \ b.

Let k = Q. Then Ok = Z. Let (p1); : : : ; (pn) be ideals of Z with pi primes. By
Bezout’s lemma, there exists s; t 2 Z such that spi + tpj = 1, for pi 6= pj. I.e.,
(pi) + (pj) = R. (pi) and (pj) are coprime ideals. Hence (pi)(pj) = (pi) \ (pj). Apply
this argument on all (pi) we have: (p1) � � � (pn) = (p1) \ � � � \ (pn) = (lcm(p1 � � � pn)) =
(p1 � � � pn).

2.4 Metric Theory

Let X be a set. A metric on X is a distance function d : X � X ! R�0 such that
d(x; y) = 0 , x = y (identity of indiscernibles), d(x; y) = d(y; x) (symmetry), and
d(x; z) � d(x; y) + d(y; z) (triangle inequality), where R�0 denotes the non-negative
real numbers. The pair (X; d) is called a metric space.

Every metric space is a topological space. A topological space is said to be metrizable
if its topology can be describe by a metric. It is non-metrizable otherwise.

The Zariski topology is non-metrizable.

7

2.5 Measure Theory

Let X be a set. A �-algebra � is a collection of subsets of X containing ∅ and that is
closed under complement and countable unions. Note that X 2 � is implied since X
is the complement of ∅. The pair (X;�) is called a measurable space.

Let (X;�) be a measurable space. A measure is a function � : �! [0;1] such that
�(∅) = 0 (null empty set), �(S) � 0 (non-negativity) for all S 2 �, and �

S1
i=1 Si =P1

i=1 �(Si) for all countable disjoint collections fSi 2 � j i 2 Ng of sets in � (countable
additivity). The triple (X;�; �) is called a measure space.

The definitions of �-algebra and topology are similar. They are connected by the
Borel �-algebra. It is the �-algebra generated by the open sets of a topological space.

2.6 Representation Theory

Let V be a finite dimensional vector space. The general linear group GL(V) = Aut(V)

of V is the group of automorphisms (invertible linear maps) of V . The real general
linear group GLnR (i.e., the group of invertible n� n real matrices, which is an open
subset of the vector space of all n� n real matrices) is the group of automorphisms of
an n-dimensional real vector space V .

A representation of a group G on a vector space V is a group homomorphism
� : G! GL(V). I.e., � maps every group element to a matrix. We also call the vector
space V itself a representation of G.

A Lie group (G; �) is a smooth manifold G with a smooth mapping � : G � G !
G; a � b 7! c that gives G a group structure. A Lie subgroup is a subgroup of a Lie
group and itself is a Lie group. Let G be a Lie group. By the closed subgroup theorem,
H is a Lie subgroup of G if H is a closed subgroup of G.

GLnR is a Lie group, with the smooth mapping � given by matrix multiplication:
A �B = AB. The Lie subgroups of GLnR are called matrix Lie groups.

2.7 Lattice Theory

Let Rm be the m-dimensional Euclidean space. A lattice in Rm is the set L(B) =

fBx : x 2 Zng, where B = (b1; : : : ; bn) 2 Rm�n is a matrix with linear independent
columns. We call fb1; : : : ; bng the lattice basis. The integers n and m are called the

8

rank and dimension of the lattice, denoted rank(L(B)) and dim(L(B)), respectively.
If n = m the lattice is called a full rank lattice. The determinant of a lattice is the
n-dimensional volume of the fundamental parallelepiped spanned by the basis vectors,
denoted det(L(B)). It equals the square root of the determinant of the Gram matrix
B>B, i.e., det(L(B)) =

q
det(B>B). If L(B) is full rank, then det(L(B)) = jdet(B)j.

The Gaussian heuristic for the shortest vector in a random full rank lattice L(B) 2 Rm

is �1 =
q

m
2�e

vol(L)
1
m .

The dual of a lattice L is the set L̂ of vectors x 2 span(L) such that the inner product
x � y 2 Z for all y 2 L.

The closest vector problem (CVP) is given a lattice basis B 2 Zm�n and a target
vector t 2 Zm, find a lattice vector v 2 L(B) closest to t.

The -gap closest vector problem (GapCVP) is given an instance (B; t; r), where
B 2 Zm�n is a lattice basis, t 2 Zm is a vector and r 2 Q is a rational number, decide
whether it is a YES instance or a NO instance, where YES instances are triples (B; t; r)
such that jjBz� tjj� r for some z 2 Zn, and NO instances are triples (B; t; r) such that
jjBz � tjj> r for all z 2 Zn.

The -bounded distance decoding (BDD) problem is given a lattice basis B and a
vector t such that dist(B; t) < �1(B), find the lattice vector v 2 L(B) closest to t.

The -unique shortest vector problem (uSVP) is given a lattice B such that �2(B) >
�1(B), find a nonzero vector v 2 L(B) of length �1(B).

2.8 Function Obfuscation

Computational functions can be represented by circuits. By a circuit we always mean
a circuit of minimal size that computes a specified function. The size complexity of a
circuit of minimal size is polynomial in the time complexity of the function it computes.

We call auxiliary information about a specific circuit local auxiliary information
and auxiliary information about the entire circuit family global auxiliary information.
They are also known as dependent and independent auxiliary information, respectively.

Evasive Functions Evasive functions are the kind of Boolean functions that have
small fiber of 1 compared to the domain of the function.

Definition 1 (Evasive Circuit Collection [BBCKPS14]). A collection of circuits
C = fC�g�2N, where C� takes n(�)-bit input, is evasive if there exists a negligi-

9

ble function �(�) such that for all � 2 N and all x 2 f0; 1gn(�),

Pr
C C�

[C(x) = 1] � �(�);

where the probability is taken over the random sampling of C�.

Input-Hiding Obfuscation The intuition of input-hiding is that given the obfus-
cated Boolean function, it should be inefficient for any PPT algorithm to find an element
in the fiber of 1. We call elements of the fiber of 1 of a Boolean function accepting
inputs.

Definition 2 (Input-Hiding [BBCKPS14]). Let � 2 N be the security parameter.
Let C = fC�g�2N be a circuit collection. Let D be a class of distribution ensembles
D = fD�g�2N, where D� is a distribution over C� for all � 2 N. A probabilistic
polynomial time (PPT) algorithm O is an input-hiding obfuscator for the family
C and the distribution D if the following three properties are satisfied.

1. Functionality Preserving: There is a negligible function �(�) such that for
all n 2 N and for all circuits C 2 C with input size n,

Pr[O(C)(x) = 1 j 8x : C(x) = 1] � 1� �(�);

and
Pr[O(C)(x) = 0 j 8x : C(x) = 0] � 1� �(�);

where the probability is over the coin tosses of O.

2. Polynomial Slowdown: There exists a polynomial p such that for all n, all
circuits C 2 C, and all possible sequences of coin tosses of O, the circuit O(C)
runs in time at most p(jCj), i.e., jO(C)j� p(jCj), where jCj denotes the size of the
circuit C.

3. Input-Hiding: There exists a negligible function �(�) such that for all PPT
adversaries A, for all � 2 N and for all global auxiliary information � 2 f0; 1gpoly(�)
about C�,

Pr
C D�

[C(A(O(C); �)) = 1] � �(�);

where the probability is taken over the random sampling of D� and the coin tosses

10

of A and O.

Note that input-hiding is particularly defined for evasive functions. This is because
non-evasive functions always leak accepting inputs. Also note that input-hiding is
incomparable with VBB [BBCKPS14]. An obfuscator which always leaks an accepting
input of the function can still be VBB [BBCKPS14].

Virtual Black-Box Obfuscation The intuition of VBB obfuscation is that anything
one can efficiently compute from the obfuscated function, one should be able to effi-
ciently compute given just black-box access to the function [BGIRSVY01]. It attempts
to hide everything about a circuit without affecting the usage of its functionalities.

Definition 3 (Average-Case Virtual Black-Box Obfuscator, VBB [BGIRSVY01]). Let
� 2 N be the security parameter. Let C = fC�g�2N be a family of polynomial size
circuits. Let D be a class of distribution ensembles D = fD�g�2N, where D� is a
distribution over C� for all � 2 N. A PPT algorithm O is a VBB obfuscator for
the family C and the distribution D if it satisfies the functionality preserving and
polynomial slowdown properties in Definition 2 and the following virtual black-
box property: There exists a negligible function �(�) such that for every PPT
adversary A, there exists a PPT simulator S such that for all polynomial size
predicates ' : C ! f0; 1g and all global auxiliary information � 2 f0; 1gpoly(�) about
C�,

���� Pr
C D�

[A(O(C); �) = '(C)]� Pr
C D�

[SC(1�; �; �) = '(C)]
���� � �(�) (2.1)

where the first probability is taken over the random sampling of D� and the coin
tosses of A and O, and the second probability is taken over the random sampling
of D� and the coin tosses of S; � is a set of parameters associated to C (e.g.,
input size, output size, circuit size, etc.) which we are not required to hide, and
SC means that S has black-box access to the circuit C.

The following variant of VBB is used in Chapter 4. The difference is that in the
definition of VBB, the auxiliary information � is about the entire circuit family C,
while in the following definition, � is about the specific circuit C being obfuscated.

Definition 4 (Distributional Virtual Black-Box Obfuscator, DVBB [WZ17]). Let � 2
N be the security parameter. Let C = fC�g�2N be a family of polynomial size
circuits. Let D be a class of distribution ensembles D = fD�g�2N, where D�

11

is a distribution over C� and polynomial size auxiliary information �, for all
� 2 N. A PPT algorithm O is a DVBB obfuscator for the distribution class D
over the circuit family C if it satisfies the functionality preserving and polynomial
slowdown properties in Definition 2 and the following distributional virtual black-
box property: There exists a negligible function �(�) such that for every polynomial
size adversary A, there exists a PPT simulator S such that for all distribution
ensemble D = fD�g�2N 2 D, and all polynomial size predicates ' : C ! f0; 1g,

����� Pr
(C;�) D�

[A(O(C); �) = '(C)]� Pr
(C;�) D�

[SC(1�; �; �) = '(C)]

����� � �(�); (2.2)

where the first probability is taken over the coin tosses of A and O, the second
probability is taken over the coin tosses of S; � is a set of parameters associated
to C (e.g., input size, output size, circuit size, etc.) which we are not required to
hide, and S has black-box access to the circuit C.

Note that black-box access to evasive functions is useless. Hence it makes sense to
consider a definition that does not give the simulator black-box access to the circuit C.

Definition 5 (Distributional-Indistinguishability [WZ17]). A PPT algorithm O for
the distribution class D over a family of circuits C, satisfies distributional-indist-
inguishability, if there exists a PPT simulator S, such that for every distribution
ensemble D = fD�g�2N 2 D, where D� is a distribution over C� � f0; 1gpoly(�) for
all � 2 N, we have that

(O(1�; C); �)
c� (S(1�; �); �);

where (C;�) D�, and � is some auxiliary information. I.e., there exists a
negligible function �(�) such that for all PPT algorithm A,

����� Pr
(C;�) D�

[A(O(1�; C); �) = 1]� Pr
(C;�) D�

[A(S(1�; �); �) = 1]

����� � �(�); (2.3)

where the first probability is taken over the coin tosses of A and O, the second
probability is taken over the coin tosses of A and S.

Distributional-indistinguishability with auxiliary information �0 = (�;'(C)) implies
DVBB with auxiliary information � [WZ17], where '(C) is an arbitrary 1-bit predicate
of the circuit. To state the theorem, we need the following definition of predicate
augmentation, which allows to add an arbitrary 1-bit predicate of the circuit to the

12

auxiliary information.

Definition 6 (Predicate Augmentation [BGIRSVY01; WZ17]). For a distribution
class D, we define its augmentation under predicates, denoted aug(D), as follows.
For any polynomial-time predicate ' : f0; 1g� ! f0; 1g and any D = fD�g 2 D
the class aug(D) indicates the distribution ensemble D0 = fD0�g where D0� samples
(C;�) D�, computes �0 = (�;'(C)) and outputs (C;�0).

Theorem 1 (Distributional-Indistinguishability implies DVBB [WZ17]). For any fam-
ily of circuits C and a distribution class D over C, if an obfuscator O satisfies
distributional-indistinguishability for the class of distributions D0 = aug(D), i.e.,
if there exists a negligible function �(�), a PPT simulator S, such that for every
PPT distinguisher B, for every distribution ensemble D0 = fD0�g where D0� samples
(C;�) D� with C 2 C, computes �0 = (�;'(C)) and outputs (C;�0),

����� Pr
(C;�0) D0

�

[A(O(1�; C); �0) = 1]� Pr
(C;�0) D0

�

[A(S(1�; �); �0) = 1]

����� � �(�); (2.4)

then it also satisfies DVBB security for the distribution class D.

Note that the auxiliary informations � in input-hiding and VBB are global in-
formation for the entire function family, while the � in DVBB and distributional-
indistinguishability are local information about the specific function being obfuscated.

13

Chapter 3

SUBSET PRODUCT WITH ERRORS

We first reduce the discrete logarithm problem (DLP) to the subset product problem
(SP) [GZ19] with density d � n=(n + log2 p(n)) for some polynomial p(n). The twin
subset product problem (TSP) with respect to twin points is then defined. The multiple
subset product problem (MSP) with respect to relative points is defined. A lattice
algorithm is presented to solve low density MSP with identical points. To avoid the
MSP algorithm, the subset product with errors problem (SPE) is defined. SP is reduced
to SPE. The multiple subset product with errors problem (MSPE) is defined. The ideal
subset product with errors problem (ISPE) is defined. Both SPE and ISPE, as well
as their twin variants and multi-instance variants are conjectured to be post-quantum
hard.

3.1 Subset Product

In this chapter, all parameters are functions in � with � � n 2 N. The subset product
problem is the following.

Definition 7 (Subset Product Problem, SP [GZ19]). Given n + 1 distinct primes
p1; : : : ; pn; q and an integer X 2 Z�q, find a vector (x1; : : : ; xn) 2 f0; 1gn (if it exists)
such that X =

Qn
i=1 p

xi
i (mod q).

The decisional version is the following.

Definition 8 (Decisional Subset Product Problem, d-SP [GZ19]). Given n + 1 dis-
tinct primes p1; : : : ; pn; q and an integer X 2 Z�q, decide if there exists a vector
(x1; : : : ; xn) 2 f0; 1gn such that X =

Qn
i=1 p

xi
i (mod q).

In order to define hard SP, we avoid parameters that will make the problem trivial.

If q � Qn
i=1 p

xi
i , then xi is immediately leaked by checking whether pijX. Hence we

require q <
Qn
i=1 p

xi
i . In particular, we can set q to lie between a length r prime product

and a length r + 1 prime product, for some suitably chosen r < n.

Now if r � n=2, the problem is still trivial. One can just sample a uniform y 2 f0; 1gn
and decode x from XY �1 (mod q) using the naive or improved attack based on Theorem

14

3 or 4, where Y =
Qn
i=1 p

yi
i (mod q). The naive attack works when the Hamming

distance between x and y is � r. Note that a uniform y is expected to be n=2 away
from x. Hence if r � n=2, the naive attack is expected to work. To avoid this, we
require negligible probability of y being r-close to x. I.e., Pry f0;1gn[jx� yj� r] � �(�)

for some negligible function �(�), where � denotes the XOR operation. If we take
�(�) = 1=2�, then for uniformly sampled x and y, the above inequality gives

r � n

2
�
p
�n ln 2: (3.1)

For a proof of this, see Lemma 2 in [GZ19].

Again, if x is from a low entropy distribution, finding a point y close to x is easy. For
example, suppose all points cluster together. Then one can just find y by searching in
the cluster. To avoid this, we require the distribution of x to have conditional Hamming
ball min-entropy �, which is defined as follows.

Definition 9 (Conditional Hamming Ball Min-Entropy [GZ19; FRS16]). The Ham-
ming ball min-entropy of random variables X conditioned on a correlated variable
Y is

HHam;1(X j Y) = � ln (Ey Y [max
y2f0;1gn

Pr[jX � yj� r j Y = y]]);

where r < n 2 N.

Also note that a composite modulus will leak Legendre symbol relations about x with
respect to different factors of the modulus. We therefore use prime modulus.

Now we are ready to define the hard SP distribution.

Definition 10 ((n; r;B;Xn)-SP Distribution). Let �; n; r;B be positive integers with
n � � polynomial in �, r satisfies Inequality (3.1), and B larger than the n-th
prime. Let Xn be a distribution over f0; 1gn with Hamming ball min-entropy �.
Let (x1 : : : ; xn) Xn. Let p1; : : : ; pn be distinct primes uniformly sampled from
the primes in f2; : : : ; Bg. Let q be a uniformly sampled safe prime in fBr; : : : ; (1+

o(1))Brg. Then we call the distribution (p1; : : : ; pn; q;X) with X =
Qn
i=1 p

xi
i (mod q)

the (n; r;B;Xn)-SP distribution.

The hard SP and hard d-SP are the following.

Assumption 1 (Hard SP). Let �; n; r;B;Xn satisfy the conditions in Definition
10. Then for every PPT algorithm A and every � 2 N, there exists a negligible
function �(�) such that the probability that A solves SP of instances sampled from
the (n; r;B;Xn)-SP distribution is not greater than �(�).

15

Assumption 2 (Hard d-SP). Let �; n; r;B;Xn satisfy the conditions in Definition
10. Let D0 = (p1; : : : ; pn; q;X) be the (n; r;B;Xn)-SP distribution and let D1 be D0

with X =
Qn
i=1 p

xi
i (mod q) replaced by a random element in Z�q. Then for every

PPT algorithm A and every � 2 N, there exists a negligible function �(�) such
that

���� Pr
d0 D0

[A(d0) = 1] � Pr
d1 D1

[A(d1) = 1]
���� � �(�): (3.2)

By the search-to-decision reductions in [IN96] and [MM11], d-SP is plausibly at least
as hard as SP. In the following we show that SP is at least as hard as DLP for certain
parameter ranges. Let d := n=log2 q be the density of SP. An informal statement of
this result for SP with density d � 1 was given in [GZ19]. In the following we give a
rigorous proof for a better lower bound of the density: d � n=(n+ log2 p(n)).

Definition 11 (Discrete Logarithm Problem, DLP). Let G be a finite group of order
N written in multiplicative notation. The discrete logarithm problem is given
g; h 2 G to find a (if it exists) such that h = ga.

Assumption 3 (Hard DLP). Let Z�q be the multiplicative group of integers modulo
q, where q = 2p + 1 � 2� is a safe prime for some prime p. If g is sampled
uniformly from Z�q and a is sampled uniformly from f0; : : : ; q � 2g, then for every
PPT algorithm A and every � 2 N, there exists a negligible function �(�) such
that the probability that A solves the DLP (g; ga) is not greater than �(�).

Two heuristics are needed for the reduction.

Heuristic 1. The number of elements X 2 Z�q being a subset product
Qn
i=1 p

xi
i (mod q)

over the (n; r;B; Un)-SP distribution (p1; : : : ; pn; q;X) with q � 2np(n) is � q=p(n),
for polynomial p(n), where Un is the uniform distribution.

This means that if q is not larger than polynomial times 2n, then a uniformly cho-
sen X from Zn

q is a subset product with noticeable probability. Also notice that the
requirement q � 2np(n) implies the density d � n=(n+ log2 p(n)).

Heuristic 2. The number of random DLP group elements ga needed for getting
polynomially many SP solutions x that span Zn

` for every prime factor ` of q � 1

is polynomial, where x 2 f0; 1gn is such that ga =
Qn
i=1 p

xi
i (mod q) and SP and

DLP are as defined in Assumption 1 and 3.

16

This means that when writing different DLP group elements ga in terms of subset
products

Qn
i=1 p

xi
i (mod q) with respect to some random primes p1; : : : ; pn, the exponent

vectors x = (x1; : : : ; xn) 2 f0; 1gn have high probability to give a full rank matrix over
Z`, for every prime factor ` of q�1. This makes sense if we think about the randomness
of the primes p1; : : : ; pn. Also note that q is a safe prime such that q� 1 = 2p has only
two prime factors 2 and p. Hence this is not a serious requirement because there are
only two subspaces Zn

2 and Zn
p needed to be satisfied.

Theorem 2. Assuming Heuristic 1 and 2, if there exists a PPT algorithm to solve
SP (as defined in Assumption 1, with q � 2np(n)) with overwhelming probability
in time T , then there exists an algorithm to solve DLP (as defined in Assumption
3) in expected time O(t(�)T), for some polynomial t(�).

Proof. Let (g; h) be a DLP instance as defined in Assumption 3. Let A be a PPT
algorithm that solves SP as defined in Assumption 1, with the same q as the DLP.
We solve the DLP as follows. Sample a uniform a from f0; : : : ; q � 2g, then call A to
solve (p1; : : : ; pn; q; g

a). If ga is a subset product, then with overwhelming probability
A can solve for an x 2 f0; 1gn such that ga =

Qn
i=1 p

xi
i (mod q). Since q � 2np(n), by

Heuristic 1 we have that nSP � q=p(n), where nSP is the number of subset products in
Z�q. Hence the probability that ga being a subset product is � 1=p(n). We therefore
expect that after np(n) samples of a, we can solve for n vectors x 2 f0; 1gn such that
a � Pn

i=1 xi logg(pi) (mod q � 1) .

Also by Heuristic 2, with at most np(n)p0(n) samples of a, we expect to be able to
choose n vectors x 2 f0; 1gn to span Zn

` for each prime factor ` of q � 1, for some
polynomial p0(n). We therefore have n relations a � Pn

i=1 xi logg(pi) (mod `) whose
coefficient matrix is full rank, for each prime factor ` of q � 1. Then we can solve the
systems of equations for different ` respectively and use the Chinese remainder theorem
to lift the solutions to Zq�1, obtaining logg(pi) (mod q � 1) for all i 2 f1; : : : ; ng.

Lastly we sample b f0; : : : ; q � 2g, compute hgb (mod q), and call A to solve
it. With at most p(n) extra samples of b, we expect one more relation logg(h) +

b � Pn
i=1 xi logg(pi) (mod q � 1) with x 2 f0; 1gn. Then logg(h) =

Pn
i=1 xi logg(pi) �

b (mod q � 1).

Attacks

We discuss two potential attacks for SP. They are inefficient. The first attack relies on
finding a point y close to x. The second attack improves the first attack by allowing

17

the use of points arbitrary far away from x. This attack adds exponential overhead
hence is still inefficient.

Theorem 3 (Diophantine Approximation [Hur91]). Let � 2 R, a; b 2 Z, b > 0 and
gcd(a; b) = 1. If j�� a

b
j < 1

2b2
then a=b is a convergent of the continued fraction of

�.

The attack based on Theorem 3 is as follows. Having an input y such that the
Hamming distance between x and y is bounded by r, we compute E = XY �1 (mod q) =Q
i p

xi�yi
i (mod q) = UV �1 (mod q), where UV �1 is the simplest form of XY �1 modulo

q with U =
Qn
i=1 p

ui
i and V =

Qn
i=1 p

vi
i , for ui; vi 2 f0; 1g. We have that EV � kq = U

hence jE
q
� k

V
j = U

qV
, where gcd(k; V) = 1 since gcd(U; V) = 1. By Theorem 3, if

UV < q
2
, then k

V
is a convergent of E

q
. Finding this convergent from the continued

fraction of E
q

is efficient because the set of convergents is of polynomial size. So we
have k and V , and thus U = EV � kq. We then factor U and V to find all different
bits between x and y, and recover x by flipping y accordingly.

The following theorem shows a way to push the continued fraction algorithm beyond
the naive limits given by Theorem 3.

Theorem 4 (Extended Legendre Theorem [Duj04]). Let � be an irrational number,
let the fractions pi

qi
2 Q be its continued fraction, and let a; b be coprime nonzero

integers satisfying the inequality j� � a
b
j < c

b2
, where c is a positive real number.

Then (a; b) = (rpm+1 � spm; rqm+1 � sqm), for some nonnegative integers m, r and
s such that rs < 2c.

By Theorem 4 one can always find a and b by tuning c, which gets rid of the limitation
of j�� a

b
j < 1

2b2
. But this adds exponential overhead. Specifically, we are now allowed

to recover x using any string y 2 f0; 1gn that is arbitrary far away from x. However the
search space for k

V
is now not the set of convergents of E

q
, but a set of combinations of

nominators and denominators of the convergents, where the coefficients are all possible
pairs (r; s) such that rs < 2c. This c is determined by the distance between x and y.
So if x and y are far away from each other, e.g. n=2 away (for a random y 2 f0; 1gn),
then the search space will be exponentially large and the current searching methods
(e.g., the one in [Duj09]) takes exponential time. For a more concrete example, suppose
n � 6�, q � (n lnn)r and r � n=3. Then for a point y which is n=2 away from x, we
have UV � (n lnn)n=2. To use Theorem 4, we have c > UV

q
� (n lnn)n=6 = (n lnn)�.

Then the number of combinations of r; s < c is exponential.

18

3.2 Twin Subset Product

Imagine we are given more than one SP instance with respect to the same x. Then the
task of finding x should be easier since we have more clues about x. Nonetheless, we
conjecture that the problem is still hard when the number of instances is just 2. One
step further, we do not require the x’s to be exactly the same but close.

We call a pair of points x; y 2 f0; 1gn twin points, denoted by x � y, if there
exists a polynomial p(�) such that the Hamming distance d between x and y satisfiesPd

i=0

�
n
i

�
� p(�). This simply means x and y are in polynomial size Hamming balls

centered at each other. Namely it is easy to find one from the other.

Definition 12 (Twin Subset Product Problem, TSP). Given two independent SP
instances with respect to a pair of twin points, find the twin points.

Assumption 4 (Hard TSP). Let Xn be a distribution over twin points (x; y) 2
f0; 1gn�f0; 1gn. Let ((p1; : : : ; pn; q;X), (s1; : : : ; sn; t; Y)) be a TSP instance with each
SP defined as in Assumption 1, where X =

Q
pxii (mod q) and Y =

Q
syii (mod t)

with (x; y) Xn. Then for every PPT algorithm A and every � 2 N, there exists
a negligible function �(�) such that the probability that A solves this TSP is not
greater than �(�).

Note that if q = t and pi = si for all i 2 f1; : : : ; ng, the distinct bits between x

and y can be learned. To see this, we simply divide X by Y . We expect that many
primes will be canceled since x and y are close. What is left is XY �1 (mod q) =Qn
i=1 p

xi�yi
i (mod q) = UV �1 (mod q) for UV small, where UV �1 is the simplest form

of XY �1 modulo q. Then we can use the attacks based on Theorem 3 or 4 to find the
factors of U and V . From the factors of U and V we can tell the distinct bits between
x and y. Specifically, if pi is a factor of U then xi = 1 and yi = 0; if pi is a factor of V
then xi = 0 and yi = 1. Otherwise if pi is neither a factor of U or V , then xi = yi.

However this attack does not reveal the common bits at all. Leaking the distinct bits
between x and y does not make the problem much easier.

On the other hand, this setting should be avoided when defining the decisional version
of the problem. Using the above attack one can identify the TSP distribution by
checking whether the two SP instances are with respect to two points that are close to
each other.

With a DLP algorithm, TSP reduces to the twin subset sum problem.

19

Definition 13 (Subset Sum Problem, SS). Let ZN be the additive group modulo
N 2 N. The subset sum problem is given n numbers a1; : : : ; an 2 ZN and an
integer X 2 ZN , find x 2 f0; 1gn (if it exists) such that X =

Pn
i=1 aixi (mod N).

Definition 14 (Twin Subset Sum Problem, TSS). Given two independent SS in-
stances with respect to a pair of twin points, find the twin points.

To see the reduction from TSP to TSS, simply notice the reduction from SP to
SS. Specifically, for an SP we have X =

Qn
i=1 p

(xi)
i (mod q) =

Qn
i=1 (g

ai)xi (mod q) =

g
Pn

i=1
xiai (mod q�1) = ga (mod q�1) for some generator g of Z�q. Hence by choosing a

random generator g and call the DLP algorithm to solve for the exponents ai of pi
for all i 2 f1; : : : ; ng as well as the exponent a of X, we have a subset sum instance
(a1; : : : ; an; q � 1; a) with a =

Pn
i=1 xiai (mod q � 1).

3.3 Multiple Subset Product

Is the problem still hard if the number of SP instances is more than 2? Similar to TSP,
we define the multiple subset product problem to be with respect to different close
points. The problem with an identical point is a special case.

Let V = fx1; : : : ; xk j xi 2 f0; 1gn; i 2 f1; : : : ; kgg be a set (polynomial size) of points.
Let E = ffxi; xjg j xi � xj; i; j 2 f1; : : : ; kg; i 6= jg be a set of unordered pairs given
by the twin points relations. We call the points x1; : : : ; xk relative points if the graph
G = (V;E) is connected. This simply means finding one point is enough to brute force
all others.

A special case of relative points is pair-wise twin points, namely all of the points
x1; : : : ; xk are inside a polynomial size Hamming ball.

Definition 15 (Multiple Subset Product Problem, MSP). Given k > 2 SP instances
with respect to k relative points, find the k points.

Note that if we encode distinct relative points using the same prime vector p(1) = � � � =
p(k) and the same modulus q1 = � � � = qk, then MSP is solvable if the relative points
have not many common entries. The attack is to learn distinct bits between more and
more pairs of relative points using the discussed attack for TSP, and gradually recover
more and more entries of a point.

With a DLP algorithm, MSP reduces to the multiple subset sum problem.

20

Definition 16 (Multiple Subset Sum Problem, MSS). Given k > 2 independent SS
instances with respect to k relative points, find the k points.

The decision versions of MSP and MSS are the following.

Definition 17 (Decisional Multiple Subset Product Problem, d-MSP). Let P and Q

be two distributions over two sets of primes respectively. The decisional multiple
subset product problem is to distinguish the distribution

D1 = (p(1); : : : ; p(k); q1; : : : ; qk; X1; : : : ; Xk)

with p(j) P n, qj Q, x(j) 2 f0; 1gn relative points, Xj =
Qn
i=1(p

(j)
i)x

(j)
i (mod qj)

and j 2 f1; : : : ; kg, from the distribution

D2 = (p(1); : : : ; p(k); q1; : : : ; qk; X1; : : : ; Xk)

with p(j) P n, qj Q, Xj Zqj and j 2 f1; : : : ; kg.

Definition 18 (Decisional Multiple Subset Sum Problem, d-MSS). Let Xn be a dis-
tribution over relative points x(1); : : : ; x(k) 2 f0; 1gn. Let Aj be a distribution over
Zn
j , for j 2 N. Let N be a distribution over a set of integers. The decisional

multiple subset sum problem is to distinguish the distribution

D1 = (a(1); : : : ; a(k); N1; : : : ; Nk; X1; : : : ; Xk)

with (x(1); : : : ; x(k)) Xn, Nj N , a(j) ANj
, Xj =

Pn
i=1 x

(j)
i � a(j)i (mod Nj) and

j 2 f1; : : : ; kg, from the distribution

D2 = (a(1); : : : ; a(k); N1; � � � ; Nk; X1; : : : ; Xk)

with Nj N , a(j) ANj
, Xj ANj

and j 2 f1; : : : ; kg.

MSP is not conjectured to be hard. Assuming a DLP algorithm, we give a lattice
attack for low density MSP with identical points x(1) = � � � = x(k). We first reduce low
density MSP to a CVP, then reduce the CVP from even lower density MSP to an LLL
solvable -uSVP.

21

Reducing MSP to CVP

Heuristic 3. In the low density case (q � 2n), every subset product X =
Qn
i=1 p

xi
i (mod q)

has a unique solution (x1; : : : ; xn) with xi 2 f0; 1g.

In the following we prove it for q > (
p
2�e)n+1. The proof assumes that the lattices

L in the proof satisfy the Gaussian heuristic. Experimental results for the precision of
the Gaussian heuristic for these lattices are given in Section 4.2.

Lemma 1. Assuming the Gaussian heuristic, if q > (
p
2�e)n + 1 and fp1; : : : ; png

generates Z�q, then every subset product X =
Qn
i=1 p

xi
i (mod q) has a unique solution

(x1; : : : ; xn) with xi 2 f0; 1g.

Proof. Consider the lattice

L =

(
z 2 Zn

�����
nY
i=1

pzii = 1 (mod q)

)

given by the kernel of the group morphism

� : Zn ! Z�q;

(x1; : : : ; xn) 7!
nY
i=1

pxii (mod q):

Let �1 be the length of the shortest vector of L. We show by contradiction that if
there exist two solutions x 6= y 2 f0; 1gn to the SP, then there exists a vector in L

having length < �1.

We first derive �1. By the Gaussian heuristic, it is

�1 �
s

n

2�e
vol(L)

1
n ;

where vol(L) is the volume of L.

By the first isomorphism theorem, the volume of the lattice vol(L) is given by the
size of the image jim �j of �. Hence

vol(L) � '(q) = q � 1;

where ' is the Euler totient function. The equality holds if and only if fp1; : : : ; png

22

generates Z�q. So

�1 �
s

n

2�e
vol(L)

1
n =

s
n

2�e
(q � 1)

1
n :

Hence if we take �1 =
q

n
2�e

(q � 1)
1
n and plug in q > (

p
2�e)n + 1, we have �1 >

p
n.

Now, suppose there exist two SP solutions x 6= y 2 f0; 1gn such that
Qn
i=1 p

xi
i =Qn

i=1 p
yi
i (mod q). Then

Qn
i=1 p

xi�yi
i = 1 (mod q) with z = x�y 2 f�1; 0; 1gn and z 6= 0.

This means a nonzero vector z 2 L of length � pn, contradicting �1 >
p
n. Hence the

SP solution is unique.

Lemma 2. Assuming the Gaussian heuristic and a DLP algorithm, if a d-MSP
(with identical relative points) has at least one j 2 f1; : : : ; kg such that qj >

(
p
2�e)n + 1 and that fp(j)1 ; : : : ; p(j)n g generates Z�qj , then it reduces to GapCVP1.

Proof. We show that if there exists a PPT distinguisher A for GapCVP1, then there
exists a PPT distinguisher B for low density d-MSP. Given a low density d-MSP instance
p, B works as follows. It first reduces p to a d-MSS instance s := (a(1); : : : ; a(k); N1; : : : ;

Nk; X1; : : : ; Xk) by solving DLP, where Nj = qj � 1 for j 2 f1; : : : ; kg. It then creates
a GapCVP1 instance c := (B; t; r), where

B =

2
66666666666664

1
. . .

1

a
(1)
1 : : : a(1)n N1

...
...

... . . .

a
(k)
1 : : : a(k)n Nk

3
77777777777775
= (b1; : : : ; bn+k); (3.3)

is a lattice basis,

t = (
1

2
; :::;

1

2
; X1; :::; Xk)

> (3.4)

with Xj 2 ZNj
for all j 2 f1; : : : ; kg is an n + k dimensional vector, and r = rat(

p
n
2
)

is a rational number, where rat(a) is a function that takes as input a real number a
and outputs a rational number in [a;

p
a2 + 1). B then calls A on c and outputs what

A outputs.

By Lemma 1, p is equivalent to s, namely they have the same solution x. What is
left to show is that s and c fix each other.

23

We show that if s is a YES instance of d-MSS then c is a YES instance of GapCVP1;
and if s is a YES instance of GapCVP1 then s is a YES instance of d-MSS.

Note that

jjBz � tjj2=
kX

j=1

j
nX
i=1

xia
(j)
i + yjNj �Xjj2+

nX
i=1

jxi � 1

2
j2;

where z = (x1; : : : ; xn; y1; : : : ; yk) 2 Zn+k.

For the first direction, if s is a YES instance of d-MSS, then by Lemma 3, there exists
a unique solution (x1; : : : ; xn) 2 f0; 1gn such that

Pn
i=1 xia

(j)
i + yjNj � Xj = 0 for all

j 2 f1; : : : ; kg. Hence jjBz � tjj2=
p
n
2

and c is a YES instance of GapCVP1.

For the second direction, if c is a YES instance of GapCVP1, i.e., there exists z 2 Zn+k

such that jjBz�tjj2� rat(
p
n
2
), then, since

Pn
i=1jxi� 1

2
j2� n

4
(with equality achieves only

when xi 2 f0; 1g for all i 2 f1; : : : ; ng), we must have xi 2 f0; 1g for all i 2 f1; : : : ; ng
and at the same time

Pn
i=1 xia

(j)
i + yjNj �Xj = 0 for all j 2 f1; : : : ; kg. Hence s is a

YES instance of d-MSS.

The proof of Lemma 2 in fact gives a reduction from MSP to CVP.

Lemma 3. Assuming the Gaussian heuristic and a DLP algorithm, if an MSP (with
identical relative points) has at least one j 2 f1; : : : ; kg such that qj > (

p
2�e)n + 1

and that fp(j)1 ; : : : ; p(j)n g generates Z�qj , then it reduces to CVP.

Proof. Observe the target vector t given by Equation (3.4), we see that the distance
between any vector By 2 L(B) and t is jjBy � tjj� r. Hence a YES instance (B; t; r)

of GapCVP1 (where jjBz � tjj� r) fixes the solution Bz to the CVP (B; t). Again, by
the two directions in the proof of Lemma 2, this Bz fixes the solution x to the MSS s,
which is the same solution to the original MSP p. This x is easy to recover from Bz� t
(it is the first n entries of z). Hence we can solve for x of the MSP p by solving for Bz
of the CVP (B; t).

Reducing CVP to uSVP

In the following we show that for very low density MSP, the corresponding CVP is
solvable. We may assume k < n since the case k � n was not hard to deal with as it
leaks too many Legendre symbol relations about x.

The following lemma will be used in the proof of Theorem 5.

24

Lemma 4. [LLL82]. There exists a polynomial time algorithm such that given
t 2 Rm and a basis B for a lattice L(B), outputs a lattice vector Bz such that
jjBz � tjj2 [dist(t; L(B)); 2m dist(t; L(B))].

Theorem 5. Assuming the Gaussian heuristic, there exists a polynomial time
(quantum) algorithm that solves MSP (with identical relative points) which has at
least one j 2 f1; : : : ; kg such that qj > (

p
2�e)n+1 and that fp(j)1 ; : : : ; p(j)n g generates

Z�qj , and the moduli q1; : : : ; qk satisfy

p
n

2
� 1� 1

n+k

2 � 2n+k+1
4

�
s
n+ k

2�e
�
0
@ kY
j=1

(qj � 1)

1
A

1
n+k

: (3.5)

Note that Inequality 3.5 requires large product
Qk
j=1 (qj � 1), which implies large

moduli qj on average hence low density SP instances on average. Also note that when
k is too small, e.g. k = 2, then Inequality 3.5 requires very low density SP instances.
In that case, even SP was not conjectured to be post-quantum hard because the corre-
sponding SS is not hard. So the algorithm only makes sense to work with k � 2 and
TSP is not attacked by this algorithm.

Proof. The algorithm is the following.

Algorithm 1 MSP Algorithm

Input: n; k 2 N, fp(j)1 ; � � � ; p(j)n ; qj ; Xjgj2f1;:::;kg with p’s and q’s prime numbers and Xj 2 Zqj
Output: x 2 f0; 1gn or 0

1: choose random generator of Z�qj and solve DLP of p(j)i in Z�qj to get a
(j)
i 2 Zqj�1, for all

i 2 f1; : : : ; ng; j 2 f1; : : : ; kg
2: create B and t as defined by Equation (3:3) and (3:4)

3: sample � 2 [dist(t; L(B)); 2n+k dist(t; L(B))] and sample � 2 f�=(1 + 1=(n+ k))i : 0 � i �

log1+1=(n+k) 2
n+kg and create B0 =

2
4B t

0 �

3
5

4: call LLL to solve for the 2
n+k+1

4 -unique shortest vector in L(B0) to get c0 = (a; �) 2 Zn�Z
5: compute z = B�1(a� t) and denote it as z := (x; y) 2 Zn � Zk

6: return x if x 2 f0; 1gn else 0

Given an MSP instance p, the MSP algorithm first reduces p to an MSS s and creates
a CVP instance (B; t) with B and t defined by Equation (3:3) and (3:4) respectively.
It then samples � 2 [dist(t; L(B)); 2m dist(t; L(B))] (this can be done in polynomial

25

time according to Lemma 4) and samples � 2 f�=(1 + 1=m)i : 0 � i � log1+1=m 2mg
(the goal is to get some � 2 [dist(t; L(B)); (1+1=m) dist(t; L(B))], which has noticeable
probability since the set that � samples from is polynomial size) and creates an extended
basis

B0 =

2
4B t

0 �

3
5 ;

where m := n+k. It then uses LLL to solve for the -unique shortest vector c0 = (a; �)

in L(B0), where

 = 2
m+1
4 ; (3.6)

a 2 Zn, � 2 Z. This can be done in polynomial time since -uSVP is LLL solvable
when � O(2rank(B

0)=4) [LSL13]. It eventually outputs the vector x, which is the first
n entries of z = B�1(a+ t), as the solution to p.

We show in the following that x is indeed the solution to p. It suffices to reduce p to
the -uSVP in L(B0) with the -unique shortest vector to be

c0 = B0x0 =

2
4B t

0 �

3
5
2
4 z

�1

3
5 =

2
4Bz � t

��

3
5 ;

where z = (x; y) 2 Zn � Z such that x is the solution of p.

We achieve the reduction by three steps:

(1) Reducing the MSP to some CVP,

(2) Verifying the CVP is a BDD(1�1=m)=(2),

(3) Reducing the BDD(1�1=m)=(2) to some uSVP.

Step (1) is done by Lemma 3. We complete Step (2) and Step (3) in the following.

For Step (2), notice that L(B) is a full rank lattice of rank m. By the Gaussian
heuristic, the predicted length of the shortest vector in L(B) is

�1 =

s
m

2�e
vol(L)

1
m ; (3.7)

where

vol(L) = jdet(B)j=
kY

j=1

(qj � 1) (3.8)

26

is the volume of L(B).

Plug in Inequality (3.5) with the right hand sides of Equation (3.6), (3.7) and
(3.8), we have

p
n=2 < �1(1 � 1=m)=(2). Note also that dist(t; L(B)) � pn=2.

Hence dist(t; L(B)) < �1(1 � 1=m)=(2). By definition, the CVP instance (B; t) is
a BDD(1�1=m)=(2) instance. Step (2) is done.

For Step (3), we employ the method of [LM09] to show that c0 = (a; �) = (Bz�t;��)
is the -unique shortest vector in L(B0) if and only if c := Bz is the closest vector to t
in L(B) (and thus x is the correct solutions to the MSP by Lemma 3).

The “)” direction is obvious: If c is not the closest vector to t, then there exists
another vector v 6= t such that jjv � tjj< jjc � tjj, then c00 = (v � t;��) is a vector
shorter than c0 = (c � t;��), contradicting the assumption that c0 is the -unique
shortest vector in L(B0).

In the following we show the “(” direction. Suppose c is the closest vector to t. To
show c0 is the -unique shortest vector, it suffices to show that for all v0 2 L(B0) which
are not multiples of c0 it holds that jjv0jj> � jjc0jj. We show by contradiction that if
there exists v0 2 L(B0) such that jjv0jj� � jjc0jj, then there exists a non-zero vector
u 2 L(B) such that jjujj< �1(B).

Let

v0 =

2
4B t

0 �

3
5
2
4y
�

3
5 =

2
4By + �t

��

3
5 =

2
4v + �t

��

3
5 ;

where � 2 Z and v = By.

Denote �1 := �1(B), d := dist(t; L(B)), S := 1 � 1=m and T := 1 + 1=m. Since

27

d � � � Td and jjc� tjj= d < S�1
2

, we have

jjc0jj =
q
jjc� tjj2+�2

=
q
d2 + �2

�
q
d2 + (Td)2

=
p
1 + T 2 � d

<
p
1 + T 2 � S�1

2

=
q
(1 + T 2)S2 � �1

2

=

vuut"1 + �
1 +

1

m

�2#
�
�
1� 1

m

�2
� �1
2

=

s
2� 2

m
� 1

m2
+

1

m4
� �1
2

<
�1p
2
:

For contradiction, suppose jjv0jj� � jjc0jj, i.e.,

q
jjv + �tjj2+(��)2 < � �1p

2
;

jjv + �tjj<
s
�21
2
� (��)2:

Now consider the vector u := v + �c 2 L(B). Note that u is a non-zero vector since
otherwise v = ��c and

v0 =

2
4v + �t

��

3
5 =

2
4��c+ �t

��

3
5 = ��

2
4c� t

��

3
5

is a multiple of c0, contradicting our assumption that v0 is not a multiple of c0.

28

Now we look at its length:

jjujj = jjv + �cjj
= jjv + �t+ �(c� t)jj
� jjv + �tjj+�jjc� tjj

<

s
�21
2
� (��)2 + �d

�
s
�21
2
� (��)2 + ��:

Take square of both sides we have

jjujj2 < �21
2
� (��)2 + (��)2 + 2��

s
�21
2
� (��)2

� �21
2

+
h
(��)2 +

�s�21
2
� (��)2

�2i
= �21;

where the second line is by the AM-GM inequality. Take square root of both sides
we have the expected contradiction: jjujj< �1. Hence v0 does not exist and c0 is the
-unique vector in L(B0). This completes the proof.

3.4 Subset Product With Errors

Even though the lattice algorithm (i.e., Algorithm 1) only works for very low density
MSP, we are not confident that higher density MSP are hard. In order to be confident
we have a hard problem, we want to avoid the lattice algorithm completely.

Note that the lattice algorithm relies on the construction of the lattice basis B (as
given by Equation (3.3)), whose entries a(j)i are given by solving DLP of the primes p(j)i .
Hence to protect the problem from the lattice algorithm, we can hide some of the primes
p
(j)
i to hinder the construction of B. That is, we only give p1; : : : ; ps; q;X with s < n and

ask to find x 2 f0; 1gn as well as primes ps+1; : : : ; pn such that X =
Qn
i=1 p

xi
i (mod q).

Note that hiding some primes ps+1; : : : ; sn is equivalent to joining extra primes
pn+1; : : : ; pn+k. Hence we define the problem as the following.

Definition 19 (Subset Product With Errors Problem, SPE). Given n + 1 primes
p1; : : : ; pn; q and integers B1 < B2, k, and X 2 Z�q, find different primes `1; : : : ; `k 2

29

fB1; : : : ; B2g with `i 6= pj for all i 2 f1; : : : ; kg, j 2 f1; : : : ; ng, a vector (x1; : : : ; xn) 2
f0; 1gn and a vector (e1; : : : ; ek) 2 f�1; 1gk such that X =

Qn
i=1 p

xi
i

Qk
i=1 `

ei
i (mod q).

By restricting the support of the error primes `i and the size of q, SPE can be set to
have a unique solution (`1; : : : ; `k; x1; : : : ; xn; e1; : : : ; ek). In the following we reduce SP
to unique solution SPE.

Theorem 6. Unique solution SPE is at least as hard as SP.

Proof. Let (p1; : : : ; pn; q;X) be an SP instance with X =
Qn
i=1 p

xi
i for some x =

(x1; : : : ; xn) 2 f0; 1gn. Let A be a PPT algorithm that solves SPE. We solve the SP as
follows. Sample k small primes `1; : : : ; `k and a vector (e1; : : : ; ek) 2 f�1; 1gk. Compute
Y = X

Qk
i=1 `

ei
i (mod q) and call A to solve (p1; : : : ; pn; q; Y; k). A returns k small primes

t1; : : : ; tk, a vector y = (y1; : : : ; yn) 2 f0; 1gn and a vector f = (f1; : : : ; fk) 2 f�1; 1gk
such that Y =

Qn
i=1 p

yi
i

Qk
i=1 t

fi
i (mod q). Since we are working in the unique solution

case of SPE, we have that y = x is the solution to the SP.

With a DLP algorithm, SPE reduces to the subset sum with errors problem defined
in the following.

Definition 20 (Subset Sum With Errors Problem, SSE). Given n+3 integers a1; : : : ;
an; X;N; k, find a vector (x1; : : : ; xn) 2 f0; 1gn and a vector e1; : : : ; ek 2 f�1; 1gk such
that X =

Pn
i=1 aixi+

Pk
i=1 biei (mod N) for some integers b1; : : : ; bk in some prefixed

range and that bi 6= aj for all i 2 f1; : : : ; kg, j 2 f1; : : : ; ng.

The twin version of the problem is the following.

Definition 21 (Twin Subset Product With Errors Problem, TSPE). Given two inde-
pendent SPE instances with respect to a pair of twin points, find the twin points.

When we speak of avoiding the MSP algorithm, we should consider the multi-instance
version of the problem.

Definition 22 (Multiple Subset Product With Errors Problem, MSPE). Given k > 2

independent SPE instances with respect to k relative points x 2 f0; 1gn, find the k

points.

The hardness of MSPE is clearer when it is converted into the form of subset sum.

Definition 23 (Multiple Subset Sum With Errors Problem, MSSE). Given k > 2

independent SSE instances with respect to k relative points x 2 f0; 1gn, find the k

points.

30

Note that MSSE (with respect to MSPE over random primes) has a similar form to
the LWE problem except that it has a different distribution of coefficients and errors.

Ideal Subset Product With Errors

Now we introduce the last variant of SPE, the ideal SPE. Note that the reason we
use prime numbers is to take advantage of their irreducibility and the uniqueness of
factorization of integers. Hence a natural generalization of SPE is to consider generic
irreducible objects such as prime ideals of a Dedekind domain.

Definition 24 (Ideal Subset Product With Errors Problem, ISPE). Given n+1 prime
ideals p1; : : : ; pn; q 2 Spec(R) of a Dedekind domain R, an ideal a � R=q of the quo-
tient ring R=q, and an integer k, find k different prime ideals l1; : : : ; lk 2 Spec(R)
with li 6= pj for all i 2 f1; : : : ; kg, j 2 f1; : : : ; ng, a vector (x1; : : : ; xn) 2 f0; 1gn and
a vector (e1; : : : ; ek) 2 f�1; 1gk such that a =

Qn
i=1 p

xi
i

Qk
i=1 l

ei
i in R=q.

Specific examples are prime ideals of an order (ring of integers) and prime ideals of a
polynomial ring. In the following we give the polynomial ring variant with respect to
univariate polynomial rings, the order variant is similar.

Definition 25 (Polynomial Ideal Subset Product With Errors Problem, PISPE).
Given n+ 1 prime (or irreducible) ideals p1; : : : ; pn; q � Fq[x], an ideal a � Fq[x]=q
of the quotient ring Fq[x]=q, and an integer k, find different prime ideals l1; : : : ; lk 2
Fq[x] such that li 6= pj for all i 2 f1; : : : ; kg, j 2 f1; : : : ; ng, a vector (x1; : : : ; xn) 2
f0; 1gn and a vector (e1; : : : ; ek) 2 f�1; 1gk such that a =

Qn
i=1 p

xi
i

Qk
i=1 l

ei
i in Fq[x]=q.

The ideal variant of SP is the following.

Definition 26 (Ideal Subset Product Problem, ISP). Given n + 1 prime ideals
p1; : : : ; pn; q 2 Spec(R) of a Dedekind domain R, an ideal a � R=q of the quo-
tient ring R=q, find a vector (x1; : : : ; xn) 2 f0; 1gn such that a =

Qn
i=1 p

xi
i in R=q.

The polynomial variant with respect to univariate polynomial rings is the following.

Definition 27 (Polynomial Ideal Subset Product Problem, PISP). Given n+1 prime
(or irreducible) ideals p1; : : : ; pn; q � Fq[x], an ideal a � Fq[x]=q of the quotient ring
Fq[x]=q, and a natural number k 2 N, find a vector (x1; : : : ; xn) 2 f0; 1gn such that
a =

Qn
i=1 p

xi
i in Fq[x]=q.

The multi-instance as well as decision versions of the problems can be defined in the
natural way, which we do not go into details.

31

Chapter 4

SMALL SUPERSET OBFUSCATION

Given two sets X;Y � f1; : : : ; ng, a way to determine whether Y � X and that the
size of Y is not larger than some threshold t 2 N is to check whether the corresponding
characteristic vectors x; y 2 f0; 1gn satisfy y�x 2 f0; 1gn and jyj� t. We aim at giving
small superset testing of X without leaking X.

Small superset functions (SSF) were first introduced in [BCJJLMMMR19]. Big subset
functions (BSF) were first introduced in [BW19]. Both of them were originated from
the conjunction obfuscation in [BLMZ19], which was in turn a dual scheme of the
conjunction obfuscation in [BKMPRS18]. Conjunction obfuscation was also studied in
[BVWW16; GZ19].

This chapter gives a new solution to SSF and BSF obfuscation based on SP, which
is a much simpler and trustworthy assumption in the sense that it is at least as hard
as DLP for some range of parameters (as shown in Chapter 3). Let r be the maximal
difference of size allowed between an accepting input set and the set being obfuscated.
We obfuscate SSF and BSF with r � n=2 � p�n ln 2. Conjunction is then redefined
using SSF and BSF. An elegant obfuscator for conjunctions is presented based on TSP.

4.1 Small Superset Testing

Denote the Hamming weight of a binary string x as jxj.

Definition 28 (Small Superset Function, SSF). Let x 2 f0; 1gn be a characteristic
vector of a subset of f1; : : : ; ng. A small superset function with respect to x is
a function fx : f0; 1gn ! f0; 1g; y 7! fx(y) such that fx(y) = 1 if and only if
y � x 2 f0; 1gn and jyj� t, where t 2 N with 0 � t � n is a threshold indicating
“small”.

Definition 29 (Big Subset Function, BSF). Let x 2 f0; 1gn be a characteristic vector
of a subset of f1; : : : ; ng. A big subset function with respect to x is a function
fx : f0; 1gn ! f0; 1g; y 7! fx(y) such that fx(y) = 1 if and only if x� y 2 f0; 1gn and
jyj� t, where t 2 N with 0 � t � n is a threshold indicating “big”.

Note that we only need to study SSF obfuscation since BSF obfuscation can be

32

reduced to SSF obfuscation. To see this, let fx with threshold t be a BSF. Then f�x

with threshold n� t is an SSF, where �x is the complement of x. So if we can obfuscate
SSF we can also obfuscate BSF by firstly converting BSF to SSF.

Also, to simplify the security analysis, we consider function families where the sets
have the same size. I.e., all x in the function family have the same Hamming weight.

Evasive Function Family

Denote by Bn;w the set of binary strings of length n and Hamming weight w. Denote
by Un;w the uniform distribution over Bn;w.

Only “evasive” SSF are interesting to obfuscate since x is immediately leaked once a
small superset y of x is leaked.

Proposition 1. There is a polynomial time algorithm which learns the set x of
an SSF given a small superset of x and black-box access to the SSF.

Proof. Let y be a small superset of x. We flip the 1’s of y one by one and queries the
black-box of fx. If the y with a 1-position flipped is still a small superset of x, then the
corresponding position of x is a 0; otherwise it is a 1. Running through all 1’s in y we
learn x. In particular, if all the flipped y’s are rejected, then we learn that x = y.

We define evasive SSF families in the following.

Definition 30 (Evasive SSF Family). Let � be the security parameter and n; t; w

with t � n, w � n be polynomial in �. Let fXngn2N be an ensemble of distributions
over Bn;w. The corresponding SSF family is said to be evasive if there exists a
negligible function �(�) such that for every � 2 N, and for every y 2 f0; 1gn:

Pr
x Xn

[fx(y) = 1] � �(�): (4.1)

Parameters For Evasive Function Family

Now we consider parameters for evasive function family. Let us start with uniform
distributions fXngn2N = fUn;wg, remembering that n and w are polynomials in �.

If jyj< w or jyj> t, then y will never be a small superset of any x with Hamming
weight w hence Inequality (4.1) always holds. If w � jyj� t, then there are at most

�
t
w

�
many x with Hamming weight jxj= w such that y is a superset of x, Inequality (4.1)

33

holds if and only if

t

w

!
=#Bn;w =

t

w

!
=

n

w

!
� 1=2�: (4.2)

An asymptotic way to see this is the following. By Stirling’s approximation, when
k � n we have

�
n
k

�
� nk=(kk

p
2�k). So if w � t � n then

�
n
w

�
=
�
t
w

�
� (n=t)w. Also

note that this is the most basic requirement for t in the sense that it is obtained under
the best possible (i.e., highest entropy) distributions.

Now we consider general distributions fXngn2N. We first define the following entropy.

Definition 31 (Conditional Small Superset Min-Entropy). Let 0 � t � n 2 N. The
small superset min-entropy of a random variable X conditioned on a correlated
variable Y is defined as

HSup;1(X j Y) = � ln (Ey Y [max
y2f0;1gn

Pr[y �X 2 f0; 1gn; jyj� t j Y = y]]):

Now let us see what exactly Inequality (4.1) means. In words, it means that for every
y 2 f0; 1gn, an x sampled from the distribution Xn has negligible probability to have
y as a small superset. Intuitively, this requires that in the space f0; 1gn, the number of
points x representing SSF is large enough and at the same time they are “well spread
out” in the sense that small superset relations between points occur sparsely and evenly
in the space. Rigorously, the following requirement implies Inequality (4.1). where we
now include auxiliary information.

Definition 32 (Small Superset Evasive Distribution). Let X = f(Xn; �n)gn2N be an
ensemble of distributions on Bn;w � f0; 1gpoly(�). We denote a sample from Xn as
(x; �) where � 2 f0; 1gpoly(�) is considered to be auxiliary information about x. We
say that X is small superset evasive if the conditional small superset min-entropy
of x conditioned on � (as in Definition 31) is at least �.

Note that asking for a small superset is a stronger question than asking for a “close”
set. Hence the above requirement is somehow looser than the evasiveness requirement
for fuzzy Hamming distance matching. Intuitively, in the case of fuzzy Hamming dis-
tance matching, we require that the points in the Hamming space are spread out such
that their Hamming balls do not overlap too seriously; while in the case of SSF, the
Hamming balls can overlap more seriously. For example, let x = (01jjc) and y = (10jjc)
be two strings with only the first two bits different, where c 2 f0; 1gn�2. We can see

34

that x and y have very small Hamming distance jx � yj= 2, but neither of them is a
superset of the other.

This means that in the same space f0; 1gn, there are more evasive SSF distributions
than evasive fuzzy Hamming distance matching distributions.

Nonetheless, our obfuscation for SSF has to work under the stronger requirement of
evasive Hamming distance matching. This is because an attacker can always recover
the secret in our scheme x by merely finding a “close” set and not necessarily a small
superset. We therefore use the following definition for evasiveness of SSF.

Definition 33 (Hamming Distance Evasive Distribution [GZ19]). Let � be the security
parameter and n; t; w with t � n, w � n be polynomial in �. Let X = fXngn2N be
an ensemble of distributions on Bn;w � f0; 1gpoly(�). We say that the distribution
Xn is Hamming distance evasive if for all � 2 N, the conditional Hamming ball
min-entropy of x conditioned on � (as in Definition 9 with r := t� w) is at least
�.

4.2 Small Superset Obfuscation

We explain the obfuscation as follows. The high level idea is to encode x 2 f0; 1gn as a
subset product X =

Qn
i=1 p

xi
i (mod q) with respect to some small primes p1; : : : ; pn and

a larger prime modulus q so that if and only if an input y 2 f0; 1gn is a small superset
of x (which implies that x and y have many bits in common) the product

Qn
i=1 p

yi�xi
i

is smaller than q and thus

Y X�1 (mod q) =
nY
i=1

pyi�xii (mod q) =
nY
i=1

pyi�xii

factors over fp1; : : : ; png, where Y =
Qn
i=1 p

yi
i (mod q). We explain the idea explicitly

as follows.

Let n; t 2 N with t < n. Let x = (x1; : : : ; xn) 2 f0; 1gn with Hamming weight w and
r = t�w. We require r � n=2. To obfuscate, the obfuscator samples n different small
primes p1; : : : ; pn from f2; : : : ; Bg for some sufficiently large B 2 N, and a safe prime q
such that Br < q < (1 + o(1))Br. It then computes the product X =

Qn
i=1 p

xi
i (mod q)

and publishes (p1; : : : ; pn; q;X) as the obfuscated function.

To evaluate with an input y = (y1; : : : ; yn) 2 f0; 1gn, the obfuscated function firstly
checks if w � jyj� t. If not then it terminates and outputs 0. If w � jyj� t, then it

35

further computes Y =
Qn
i=1 p

yi
i (mod q) and E = Y X�1 (mod q) =

Qn
i=1 p

yi�xi
i (mod q),

and tries to factor E by dividing it by the primes p1; : : : ; pn one by one. If y � x 2
f0; 1gn then E factors over fp1; : : : ; png and the function outputs 1. Otherwise, if
y�x =2 f0; 1gn, which means y is not a superset of x, then with high probability E will
not factor over fp1; : : : ; png and the function outputs 0. The obfuscator is as follows.

Algorithm 2 SSF Obfuscator
Input: n; t; r; w 2 N, x 2 f0; 1gn with r := t� w � n=2�p�n ln 2

Output: ((p1; : : : ; pn) 2 Nn; q 2 N; X 2 Z�q)

1: sample distinct primes p1; : : : ; pn from f2; : : : ; Bg where B = 3n lnn

2: sample safe prime q from fBr; : : : ; 3Brg
3: compute X =

Qn
i=1 p

xi
i mod q

4: return (p1; : : : ; pn; q;X)

Note that in Algorithm 2 we require r � n
2
�p�n ln 2 due to Inequality (3.1).

The following factoring algorithm (Algorithm 3) is a sub-procedure of the evaluation
algorithm (Algorithm 4).

Algorithm 3 Factor

Input: n 2 N, (p1; : : : ; pn) 2 Nn, a 2 N
Output: 0 or 1

1: for i = 1; : : : ; n do

2: if pija then a a=pi

3: end for

4: return 1 if a = 1 else 0

The evaluation algorithm is the following.

Algorithm 4 SSF Evaluation (with embedded data (p1; : : : ; pn) 2 Nn, q 2 N; X 2 Z�q)
Input: y 2 f0; 1gn
Output: 0 or 1

1: F 0

2: if w � jyj� t then

3: compute Y =
Qn
i=1 p

yi
i (mod q)

4: compute E = Y X�1 (mod q)

5: compute F Factor(n; (p1; : : : ; pn); E)

6: end if

7: return 1 if F = 1 else 0

36

Avoiding False Positives Using Lattice Arguments

Note that if y is not a small superset of x, then it will either (1) result in some E

which contains a prime factor not in fp1; : : : ; png or e =2 f0; 1gn; or (2) result in some
E such that E is still a product of primes in fp1; : : : ; png and the factorization of E
is square-free. The former case will be correctly rejected by Algorithm 4. The latter
case will be falsely accepted. We call a y 2 f0; 1gn a false positive if it is not a small
superset of x but is accepted by Algorithm 4.

Now we discuss how to avoid false positives.

Let y be a false positive. We have that E =
Qn
i=1 p

yi�xi
i (mod q) =

Qn
i=1 p

ei
i (mod q)

with
Qn
i=1 p

ei
i < q and e = (e1; : : : ; en) 2 f0; 1gn. I.e.,

Qn
i=1 p

yi�xi�ei
i = 1 (mod q) with

y� x� e 6= 0. This implies a nonzero short vector z 2 f�2;�1; 0; 1gn of length � 2
p
n

in the lattice
L =

(
z 2 Zn

�����
nY
i=1

pzii = 1 (mod q)

)
:

To avoid false positives, it is sufficient that the shortest vector in the above lattice is
longer than 2

p
n. If the primes p1; : : : ; pn are sufficiently random, which means that the

lattice is sufficiently random, then we can employ the Gaussian heuristic to estimate
the length of the shortest vector as

�1 �
s

n

2�e
vol(L)

1
n :

Also, by the first isomorphism theorem, the volume of the lattice vol(L) is given by
the size of the image jim �j of the group morphism

� : Zn ! Z�q;

(x1; : : : ; xn) 7!
nY
i=1

pxii (mod q)

whose kernel defines L. Hence

vol(L) � '(q) = q � 1;

where ' is the Euler totient function. The equality holds if and only if fp1; : : : ; png

37

generates Z�q. So

�1 �
s

n

2�e
vol(L)

1
n �

s
n

2�e
(q � 1)

1
n <

s
n

2�e
q
1
n :

If we take �1 =
q

n
2�e

q
1
n and q � (3n lnn)r > (n lnn)r, for �1 > 2

p
n we require that

r >
n ln(2

p
2�e)

ln(n lnn)
: (4.3)

If r satisfies this condition then heuristically there are no false positives.

Evidence for the Gaussian Heuristic in These Lattices

To provide evidence for the Gaussian heuristic on the relation lattice L, we give some
experimental results. Due to the limitation of computational resources, we only work
with small parameters such as n = 20 or 30 or 40, r = b n

lnn
c (which is an appropriate

choice as we will be discussing in the later section about parameters), and B = 3n lnn.

Let �1 denote the length of the shortest vector in a lattice and let denote the
Gaussian heuristic. For each n = 20 or 30 or 40, we create 1000 lattices L from random
subset products, calculate the proportion of lattices that �1= falls into the 20 intervals
[0:0; 0:1); [0:1; 0:2); : : : ; [1:9; 2:0], respectively. The results are as follows.

When n = 20, r = b n
lnn
c, B = 3n lnn, the sequence of proportions is:

(0; 0; 0; 0; 0; 0; 0; 0; 0; 0;
9

20
;
11

20
; 0; 0; 0; 0; 0; 0; 0; 0):

When n = 30, r = b n
lnn
c, B = 3n lnn, the sequence of proportions is:

(0; 0; 0; 0; 0; 0; 0; 0;
2

1000
;
26

1000
;
399

1000
;
557

1000
;
16

1000
; 0; 0; 0; 0; 0; 0; 0):

When n = 40, r = b n
lnn
c, B = 3n lnn, the sequence of proportions is:

(0; 0; 0; 0; 0; 0; 0; 0; 0;
29

1000
;
702

1000
;
269

1000
; 0; 0; 0; 0; 0; 0; 0; 0):

We can see that for most cases �1= 2 [1:0; 1:2], which means that the Gaussian
heuristic is quite close to the true length of the shortest vectors most of the time. Also
�1 tends to be larger than , which gives more confidence in Inequality (4.3) to avoid

38

false positives.

Dealing with False Positives by Hashing Another way to deal with false posi-
tives is to use a hash function or a point function obfuscator. Let us take hash as an
example. To avoid false positives, all we need to do is to compute and output an extra
value h = H(x) in Algorithm 2, where H is a collision resistant hash function modeled
as a random oracle; and in Factor, store the factors of E in a list F and replace “return
1” with “return F ”; also in Algorithm 4, add a process to recover x from F and compare
its hash value against H(x). If y is a small superset of x, then the factors of E will tell
the positions of the distinct bits between x and y, then one can recover x by flipping
y at those positions. Otherwise if y is a false positive, then doing so will give a wrong
x0 6= x which can be detected by comparing the hash values.

Functionality Preservation

Theorem 7. Assuming the Gaussian heuristic and Inequality 4.3, the obfuscator
given by Algorithm 2 and 4 is functionality-preserving.

Proof. Note that the inputs y with jyj< w or jyj> t will always be correctly rejected.
We therefore only discuss the case where w � jyj� t.

Let E = Y X�1 (mod q) =
Qn
i=1 p

ei
i (mod q) with e = (e1; : : : ; en) = y�x 2 f�1; 0; 1gn.

If y is a small superset of x, then e 2 f0; 1gn and jej� r, hence
Qn
i=1 p

ei
i < Br < q. This

means E is a product of primes in fp1; : : : ; png hence will be reduced to 1 in Factor and
y will be correctly accepted by Algorithm 4.

On the other hand, false positives are avoided by Inequality 4.3 assuming the Gaus-
sian heuristic. Hence if y is not a small superset of x, it can only result in some E

which contains a prime factor not in fp1; : : : ; png or e =2 f0; 1gn. This will be correctly
rejected by Algorithm 4.

Polynomial Slowdown

To show polynomial slowdown compared to the unobfuscated function, it is sufficient
to show polynomial complexity of the obfuscated function.

Theorem 8. The time complexity of the obfuscated function given by Algorithm 4
is polynomial in �.

39

Proof. In the obfuscating algorithm (Algorithm 2), we sample n + 1 primes, perform
n � 1 modular multiplications of integers of size < q. Therefore the time complexity
of the obfuscation is linear in the number of modular multiplications of integers of size
< q.

Again, in the evaluation algorithm (Algorithm 4), we perform n�1 modular multipli-
cations of integers of size < q to compute Y , and 1 inversion, 1 modular multiplication
of integers of size < q to compute E, also n inversions and n modular multiplications
of integers of size < q to run Factor (Algorithm 3). Therefore the time complexity of
the evaluation is also linear in the number of modular multiplications of integers of size
< q.

Now since q < (1 + o(1))Br, we have ln q < r ln((1 + o(1))B) < n ln(cn lnn) =

poly(�), where c is a constant. Hence the time complexity of the obfuscated function is
polynomial in � hence has polynomial slowdown compared to the original function.

Security

The security is based on hardness assumptions that are slightly different from Assump-
tion 1 and 2. We consider SP and d-SP over points x 2 f0; 1gn with fixed Hamming
weight w � n=2 and with auxiliary information given.

The following assumption serves the proof of input-hiding, which involves some global
auxiliary information � 2 f0; 1gpoly(�) about the entire function family.

Assumption 5 (Hard SP with Global Auxiliary Information). Let Xn be a distribution
over Bn;w where n=2 � n=8 � w � n=2 + n=8. Let � 2 f0; 1gpoly(�) be auxiliary
information. For every PPT algorithm A, for every � 2 N, there exists a negligible
function �(�) such that the probability that A, provided with �, solves an SP
sampled from the (n; r;B;Xn)-SP distribution is not greater than �(�).

We then state the hard d-SP assumption which serves the proof of DVBB. In con-
trast to Assumption 5 where the auxiliary information � is global information for the
entire function family, the following Assumption 6 assumes that d-SP is hard even
given local auxiliary information � about the specific x sampled from Xn. Further-
more, for convenience in proving distributional-indistinguishabiliy, we define d-SP in
the “predicate-augmentation” style (as in Definition 6), namely to define it over a dis-
tribution D0b which outputs �0 = (�;'(x)) instead of just �, for any (non-uniform)
polynomial size predicate ' : Xn ! f0; 1g, where b 2 f0; 1g.

40

Assumption 6 (Hard d-SP with Local Auxiliary Information). Fix a (non-uniform)
polynomial time predicate ' : f0; 1gn ! f0; 1g. Let Xn be a distribution over
Bn;w � f0; 1gpoly(�) which samples (x; �) with � some auxiliary information about
x that satisfies Definition 33 (i.e., the conditional Hamming ball min-entropy
of the distribution Xn conditioned on � is still at least �). Let X 0n = (x; �0) be
a distribution over Bn;w � f0; 1gpoly(�) � f0; 1g, where �0 = (�;'(x)). Let D00 =

(p1; : : : ; pn; q;X; �
0) be the (n; r;B;Xn)-SP distribution corresponding to X 0n. Let

D01 be D00 with X =
Qn
i=1 p

xi
i (mod q) replaced by uniformly sampled X 0 Z�q, but

all other terms the same. Then for every PPT algorithm A, for every � 2 N,
there exists a negligible function �(�) such that

����� Pr
d0 D0

0

[A(d0) = 1]� Pr
d1 D0

1

[A(d1) = 1]

����� � �(�): (4.4)

Now we show input-hiding from the hardness of SP.

Theorem 9. Let n; t; r; B satisfy Definition 10, the Gaussian Heuristic and In-
equality (4.3). Then assuming the hardness of SP (Assumption 5), the SSF ob-
fuscator given by Algorithm 2 is input-hiding.

Proof. Let (p1; : : : ; pn; q;X) withX =
Qn
i=1 p

xi
i (mod q) for some unknown x = (x1; : : : ; xn) 2

f0; 1gn be an SP instance defined in Assumption 5, and � 2 f0; 1gpoly(�) be some auxil-
iary information. Let A be a PPT algorithm that breaks input-hiding of the obfuscation
given by Algorithm 2-4. Then we solve the SP as follows. We directly call A on input
(p1; : : : ; pn; q;X; �). Since r satisfies Inequality (4.3), i.e., there are no false positives, A
will return a small superset y of x such that E = Y X�1 (mod q) =

Qn
i=1 p

yi�xi
i (mod q) =Qn

i=1 p
ei
i with e = (e1; : : : ; en) 2 f0; 1gn. Then we can factor E to get e and recover x

by flipping y at the positions i such that ei = 1.

We show DVBB from the hardness of d-SP.

Theorem 10. Let Xn be a distribution over Bn;w�f0; 1gpoly(�) with conditional (on
�) Hamming ball min-entropy �. Then assuming Assumption 6, the obfuscation
given by Algorithm 2 - 4 is DVBB (with heuristic correctness if we use the lattice
technique to avoid false positives).

Proof. Functionality preservation and polynomial slowdown are shown in the proof of
Theorem 9. Now we show distributional VBB. We show distributional-indistinguishability,
which implies DVBB by Theorem 1. Fix a predicate '. For every circuit C C�

41

(which contains the secret x Xn), let O(1�; C) = (p1; : : : ; pn; q;X) be the obfuscated
function of C. We define a simulator S which works as follows: S takes � = (n; t; B),
samples n primes p01; : : : ; p

0
n and a modulus q0 in the same way as O, and samples

X 0 Zq. Denote S(1�; �) = (p01; : : : ; p
0
n; q

0; X 0). We will show that the two probabili-
ties in Inequality (2.4) equal the two probabilities in Inequality (4.4) respectively.

For the first equality, we have that for every PPT distinguisher A, for every � 2 N,

Pr
(x;�0) X 0

n

[A(p1; : : : ; pn; q;X; �0) = 1] = Pr
d0 D0

0

[A(d0) = 1];

where d0 = (p1; : : : ; pn; q;X; �
0) and both probabilities are over the randomness of

x; p1; : : : ; pn, q and �0. This holds simply from the definition of D00 (as in Assumption
6).

Replace x with C, X 0n with D0�, and p1; : : : ; pn; q;X with O(1�; C) we have that

Pr
(C;�0) D0

�

[A(O(1�; C); �0) = 1] = Pr
d0 D0

0

[A(d0) = 1]; (4.5)

where the first and the second probabilities are the first probabilities of Inequality (2.4)
and Inequality (4.4) respectively.

For the second equality, we have that for every PPT distinguisher A, for every � 2 N,

Pr
(x;�0) X 0

n

[A(p01; : : : ; p0n; q0; X 0; �0) = 1] = Pr
d1 D0

1

[A(d1) = 1];

where d1 = (p01; : : : ; p
0
n; q

0; X 0; �0) and the probability is over the randomness of x; p01; : : : ; p0n; q0,
X 0 and �0. This holds from the definition of D01 (as in Assumption 6). Note that the
�0 in both probabilities are the same �0 as in Equation (4.5), which is the auxiliary in-
formation about the unique real x sampled at the beginning of the game. In particular
the �0 in d1 is not generated by the simulator but copied from the left hand side.

Replace x with C, X 0n with D0�, and p01; : : : ; p
0
n; q

0; X 0 with S(1�; �) we have that

Pr
(C;�0) D0

�

[A(S(1�; �); �0) = 1] = Pr
d1 D0

1

[A(d1) = 1]; (4.6)

where the first and the second probabilities are the second probabilities of Inequality
(2.4) and Inequality (4.4) respectively.

By Assumption 6, there exists a negligible function �(�) such that the difference
between the right hand sides of Equation (4.5) and Equation (4.6) is not greater that
�(�). Therefore the difference between the left hand sides of Equation (4.5) and Equa-

42

tion (4.6) is not greater that �(�). I.e., Inequality (2.4) holds. This completes the
proof.

Parameters

Restrictions for the parameters �, n, t, r, and q are as follows.

(1) For evasiveness, the basic requirement is Inequality (4.2).

(2) For the hardness of finding a y close to x such that it decodes (which will recover
x), we require r to be small enough, i.e., the Hamming ball of any x should be
small enough. This requires r(n) � n=2�p�n ln 2. (Inequality (3.1)).

(3) To avoid false positives without using a hash function or a point function obfus-
cator, we require r > n ln(2

p
2�e)

ln(n lnn)
(Inequality (4.3)).

From (2) and (3) we have that

n ln(2
p
2�e)

ln(n lnn)
< r(n) � n

2
�
p
n� ln 2:

Notice that
n ln(2

p
2�e)

ln(n lnn)
� n

lnn
� n

ln lnn
� n

2
�
p
n� ln 2;

both r(n) � n
lnn

and r(n) � n
ln lnn

are possible functions for r, where by f � g we mean
limn!1

f(n)
g(n)

= 1 and by f � g we mean limn!1
f(n)
g(n)

= 0.

If we take r(n) = b n
lnn
c, then the condition r � n

2
�pn� ln 2 gives

p
n� ln 2 � n

�
1

2
� 1

lnn

�

() � � n

ln 2

�
1

2
� 1

lnn

�2

(= � � n

6
;

where for the last line we assume n � 1024.

Hence a possible choice of r is the prime counting function r(n) = bn=lnnc � �(n),
i.e., the number of primes not greater than n. A possible function family for the
uniform distribution Bn;w is (n = 6�; r = bn=lnnc). In terms of t, it is (n = 6�; t =

w + bn=lnnc). A concrete setting is: � = 128; n = 1024; t = 659; w = 512; B = 8161

(the 1024-th prime, 13 bits); q � 2Br (about 1912 bits); Xn has conditional Hamming
ball min-entropy �. Note that this Xn is easy to achieve with the settings of n;w

43

and t, because n is much larger than � and there is a big gap between a � min-entropy
distribution and the uniform distribution. Even when we consider auxiliary information
which reduces the entropy a little bit, it is still easy to have a � min-entropy distribution
conditioned on the auxiliary information. Also note that an elementary requirement
is that w > r since otherwise the encoding of x, namely

Qn
i=1 p

xi
i (mod q) is aways

factorable and x will be exposed immediately.

Nevertheless, the choice r = bn=lnnc does not satisfy the size of q required by the
DLP-to-SP reduction (as given by Theorem 2), which is q � 2np(n) for some polynomial
p(n). Indeed no r satisfies this requirement. Namely even if we take the lower bound
r = n ln(2

p
2�e)=ln(n lnn) we still result in a q > 2np(n) for any polynomial p(n).

However we still conjecture that SP is hard for the above parameters.

Application: Conjunction Obfuscation

As an application of TSP, we now show how to obfuscate conjunctions by redefining
them using SSF and BSF. This obfuscation is a simpler solution than the conjunction
obfuscation in [GZ19], which relies on a complicated algorithm to deal with continued
fractions.

Conjunction is also called pattern matching with wildcards function. It is typically
defined as a function fn;r;x : f0; 1gn ! f0; 1g such that fn;r;x(y) = 1 if and only if
yi = xi for all xi 6= �, where x 2 f0; 1; �gn is a pattern with r < n 2 N wildcards. In
the following we denote the number of 1’s in x by jxj.

We give an equivalent definition based on SSF and BSF. The intuition is to do both
superset and subset tests so that any unmatched bit at the non-wildcard positions will
be exposed.

Definition 34. Let x 2 f0; 1; �gn be a pattern with r < n 2 N wildcards. A
conjunction is a boolean function fn;r;x : f0; 1gn ! f0; 1g such that fn;r;x(y) = 1

if and only if y is a subset of x with all wildcards being replaced by 1 and at the
same time y is a superset of x with all wildcards being replaced by 0.

Note that when both the “superset” and “subset” conditions are satisfied, they are
naturally “small” and “big” respectively.

44

Evasiveness

Let w 2 f0; 1gn be x with the wildcard positions set to 0, and z 2 f0; 1gn be x with the
wildcard positions set to 1. We use two functions to define the conjunction fn;r;x(y),
which are the SSF fn;t1;w(y) with jwj= jxj, t1 = jxj+r, and the BSF fn;t01;z(y) with
jzj= jxj+r, t01 = jxj. If we further convert the BSF into an SSF, it is the SSF fn;t2;�z(�y)

with j�zj= n� jzj= n� jxj�r and t2 := n� t01, where �z is the complement of z.

Suppose w and z are uniform. By the approximation form of Inequality (4.2), for
evasivenesses of both fn;t1;w(y) and fn;t2;�z(�y), we require both t

jwj
1 =njwj � 1=2� and

t
j�zj
2 =n

j�zj � 1=2�. Plug in jwj= jxj, j�zj= n� jxj�r, t1 = jxj+r and t2 = n� jxj we have
[(jxj+r)=n]jxj � 1=2� and [(n � jxj)=n]n�jxj�r � 1=2�. Suppose � � n=2 and jxj= n=2,
the second inequality gives r � n=2��. This also satisfies the first inequality if we plug
in � � n=2 and jxj= n=2. Hence for evasiveness parameters, we can think of � � n=2,
jxj� n=2 and r � n=2� �.

Obfuscation

The high level idea is the following. Let n; r;B 2 N with r < n=2 and B 2 O(n lnn).
Let fn;r;x be a conjunction. To obfuscate fn;r;x, we derive two binary strings w; z 2
f0; 1gn from x, where w is x with the wildcard positions set to 0, and z is x with the
wildcard positions set to 1. We then choose two sequences of small primes, (p1; : : : ; pn)
and (`1; : : : ; `n), from f2; : : : ; Bg, and two primes q and s from fBr; : : : ; (1 + o(1))Brg.
We encode w and z into two different subset products as:

X1 =
nY
i=1

pwi

i (mod q);

X2 =
nY
i=1

`zii (mod s):

Then we output (p1; : : : ; pn; `1; : : : ; `n; q; s;X1; X2) as the obfuscated function. The
algorithm is the following.

45

Algorithm 5 Conjunction Obfuscator
Input: n 2 N, r 2 N, x 2 f0; 1; �gn
Output: (p1; : : : ; pn; `1; : : : ; `n) 2 N2n; q; s 2 N; X1; X2 2 Z�q
1: set w as x with � 0, set z as x with � 1, and set �z as the complement of z

2: sample distinct primes p1; : : : ; pn; `1; : : : ; `n from f2; : : : ; Bg where B 2 O(n lnn)

3: sample safe primes q; s from fBr; : : : ; (1 + o(1))Brg
4: compute X1 =

Qn
i=1 p

wi

i mod q and X2 =
Qn
i=1 `

�zi
i mod s

5: return (p1; : : : ; pn; `1; : : : ; `n; q; s;X1; X2)

To evaluate with an input y 2 f0; 1gn, we compute

Y1 =
nY
i=1

pyii (mod q);

Y2 =
nY
i=1

`�yii (mod s);

and E1 = Y1X
�1
1 (mod q), E2 = Y2X

�1
2 (mod s). We then use Algorithm 3 to factor

E1 using the primes p1; : : : ; pn, and factor E2 using `1; : : : ; `n. If both E1 and E2 factor
successfully, then output 1, otherwise output 0. The evaluation algorithm is as follows.

Algorithm 6 Conjunction Evaluation (with embedded data (p1; : : : ; pn; `1; : : : ; `n) 2 N2n, q; s 2
N; X1; X2 2 Z�q
Input: y 2 f0; 1gn
Output: 0 or 1

1: compute Y1 =
Qn
i=1 p

yi
i (mod q) and Y2 =

Qn
i=1 `

�yi
i (mod s)

2: compute E1 = Y1X
�1
1 (mod q) and E2 = Y2X

�1
2 (mod s)

3: compute F1 Factor(n; (p1; : : : ; pn); E1) and F2 Factor(n; (`1; : : : ; `n); E2)

4: return 1 if F1 = F2 = 1 else 0

Avoiding False Positives Using Lattice Arguments

Denote U1 =
Qn
i=1 p

wi

i , U2 =
Qn
i=1 `

�zi
i , V1 =

Qn
i=1 p

yi
i , and V2 =

Qn
i=1 `

�yi
i . Then E1 =

V1=U1 (mod q), E2 = V2=U2 (mod s). We define a false positive to be a y 2 f0; 1gn
such that y is not a matching pattern to x yet both E1 and E2 factor successfully in
Algorithm 6.

Let us see how to avoid false positives. Note that a false positive y 2 f0; 1gn gives a

46

short vector u = y � w � e1 2 f�2;�1; 0; 1gn in the lattice

L1 =

(
u 2 Zn

�����
nY
i=1

puii = 1 (mod q)

)
;

and a short vector v = �y � �z � e2 2 f�2;�1; 0; 1gn in the lattice

L2 =

(
v 2 Zn

�����
nY
i=1

`vii = 1 (mod s)

)
;

where e1; e2 2 f0; 1gn are “good” error vectors, meaning that the corresponding products
E1; E2 factor successfully. In other words, a false positive means that the same y gives
short vectors in the two lattices L1; L2 simultaneously. Hence to avoid false positives,
it is sufficient (more than enough) to avoid short vectors in both lattices. Notice that
this is implied by the lattice analysis for SSF in Section 4.2. Hence the restriction to r
is the same as Inequality 4.3.

Functionality Preservation

Theorem 11. Assuming the Gaussian heuristic and Inequality 4.3, the obfuscator
given by Algorithm 5 and 6 is functionality-preserving.

Proof. If y matches x at all non-wildcard positions, then y is a small superset of w
and a big subset of z (i.e., y is a small superset of w and �y is a small superset of �z),
so E1 = V1=U1 is an integer < q, and E2 = V2=U2 is an integer < s, then both the
factorings of E1 and E2 will succeed and Algorithm 6 will correctly output 1.

On the other hand, false positives are avoided by Inequality 4.3 assuming the Gaus-
sian heuristic. Hence if there is any non-wildcard position of x does not matched by y,
then at least one of V1=U1 and V2=U2 will be a proper rational, and thus at least one of
E1 and E2 will not factor successfully. Then Algorithm 6 correctly will output 0.

Polynomial Slowdown

To show polynomial slowdown compared to the unobfuscated function, it is sufficient
to show polynomial complexity of the obfuscated function.

Theorem 12. The time complexity of the obfuscated function given by Algorithm
6 is polynomial in �.

47

Proof. It is not hard to see that the time Algorithm 6 takes is about twice the time
the SSF evaluation algorithm (i.e., Algorithm 4) takes. Hence by Theorem 8, the time
complexity of Algorithm 6 is polynomial in �.

Security

We prove input-hiding security of our scheme. The security is based on the hardness
of TSP.

Theorem 13. Let n; t; r; B satisfy Definition 10, the Gaussian Heuristic and In-
equality (4.3). Then assuming the hardness of TSP (Assumption 4), the conjunc-
tion obfuscation given by Algorithm 5-6 is input-hiding.

Proof. Let ((p1; : : : ; pn; q;X), (`1; : : : ; `n; s;X 0)) be a TSP with respect to the a pair of
twin points (x; x0) such that x0 is superset of x. Let A be a PPT algorithm that solves
the obfuscation given Algorithm 5-6. We solve the TSP as follows. We query A on
the TSP above. Since the TSP is exactly an obfuscation instance, A can solve for a
y 2 f0; 1gn which is a superset of x and a subset of x0. We then compute and factor
E = XY �1 (mod q) =

Qn
i=1 p

x0
i
�yi

i (mod q) to obtain the error vector e = x0�y 2 f0; 1gn.
Then we can recover x0 by flipping y at the positions i such that ei = 1. This contradicts
the hardness of TSP hence A does not exist and the obfuscator given by Algorithm 5-6
is input-hiding.

The DVBB security is plausible assuming the hardness of the decisional TSP, which
we do not go into details.

48

Chapter 5

ALGEBRAIC MEMBERSHIP OBFUSCATION

An algebraic set is the solution set of some polynomial equations. Given a point x and
an algebraic set X defined by some polynomials f1; : : : ; fm, the usual way to determine
if x 2 X is to determine if fi(x) = 0 for all i 2 f1; : : : ;mg. We are curious about how
to give membership testing of an algebraic set without leaking the polynomials.

Previous work handled the special cases of hyperplane and hypersurfaces over large
finite fields [CRV10; BBCKPS14]. This dissertation is the first to address the problem
for smaller fields and in greater generality.

Canetti, Rothblum, and Varia [CRV10] gave a solution to a special case of this
problem. Let Fq be a finite field of order q. A hyperplane is defined by a vector
a = (a1; : : : ; an) 2 Fnq orthogonal to it. A hyperplane membership function with re-
spect to a hyperplane through the origin is a Boolean function fa : Fnq ! f0; 1g such
that fa(x) = 1 if and only if x = (x1; : : : ; xn) is a nonzero root of the homogeneous
linear polynomial f(x1; : : : ; xn) = a1x1 + � � � + anxn. Let G be a group of order q

generated by g and let 1G be its identity. The idea of [CRV10] is to encode each coef-
ficient ai by the discrete logarithm problem (DLP) as gai, and to evaluate on an input
x = (x1; : : : ; xn) 2 Fnq by determining whether (ga1)x1 � � � (gan)xn = 1G. However DLP is
not hard when q is small or when it is not prime. Hence their method only works when
q is an exponentially large prime. Moreover, due to the O(

p
q) complexity of some

generic DLP algorithms such as the Baby-Step Giant-Step algorithm [Sha73; Nec94]
and Pollard’s rho algorithm [Pol78], they need q > 22� to achieve �-bit security.

Later, Barak, Bitansky, Canetti, Kalai, Paneth, and Sahai [BBCKPS14] extended
the work of [CRV10] from hyperplanes to hypersurfaces. But they still only consider a
single equation and rely on an idealized multi-linear map whose existence is currently
a dream.

This chapter studies the obfuscation problem of more general algebraic sets given by
multiple equations with an arbitrary prime power q. Specifically, let � be the security
parameter, ` be the number of monomials of bounded degree, and m be the number of
polynomial equations. We obfuscate algebraic set membership for prime powers q � 2

and �=log2 q < m < `.

49

5.1 Algebraic Membership Testing

We consider algebraic sets over finite fields Fq with q a prime power. The algebraic
closure of Fq is the union of the finite fields Fqn for n 2 N. We define affine and
projective algebraic set membership functions in the following.

Definition 35 (Affine Algebraic Set Membership Function, a-ASMF). Let Fq[x1; : : : ; xn]
be a polynomial ring over a finite field Fq of order q. Let (A; b) 2 Fm�(`+1)q with
b 6= 0 be the augmented matrix of the following system of equations over Fq:

a1;1M1 + � � �+ a1;`M` = b1;

...

am;1M1 + � � �+ am;`M` = bm;

where M1; : : : ;M` 2 Fq[x1; : : : ; xn] are fixed monomials that can be evaluated in
polynomial time (i.e., with bounded degree). An affine algebraic set membership
function is a Boolean function fA;b : Fnq ! f0; 1g such that fA;b(x) = 1 if and only
if x is a solution of the equations.

Definition 36 (Projective Algebraic Set Membership Function, p-ASMF). Let Fq[x0; : : : ; xn]
be a polynomial ring over a finite field Fq of order q. Let A 2 Fm�`q be the coefficient
matrix of the following system of homogeneous equations over Fq:

a1;1M1 + � � �+ a1;`M` = 0;

...

am;1M1 + � � �+ am;`M` = 0;

where M1; : : : ;M` 2 Fq[x0; : : : ; xn] are fixed monomials of the same total degree and
that can be evaluated in polynomial time, also Mi and Mj do not share a common
invariant for i 6= j. A projective algebraic set membership function is a Boolean
function fA : Fnq ! f0; 1g such that fA(x) = 1 if and only if x is a non-zero root of
the equations.

Note that p-ASMF only accept non-zero roots because 0 is not a point in projective
space.

50

Evasive Function Family

We show in the following that an algebraic set membership function can be learned if
the proportion of accepting inputs is high.

Proposition 2. Let fA;b be an algebraic set membership function and V be its
algebraic set. If the proportion of accepting inputs of fA;b is 1=p(�) for some
polynomial p, then there exist a PPT adversary A which finds a basis of the ideal
I(V) given black-box access to fA;b.

Proof. Let m0 be the row rank of (A; b). We define A as follows. A keeps sampling
random points x from Fq and queries the black-box of fA;b until having `�m0 linearly
independent accepting vectors of the form (M1(x); : : : ;M`(x)), for ` � m0 different
accepting inputs x. A then solves for the orthogonal complement (A0; b0) of the `�m0

vectors. Notice that span(A; b) = span(A0; b0). Hence (A0; b0) is the coefficient matrix of
a basis of I(V).

By Proposition 2, non-evasive ASMF are learnable. Hence it is only interesting
to obfuscate evasive ASMF. We define evasive a-ASMF and p-ASMF families in the
following. They follow from Definition 1 immediately.

Definition 37 (Evasive a-ASMF Family). Let � be the security parameter. Let
m; ` 2 N with m < ` be polynomial in �. Let C = fCm;`gm;`2N with Cm;` =

ffA;bgA;b2Fm�(`+1))
q

be a collection of a-ASMF functions. We say C is evasive if
there exists a negligible function �(�) such that for every x 2 Fnq and for every
� 2 N,

Pr
A;b Fm�(`+1)

q

[fA;b(x) = 1] � �(�): (5.1)

Definition 38 (Evasive p-ASMF Family). Let � be the security parameter. Let
m; ` 2 N with m < ` be polynomial in �. Let C = fCm;`gm;`2N with Cm;` = ffAgA2Fm�`

q

be a collection of p-ASMF functions. We say C is evasive if there exists a negligible
function �(�) such that for every x 2 Fnq and for every � 2 N,

Pr
A Fm�`

q

[fA(x) = 1] � �(�): (5.2)

Evasiveness gives a restriction on the monomials. Note that the function family is
about a fixed public monomial sequence. One issue we might concern about is whether

51

the public monomials themselves leak accepting inputs. For example, suppose the
monomial sequence is (x1x2; x2x3; : : :), then all nonzero points of the form (0 : x2 : 0 :

� � � : 0) or (x1 : 0 : x3 : 0 : � � � : 0) are roots to a p-ASMF, meaning that no matter
how we hide the coefficient matrix, input-hiding will never be achieved. However, this
concern is not necessary because this kind of monomial sequences are already avoided
by evasiveness. This is because if the monomial sequence is (x1x2; x2x3; : : :), then for a
nonzero point of the form (0 : x2 : 0 : � � � : 0) or (x1 : 0 : x3 : 0 : � � � : 0), the probability
that a random p-ASMF accepts this point is 100%, which contradicts the evasiveness
requirement.

Parameters For Large Enough Algebraic Set

It is generally inefficient (super-polynomial complexity) to solve polynomial equation
systems. Hence in general we do not need to worry about the trivial obfuscation which
simply hashes every single point in the algebraic set. However in the cases where the
systems are efficiently solvable (e.g., linear equation systems), we require that the size
of the algebraic set to be super-polynomial to avoid the trivial obfuscator. For this it
is sufficient to require that

qn�m � spoly(�) (5.3)

for some super-polynomial spoly(�). This gives a requirement for the gap between m

and ` according to the size of q. Namely if q is smaller, we require the gap larger; if q
is larger, then we can have m closer to `.

Parameters For Evasive Function Family

In the affine case, for an x 2 Fnq , let M = (M1(x); : : : ;M`(x)) 2 Fnq be the vector with x

plugged in. The left kernel of the vector (M;�1) has dimension ` hence it is of order q`.
Any m vectors in the kernel form a matrix (A; b) such that AM = b. So the number of
m� (`+1) matrices (A; b) such that AM = b is qm`. Also the number of all m� (`+1)

matrices is qm(`+1). For evasiveness, we want the probability that a uniformly sampled
matrix (A; b) Fm�(`+1)q satisfies AM = b to be

Pr
A;b Fm�(`+1)

q

[fA;b(x) = 1] =
qm`

qm(`+1)
=

1

qm
� 1

2�
: (5.4)

52

Similarly, the requirement for the projective case is

Pr
A Fm�`

q

[fA(x) = 1] =
qm(`�1)

qm`
=

1

qm
� 1

2�
: (5.5)

Both Inequality (5.4) and (5.5) give

qm � 2�: (5.6)

Suppose � = 128, three typical choices of m are as follows: if q = 2 then we require
m � 128; if q = 280 then we require m � 2; if q = 2128 then m can be as small as 1. In
the last case the problem reduces to hypersurface membership [BBCKPS14], of which
a special case is hyperplane membership [CRV10].

Note that Inequality (5.6) gives the full generality of the ASMF obfuscation problem
one can solve. In this chapter we solve it in approximately full generality.

5.2 Algebraic Membership Obfuscation

We explain our techniques via the affine case. The projective case is similar.

We obfuscate an a-ASMF fA;b as follows. We first do a primary randomization by
performing a change of basis on (A; b) to get (�A;�b) := R(A; b) = (RA;Rb), where
R 2 Fm�mq is a random matrix sampled from the set Invt(Fm�mq) of invertible matrices
in Fm�mq . We then sample k random rows (A0; b0) Fk�(`+1)q such that m + k � `.
We shuffle the m + k rows of (�A;�b) and (A0; b0) and denote the resulting matrix as
(A�; b�) 2 F(m+k)�(`+1)

q .

Let s = (s1; : : : ; sm+k) 2 f0; 1gm+k be the characteristic vector indicating the posi-
tions of the real rows, i.e., si = 1 if and only if the i-th row of (A�; b�) is a row of (A; b),
for all i 2 f1; : : : ;m + kg. Let fs be an SSF on f0; 1gm+k with the “small” threshold
m+k=q < t < m+k, where m+k=q is the expected number of rows in (A�; b�) satisfied
by an arbitrary point in the algebraic set. Let OS be an input-hiding SSF obfuscator
(e.g., the obfuscator in [BCJJLMMMR19] or in Chapter 4). We publish (A�; b�; OS(fs))

as the obfuscated function. The details are given in Algorithm 7.

53

Algorithm 7 AMSF Obfuscator

Input: �; q; `;m 2 N with q > 2�=m, A; b 2 Fm�(`+1)q

Output: (A� 2 F(m+k)�`
q ; b� 2 F(m+k)

q ; OS(fs))

1: choose a polynomial size a such that 2�=m < (1 + a)=(1 + a=q + o(1)) < q

2: set k = am, t = d(1 + a=q + o(1))me
3: sample R Invt(Fm�mq) and compute (�A;�b) = R(A; b)

4: sample A0 Fk�`q

5: if b 6= 0 then sample b0 Fkq else set b0 = 0

6: randomly permute the rows of ((�A;�b); (A0; b0))> to get (A�; b�)

7: create s = (s1; : : : ; sm+k) f0; 1gm+k such that si = 1 if and only if (A�; b�)i = (�A;�b)j for

some j 2 f1 : : : ;mg, for all i 2 f1; : : : ;m+ kg
8: obfuscate the SSF fs (with the “small” threshold t) as OS(fs)

9: return (A�; b�; OS(fs))

Let us look at some parameter examples. Note that 2�=m < (1+a)=(1+a=q+o(1)) < q.
Suppose q = 2, � = 128 and m = 129, we can take a = 259. Suppose q = 3, � = 128

and m = 81, we can take a = 794.

The evaluation is as follows. It takes as input an x, evaluate all m+ k equations on
x and define a characteristic vector s0 = (s01; : : : ; s

0
m+k) 2 f0; 1gm+k such that s0i = 1 if

and only if x is a solution of the i-th equation, for all i 2 f1; : : : ;m+ kg. It eventually
outputs what OS(fs) outputs on s0. The algorithm is the following.

Algorithm 8 AMSF Evaluation (with embedded data (M;A�; b�; OS(fs))

Input: x 2 f0; 1gn
Output: 0 or 1

1: compute y = A� �M(x)� b�

2: set s0 = (s01; : : : ; s0m+k) 2 f0; 1gm+k such that s0i = 1 if and only if yi = 0, for all i 2
f1; : : : ;m+ kg

3: return OS(fs)(s
0)

Functionality Preservation

Theorem 14. The obfuscator OA given by Algorithm 7-8 is approximate-functionality-
preserving.

Proof. First notice that RAM = Rb and AM = b have the same set of solutions since
R is invertible.

54

Now if x is a solution then s0 is a superset of s because x satisfies all rows of (�A;�b)
indicated by s. Also s0 is “small” with high probability, namely its Hamming weight js0j�
t because an x is expected to satisfy m+k=q rows but m+k=q < t := d(1+a=q+o(1))me.
By choosing a proper number for “o(1)” we can ensure that the probability that x

satisfies more than t rows is negligible in �. (For example, suppose q = 2, � = 128,
m = 129, a = 259, k = am = 33411, t = d(1 + a=q + 9)me = 17996, then the
probability that a point in the algebraic set satisfies t � m = 17867 dummy rows is
� 2:008 � 10�46 < 1=2128 � 2:939 � 10�39.) Hence s0 is a small superset of s with
overwhelming probability and thus OS(fs)(s

0) = 1 and the obfuscated a-ASMF will
correctly output 1 with overwhelming probability.

On the other hand, if x is not a solution, then at least one of the rows of (�A;�b)

will not be satisfied and s0 will not be a superset of s. Then OS(fs)(s
0) = 0 and the

obfuscated a-ASMF will correctly output 0.

Polynomial Slowdown

To show polynomial slowdown compared to the unobfuscated function, it is sufficient
to show polynomial complexity of the obfuscated function.

Theorem 15. The time complexity of the obfuscated function given by Algorithm
8 is polynomial in �.

Proof. Algorithm 8 evaluates m+k = (1+a)m polynomials of bounded degree, gener-
ates a vector s0 of polynomial length, and evaluates OS(fs) on s0. Due to the polynomial
size of a and the polynomial complexity of OS, Algorithm 8 has polynomial complex-
ity.

Security

We first show input-hiding.

Theorem 16. The obfuscator OA given by Algorithm 7 is input-hiding on evasive
algebraic set membership functions assuming input-hiding of the small superset
obfuscator OS.

Proof. Let A be any PPT algorithm that breaks input-hiding of the ASMF obfuscator
OA given by Algorithm 7 with probability �(�). We construct an algorithm B against

55

input-hiding of the SSF obfuscator OS with success probability �(�) and show that
�(�) = �(�).

Given an obfuscated SSF OS(fs) with its parameters satisfying the requirements in
Algorithm 7 (we will come back to it at end of the proof to discuss its existence),
together with some global auxiliary information � 2 f0; 1gpoly(�) of the SSF family, B
finds a small superset s0 of s as follows. To create an obfuscated ASMF instance, B first
set the parameters m, k and ` as in the above paragraph. Then B samples a random
(m+k)� (`+1) matrix (R�; r�) and calls A with (R�; r�; OS(fs); �; �) for a solution of
the equation Rx = r, where (R; r) are the rows indicated by s, and � 2 f0; 1gpoly(�) is
the global auxiliary information of the ASMF family. Since the distribution of (R�; r�)
and (A�; b�) (as in Algorithm 7) are the same, A will return a point x 2 Fnq which tells
a small superset s0 2 f0; 1gm+k of s with probability �(�). Then B outputs s0. We see
that the probability that B breaks input-hiding of OS is equal to the probability that
A breaks input-hiding of OA. Hence �(�) = �(�). By the input-hiding property of
OS, �(�) is negligible. Hence �(�) is negligible. Also note that A is an arbitrary PPT
algorithm against the input-hiding of OA. Hence OA is input-hiding.

To show the existence of OS(fs), we consider the SSF obfuscator in Chapter 4. Note
that the parameters q;m; k; ` for our ASMF obfuscation is k = am such that 2�=m <

(1+a)=(1+a=q+o(1)) < q, and t = d(1+a=q+o(1))me. Also n0 = m+k. On the other
hand, a suggested family of SSF in Chapter 4 is (n0 � 6�; t � m+n0=lnn0), where n0 is
the secret length, m is the secret weight, and t is the “small” threshold. Now, note that
t = d(1+a=q+o(1))me � m+n0=lnn0 is always true for q � 2. The only requirement left
is n0 � 6�, which is easy to satisfy by choosing a large enough a. (A concrete setting
for ASMF obfuscation and the SSF obfuscation its uses is: q = 4;m = 2�; a = 2,
k = am = 4�, ` := 3m = 6�, n0 = m+ k = 6� and t � (1 + a=q)m = 3� = n0=2.)

We then show the obfuscator hides the span of the coefficient matrix A.

Theorem 17. The obfuscator given by Algorithm 7 hides the span of the coefficient
matrix A 2 Fm�(`�1)q if q`�m � 2�, assuming input-hiding of the small superset
obfuscator OS .

Proof. We show that if there exists a PPT adversary A which, with noticeable proba-
bility, computes the Hermite normal form H(A) of A, then there exists a PPT algorithm
B which breaks input-hiding of the obfuscator given by Algorithm 7 hence (by Theorem
16) breaks input-hiding of the SSF obfuscator OS.

56

Given an obfuscated ASMF (A�; b�; OS(fs); �), B works as follows: It directly queries
A with (A�; b�; OS(fs); �). By assumption, A outputs H(A). B then tests which rows
of A� are in span(H(A)), and solves for a point x that satisfies the corresponding rows
in (A�; b�) (we call these rows the selected rows). B outputs x.

We show that with overwhelming probability the solution x exists and is an accepting
input. It is easy to see that if x exists then it is an accepting input since all the m

real rows are being selected by span(H(A)) and if x satisfies all selected rows, it must
satisfy all the real rows. To see its existence, just notice that the only case that the
selected rows are not consistent is when there exists a row (A�i ; b

�
i) which is a linear

combination of the m real rows except that the constant entry b�i is flipped, but this
happens with negligible probability. This is because q`�m � 2� and the probability that
a random `-dimensional vector falls into span(H(A)) is � 1=2�. Hence in the k dummy
rows (polynomially many) of A�, we expect < 1 row are in span(H(A)). Hence with
overwhelming probability the selected rows are precisely the m real rows. Hence with
overwhelming probability B computes a correct solution x to Ax = b. This contradicts
Theorem 16. Hence A does not exist and span(A) is hidden.

Theorem 17 means that our obfuscation not only hides the algebraic set, but also
hides its shape, i.e., the shape of the geometric locus, which is given by span(A).

Parameters

Now we explain the parameters of our obfuscator (as given by Algorithm 7) and deter-
mine the generality of our solution to the ASMF obfuscation problem. In particular, we
would like to investigate how big k and t should be and how they affect the parameters
q; ` and m of the ASMF that can be securely obfuscated by our obfuscator.

Restrictions on the parameters come from three conditions: (1) Hardness of finding
m generators from the m+k polynomials; (2) Hardness of finding an accepting point x
by finding d < m generators from the m+ k polynomials; and (3) Evasiveness of SSF.

For condition (1), we require that the probability that finding the m generators by
randomly choosing m polynomials from the m+k polynomials is 1=

�
m+k
m

�
� 1=2�. For

condition (2), we require that the probability that finding an accepting input by ran-
domly choosing d < m polynomials and solving for a random root of the d polynomials
is
��

m
d

�
=
�
m+k
d

��
� (1=qm�d) � 1=2�. For condition (3), we require

�
t
m

�
=
�
m+k
m

�
� 1=2� by

Inequality (4.2).

57

Let k = am and t = cm for some constants a and c. For condition (1), since
1=
�
m+k
m

�
� (m=(m + k))m = 1=(1 + a)m, it is sufficient to require (1 + a)m � 2�.

For condition (2), since
��

m
d

�
=
�
m+k
d

��
� (1=qm�d) � (m=(m + k))d � (1=qm�d) = (1=(1 +

a)d) � (1=qm�d), it is sufficient to require (1 + a)d � qm�d � 2�. For condition (3), since�
t
m

�
=
�
m+k
m

�
� (t=(m+ k))m = (c=(1+ a))m, it is sufficient to require ((1+ a)=c)m � 2�.

We first consider the case when 2 � q � poly(�). If we take a > q � 1, then
(1 + a)d � qm�d < (1 + a)m, hence condition (1) is implied by condition (2). Also
qm < (1 + a)d � qm�d, hence condition (2) is already implied by Inequality (5.6). We
therefore only need to consider condition (3). It gives a restriction on m as

m � �=(log2(1 + a)=c): (5.7)

Note that a basic constraint is m + k=q < t < m + k. I.e., 1 + a=q < c < 1 + a. We
therefore take c = 1 + a=q + " for some small constant " = o(1). Then we can see that

lim
a!1

1 + a

c

= lim
a!1

1 + a
q
+ "+ (q�1)a

q
� "

1 + a
q
+ "

= lim
a!1

0
@1 +

(q�1)a
q
� "

1 + a
q
+ "

1
A

=q:

I.e., when a ! 1, condition (3) approaches to the evasive requirement of ASMF:
qm � 2� (i.e., Inequality (5.6)). This means that if we take a to be larger and larger, our
solution will get closer and closer to a full solution to the ASMF obfuscation problem.
However we can only take a to be a polynomial otherwise the size of the obfuscated
function will have super-polynomial blow up. But it is almost full generality of ASMF.
To see this, take our previous example after Algorithm 7, when q = 2 (this is actually
the worst case to get a full range of m), ideally a full solution to the problem should
work on ASMF with m � 128. However we have already covered m � 129, which is
just one equation more. In other words, the full generality is m � �=log2 q and we have
achieved m > �=log2 q.

We therefore choose large enough a such that 2�=m < (1 + a)=(1 + a=q+ o(1)) < q to
reach to the greatest generality of our solution. At the same time t is implicitly about
(1 + a=q + o(1))m.

58

Now we consider the case when q � spoly(�) for any super-polynomial spoly(�). In
this case, we have a < q�1 since a must grow at most polynomially in � (for polynomial
blow up of the function size). Then (1 + a)d � qm�d > (1 + a)m, hence condition (2) is
implied by condition (1). Also, since c � 1, we have (1 + a)m > ((1 + a)=c)m, hence
condition (1) is implied by condition (3). Therefore the restriction on m is still from
condition (3). It is the same as given by Inequality (5.7).

In sum, we choose k = am for a sufficient large a such that (1+a)=(1+a=q+o(1)) >

2�=m and choose t = d(1 + a=q + o(1))me. Then the ASMF family that our obfuscator
can obfuscate approaches to its full generality given by Inequality (5.6).

59

Chapter 6

A GENERAL METHOD

This chapter derives a general obfuscation methodology from the algebraic membership
obfuscation. This gives us a new view to the relations between other open problems.

The key point is to view algebraic sets as closed sets of the Zariski topology on the
variety, and that an algebraic set V (I) of an ideal I = (f1; : : : ; fm) is the intersection
of the algebraic sets V (f1); : : : ; V (fm) of the ideal generators f1; : : : ; fm, i.e., V (I) =
V (f1) \ � � � \ V (fm). Then the natural imagination beyond closed sets in a Zariski
topology is that we can talk about closed sets (or more naturally, open sets) of a
generic topology.

In the following we call a membership testing function of any object obj an object
membership function, denoted fobj : X ! Y , where fobj(x) = 1 if and only if x 2 obj.
We call obj the object of the function. For example, an algebraic set membership
function fV (I) is an object membership function with its object the algebraic set V (I).

Now we replay the algebraic set membership obfuscation to gain intuition of the
general method. The algebraic set membership obfuscation includes three process: al-
gebraic set representation, algebraic set randomization and small superset obfuscation.

• Algebraic set representation: Represent an algebraic set V (I) of an ideal I =

(f1; : : : ; fm) as V (I) = V (f1) \ � � � \ V (fm).
• Algebraic set randomization: Mix the real generating algebraic sets V (f1); � � � ; V (fm)

with k dummy algebraic sets V (f 01); : : : ; V (f 0k) to get a sequence of algebraic sets
S = (V (f�1); : : : ; V (f

�
m+k)), where each f� is either an f or an f 0.

• Small superset obfuscation: Obfuscate the small superset function fs with respect
to the characteristic vector s 2 f0; 1gm+k which indicates the positions of the real
algebraic sets in the sequence S.

Now replace the algebraic sets with generic objects, we have a generic object mem-
bership obfuscator O := (Arep; Aran; Omat), where

• Arep: is an object representation finding algorithm which takes as input an object
obj of an object membership function fobj and outputs a set of generators of obj:
fobj1; : : : ; objmg such that obj = (obj1; : : : ; objm).

60

• Aran: is an object randomization algorithm which takes as input a sequence of ob-
jects fobj1; : : : ; objmg and outputs a permuted sequence of objects (obj�1 ; : : : ; obj�m)
containing the m real objects obj1; : : : ; objm and k dummy objects obj 01; : : : ; obj 0k.

• Omat: is a matching obfuscator which takes as input a matching function fs and
outputs an obfuscated function O(fs) of fs.

6.1 Object Representation

Note that it is not secure to mix a single object with a polynomial number of other
objects. This is because brute forcing one element from polynomially many is easy.
Hence the first question is how to represent an object as many different objects.

Unlike Zariski topology where the generators V (f1); : : : ; V (fm) of an algebraic set
V (I) are naturally given by its ideal I = (f1; : : : ; fm), there is no handy generators for
an open set of a generic topology. For example, in a metric space, given a metric ball B,
there is no handy superballs B1; : : : ; Bm of B such that B is precisely the intersection
of these superballs.

Moreover, the concept of topology is an unnecessary restriction. To better find gener-
ators for an object, we generalize topology and define “genology” to capture the intuition
of “generation” in mathematics.

Genology

Recall that a topology � on a set X is a collection of subsets of X which (1) contains ∅
and X; (2) is closed under arbitrary unions; and (3) is closed under finite intersections.
We generalize it by preserving only the last axiom, i.e., closure under finite intersections.

Definition 39. A genology on a set X is a collection of subsets of X which is
closed under finite intersection.

We call the sets in a genology genosets, meaning “generating sets”. Similar to topo-
logical space, we call the pair (X;) (or simply X) a genological space. We also call
the genosets of a topology the genosubsets of the topological space.

The following remarks give intuitions of Definition 39.

Remark 1 (Essence of Generation). In most contexts of mathematics, by “gener-
ation” we essentially mean “set intersection”. Specifically, let X be a set, when
we say that a set S � X is generated by a set T � S, we usually mean that S

61

is the intersection of all subsets S1 � � � ; S` of X that contain T . We can instead
say that S is generated by a minimal subset of fS1; : : : ; S`g that is enough to give
T . For example, when we say that the algebraic set V (f1; : : : ; fm) is generated
by V (f1); : : : ; V (fm), we mean that V (f1; : : : ; fm) is precisely the intersection of
V (f1); : : : ; V (fm).

Remark 2 (Finiteness of Intersections). The reason to require closure under “finite”
intersections comes from the requirement of computational feasibility by function
obfuscation. In fact, this makes the definition more general because a structure
that is closed under infinite intersections must be closed under finite intersections
hence is a genology.

Remark 3 (Closure Under Intersections). The reason to require “closure” under
finite intersections is that we want to ensure that genologies are “dense” in the
sense that for every subset S of a genology , there exists an element � 2 which
is the intersection of the elements in S. On the contrary, if we do not require this,
then the worst case is that is a very “sparse” structure such that the intersection
of any two elements is empty. For example, the collection f∅; fag; fbg; fcg; : : : g of
single element subsets together with the empty set ∅. This makes the definition
meaningless for “generation’.’

Common Genological Spaces

An immediate observation is that topology and �-algebra are all genologies.

Proposition 3. Every topology is a genology. Every �-algebra is a genology.

Proof. By definition. I.e., the axioms of topology (resp., �-algebra) imply the axiom
of genology.

By the definitions of the corresponding spaces, we have the following corollary.

Corollary 1. Every topological space is a genological space. Every measurable
space is a geological space.

Another immediate observation is that vector spaces and modules are all genological
spaces.

Proposition 4. Every vector space is a genological space. Every module is a
genological space.

62

Proof. Let V be a vector space (resp. module). Let be a set of all vector subspaces
(resp., submodules) of V . Note that the intersection of two subspaces (resp., submod-
ules) is still a subspace (resp., submodule). I.e., is closed under intersection. Hence
 is a genology and V is a genological space.

Finding Representation of Objects by Defining Genology

The generality of genology gives us a more flexible way to find generators for an object.
Let F = ffobj : X ! Y gobj be a function family. We find generators for the objects obj
by defining a genology on the function domain X such that each obj in the function
family is the intersection of some genosets in , i.e., obj = obj1 \ � � � \ objm.

Note also that a basic requirement from input-hiding is that none of the generators
obji individually leaks a member of obj. Otherwise one can immediately distinguish
the real generators from the dummy ones by membership testing for the leaked mem-
ber. More precisely, what we really require is that the intersection of any efficiently
recoverable generators is large enough so that a random point in the intersection has
low probability to lie in obj.

Take algebraic set membership as an example. We represent an algebraic set as:
V (I) = V (f1) \ � � � \ V (fm). We require that the intersection of any d < m algebraic
sets V (fi) is exponential times larger than V (I) hence does not leak a point in V (I).

6.2 Object Randomization

As we have seen in the algebraic set membership obfuscation, the randomization method
is very simple. The basic idea is the exponential blow up of combinations, i.e., the
hardness of finding m objects from m + k randomly permuted objects. We call the
randomization process the “mix & permute” randomization.

The “mixing” process is easy. It simply means to put the m real generators with k

dummy objects together. As to “permutation”, the simplest one is uniform permutation.
I.e., to permute the m + k objects uniformly, as what we did in the algebraic set
membership obfuscation.

A basic requirement for the mix & permute randomization is that m and k should be
chosen such that (1) the m + k choose m attack is inefficient; (2) the accepting input
finding attack by choosing d < m generators from m+ k objects is inefficient; and (3)
satisfy the restriction from the matching obfuscation.

63

6.3 Matching Obfuscation

The simplest way to evaluate the randomized sequence (obj�1 ; : : : ; obj�m+k) is to perform
pattern matching. The intuition is: If and only if the input x 2 obj can it spot
the positions of the real objects obj1; : : : ; objm from (obj�1 ; : : : ; obj

�
m+k). Take algebraic

set membership obfuscation as an example, the intuition of evaluation is: If an only
if x 2 V (I) = V (f1; : : : ; fm) can it satisfy (a small superset of) the m generators
f1; : : : ; fm in the randomized sequence (f�1 ; : : : ; f

�
m+k).

The requirement for pattern matching is that the target object obj is represented in an
“independently evaluable” way, meaning that the evaluation of the function can be re-
duced to a “summary” of the “independent” evaluations on the generators obj1; � � � ; objm.
For example, in the algebraic set membership obfuscation, an input x 2 V (I) if and
only if x is a root of every generator f1; : : : ; fm of the ideal I independently. The
“summary” in this case is the logic AND.

For a counter example, consider ideal membership obfuscation. An ideal membership
function with respect to an ideal I = (f1; : : : ; fm) is a function fI(h) such that fI(h) = 1

if and only if h 2 I. In this case we cannot perform independent evaluation on the
randomized sequence (f�1 ; : : : ; f�m+k). This is because even if h is not in any single ideal
(fi), it can still be in I, as long as h = g1f1 + � � � + gmfm is a “linear combination” of
the generators f1; : : : ; fm over k[x1; : : : ; xn]. This “combinatory evaluation” violates the
requirement of “independently evaluable”.

To perform independent evaluation, we also require the existence of an efficient mem-
bership testing algorithm. For example, given a metric ball B(x; r), where x is the cen-
ter of the metric ball and r is the radius of the ball, we require an efficient algorithm
to compute the distance d(x; y) so that we can decide if y 2 B(x; r).

64

Chapter 7

NEW VIEWS AND NEW PROBLEMS

This chapter discusses problems that are related to the algebraic set membership obfus-
cation problem. Note that the relations between most of the problems are not obvious
if without the general obfuscation method. This reflects the meaning of the general
method as well as the algebraic membership problem.

7.1 Vector Subspace and Lattice Membership

Two problems naturally follow from the algebraic set membership problem are the
vector subspace membership and lattice membership problems.

Vector Subspace Membership LetK be a field andKn be a vector space. A vector
subspace membership function with respect to a vector subspace V = (v1; : : : ; vm) � Kn

is a Boolean function fV : Kn ! f0; 1g such that fV (v) = 1 if and only if v 2 V . Let
� be a collection of vector subspaces of V . The vector subspace membership function
family with respect to � is F = ffV gV 2�.

Its obfuscation is similar to the homogeneous linear case of the algebraic set member-
ship problem. The only difference is that the algebraic set membership problem tests
orthogonality against the bases, while the vector subspaces membership problem asks
for linear combinations of the bases. Due to the “independently evaluable” requirement,
we cannot directly encode the bases of the vector subspaces. The solution is to instead
encode the basis fv̂1; : : : ; v̂n�mg of its orthogonal complement. Then we can perform
orthogonality testing: v̂i � x = 0.

Lattice Membership Let Rm be the m-dimensional Euclidean space. A lattice
membership function with respect to a lattice L(B) = fBx : x 2 Zng with the lattice
basis B = (b1; : : : ; bn) 2 Rm�n is a Boolean function fL : Zn ! f0; 1g such that
fL(z) = 1 if and only if z 2 L(B). Let � be a collection of lattices of Rm. The lattice
membership function family with respect to � is F = ffLgL2�.

Similar to algebraic set membership and vector subspace membership, lattice mem-
bership is another natural problem revealing the main idea of the obfuscation method.

65

At a high level, algebraic set membership and vector subspace membership perform
“zero-testing”, while lattice membership performs “integral-testing”. The solution is to
encode the dual basis fb̂1; : : : ; b̂ng then perform “integral-testing”: b̂i � x 2 Z.

7.2 Subscheme and Submanifold Membership

Two kinds of objects that have deep relation to algebraic sets are subschemes and
submanifolds.

Subscheme Membership With a sheaf a topological space can be attached with
different datas (sets, groups, rings) hence being turned into richer kinds of topologi-
cal spaces. Then we can talk about open subset membership obfuscation in the new
topological space. A classic example is the spectrum Spec(R) of a commutative ring
R with the Zariski topology being turned into a locally ringed space, which gives an
affine scheme.

Let X be a scheme. A subscheme membership function with respect to a subscheme
U � X is a Boolean function fU : X ! f0; 1g such that fU(x) = 1 if and only if x 2 U .
Let � be a collection of subschemes of X. The subscheme membership function family
with respect to � is F = ffUgU2�.

Submanifold Membership Let M be a projective complex manifold. An subman-
ifold membership function with respect to a submanifold U �M is a Boolean function
fU : M ! f0; 1g such that fU(x) = 1 if and only if x 2 U . Let � be a collection of
submanifolds of M . The submanifold membership function family with respect to � is
F = ffUgU2�.

Serre’s GAGA principle allows us to map a projective complex manifold to an alge-
braic set. Hence a strategy to obfuscate submanifold membership is to firstly map it
to an algebraic set then obfuscate algebraic set membership instead.

7.3 Metric Ball and Measure Box Membership

Metric Ball Membership An interesting and hard problem is the edit ball mem-
bership problem, or fuzzy edit distance matching problem. By edit distance we mean
Leveshtein distance which involves three operations: insertion, deletion and substitu-
tion. This problem has wide applications in other disciplines such as gene editing in

66

biology and error correcting code construction in coding theory.

An edit ball membership function with respect to an edit ball B(x; r) 2 f0; 1gn,
where x 2 f0; 1gn is a point and r < n 2 N is a threshold, is a boolean function
fB(x;r) : f0; 1gn ! f0; 1g such that fB(x;r)(y) = 1 if and only if the edit distance between
x and y is not greater than r, i.e., y 2 B(x; r). Let � be a collection of edit balls in
f0; 1gn. The edit ball membership function family with respect to � is F = ffBgB2�.

Measure Box Membership In contrast to metric “ball” membership, another prob-
lem of interest is measure “box” membership. An example is high dimensional (dim
> 1) interval membership. Let a1; : : : ; an; b1; : : : ; bn 2 Z and v = ([a1; b1]; : : : ; [an; bn]).
An n-dimensional interval function is a function fv : Zn ! f0; 1g such that fv(x) = 1 if
and only if xi 2 fai; : : : ; big for all i 2 f1; : : : ; ng. Let � be a collection of n-dimensional
intervals. An n-dimensional interval function family with respect to � is F = ffvgv2�.

Note that for a 1-dimensional interval it is not secure to represent it as the intersection
of multiple intervals, because the number of all intervals induced by the representing
intervals on a line grows very slowly and the attacker can easily find an accepting input
by testing membership for all the induced intervals on the line. However, the maximum
number of parts that N n-dimensional hypersphere divide a space is

�
N�1
n

�
+
Pn

i=1

�
N
i

�
.

Hence when the dimension is high enough we expect exponential blow up of induced
intervals to hide the real interval.

7.4 Subgroup and Ideal Membership

Subgroup Membership Let G be a group. A subgroup membership function with
respect to a subgroup H � G is a function fH : G! f0; 1g such that fH(x) = 1 if and
only if x 2 H. Let � be a collection of subgroups of G. The subgroup membership
function family with respect to � is F = ffHgH2�.

Ideal Membership A “dual” problem to the algebraic membership problem is the
ideal membership problem. Let k be a field and k[x1; : : : ; xn] be a polynomial ring.
An ideal membership function with respect to an ideal I � k[x1; : : : ; xn] is a function
fI : k[x1; : : : ; xn]! f0; 1g such that fI(p) = 1 if and only if p 2 I. Let � be a collection
of ideals of k[x1; : : : ; xn]. The ideal membership function family with respect to � is
F = ffIgI2�.

Note that there is a special kind of subgroups and ideals that are easy to find rep-

67

resentations. We call them prime-based objects. These include subgroups of integers,
ideals of a univariate polynomial ring and ideals of the ring of integers. Let nZq be a
subgroup of Zq (the additive group modulo q). It can be represented by its supergroups
as nZq = p1Zq \ � � � \ pmZq. Let I = (f1 � � � fm) be an ideal of a univariate ring k[x]. It
can be represented by its super ideals as I = (f1 � � � fm) = (f1) � � � (fm) = (f1)\� � �\(fm).
Let a = p1 � � � pm = (p1) � � � (pm) be an ideal of the ring of integers OQ = Z. It can be
represented by its super ideals as a = (p1) \ � � � \ (pm).

Another interesting example is Lie groups, which have wide applications in physics.
People in physics mainly interested in a particular type of Lie groups, the matrix Lie
groups, which can be defined using the general linear group GLnC. A common case is
the real general linear group GLnR, which is the group of invertible n�n real matrices.
A way to define Lie subgroups is by specifying the determinant of n�n matrices. Then
to represent a Lie subgroup, one can just represent its determinant.

For example, let a 2 N and let �a = fA 2 GLnR j det(A) = ai; i 2 Zg. Then
�a is a Lie subgroup of GLnR. Too see this, by the closed subgroup theorem, we
only need to see that �a is a closed subgroup of GLnR . To see �a is a subgroup
of GLnR, just to notice that the inverse A�1 of any matrix A 2 �a has determinant
det(A�1) = det(A)�1 = a�i hence is also in �a. By the two-step subgroup test, �a is
subgroup of GLnR. Again, to see �a is closed, let ' : Rn2 ! R; A 7! det(A) be the
determinant function. Since ' is continuous, we only need to see that '(�a) is closed in
R. This is obvious since the elements in '(�a) are discrete points and its complement
Rn'(�a) = � � � (1=ai; 1=ai�1) [� � � [(ai; ai+1) � � � is a union of open intervals hence is
open.

68

Chapter 8

FUTURE WORK

We have given input-hiding obfuscation for the algebraic set membership problem in
great generality. An open problem is to determine whether the obfuscator provides
VBB security.

We have proposed a general obfuscation method for object membership functions.
This method gives a new view to various open problems which were seemingly unrelated
before. Due to lack of time, the development of complete solutions to these problems
is a problem for future work.

It is also interesting to study the post-quantum hardness and applications of SPE,
TSPE, MSPE, and ISPE.

69

BIBLIOGRAPHY

[AJ15] Prabhanjan Ananth and Abhishek Jain. “Indistinguishability Obfuscation

from Compact Functional Encryption”. In: Advances in Cryptology –

CRYPTO 2015. Ed. by Rosario Gennaro and Matthew Robshaw. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2015, pp. 308–326. isbn: 978-3-662-47989-6.

[BBCKPS14] Boaz Barak, Nir Bitansky, Ran Canetti, Yael Tauman Kalai, Omer Paneth,

and Amit Sahai. “Obfuscation for Evasive Functions”. In: Theory of Cryp-

tography. Ed. by Yehuda Lindell. Berlin, Heidelberg: Springer Berlin Hei-

delberg, 2014, pp. 26–51. isbn: 978-3-642-54242-8.

[BCJJLMMMR19] James Bartusek, Brent Carmer, Abhishek Jain, Zhengzhong Jin, Tancrède

Lepoint, Fermi Ma, Tal Malkin, Alex J. Malozemoff, and Mariana Raykova.

“Public-Key Function-Private Hidden Vector Encryption (and More)”. In:

Advances in Cryptology – ASIACRYPT 2019. Ed. by Steven D. Gal-

braith and Shiho Moriai. Cham: Springer International Publishing, 2019,

pp. 489–519. isbn: 978-3-030-34618-8.

[BGIRSVY01] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit

Sahai, Salil Vadhan, and Ke Yang. “On the (Im)possibility of Obfuscat-

ing Programs”. In: Advances in Cryptology — CRYPTO 2001. Ed. by

Joe Kilian. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 1–18.

isbn: 978-3-540-44647-7.

[BKMPRS18] Allison Bishop, Lucas Kowalczyk, Tal Malkin, Valerio Pastro, Mariana

Raykova, and Kevin Shi. “A simple obfuscation scheme for pattern-matching

with wildcards”. In: Annual International Cryptology Conference (CRYPTO).

Springer. 2018, pp. 731–752.

[BLMZ19] James Bartusek, Tancrède Lepoint, Fermi Ma, and Mark Zhandry. “New

Techniques for Obfuscating Conjunctions”. In: Advances in Cryptology

– EUROCRYPT 2019. Ed. by Yuval Ishai and Vincent Rijmen. Cham:

Springer International Publishing, 2019, pp. 636–666. isbn: 978-3-030-17659-4.

[BV15] N. Bitansky and V. Vaikuntanathan. “Indistinguishability Obfuscation from

Functional Encryption”. In: 2015 IEEE 56th Annual Symposium on

Foundations of Computer Science. 2015, pp. 171–190. doi: 10.1109/

FOCS.2015.20.

1

http://dx.doi.org/10.1109/FOCS.2015.20
http://dx.doi.org/10.1109/FOCS.2015.20

[BVWW16] Zvika Brakerski, Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs.

“Obfuscating Conjunctions Under Entropic Ring LWE”. In: Proceedings of

the 2016 ACM Conference on Innovations in Theoretical Computer

Science. ITCS ’16. Cambridge, Massachusetts, USA: ACM, 2016, pp. 147–

156. isbn: 978-1-4503-4057-1. doi: 10.1145/2840728.2840764. url: http:

//doi.acm.org/10.1145/2840728.2840764.

[BW19] Ward Beullens and Hoeteck Wee. “Obfuscating Simple Functionalities from

Knowledge Assumptions”. In: Public-Key Cryptography – PKC 2019.

Ed. by Dongdai Lin and Kazue Sako. Cham: Springer International Pub-

lishing, 2019, pp. 254–283. isbn: 978-3-030-17259-6.

[Can97] Ran Canetti. “Towards realizing random oracles: Hash functions that hide

all partial information”. In: Advances in Cryptology — CRYPTO ’97.

Ed. by Burton S. Kaliski. Berlin, Heidelberg: Springer Berlin Heidelberg,

1997, pp. 455–469. isbn: 978-3-540-69528-8.

[CRV10] Ran Canetti, Guy N Rothblum, and Mayank Varia. “Obfuscation of hy-

perplane membership”. In: Theory of Cryptography Conference (TCC).

Springer. 2010, pp. 72–89.

[Duj04] Andrej Dujella. “Continued fractions and RSA with small secret exponent”.

In: arXiv preprint cs/0402052 (2004).

[Duj09] Andrej Dujella. “A variant of Wieners attack on RSA”. In: Computing

85.1-2 (2009), pp. 77–83.

[FRS16] Benjamin Fuller, Leonid Reyzin, and Adam Smith. “When Are Fuzzy Ex-

tractors Possible?” In: Advances in Cryptology – ASIACRYPT 2016.

Ed. by Jung Hee Cheon and Tsuyoshi Takagi. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2016, pp. 277–306. isbn: 978-3-662-53887-6.

[GGH13] Sanjam Garg, Craig Gentry, and Shai Halevi. “Candidate Multilinear Maps

from Ideal Lattices”. In: Advances in Cryptology – EUROCRYPT 2013.

Ed. by Thomas Johansson and Phong Q. Nguyen. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2013, pp. 1–17. isbn: 978-3-642-38348-9.

[GGHRSW13] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. “Can-

didate Indistinguishability Obfuscation and Functional Encryption for all

Circuits”. In: 2013 IEEE 54th Annual Symposium on Foundations of

Computer Science. 2013, pp. 40–49. doi: 10.1109/FOCS.2013.13.

2

http://dx.doi.org/10.1145/2840728.2840764
http://doi.acm.org/10.1145/2840728.2840764
http://doi.acm.org/10.1145/2840728.2840764
http://dx.doi.org/10.1109/FOCS.2013.13

[GK05] Shafi Goldwasser and Yael Tauman Kalai. “On the impossibility of ob-

fuscation with auxiliary input”. In: 46th Annual IEEE Symposium on

Foundations of Computer Science (FOCS’05). IEEE. 2005, pp. 553–

562.

[GKW17] R. Goyal, V. Koppula, and B. Waters. “Lockable Obfuscation”. In: 2017

IEEE 58th Annual Symposium on Foundations of Computer Science

(FOCS). 2017, pp. 612–621.

[GR07] Shafi Goldwasser and Guy N Rothblum. “On best-possible obfuscation”.

In: Theory of Cryptography Conference (TCC). Springer. 2007, pp. 194–

213.

[GZ19] Steven D. Galbraith and Lukas Zobernig. “Obfuscated Fuzzy Hamming

Distance and Conjunctions from Subset Product Problems”. In: Theory of

Cryptography. Ed. by Dennis Hofheinz and Alon Rosen. Cham: Springer

International Publishing, 2019, pp. 81–110. isbn: 978-3-030-36030-6.

[GZ20] Steven D. Galbraith and Lukas Zobernig. “Obfuscating Finite Automata”.

In: Selected Areas in Cryptography - SAC 2020 - 27th International

Conference, Halifax, NS, Canada (Virtual Event), October 21-23,

2020, Revised Selected Papers. Ed. by Orr Dunkelman, Michael J. Jacob-

son Jr., and Colin O’Flynn. Vol. 12804. Lecture Notes in Computer Science.

Springer, 2020, pp. 90–114. doi: 10.1007/978-3-030-81652-0_4. url:

https://doi.org/10.1007/978-3-030-81652-0_4.

[Hur91] Adolf Hurwitz. “Über die angenäherte Darstellung der Irrationalzahlen

durch rationale Brüche”. In: Mathematische Annalen 39.2 (1891), pp. 279–

284.

[IN96] Russell Impagliazzo and Moni Naor. “Efficient cryptographic schemes prov-

ably as secure as subset sum”. In: Journal of cryptology 9.4 (1996),

pp. 199–216.

[Lin16] Huijia Lin. “Indistinguishability obfuscation from constant-degree graded

encoding schemes”. In: Annual International Conference on the Theory

and Applications of Cryptographic Techniques. Springer. 2016, pp. 28–

57.

[LLL82] Arjen Klaas Lenstra, Hendrik Willem Lenstra, and László Lovász. “Factor-

ing polynomials with rational coefficients”. In: Mathematische Annalen

261.4 (1982), pp. 515–534.

3

http://dx.doi.org/10.1007/978-3-030-81652-0_4
https://doi.org/10.1007/978-3-030-81652-0_4

[LM09] Vadim Lyubashevsky and Daniele Micciancio. “On Bounded Distance De-

coding, Unique Shortest Vectors, and the Minimum Distance Problem”. In:

Advances in Cryptology - CRYPTO 2009. Ed. by Shai Halevi. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2009, pp. 577–594. isbn: 978-3-642-03356-8.

[LPS04] Benjamin Lynn, Manoj Prabhakaran, and Amit Sahai. “Positive Results

and Techniques for Obfuscation”. In: Advances in Cryptology - EURO-

CRYPT 2004. Ed. by Christian Cachin and Jan L. Camenisch. Berlin, Hei-

delberg: Springer Berlin Heidelberg, 2004, pp. 20–39. isbn: 978-3-540-24676-3.

[LSL13] Laura Luzzi, Damien Stehlé, and Cong Ling. “Decoding by embedding:

correct decoding radius and DMT optimality”. In: IEEE Transactions on

Information Theory 59.5 (2013), pp. 2960–2973.

[MM11] Daniele Micciancio and Petros Mol. “Pseudorandom knapsacks and the

sample complexity of LWE search-to-decision reductions”. In: Annual Cryp-

tology Conference. Springer. 2011, pp. 465–484.

[Nec94] Vassiliy Ilyich Nechaev. “Complexity of a determinate algorithm for the

discrete logarithm”. In: Mathematical Notes 55.2 (1994), pp. 165–172.

[Pol78] John M Pollard. “Monte Carlo methods for index computation (mod p)”.

In: Mathematics of computation 32.143 (1978), pp. 918–924.

[Sha73] Daniel Shanks. “Five number-theoretic algorithms”. In: Proceedings of the

Second Manitoba Conference on Numerical Mathematics (Winnipeg),

1973. 1973.

[SW14] Amit Sahai and Brent Waters. “How to use indistinguishability obfuscation:

deniable encryption, and more”. In: Proceedings of the forty-sixth annual

ACM symposium on Theory of computing. ACM. 2014, pp. 475–484.

[Wee05] Hoeteck Wee. “On obfuscating point functions”. In: Proceedings of the

thirty-seventh annual ACM symposium on Theory of computing. ACM.

2005, pp. 523–532.

[WZ17] Daniel Wichs and Giorgos Zirdelis. “Obfuscating compute-and-compare

programs under LWE”. In: 2017 IEEE 58th Annual Symposium on

Foundations of Computer Science (FOCS). IEEE. 2017, pp. 600–611.

4

	Introduction
	Mathematical Background
	Topology
	Algebraic Geometry
	Algebraic Number Theory
	Metric Theory
	Measure Theory
	Representation Theory
	Lattice Theory
	Function Obfuscation

	Subset Product with Errors
	Subset Product
	Twin Subset Product
	Multiple Subset Product
	Subset Product With Errors

	Small Superset Obfuscation
	Small Superset Testing
	Small Superset Obfuscation

	Algebraic Membership Obfuscation
	Algebraic Membership Testing
	Algebraic Membership Obfuscation

	A General Method
	Object Representation
	Object Randomization
	Matching Obfuscation

	New Views and New Problems
	Vector Subspace and Lattice Membership
	Subscheme and Submanifold Membership
	Metric Ball and Measure Box Membership
	Subgroup and Ideal Membership

	Future Work

