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Abstract

Mucociliary transport provides the airways’ vanguard of defence against inspired noxious
materials. Without adequate hydration of the thin layer of liquid that lines the airways,
mucociliary transport would cease, leading to build up of mucus and the development of
infection. Within this thesis a multi-scale computational model was used to investigate the
fluid transport within the airways which is necessary for maintenance of the mucociliary
transport system.

A mathematical description of the fluid secretion elicited by a rise in [Ca2+]i from a single
airway epithelial cell was developed. The model indicates that apical membrane Ca2+ ac-
tivated Cl− channels are not required for Ca2+ induced fluid secretion. It was shown that
when [Ca2+]i followed an oscillatory profile the resulting fluid secretion displayed different
properties to when the model stimulated a tonic rise in [Ca2+]i due to saturation of the Ca2+

gated ion channels. Furthermore, consistent with known physiology, cell volume returned
to equilibrium more rapidly after a hypotonic challenge when Ca2+ gated ion channels were
activated by a rise in [Ca2+]i.

A description of intercellular Ca2+ signalling was developed and used to investigate the
relative roles of IP3 and ATP diffusion in mediating [Ca2+]i waves in airway epithelial tissue.
It was shown that for greater amounts of released ATP, there is a diminishing return in the
radius of [Ca2+]i wave propagation. In addition to this, the radial profile of maximal [Ca2+]i
response from the stimulated cell does not match the flat profile seen in experimental studies.
This suggests that for [Ca2+]i waves to propagate large distances an additional mechanism
such as regenerative release of ATP from cells down stream of the stimulated cell may be
important.

The epithelial cell model was incorporated into a geometric representation of the human
conducting airways. This “cell to organ” coupling was used to investigate the transport of
water and heat within the airways. The current work indicates that energy neutrality on
its own is an unsatisfactory metric of inspired air’s temperature and humidity for invasive
mechanical ventilation and can lead to airway dehydration. It was shown that with inspiration
of air significantly above body core temperature, a redistribution of airway surface liquid
can theoretically occur. This condition represents an extreme which is unlikely to occur
clinically, and suggests that mild heating of the air within the ventilator circuit would not
cause mucociliary transport dysfunction.

The model presented here provides a firm platform for further study of pathological condi-
tions, such as cystic fibrosis, which lead to mucociliary failure.
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Preface

At the forefront of medical exploration, theories are no longer simple and intuitive. Where
once a hypothesis could be formulated from an intuitive understanding of the mechanisms at
play, as we increasingly appreciate the fractal complexity underlying the systems we investi-
gate, producing a rigourous hypothesis is no longer so straightforward.

In the past, science has been founded on a reductionist approach, whereby each component is
individually dissected and analysed. While this is obviously important, and provides a foun-
dation for our knowledge, if we fail to join the dots and understand the interconnectivity,
then we never see the big picture. This means we fail to understand the relationship between
the constituent components and the whole system. Such perspective can be achieved through
the use of quantitative methods. This approach allows the scientist to develop hypotheses
for systems which have complex relationships between their constituent mechanisms which
are not necessarily intuitive upon first inspection.

There is a particular anecdote which is appropriate here, and it is made ever the sweeter by
the fact that it is: one of the greatest contributions to medical science, debunked theories
more than a millennium old, and was perhaps the very first use of quantitative methods in
medical science. It was the discovery of the circulatory system by William Harvey as pub-
lished in his book Exercitatio Anatomica de Motu Cordis et Sanguinis in Animalibus (An
Anatomical Exercise on the Motion of the Heart and Blood in Living Beings) in 1628.

At that time Galenic1 theory ruled supreme. It was thought that once ingested, food passed
from the stomach into the liver through the portal vein, where it was used to make blood.
Once manufactured, the blood would flow from the liver to all parts of the body where it was
then consumed. Harvey’s experiment was to estimate how much blood would pass through
the heart each day. He estimated the stroke volume of the heart at 1/6th of an ounce, and
that the heart beats approximately 1000 times every half an hour. Taking the product of
these two numbers he arrived at the number 10 pounds 6 ounces of blood being pumped
every half an hour. Multiplying this by 48 (the number of half hours in a day) he realised
that the liver would have to produce 540 pounds of blood in a day. Realising that no one
consumes 540 pounds of food in a day (the amount which would be required to produce that
quantity of blood), Harvey considered it was necessary to propose an alternate mechanism–
a circulatory system. Using his careful observations from animal vivisection and cadaver dis-
section, he proposed that blood flowed through the heart in two separate closed loops. One
loop, the pulmonary circulation, connected the circulatory system to the lungs. The second
loop, the systemic circulation, allowed blood to flow to the vital organs and body tissue.

The purpose of the anecdote is to illustrate how even the most simple quantitative mea-
sure can provide hugely useful insights when combined with inductive reasoning. However,
while Harvey’s discovery illustrates the immense power of a juxtaposition of experimental

1Aelius Galenus (AD 129 -200), who was better known as Galen of Pergamum was almost certainly the
most accomplished medical researcher of the Roman period. His theories dominated and influenced Western
medical science for well over a millennium.
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and quantitative measures, it is also an indictment on the progress of medical science until
that point. Consider the huge contributions made to science within the 17th century which
provided insights into the natural world, such as Galileo Galilei (1564-1642) and Johannes Ke-
pler (1571-1630) and their laws of planetary motion which provided some of the foundations
for Isaac Newton’s (1643-1727) theory of universal gravitation. This is of course the same
Newton who we hold jointly responsible with Gottfried Leibniz (1646-1716) for the invention
of calculus. The same time in history as Blaise Pascal (1623-1662) and his contributions to
the construction of mechanical calculators, and the field of fluids, pressure and vacuum. The
list could go on.

And yet, medical physiology was revolutionised, almost overnight, by Harvey’s multiplication
of three numbers. It is naïve to think that medical science will again be changed so remarkably
by such rudimentary arithmetic. However, the story illustrates the immense power of quan-
titative methods combined with scientific experiment. Mathematical modelling is no more
than an advanced quantitative method. It is about attempting to describe a phenomenon,
and using that to place bounds upon the mechanism thought responsible. By bounds we
merely mean a numerical value above or below which the proposed mechanism could not be
responsible.

This thesis presents a mathematical framework which can be used to establish numerous
hypotheses about the transport and regulation of fluid through the airway epithelium. For
it to be most beneficial it must be combined with experiment. Indeed, I hope this will occur
in the future.
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Acronyms and Abbreviations

2D Two dimensions

3D Three dimensions

8-SPT 8-sulfophenyltheophylline

AC Adenylate cyclase

ACh Acetylcholine

ADO Adenosine

ADP Adenosine diphosphate

AH Absolute humidity

AMP Adenosine monophosphate

AQP Aquaporin

ASL Airway surface liquid

ATP Adenosine triphosphate

ATP γS Adenosine 5’-O-(3-thio)triphosphate

BCC Basolateral chloride channel

CaCC Calcium activated chloride channel

CaKC Calcium activated potassium channel

cAMP Cyclic adenosine mono-phosphate

CBF Ciliary beat frequency

CF Cystic fibrosis

CFD Computational fluid dynamics

CFTR Cystic fibrosis transmembrane conductance regulator

CICR Calcium induced calcium release

CNT Concentrative nucleoside transporter

CT Computed tomography

DAG Diacylglycerol
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ENaC Epithelial sodium channel

E-NPPs Ecto-nucleotide pyrophosphatase/phosphodiesterase

E-NTDPases Ecto-nucleotide triphosphate diphosphohydrolases

ER Endoplasmic reticulum

ETT Endotracheal tube

FDM Finite difference method

FEM Finite element method

GDP Guanosine diphosphate

GHK Goldman-Hodgkin-Katz

GPCR GTP binding protein coupled receptor

GTP Guanosine triphosphate

BHE Human bronchial epithelium

HH Heated humidifier

HME Heat and moisture exchanger

INO Inosine

IP2 Inositol biphosphate

IP3 Inositol 1,4,5-triphosphate

IP4 Inositol tetraphosphate

IP3-R Inositol 1,4,5-triphosphate receptor

ISB Isothermal saturation boundary

LIS Lateral intercellular space

MRI Magnetic resonance imaging

NSAP Nonspecific alkaline phosphatase

ODE Ordinary differential equation

PCL Periciliary Liquid

PDE Partial differential equation

PIP2 Phosphotidylinositol 4,5-biphosphate

PKA Protein kinase A
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PLC Phospholipase C

PMCC Plasma membrane calcium channel

PPADS Pyridoxal-phosphate-6-azophenyl-2’, 4’-disulfonate

RH Relative humidity

RVD Regulatory volume decrease

RyR Ryanodine receptor

SEM Scanning electron micrograph

SMG Submucosal gland

UTP Uridine-5’-triphosphate
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List of Symbols

P⋆ Membrane permeability for the species ⋆

ψ⋆ Non-permeable osmolytes, for the ⋆ cellular compartment

A⋆ Area, for the ⋆ membrane

C⋆ Membrane capacitance, for the ⋆ membrane

D⋆ Diffusivity of the species ⋆

F Faraday’s constant

G Maximum ion channel conductance density

g Maximum ion channel conductance

I⋆ Ion current for the ion ⋆

L⋆ Hydraulic permeability, for the ⋆ membrane

P⋆ Open probability for the channel ⋆

R Universal Gas constant

V⋆ Membrane potential, for the ⋆ membrane

w⋆ Volume of cellular compartment, where ⋆ denotes the PCL, cell, ER, or serous

z⋆ Valency of the ion ⋆

D Differentiation operator

L A linear differential operator

Γ The boundary of the domain of interest. Γ = ∂Ω

W Gaussian quadrature weight

IK⋆ Local interpolant on K for the function ⋆.

N N is the set of nodal variables. Nk = {N1, N2, N3, . . . , Nk}.

P The space of polynomials

φi Nodal basis funcion

ξg Affine Gaussian quadrature location

xxi



Ki The element domain. Where Ki ⊆ Ω ⊂ ℜn such that the domain Ω =
⋃N

i=1Ki

[·, ·] Closed interval

[f ]ab f(b)− f(a)

∩ Intersection of sets

∪ Union of sets

δij Kronecker delta. δij = 1 if i = j, else δij = 0

V̇ Ventilation rate in ℓmin−1

∃ Existance of an element

∀ Is read as, “For every”

∈ Membership to a set

inf Infimum

(·, ·) Inner Product

{x ∈ A : P} The set of elements x, which is a member of A, satisfying condition P

O Order of approximation

H Hilbert Space

H 1(Ω) Hilbertian-Sobolev Space of order m = 1, p = 2 on Ω

H m(Ω) Hilbertian-Sobolev Space of order m, p = 2 on Ω

Kn Krylov subspace of dimension n

V Real vector space

D(Ω) Space of functions which are compact on the Ω

6∈ Negates membership to a set

Ω The domain of interest: an open set in ℜn

ℜ The space of real numbers

ℜn A space of n-truples of real numbers. Where ℜn = ℜ× ℜ × ... (n− times)

supp Support

sup Supremum

△ Laplacian differential operator: △f =
∑n

i=1
∂2f

∂x2
i

for n dimensions.

ξ Affine coordinate, where ξ ∈ [0, 1]

A⇒ B A implies B

A ⊂ B A is a subset of B

C[a, b] Space of continuous functions on [a, b]



C∞[a, b] Space of smooth functions on [a, b]

C∞

0 (Ω) Space of smooth functions with compact support in Ω

C∞

0 [a, b] Space of smooth functions vanashing at [a, b]

Cn[a, b] Space of n times continuously differentiable functions on [a, b]

C0[a, b] Space of continuous functions vanashing at [a, b]

f : X → Y f maps elements of X to elements of Y

L2(Ω) Space of square integratable distributions on Ω

L2[a, b] Space of square integratable functions on [a, b]

Wm
p (Ω) Sobolev Space of order m, p on Ω

lim
n→∞

xn = x The sequence xn converges to the point x as n→∞

| · | Semi norm

‖ · ‖ Norm

‖ · ‖∞ (essential) sup norm

‖ · ‖Lp
Lebesque integratable Lp norm
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Prefixes

Prefix Symbol Factor

yotta Y 1024

zetta Z 1021

exa E 1018

peta P 1015

tera T 1012

giga G 109

mega M 106

kilo k 103

hecto h 102

deka da 101

deci d 10−1

centi c 10−2

milli m 10−3

micro µ 10−6

nano n 10−9

pico p 10−12

femto f 10−15

atto a 10−18

zepto z 10−21

yocto y 10−24
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