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Abstract

We study optimal bandwidth selection in nonparametric cointegrating regression
where the regressor is a stochastic trend process driven by short or long memory
innovations. Unlike stationary regression, the optimal bandwidth is found to be a
random sequence which depends on the sojourn time of the process. All random
sequences hn that lie within a wide band of rates as the sample size n → ∞ have
the property that local level and local linear kernel estimates are asymptotically
normal, which enables inference and conveniently corresponds to limit theory in
the stationary regression case. This finding reinforces the distinctive flexibility of
data-based nonparametric regression procedures for nonstationary nonparametric
regression. The present results are obtained under exogenous regressor conditions,
which are restrictive but which enable flexible data-based methods of practical im-
plementation in nonparametric predictive regressions within that environment.
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1 Introduction

Extensions of cointegrating regression techniques to include nonlinear response func-

tions have become available through a substantial body of recent work on both parametric
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and nonparametric nonstationary kernel regression. Much of this literature makes use of

certain foundational results concerning the asymptotic behavior of various nonlinear func-

tions of integrated processes and standardized forms of integrated processes. Early papers

in this literature by Park and Phillips (1999, 2000, 2001), de Jong (2004) and Pötscher

(2004) provided a groundwork of methods and results that have assisted the development

of this research. Pötscher’s work introduced a boundedness assumption on the density

of a standardized form of an integrated process that has proved particularly useful in

establishing limit theory for parametric and nonparametric estimators of nonlinear func-

tions of nonstationary processes. Many authors have taken advantage of this approach in

advancing research in the field.

Following this research, it is now known that standard kernel methods can be employed

to estimate and conduct valid nonparametric cointegrating estimation and inference with

unit root, local unit root, and long memory regressors, as well as endogenous regressors

and weakly dependent structural equation errors (see Wang and Phillips, 2009a&b, 2011,

2016; hereafter WP). Remarkably, nonparametric t-statistics enjoy standard Gaussian

limit behavior in these environments precisely as they do in the conventional stationary

exogenous regressor setting. It is further known that nonparametric kernel estimators are

uniformly consistent over very wide regions with nonstationary data (Chan and Wang,

2014, 2015; Duffy, 2017a), a property that is particularly useful given the typical random

wandering nature of such data.

These findings have brought estimation and inference in bivariate nonparametric coin-

tegrating regression to a level of generality comparable to linear cointegrating regression

but with the unexpected advantages of (i) not requiring endogeneity or serial correlation

bias corrections, (ii) none of the difficulties of the ill-posedness that arise in the stationary

nonparametric context with endogenous regressors, and (iii) simple Gaussian inferential

methods that facilitate application. The methods have been found to be especially use-

ful in predictive regression with nonstationary predictors (Kasparis et al., 2015) where

nonparametric methods show effective size control and good power for a wide class of

regressors. In that context, Duffy (2017a, 2017b) has further demonstrated that kernel

density estimates satisfy a unified theory of limit behavior that includes both stationary

and persistent processes of the integrated and mildly integrated type (Phillips and Mag-

dalinos, 2007). In effect, in predictive regression, the limit distributions of self normalized

kernel regression statistics are Gaussian and this property is unaffected by persistence in
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the regressor, uniformly in the parameters that characterize persistence.

As in other applications of nonparametric methods, implementation requires a rule

for bandwidth selection. In stationary and cross section regressions, bandwidth selection

analysis is a heavily worked area where operational methods that deliver optimal rates of

convergence have long been available and much experience has been accumulated through

simulation and empirical practice. In the nonstationary case, while rate conditions are

known, there has been little work on optimal selection or formal justification for data-

based methods, although simulation evidence is available from past work (WP, 2009a&b)

and some results have been recently obtained for β recurrent Markov chains (Bandi et al,

2012).

The contribution of the present paper is to provide an optimal bandwidth selection

rule for use in kernel-based nonlinear cointegrating regression. It is found that the op-

timal bandwidth is delivered by a random sequence, unlike the deterministic function

rule that is familiar in cross section and stationary kernel regression. We show that

for this bandwidth and for all bandwidth sequences hn that lie within a certain band

of rates as the sample size n → ∞, centred and self standardized local level and lo-

cal linear kernel estimates are asymptotically standard normal, which enables convenient

use in inference and corresponds to standard limit theory in the stationary regression

case. This finding reinforces the distinctive flexibility of data-based nonparametric re-

gression procedures for nonstationary nonparametric regression. The present results are

obtained under exogenous regressor conditions and enable conditional data-based meth-

ods of practical implementation in environments such as certain nonparametric predictive

regressions. Exogeneity is restrictive but is a useful starting point that enables the use of

existing methods to gain traction on the challenging problem of bandwidth selection in

nonparametric nonstationary regression.

We consider a nonlinear cointegrating regression model of the form

yt = m(xt) + σ(xt)ut, (1.1)

where xt is a non-stationary regressor, m(·) and σ(·) are unknown real functions on R
representing the conditional mean and error standard deviation, respectively, and ut is an

equilibrium error satisfying E(ut|xt) = 0. In (1.1), the conventional local linear estimator

m̂L(x) of m(x) is defined by

m̂L(x) =
n∑
i=1

wi(x)yi/
n∑
i=1

wi(x),
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where wi is a weight function defined by wi(x) = K[(xi − x)/h]Vn,2 −K1[(xi − x)/h]Vn,1,

employing the non-negative real continuous kernel function K(x), with Kj(x) = xjK(x)

and Vn,j =
∑n

i=1Kj[(Xi − x)/h], in which the bandwidth h ≡ hn → 0.

Under various conditions on the model components m(x) and σ(x), the time series xt,

and the bandwidth h, the consistency and asymptotic normality of the kernel estimator

m̂L(x) have been explored in WP (2009a&b, 2011, 2016) and Wang (2014, 2015). We

now address the issue of optimal bandwidth selection to aid implementation of m̂L(x) in

practical work.

The paper is organized as follows. Section 2 gives the main results and attendant

discussion, Section 3 concludes and proofs are provided in Section 4.

2 Main results

In classical nonparametric kernel regression with a stationary regressor, a bandwidth

selection rule for the choice of h in m̂L(x) is typically based on the asymptotic behavior

of a mean squared error (MSE) criterion such as E
[
(m̂L(x)−m(x))2

]
. Such a criterion is

appropriate in a stationary setting where the criterion is well defined. In the nonstationary

case, as will become apparent, such a criterion is not well suited because the expectation

is undefined. Our approach in the present work is therefore based on a conditional MSE

criterion

E
[
(m̂L(x)−m(x))2 | x1, ..., xn

]
(2.1)

or, more generally, a conditional weighted average mean squared error (WMSE) such as∫ ∞
−∞

E
[
(m̂L(x)−m(x))2 | x1, ..., xn

]
W (x)dx, (2.2)

where W (x) is a weight function having a compact support.

To fix ideas in what follows, we make precise the assumptions employed for the time

series (xt, ut) in (1.1). Let ηj, j = 0,±1,±2, ... be a sequence of iid random variables with

Eη0 = 0, Eη2
0 = 1 and |Eeitη0| ≤ t−δ for some δ > 0. Let ξj, j ≥ 1, be a linear process

defined by

ξj =
∞∑
k=0

φk ηj−k,

where the coefficients φk, k ≥ 0, satisfy one of the following two conditions that allow for

long memory (LM) and short memory (SM) in ξj:

LM. φk ∼ k−µ, where 1/2 < µ < 1;
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SM.
∑∞

k=0 |φk| <∞ and φ ≡
∑∞

k=0 φk 6= 0.

Let d =
(

3
2
− µ

)
1 {(ξj) ∈ LM}+

(
1
2

)
1 {(ξj) ∈ SM} . For some 0 < δ0 < min{d, 1−d},

let Ω ⊂ {a : |a| ≤ nd−δ0} be a subset of R that expands with n at a rate that depends

on d. Define the potential bandwidth region Hn = {dn : ε−1
n nd−1+δ0 ≤ dn ≤ εn}, where

log−1 n ≤ εn → 0 is a sequence of constants, so that if hn ∈ Hn then hn → 0 and

n1−d−δ0hn →∞, ensuring that the bandwidth tends to zero but not as fast as 1/n1−d.

To investigate the asymptotic properties of the conditional MSE and WMSE criteria

in (2.1) and (2.2), we employ the following assumptions. All time series are defined in a

probability space with filtration (Ft) .

A1. (i) xt =
∑t

j=1 ξj; (ii) {ut,Ft}t≥1 forms a martingale difference with E(u2
t | Ft−1) = 1;

and (iii) x1, x2, · · · , xn are Ft−1 measurable for any 1 ≤ t ≤ n and n ≥ 1.

A2. On Ω, (i) m(x) is bounded and twice continuously differentiable, and (ii) σ(x) is

bounded and continuous.

A3. K(x) has finite support,
∫∞
−∞K(x)dx = 1,

∫∞
−∞ xK(x)dx = 0 and |K(x)−K(y)| ≤

C|x− y| whenever |x− y| is sufficiently small.

The first result describes the asymptotic behavior of the conditional MSE and condi-

tional WMSE.

THEOREM 2.1. Suppose A1–A3 hold. For any h = hn(x1, ..., xn) such that limn→∞ P (h ∈
Hn) = 1, we have

E
[
(m̂L(x)−m(x))2 | x1, ..., xn

]
=

1

4
τ 2 h4 [m′′(x)]2 + (hAn)−1 σ2(x)

∫ ∞
−∞

K2(t)dt

+ oP

[(
n1−dh

)−1
+ h4

]
, (2.3)

uniformly in x ∈ Ω, where τ =
∫∞
−∞ t

2K(t)dt and An =
∑n

k=1K(xk). Moreover, for any

weight function W (x) having a compact support that is covered by Ω, we have∫ ∞
−∞

E
[
(m̂L(x)−m(x))2 | x1, ..., xn

]
W (x)dx

=
1

4
τ 2 h4

∫ ∞
−∞

[
m′′(x)

]2
W (x)dx + (hAn)−1

∫ ∞
−∞

σ2(x)W (x)dx

∫ ∞
−∞

K2(t)dt

+ oP

[(
n1−dh

)−1
+ h4

]
. (2.4)
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Remark 1. Based on (2.3), for any x ∈ Ω, the optimal pointwise bandwidth is taken to

be

hopt =
[σ2(x)

∫∞
−∞K

2(t)dt[
τ m′′(x)]2

]1/5

A−1/5
n . (2.5)

Similarly, based on (2.4), the optimal weighted bandwidth is

hopt =
[∫∞
−∞ σ

2(x)W (x)dx
∫
K2(x)dx∫∞

−∞[m′′(x)]2W (x)dx τ 2

]1/5

A−1/5
n . (2.6)

Note that (sn/n)An →D LG(1, 0), where s2
n = var(xn) and LG(t, a) is the local time at

spatial location a at time t of the (fractional) Brownian motion limit process Gt with

index d for which s−1
n xbntc ⇒ Gt (see Lemma 4.2 and equation (4.14) below), where b·c

is the floor function. Unlike the stationary time series case where the optimal bandwidth

is a deterministic sequence, the optimal bandwidth here is a random sequence involv-

ing An which upon normalization has the random limit LG(1, 0). Due to the fact that

ELG(1, 0)−1 = ∞, the conventional mean squared error criterion based on the uncondi-

tional mean squared error E(m̂L(x) −m(x))2 cannot be used as a selection rule for the

bandwidth. On the other hand, we do have the following uniform convergence result: for

any h = hn(x1, ..., xn) such that limn→∞ P (h ∈ Hn) = 1,

sup
x∈Ω
|m̂L(x)−m(x)| = OP{(n1−dh)−1/2 log1/2 n+ h2}. (2.7)

The proof of (2.7) is similar to that in Section 5.1.4 of Wang (2015). We omit the details.1

Remark 2. Using Theorem 2.1, an explicit presentation of the optimal bandwidth h is

provided that depends on the sojourn time of the process. It is clear from the proof that

results (2.3) and (2.4) still hold if An is replaced by An,h := 1
h

∑n
k=1K

[
(xk − x)/h

]
. In

consequence, the optimal pointwise bandwidth can be taken to be

ĥopt = arg min
h

{1

4
τ 2 h4 [m′′(x)]2 + (hAn,h)

−1 σ2(x)

∫ ∞
−∞

K2(t)dt
}
,

and, similarly, the optimal weighted bandwidth can be taken as

ĥopt = arg min
h

{1

4
τ 2 h4

∫ ∞
−∞

[
m′′(x)

]2
W (x)dx

+(hAn,h)
−1

∫ ∞
−∞

σ2(x)W (x)dx

∫ ∞
−∞

K2(t)dt
}
.

1Another approach, which we do not pursue here, is to consider the median of the conditional mean
squared error E

[
(m̂L(x) −m(x))2 | x1, ..., xn

]
rather than its mean. Since the density of the local time

is known in certain cases such as the local time of Brownian motion, the median of the reciprocal of the
local time LG(1, 0) may be deduced in those cases and a sample approximation constructed in terms of
a function of An.
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Use of these alternative formulations of the optimal bandwidth may have some finite

sample benefit in performance at the cost of more complex calculation.

Remark 3. As noticed by a reviewer, the optimal bandwidth would ideally be defined

with respect to a criterion that would remain meaningful if {xt}nt=1 were merely prede-

termined. The challenge in this nonstationary case is that the criteria (2.3) and (2.4)

depend on the random quantity An ∼a n
sn
LG(1, 0) that relies on the sojourn time LG(1, 0)

of the limit process associated with xt. This dependence ensures that a small sojourn time

implies the need for a large bandwidth in optimal estimation of m(x), thereby compen-

sating for the fact that the data is less informative about the function in the immediate

vicinity of this location. This characteristic feature of the problem of bandwidth selection

is particular to the nonstationary case and should persist when the nonstationary regres-

sor is predetermined. The criterion for selection in the present paper does not meet the

requirement of demonstrating this feature analytically but the result itself is suggestive

and provides some indications that will be useful in future development of this line of

research.

Let H1n = {dn : ε−1
n nd−1+δ0 ≤ dn ≤ εnn

(d−1)/7}, where δ0 > 0 is chosen as small as

required and log−1 n ≤ εn → 0.

THEOREM 2.2. In addition to A1–A3, suppose that m(3)(x) is bounded on Ω and

supk≥1 E|uk|2+δ < ∞, for some δ > 0. Then, for any h = hn(x1, ..., xn) such that

limn→∞ P (h ∈ H1n) = 1, we have( n∑
k=1

K
[
(xk − x)/h

])1/2[
m̂L(x)−m(x)− h2

2
m′′(x)τ

]
→D N

(
0, σ2(x)

∫ ∞
−∞

K2(t)dt

)
,

(2.8)

for any x ∈ Ω, where τ =
∫∞
−∞ t

2K(t)dt.

Remark 4. Theorem 2.2 shows that the self normalized bias corrected estimation error

m̂L(x)−m(x)− 1
2
h2m′′(x)τ has the same standard normal limit distribution for all choices

of bandwidth that lie within the region H1n as n → ∞. Since P (hopt ∈ H1n) → 1,

Theorem 2.2 indicates that result (2.8) applies for the optimal bandwidth hopt. The

optimal bandwidth formula

hopt = h
(
σ2(x),m′′(x)

)
=
[σ2(x)

∫∞
−∞K

2(t)dt[
τ m′′(x)]2

]1/5

A−1/5
n (2.9)

is infeasible as it depends on σ2(x) and m′′(x), analogous to the optimal bandwidth

formula in the usual stationary case. Both σ2(x) and m′′(x) are consistently estimable
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and the resulting plug-in feasible version of the optimal bandwidth ĥopt = h (σ̂2(x), m̂′′(x))

with such consistent estimates continues to lie within the region H1n as n→∞. Nonethe-

less, as pointed out by a referee, the proof of Theorem 2.2 relies on the martingale array

property of the sample covariance
∑n

k=1 wk(x)σ(xk)uk, which fails when a feasible band-

width such as ĥopt is used because of the resulting dependence on {y1, ..., yn} that is

introduced to the kernel weights and estimation of σ2(x) and m′′(x). Thus, Theorem 2.2

is no longer established when a feasible bandwidth choice such as ĥopt is used in estimation.

This problem of dependence is common in kernel nonparametric estimation and arises,

for instance, in stationary nonparametric regression when a plug-in optimal bandwidth is

employed, so it is not confined to the present nonlinear cointegrating regression model.

Remark 5. Due to the nonstationarity of the regressor xt condition A1 (iii) plays

a significant role in the proof of Theorem 2.2, wherein the extended martingale limit

theorem given by Wang (2014) is employed. The condition A1 (iii) essentially requires

independence between the regressor and the error process, thereby excluding endogenous

and predetermined regressors. Relaxation of this condition is technically difficult and

seems unlikely to be possible using the present approach and techniques.

Remark 6. Let m̂(x) be the conventional local level kernel estimator defined by

m̂(x) =

∑n
k=1K

[
(xk − x)/h

]
yk∑n

k=1K
[
(xk − x)/h

] .
Let H2n = {dn : n(d−1)/3 log n ≤ dn ≤ n(d−1)/7/ log n}. Results (2.3)–(2.8) remain true

when m̂L(x) is replaced by m̂(x) if h = hn(x1, ..., xn) is a random bandwidth sequence

satisfying limn→∞ P (h ∈ H1n) = 1. This additional rate control condition on the band-

width is used to remove the first order biases which have no impact on the choice of the

optimal bandwidth.

3 Conclusion

Nonparametric methods in cointegrated systems have presented technical challenges

to the development of limit theory for kernel estimators and theoretical underpinnings

of automated methods of implementation. This paper, in conjunction with other recent

work discussed in the Introduction, helps to advance the available limit theory for these

systems to enable practical implementation in empirical work. The optimal bandwidth

selection rules given in Section 2 enable conditional data-based implementation of kernel

8



techniques in environments such as pure cointegrating regression and nonparametric pre-

dictive regression that are valid under exogenous regressors. Several technical challenges

remain. We need to extend the present results, or some version of them, to models in

which the regressor is endogenous or predetermined. This is a demanding task that seems

to require new methods for the reasons explained above. And, just as in the stationary

regression case, it will also be useful in practical work to have suitable mechanisms for

plug in estimation of the quantities involved to develop empirical versions of the optimal

bandwidth formulae (2.5) and (2.6). While this paper does not address those challenges,

it does demonstrate some progress towards automated data-based methods of inference

in nonstationary nonparametric regression and prediction.

4 Proofs

For 0 < t1 < t2 < ∞, let Ln = {(t, a) : t1n
d−1+δ0/2 ≤ t ≤ t2, |a| ≤ nd−δ0}. Suppose

g(x) is a bounded real function satisfying
∫∞
−∞ |g(x)|dx <∞. We start with the following

lemmas, which play key roles in the main proofs.

LEMMA 4.1. Suppose g(x) has finite support and satisfies a Lipschitz condition. Then

sup
(h,x)∈Ln

∣∣ n∑
k=1

{1

h
g
[
(xk − x)/h

]
− g(xk)

}∣∣ = Oa.s.(n
1−d−γδ0) (4.1)

for some γ > 0.

Proof. Set t1n
d−1+δ0/2 = h1 < ... < hqn1 = t2 and −nd−δ0 = t1 < ... < tqn2 = nd−δ0

with hi − hi−1 ∼ n−7 and ti − ti−1 ∼ n−10. Due to Ex2
n � nd, we have xn = oa.s(n

2).

Standard arguments show that to prove (4.1) it suffices to show

max
1≤i≤qn1

max
1≤j≤qn2

∣∣ n∑
k=1

fhi,tj(xk)
∣∣ = Oa.s.(n

1−d−γδ0), (4.2)

where fhi,tj(y) = h−1
i g[(y−tj)/hi]−g(y). Note that

∫∞
−∞ fhi,tj(y)dy = 0,

∫∞
−∞ |fhi,tj(y)|dy <

∞, supy |fhi,tj(y)| ≤ Cn1−d−δ0 and

inf
t

∫ ∞
−∞
|fhi,tj(y − t)||y|dy ≤

∫ ∞
−∞
|y| |g(y)|dy +

∫ ∞
−∞
|g(y)|(tj + hi|y|)dy

≤ Cnd−δ0 .

Result (4.2) is then a direct corollary of Theorem 2.30 in Wang (2015). 2
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LEMMA 4.2. We have

sn
n

n∑
k=1

g(xk)→D

∫ ∞
−∞

g(x)dxLG(1, 0), (4.3)

where s2
n = var(xn) and LG(t, a) is the local time process at time t and spatial location a

of the fractional Brownian motion Gt with index H = 3/2−µ for which s−1
n xbntc ⇒ Gt. If

in addition
∫∞
−∞ g(t)dt = 0,

∫∞
−∞ |t g(t)|dt < ∞ and g(t) satisfies the Lipschitz condition,

then

sup
(h,x)∈Ln

(n1−dh)−1/2
∣∣∣ n∑
k=1

g
[
(xk − x)/h

]∣∣∣ = OP (log n). (4.4)

Proof. Result (4.3) follows from Wang and Phillips (2009a) and result (4.4) follows

from Duffy (2017b) and Chan and Wang (2014). 2

4.1 Proof of Theorem 2.1

We are now ready to prove (2.3). Result (2.4) follows from (2.3) with a minor calcula-

tion and hence the details are omitted. For convenience in the arguments that follow we

introduce the notation Xn ≤P Yn for Xn/Yn = OP (1), and Xn(x) = Yn(x) + oP (1)Zn(x),

uniformly in Ω, for

sup
x∈Ω

|Xn(x)− Yn(x)|
Zn(x)

= oP (1).

Recalling condition A1 and the fact that h = hn(x1, ..., xn) is a function only of

x1, ..., xn, simple calculations show that

E
[
(m̂L(x)−m(x))2 | x1, ..., xn

]
=

{∑n
k=1 wk(x)[m(xk)−m(x)]∑n

k=1wk(x)

}2

+

∑n
k=1 w

2
k(x)σ2(xk)[∑n

k=1wk(x)
]2

= I1(n) + I2(n), say. (4.5)

Since K(x) has finite support, there exists a C0 > 0 such that wk(x)
[
m(xk)−m(x)

]
= 0

if |xk − x|/h ≥ C0. This, together with condition A2 (i), ensures that

wk(x)
[
m(xk)−m(x)

]
= wk(x)

{
m
[
x+ h(xk − x)/h

]
−m(x)

}
= wk(x)

[
m′(x)(xk − x) +

1

2
m′′(x)(xk − x)2 + oP (1) (xk − x)2

]
,

as h = oP (1). Hence, by noting that
∑n

k=1(xk − x)wk(x) = 0, we may write

I1(n) =
1

4
h4
{[
m′′(x)

]2
+ oP (1)

}
l2n , (4.6)
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uniformly in x ∈ Ω, where, recalling that Kj(x) = xjK(x), j = 0, 1, 2, ..., and Vn,j =∑n
k=1Kj

[
(xk − x)/h

]
, we have

ln =
V 2
n,2 − Vn,3Vn,1
Vn,0Vn,2 − V 2

n,1

=
Vn,2 − Vn,3Vn,1/Vn,2
Vn,0 − V 2

n,1/Vn,2
.

Note that sn � nd and P (LG(1, 0) > 0) = 1 (e.g., see Chapter 2 of Wang, 2015). It is

readily seen from (4.1) and (4.3) that

inf
x∈Ω

Vn,0, inf
x∈Ω

Vn,2 ≥P h

n∑
k=1

K(xk) ≥P δn n
1−dh , (4.7)

where log−1 n < δn → 0 is chosen as slowly as required. On the other hand by (4.4),

setting g(t) = tK(t) and t2K(t)−
∫
t2K(t)dtK(t), we have

sup
x∈Ω
|Vn,1|, sup

x∈Ω
|Vn,2 − Vn,0

∫ ∞
−∞

t2K(t)dt | ≤P (n1−dh)1/2 log n. (4.8)

Results (4.7)–(4.8) and the fact that Vn,3 ≤ C Vn,2 imply

sup
x∈Ω
|l2n − τ 2| ≤ sup

x∈Ω
|ln − τ | |ln + τ |

≤P (n1−dh)−1/2 log2 n = oP (1),

where τ =
∫∞
−∞ t

2K(t)dt. Taking this estimate into (4.6) and noting that supx∈Ω |m′′(x)| <
∞, we obtain

I1(n) =
1

4
h4
[
m′′(x)

]2
τ 2 + oP (h4), (4.9)

uniformly in x ∈ Ω.

We next consider I2(n). Similar arguments making use of (4.7)–(4.8) yield that

hVn,2∑n
k=1 wk(x)

=
h

Vn,0 − V 2
n,1/Vn,2

= A−1
n +OP (nd−1−γδ0), (4.10)

where An =
∑n

k=1 K(xk), and

V −1
n,2

∑n
k=1w

2
k(x)∑n

k=1 wk(x)
=

∑n
k=1 K

2
[
(xk − x)/h

]
+Rn

Vn,0 − V 2
n,1/Vn,2

=

∫ ∞
−∞

K2(t)dt+OP

[
(n1−dh)−1/2 log2 n

]
, (4.11)

uniformly in x ∈ Ω, where we have used the fact that since both K(x) and K1(x) are

bounded,

|Rn| ≤ 2C|Vn,1|Vn,0/Vn,2 + CV 2
n,1Vn,0/V

2
n,2 = OP

[
(n1−dh)1/2 log n

]
.
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By virtue of (4.10) and (4.11), we have∑n
k=1w

2
k(x)[∑n

k=1wk(x)
]2 = h−1 hVn,2∑n

k=1wk(x)

V −1
n,2

∑n
k=1w

2
k(x)∑n

k=1wk(x)

=
{

(hAn)−1 + oP
[
(n1−dh)−1

]} { ∫ ∞
−∞

K2(t)dt+OP

(
n−δ0/2 log2 n

)}
=

∫ ∞
−∞

K2(t)dt (hAn)−1 + oP
[
(n1−dh)−1

]
,

uniformly in x ∈ Ω. In consequence, recalling that K(x) has finite support and σ(x) is

bounded and continuous on Ω, standard arguments now yield that

I2(n) =

[
σ2(x) + oP (1)

] ∑n
k=1 w

2
k(x)[∑n

k=1wk(x)
]2

= σ2(x)

∫ ∞
−∞

K2(t)dt (hAn)−1 + oP
[
(n1−dh)−1

]
. (4.12)

Result (2.4) follows immediately from (4.9) and (4.12).

4.2 Proof of Theorem 2.2

Noting that
∑n

k=1(xk − x)wk(x) = 0, we may write

m̂L(x)−m(x)− 1

2
h2m′′(x)τ

=

∑n
k=1wk(x)σ(xk)uk∑n

k=1wk(x)

+

∑n
k=1wk(x)[m(xk)−m(x)−m′(x)(xk − x)− 1

2
m′′(x)(xk − x)2]∑n

k=1wk(x)

+
1

2
m′′(x)

[∑n
k=1 wk(x)(xk − x)2∑n

k=1wk(x)
− h2

∫ ∞
−∞

t2K(t)dt
]

= Rn1 +Rn2 +Rn3, say. (4.13)

Recall that m(3)(x) is bounded on R. As in the proof of Theorem 2.1, for any x ∈ Ω, we

have

|Rn2| ≤P
h3(|Vn3|+ |Vn4||Vn1|/Vn2)

|Vn0 − V 2
n1/Vn2|

≤P h3,

where Kj(x) = xjK(x) and Vnj =
∑n

k=1Kj

[
(xk − x)/h

]
, and

|Rn3| ≤P
h2(|Vn2 −

∫∞
−∞ t

2K(t)dt Vn0|+ |Vn3||Vn1|/Vn2)

|Vn0 − V 2
n1/Vn2|

≤P h2 (n1−dh)−1/2 log n.

12



In consequence, it follows that( n∑
k=1

K
[
(xk − x)/h

])1/2(
|Rn2|+ |Rn3|

)
≤P (n1−dh)1/2

[
h3 + h2 (n1−dh)−1/2 log n

]
= oP (1),

since limn→∞ P (h ∈ H1n) = 1. Hence, Theorem 2.2 will follow by continuous mapping if

we prove { sn
nh

n∑
k=1

K
[
(xk − x)/h

]
,
sn
nh
V −1
n2

n∑
k=1

wk(x),
( sn
nh

)1/2
V −1
n2

n∑
k=1

wk(x)σ(xk)uk

}
→D

{
LG(1, 0), LG(1, 0), c0 L

1/2
G (1, 0)N

}
,

or equivalently, { sn
nh

n∑
k=1

K
[
(xk − x)/h

]
,
( sn
nh

)1/2
n∑
k=1

K
[
(xk − x)/h

]
σ(xk)uk

}
→D

{
LG(1, 0), c0 L

1/2
G (1, 0)N

}
, (4.14)

where c2
0 =

∫∞
−∞K

2(t)dt σ2(x) and N is a standard normal variate independent of LG(1, 0).

To prove (4.14), let Fk be defined as in condition A1 and

Xnk =
( sn
nh

)1/2

K
[
(xk − x)/h

]
σ(xk)uk.

By recalling h = hn(x1, ...xn), i.e., h is Fk-measurable for each 1 ≤ k ≤ n, we have

E(Xnk | x1, ..., xn) =

(
dn
nh

)1/2

K
[
(xk − x)/h

]
σ(xk)E(uk | x1, ..., xn) = 0.

The remainder of the proof of (4.14) follows from the same arguments as in the proof of

Theorem 5.2 in Wang (2015) [see pages 196-197 there and note that the extra condition

on σ(x) is not necessary under the current condition on K(x)].

13
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