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GEOMETRY OF SOLUTIONS TO THE C-PROJECTIVE METRIZABILITY

EQUATION

KEEGAN J. FLOOD AND A. ROD GOVER

Abstract. On an almost complex manifold, a quasi-Kähler metric, with canonical connection
in the c-projective class of a given minimal complex connection, is equivalent to a non-degenerate
solution of the c-projectively invariant metrizability equation. For this overdetermined equa-
tion, replacing this maximal rank condition on solutions with a nondegeneracy condition on
the prolonged system yields a strictly wider class of solutions with non-vanishing (generalized)
scalar curvature. We study the geometries induced by this class of solutions. For each solu-
tion, the strict point-wise signature partitions the underlying manifold into strata, in a manner
that generalizes the model, a certain Lie group orbit decomposition of CPm. We describe the
smooth nature and geometric structure of each strata component, generalizing the geometries
of the embedded orbits in the model. This includes a quasi-Kähler metric on the open strata
components that becomes singular at the strata boundary. The closed strata inherit almost
CR-structures and can be viewed as a c-projective infinity for the given quasi-Kähler metric.

1. Introduction

Given a smooth manifold M , a projective structure is an equivalence class of torsion-free affine
connections p that have the same geodesics as unparametrized curves. A projective manifold is a
smooth manifold equipped with a projective class (M,p). A natural question is whether such a
structure is metrizable, i.e., is there is a metric g on M whose Levi-Civita connection ∇g lies in
the projective class p. By [64, 69] this non-linear problem can instead be rephrased in terms of
solutions to the projectively invariant linear PDE

(1) trace-free(∇aζ
bc) = 0,

where we employ the Penrose abstract index notation and ∇ ∈ p. The projective manifold is
metrizable if and only if there is a non-degenerate symmetric contravariant 2-tensor ζbc satisfying
(1), with inverse of the metric given by gbc = sgn(τ)τζbc, where τ is a suitable determinant of ζ.
The study of this equation and related topics has led to considerable recent progress [6, 10, 27,
28, 29, 37, 51, 57, 59, 62]. There is growing interest in an analogue in the setting of what is called
c-projective geometry, see e.g. [12, 15, 61], and this is what we take up here.

On an almost complex 2m-manifold (M,J), an almost c-projective structure is an equivalence
class of affine connections D which preserve J , which have minimal torsion in the sense that
the only non-vanishing component of their torsion is the Nijenhuis tensor NJ , and which have
(up to reparametrization) the same J-planar curves (a complex analogue of geodesics). Here and
throughout m ≥ 2. The analogue of metrizability, in the almost c-projective setting, then, is
whether there is exists a Hermitian metric on M which is preserved by a connection in the c-
projective class D. Equivalently, an almost c-projective manifold is metrizable if there exists a
non-degenerate solution to the c-projectively invariant linear PDE

(2) trace-free(∇aζ
bc) = 0,

where this is a complex trace and ∇ ∈ D. Explicitly, in real terms, this is given by

∇cζ
ab −

1

m
δ(ac ∇dζ

b)d −
1

m
J (b
c Ja)

e ∇dζ
ed = 0.(3)
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where ζ is a density weighted Hermitian form on T ∗M . Equation (3) is termed the c-projective
metrizability equation. The inverse metric on M is then given by

gbc = sgn(det(ζ)) det(ζ)ζbc,

where, again, a suitable notion of determinant is involved.
Here we are interested in more general solutions to this c-projective metrizability equation (3).

In particular, we obtain a result that extends, to generic solutions, a result from [19] concerning
the restricted class of so-called normal solutions. Specifically our aim is to identify and understand
the smooth structure and geometry induced on the different sets where a solution to (3) is non-
degenerate and, respectively, degenerate - we shall extend the terminology from [19] and call this
a curved orbit decomposition. At points where the solution is non-degenerate it induces a metric
as previously noted. But at points where a solution is degenerate there is not, in general, a metric,
since the metric becomes singular on this set. But, under suitable assumptions, the degeneracy
locus of the solution does inherit a rich geometric structure. In particular, it has a hypersurface
type CR structure, for which the Levi-form (arising as usual for an embedded hypersurface) can be
seen to be compatible with the metric defined away from the degeneracy locus of the solution. This
work gives an alternative approach to the c-projective compactification of complete non-compact
pseudo-Hermitian metrics, as developed and studied in [15]. The problem we address is a special
case of a more general phenomenon which we describe below.

Natural overdetermined partial differential equations govern a huge variety of geometric struc-
tures [7, 17, 24, 28, 37, 43, 66] on smooth manifolds. It has long been known that features of
solutions to such equations can partition the manifold [4, 26, 52, 53], but only recently tools have
been developed for fully understanding the geometries on the more singular components in a way
that relates them to the ambient structures. In fact the components of the partition can appear
radically different to each other, but the link between them becomes clear when viewing them via
prolongations of the solution to the relevant geometric PDE, see e.g [38, 39]. A reason that this is
important is that one can exploit these relationships to smoothly relate the distinct components of
the partition and thus study the geometry on one component by means of an adjacent component,
as seen in the geometric holography program e.g. [1, 30, 34, 41, 44, 60].

Hence, given a solution to an overdetermined partial differential equation on a smooth manifold,
the key problem is to determine the basic data of the components of the partition (e.g. are they
smoothly embedded submanifolds of some dimension or rather more complicated variety type
structures?), then to determine the geometric structures thereon. Finally, one wants to usefully
understand the relationship between the geometric structures on neighboring components of the
partition.

It turns out that for a broad class of natural overdetermined linear partial differential equations,
and then a class of solutions to these equations , one can obtain remarkably general results. These
are for what are called normal solutions to first BGG equations . In [18, 19] it is shown that the
stratifications arising from solutions to these must be locally diffeomorphic to stratifications arising
from group orbit decompositions of homogeneous model geometries. Moreover, the components of
the partition carry Cartan geometries that are curved analogues of the homogeneous geometries
on the corresponding partition of components of the model. Unfortunately, the methods utilized
in these sources applies only to solutions which correspond to Cartan holonomy reductions. Thus
it is important to establish to what extent similar results might be deduced, by different methods,
for more general solutions. This question is treated for the equation (25) (which is an example of
a first BGG equation) in the present article, following to an extent the ideas and the progress in
[31, 39].

A standard approach to studying and treating overdetermined equations is via differential
prolongation, see e.g. [8]. The c-projective tractor calculus (cf. [12, 15]) is a natural tool for
developing and organizing the prolonged system of the c-projectively invariant equation (25). One
reason for this is that, since it is a first BGG equation [18, 19, 22, 23], the (first) BGG splitting
operator (a canonical invariant differential operator) maps, loosely speaking, a potential solution
of (25) to its prolonged variable system. We denote this c-projectively invariant second order
operator ζ 7→ L(ζ), where L(ζ) takes values in the bundle H∗ of Hermitian forms on the standard
c-projective cotractor bundle. If L(ζ) is parallel for the tractor connection then the solution ζ is
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said to be normal, but we consider a more general class of solutions here. This BGG machinery
is introduced in Section 2.10 below.

There is a canonical (c-projectively invariant) real-valued determinant on sections of H∗ so we
consider the composite map

(4) ζ 7→ L(ζ) 7→ det(L(ζ)),

which takes a solution ζ of (25) to the determinant of its prolonged system. If ζ is a non-degenerate
solution of (25) then, up a non-zero constant, det(L(ζ)) is the scalar curvature of the metric g
with inverse g−1 = sgn(τ)τζ [15], where τ a suitable determinant of ζ. But (4) is well-defined
even where ζ is degenerate. Thus it is natural to consider solutions ζ of equation (1) satisfying
the condition that det(L(ζ)) is nowhere zero, i.e. with L(ζ) non-degenerate, but with no a priori
restriction on the rank of ζ. This generic condition is a generalization of constant scalar curvature,
where ζ can have a non-empty degeneracy locus. Such considerations lead to the following result.

Theorem 1.1. Let (M,J,D) be a almost c-projective manifold with real dimension 2m equipped
with a solution ζ ∈ Γ(Herm(T ∗M) ⊗ E(−1,−1)R) of the metrizability equation such that L(ζ) ∈
Γ(H∗) is non-degenerate as a pseudo-Hermitian form on the cotractor bundle. If L(ζ) is definite
then the degeneracy locus D(ζ) is empty and (M,J,D, ζ) is a quasi-Kähler manifold with inverse
Hermitian metric g−1 = sgn(τ)τζ where τ = det(ζ). If L(ζ) has signature (p + 1, q + 1), with
p, q ≥ 0, then D(ζ) is either empty or it is a smoothly embedded separating real hypersurface such
that the following hold:

(i) M is stratified by the strict signature of ζ as a (density weighted) Hermitian form on T ∗M
with curved orbit decomposition given by

M =
∐

i∈{+,0,−}

Mi

where ζ has signature (p + 1, q), (p, q + 1),and (p, q, 1) on TM restricted to M+, M−, and
M0, respectively.

(ii) On M±, ζ induces a quasi-Kähler metric g± with nonvanishing scalar curvature Rg± , with
the same signature as ζ, with inverse g−1

± = sgn(τ)τζ|M±
where τ = det(ζ).

(iii) If M is closed, then the components (M\M∓, J,D) are c-projective compactifications of
(M±, J,∇

ζ), with boundary M0.
(iv) M0 inherits a signature (p, q) almost CR structure of hypersurface type.

A smoothly embedded submanifold of real codimension 1 will be referred to as a hypersurface.
Note that each of the components M+, M0, and M− in the above theorem need not be connected.
We denote the signature of a real symmetric bilinear form by (p, q, r), where p, q and r are the
number, counting multiplicity, of positive, negative, and zero eigenvalues, respectively, of any
matrix representing the form once a basis has been chosen. When r = 0 we omit it.

The Fubini-Study metric is a compact homogeneous model for Hermitian geometry. There are
corresponding compact models for the geometries discussed in Theorem 1.1 demonstrating that c-
projective manifolds equipped with solutions of (25) satisfying the given constant rank conditions
on their prolonged systems L(ζ) exist and are of interest. The models for the structures in Theorem
1.1 are treated in Section 3.2 and from them we glean deeper insight into the result.

Further motivation comes from [15], wherein it is shown that, given a manifold with bound-
ary whose interior is equipped with a pseudo-Hermitian metric satisfying a non-vanishing scalar
curvature condition and whose its c-projective structure extends to the boundary but whose ca-
nonical connection does not extend to any neighborhood of the boundary, then the metric is
c-projectively compact of order 2. Examples of c-projectively compactified metrics discussed in
[15] demonstrates the existence of curved examples of the structures considered in Theorem 1.1.

The non-degeneracy assumption on L(ζ), in Theorem 1.1, is a constant G-type assumption,
where we have used the terminology of [18, 19]. Constancy of G-type holds for normal solutions
on connected manifolds, but it is not known to hold for general solutions. As discussed in [31]
(using results from [46, 47]), the fixed G-type assumption is necessary to get a coherent theory,
as the zero locus of the scalar curvature can be very poorly behaved. In particular, it need not be
a submanifold.
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The structure of the article is as follows. In the Section 2 we briefly review c-projective tractor
calculus, c-projective compactification, and BGG machinery. These provide the framework and
computational tools we utilize. In Section 3 we state and prove the main results.

2. C-projective geometry

In this section, we describe the necessary background from c-projective geometry. We draw
from the main monograph on the subject [12] as well as from [15] since we will need both the
(predominantly) complex viewpoint of the former as well as the real viewpoint of the latter. Let
(M,J) be an almost complex manifold of dimension n = 2m ≥ 4.

The complexified tangent bundle CTM and complexified cotangent bundle ∧1M decompose
into the following direct sums

CEa :=CTM = T 1,0M ⊕ T 0,1M(5)

CEa := ∧1 M = ∧0,1M ⊕ ∧1,0M(6)

where

Eα :=T 1,0M = {X ∈ Γ(TM) : JX = iX}

Eα :=T 0,1M = {X ∈ Γ(TM) : JX = −iX}

Eα := ∧0,1 M = {α ∈ Γ(T ∗M) : Jα = −iα}

Eα := ∧1,0 M = {α ∈ Γ(T ∗M) : Jα = iα}

are the vector fields of type (1, 0) and (0, 1) and 1-forms of type (0, 1) and (1, 0), respectively. There

are conjugate linear isomorphisms T 1,0M = T 0,1M and ∧0,1M = ∧1,0M . Observe that there are
canonical pairings of Eα and Eα with their respective duals Eα and Eα, which is compatible with
the canonical complex pairing of CEa with CEa. Note that we will be using lower case latin indices
for real and complex vector fields and 1-forms.

We have the following complex linear projection maps:

CTM ։ T 1,0M Xa 7→ Πα
aX

a :=
1

2
(X − iJX)

CTM ։ T 0,1M Xa 7→ Π
α

aX
a :=

1

2
(X + iJX),

and their duals

∧1,0M →֒ ∧1M ωα 7→ Πα
aωα

∧0,1M →֒ ∧1M ωα 7→ Π
α

aωα.

Similarly, we have the inclusions:

T 1,0M →֒ CTM Xα 7→ Πa
αX

α

T 0,1M →֒ CTM Xα 7→ Π
a

αX
α,

and their duals

∧1M ։ ∧1,0M ωa 7→ Πa
αωα

∧1M ։ ∧0,1M ωa 7→ Π
a

αωα.

These lead to the following identities

Πa
αΠ

β
a = δβα Πα

aΠ
b
α =

1

2
(δba − iJb

a) Π
α

aΠ
b

α =
1

2
(δba + iJb

a)

Πa
αJ

b
a = iΠb

α Π
a

αJ
b
a = −iΠ

b

α Jb
aΠ

α
b = iΠα

a Jb
aΠ

α

b = −iΠ
α

a .

Complex valued differential forms can be naturally decomposed according to type e.g.

∧2M = ∧0,2M ⊕ ∧1,1M ⊕ ∧0,2M.
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Although such characterizations quickly grow cumbersome for higher forms, 2-forms are char-
acterized as follows:

Jc
aωbc = −iωab ⇐⇒ ωab is type (2, 0)

Jc
[aωb]c = 0⇐⇒ ωab is type (1, 1)

Jc
aωbc = iωab ⇐⇒ ωab is type (0, 2)

This characterization extends to appropriate almost complex vector bundle valued real forms.
E.g., the Nijenhuis tensor NJ ∈ Ω2(M,TM), which satisfies NJ(X, JY ) = JNJ(Y,X), is type
(0, 2).

2.1. Complex Connections. Affine connections preserving J , i.e. satisfying ∇µJη = J∇µη for
all µ, η ∈ X(M), are termed complex connections. It follows that an affine connection is complex
if and only if its extension to a linear connection on CEa preserves types. The torsion T c

ab of a
complex connection∇ naturally splits into types, with the (0, 2) component being precisely− 1

4N
J .

So a complex connection cannot be torsion-free unless its Nijenhuis tensor vanishes identically i.e.
the almost complex structure is integrable. Given an almost complex manifold, there always exists
a complex connection on it with torsion of type (0, 2) by [48]. The (2, 0) and (1, 1) components
of the torsion can be removed via a suitable modification to the complex connection, but as an
almost complex invariant the (0, 2) component may not be eliminated.

The pseudo-Riemannian metrics of interest on almost complex manifolds are those which are
Hermitian for J, i.e. satisfying gabJ

a
c J

b
d = gcd. Pseudo-Kähler metrics are precisely the Hermitain

metrics whose Levi-Civita connections are complex. Projective equivalence of two such pseudo-
Kähler metrics on (M,J) implies that they are in fact affinely equivalent [5]. Thus we must
introduce a broader class of curves, the so-called J-planar curves. A J-planar curve is a curve
c : I →M satisfying

∇ċċ = αċ+ βJċ

for some α, β : I → R. These are also commonly termed holomorphically flat curves [65] or h-
planar curves [58]. Clearly all curves are J-planar on almost complex manifolds of real dimension
2.

Consider (CPn, JCan, g
FS), where JCan denotes the canonical complex structure and gFS de-

notes the Fubini-Study metric. Observing that the embedding of any complex line CP
1 →֒ CP

n

is totally geodesic with respect to ∇FS , it follows (for details see Example 1 of [58]) that the
J-planar curves on (CPn, JCan, [∇

FS ]) are precisely the curves in these linearly embedded copies
of CP1.

We say that two complex connections ∇ and ∇̃ on an almost complex manifold (M,J) are
c-projectively equivalent if they have the same J-planar curves and the same torsion. Two such
complex connections are explicitly related by

∇̃aη
b = ∇aη

b +Υcη
b −ΥcJ

c
aJ

b
dη

d +Υcη
cδba −ΥcJ

c
dη

dJb
a

∇̃αη
γ = ∇αη

γ + 2Υαη
γ + 2δγαΥβη

β

∇̃αη
γ = ∇αη

γ

∇̃aνc = ∇aνc −Υaνc +ΥbJ
b
aJ

d
c νd −Υcνa +ΥdJ

b
aνbJ

d
c

∇̃ανγ = ∇ανγ − 2Υανγ − 2ναΥγ

∇̃ανγ = ∇ανγ

for some one form Υ ∈ Ω1(M), where Υα := Πa
αΥa and Υα := Πa

αΥa. We write ∇̃ = ∇+ Υ as a
brief notation to indicate connections related as in the above formulae. Note that we follow the
convention of [15] in (7) rather than that of [12].

In fact, we will only consider complex connections ∇ with minimal torsion T∇ = − 1
4N

J , we
term these minimal complex connections. We write D for an equivalence class of c-projectively
related minimal complex affine connections and we call it an almost c-projective structure. We
call a triple (M,J,D) an almost c-projective manifold. If J is integrable we call (M,J,D) a
c-projective manifold.
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2.2. C-projective densities. We write E(m+1, 0) := Λm
C
TM for the top complex exterior power

of the tangent bundle. We will assume the existence of (m+1)th roots of this bundle. In particular,
this holds on the model (CPn, JCan, [∇

FS ]) and hence locally for all almost c-projective manifolds.
Assuming a choice E(1, 0) of (m+ 1)th root of E(m + 1, 0), denote the dual, conjugate, and dual
conjugate to E(1, 0) by E(−1, 0), E(0, 1), and E(0,−1), respectively. Forming tensor powers of
these bundles gives complex density bundles E(k, l) of weight (k, l) where k, l ∈ Z.

There is a natural inclusion E(−2m− 2) →֒ E(−m− 1,−m− 1) of the real densities of weight
(−2m − 2) into the complex densities of weight (−m − 1,−m − 1) as the real subbundle fixed
by conjugation. The orientation on (M,J), induced by the almost complex structure J , induces
an orientation on the trivial bundle E(−2m − 2) and so allows us to take arbitrary real roots of
E(−2m− 2) which give the usual real densities E(w) of weight w ∈ R. Thus, for w,w′ ∈ R such
that w − w′ ∈ Z, we can define complex density bundle E(w,w′). We denote the image of E(2w)
under this inclusion map by E(w,w)R.

It is shown in [15] that for υ ∈ Γ(E(w,w′)) with w,w′ ∈ R and w − w′ ∈ Z

∇̃aυ = ∇aυ + (w + w′)Υaυ − (w − w′)iΥbJ
b
aυ.(7)

In particular, for τ ∈ Γ((w,w)R) with w ∈ R this reduces to

∇̃aτ = ∇aτ + 2wΥaτ.(8)

2.3. C-projective compactness. A local defining function for a hypersurface Σ is a smooth
function r : U → R, defined on an open subset U ofM , satisfying Z(r) = Σ∩U and Z(dr)∩Σ = ∅

on Σ∩U , where Z(−) denotes the zero locus. Then, extending this concept, a local defining density
of weight w is a local section σ of E(w) such that σ = rσ̂, where r is a defining function for Σ and
σ̂ is a section of E(w) that is nonvanishing on U .

Consider a smooth manifold with boundary, M = M∪∂M , such that the interiorM is equipped
with an almost complex structure J and a minimal complex affine connection ∇ on TM . The
(minimal) complex connection ∇ on TM is said to be c-projectively compact of order α ∈ R+

if and only if for any x ∈ ∂M there is a neighborhood U of x in M and a defining function
ρ : U → R≥0 for U ∩∂M such that the c-projectively equivalent connection ∇ = ∇+ dρ

αρ
on U ∩M

smoothly extends to all of U , i.e ∇µη is smooth up to the boundary for all µ, η ∈ X(U). In what
follows we will only be concerned with the case where α = 2, so we will often omit the order of the
c-projective compactification. As in the case of projective compactification (cf. [14]) this notion is
independent of choice of defining function. A connection ∇ is said to be special if and only if there
is a section τ ∈ Γ(w,w)R with w 6= 0 such that τ is parallel for ∇. This leads to the following,
which is Proposition 6 of [15].

Proposition 2.1. Let M = M ∩ ∂M be a smooth manifold of dimension n = 2m equipped with
a special affine connection ∇ on TM . Then the following hold:

(1) If ∇ is c-projectively compact of order 2 then a non-vanishing section of E(1, 1)R which is
parallel for ∇ extends by zero to a defining density for ∂M .

(2) If the almost c-projective structure on M determined by ∇ smoothly extends to M and
there exists a defining density τ ∈ Γ(E(1, 1)R) for ∂M that is parallel on M for ∇, then
∇ is c-projectively compact of order 2.

Let (M,∇) be a smooth manifold equipped with a complex connection. If there exists a smooth
manifold with boundary M such that M = M ∪∂M for which ∇ is c-projectively compact we will
say that (M, [∇]) is a c-projective compactification of (M,∇).

2.4. Admissible metrics. How do metrics fit into the picture? We discussed earlier that the
relevant pseudo-Riemannian metrics in almost c-projective geometry are those which are Hermitian
with respect to J . Minimizing the torsion we come to the class of connections D, which in general
have torsion of type (0, 2), and so cannot be the Levi-Civita connection. Fortunately, a minimal
complex connection preserving a pseudo-Riemannian metric, that is Hermitian for J , is uniquely
determined. Such a connection need not exist in general.

On an almost complex manifold (M,J) a pseudo-Riemannian metric g that is Hermitian for
J is said to be admissible if and only if there is a minimal complex affine connection on (M,J)
preserving g. If such a connection exists it is termed the canonical connection associated to g. By
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Proposition 4.1 of [12] or Proposition 7 of [15] a pseudo-Riemannian metric on an almost complex
manifold (M,J) that is Hermitian for J is admissible if and only if it is quasi-Kähler in the sense
of Gray-Hervella [42].

In the notation of Gray-Hervella, quasi-Kähler is W1 ⊕ W2. W1 denotes the class of nearly
Kähler manifolds i.e. dω = 3∇ω where ω is the Kähler form ωab = Jc

agcb and ∇ is the canonical
connection associated to g. W2 denotes the class of almost Kähler manifolds i.e. dω = 0. If J is
integrable, g is admissible if and only if it is pseudo-Kähler, i.e. ∇ω = 0.

2.5. The c-projective Schouten tensor. The curvature tensor, R c
ab d, of a complex affine

connection, ∇, on an almost complex manifold (M2m, J) satisfies R c
ab iJ

i
d = R i

ab dJ
c
i . Denoting

the Ricci tensor by Rab = R i
ia b we define the Rho tensor or c-projective Schouten tensor by

Pab :=
1

2(m+ 1)
(Rab +

1

m− 1
(R(ab) − J i

(aJ
j

b)Rij)).(9)

Given a complex connection ∇ with Schouten P , The Schouten P of the c-projectively related
connection ∇̃ = ∇+Υ is given by

P̃ab = Pab −∇aΥb +ΥaΥb − J i
aJ

j
bΥiΥj.(10)

Writing W c
ab d for the Weyl curvature we have the following

R c
ab d = W c

ab d + 2δc[aPb]d − 2P[ab]δ
c
d − 2J i

[aPb]iJ
c
d − 2Jc

[aPb]iJ
i
d.(11)

Observe that if the Ricci is Hermitian then Pab = 1
2(m+1)Rab and if the Ricci is symmetric then

the Schouten is symmetric as well.

2.6. C-projective tractor bundle. An almost c-projective manifold (M,J,D) equipped with
a choice of density bundle E(1, 0) is equivalent to a Cartan geometry (P ։ M,ω) of type (G,P )
where G = SL(m+ 1,C) ∼= SL(2m+ 2, J), which we identify with its standard representation on
Cm+1, and P ⊆ G is the isotropy group of a complex line through the origin in Cm+1. Restricting
this representation to P , call the restricted representation space V. The corresponding tractor
bundle is the standard c-projective tractor bundle T , i.e.

EA = T := P ×P V.(12)

Its dual, the standard cotractor bundle, is given by

EA = T ∗ := P ×P V∗.(13)

We define the standard complex tractor bundle to be the (1, 0) component of the complexification
of the real standard tractor bundle

EA = T 1,0 ⊂ CT ,(14)

We denote it’s conjugate, dual, and dual conjugate by EA = T 0,1 = T 1,0, EA = (T 1,0)∗, and
EA = (T 0,1)∗, respectively.

Recalling the various natural maps denoted by Π from the beginning of Section 2, observe that
there are, mutatis mutandis, analogous natural complex linear inclusions and projections at the
tractor level which satisfy similar identities. For instance,

(T ∗)(1,0) →֒ CT ∗ uA 7→ ΠA
A uA

(T ∗)(0,1) →֒ CT ∗ uA 7→ Π
A

A uA.

Note that we use capital script indices for the real standard (co)tractor bundle, and its complexi-
fication when no confusion can arise. The structure of the tractor bundles defined above can be
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described by the following short exact sequences

0→ E(−1, 0)
XA

−−→ EA
Za

A−−→ Ea ⊗C E(−1, 0)→ 0

0→ Ea ⊗C E(1, 0)
Za

A−−→ EA
XA

−−→ E(1, 0)→ 0

0→ Eα ⊗ E(0, 1)
Zα

A−−→ EA
XA

−−→ E(0, 1)→ 0

0→ Eα ⊗ E(1, 0)
Zα

A−−→ EA
XA

−−→ E(1, 0)→ 0

0→ E(−1, 0)
XA

−−→ EA
Zα

A−−→ Eα ⊗ E(−1, 0)→ 0

0→ E(0,−1)
XA

−−→ EA
Zα

A−−→ Eα ⊗ E(0,−1)→ 0.

A choice of connection ∇ ∈ D in the c-projective class determines a Weyl structure which splits
these short exact sequences as follows

0← E(−1, 0)
YA←−− EA

WA

a←−−− Ea ⊗C E(−1, 0)← 0

0← Ea ⊗C E(1, 0)
WA

a←−−− EA
YA←−− E(1, 0)← 0

0← Eα ⊗ E(0, 1)
WA

α←−− EA
YA←−− E(0, 1)← 0

0← Eα ⊗ E(1, 0)
WA

α←−− EA
YA←−− E(1, 0)← 0

0← E(−1, 0)
YA←−− EA

WA
α←−− Eα ⊗ E(−1, 0)← 0

0← E(0,−1)
YA←−− EA

WA
α←−− Eα ⊗ E(0,−1)← 0.

These splitting tractors W , X , Y , and Z maps can be viewed as weighted tractors as follows

WA

a ∈ Γ(EA ⊗ (Ea ⊗C E(1, 0)) WA
α ∈ Γ(EAα (0, 1)) WA

α ∈ Γ(EAα (1, 0)))

XA ∈ Γ(EA (1, 0)) XA ∈ Γ(EA(0, 1)) XA ∈ Γ(EA(1, 0))

YA ∈ Γ(EA (−1, 0)) YA ∈ Γ(EA(0,−1)) YA ∈ Γ(EA(−1, 0))

Za
A ∈ Γ(EA ⊗ (Ea ⊗C E(−1, 0))) Zα

A
∈ Γ(Eα

A
(0,−1)) Zα

A ∈ Γ(EαA(−1, 0))

These maps satisfy the obvious relations

XA WA
a

YA 1 0
Zb

A
0 δba

XA WA
α

YA 1 0

Zβ

A
0 δβα

XA WA
α

YA 1 0

Zβ
A 0 δβα

Given two splittings (i.e., connections) ∇, ∇̂ ∈D, sections of EB and EB change by

̂(

λb ⊗C σ
ρ

)

=

(

λb ⊗C σ
ρ−Υbλ

bρ+ΥbJ
b
aλ

aiρ

)

(15)

̂(

υ
νb ⊗C ǫ

)

=

(

υ
νb ⊗C ǫ +Υb ⊗C ǫυ + Ja

b Υa ⊗C ǫυi

)

,(16)

and sections of EB and EB change by

̂( ηβ

ρ

)

=

(

ηβ

ρ− 2Υβη
β

)

(17)

̂( ξ
µβ

)

=

(

ξ
µβ + 2Υβξ

)

.(18)
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2.7. The c-projective tractor connection. For a choice of splitting, ∇ ∈ D, the tractor
connection on EB and EB is given by

∇a

(

λb ⊗C σ
ρ

)

=

(

(∇aλ
b)⊗C σ + λb ⊗C (∇aσ) + δba ⊗C ρ
∇aρ− Pabλ

bσ + PabJ
b
cλ

ciσ

)

(19)

∇a

(

υ
νb ⊗C ǫ

)

=

(

∇aυ − νaǫ
(∇aνb)⊗C ǫ+ νb ⊗C (∇aǫ) + Pab ⊗C ǫυ − Jc

aPcb ⊗C ǫυi

)

,(20)

and on sections of EB and EB it is given by

∇α

(

ηβ

ρ

)

=

(

∇αη
β + δβαρ

∇αρ− 2Pαβη
β

)

(21)

∇α

(

ξ
µβ

)

=

(

∇αξ − µα

∇αµβ + 2Pαβξ

)

(22)

∇α

(

ηβ

ρ

)

=

(

∇αη
β

∇αρ− 2Pαβη
β

)

(23)

∇α

(

ξ
µβ

)

=

(

∇αξ
∇αµβ + 2Pαβξ

)

,(24)

where Pαβ = Πa
αΠ

b
βPab and Pαβ = Π

a

αΠ
b
βPab. Using these formulae for the tractor connection a

series of straightforward computations yield the following:

∇γW
A
α = −2PγαX

A ∇γW
A
α = −2PγαX

A

∇γW
A
α = −2PγαX

A ∇γW
A
α = −2PγαX

A

∇γX
A = WA

γ ∇γX
A = WA

γ

∇γX
A = 0 ∇γX

A = 0

∇γYA = 2Zα
APγα ∇γYA = 2Zα

A
Pγα

∇γYA = 2Zα
A
Pγα ∇γYA = 2Zα

APγα

∇γZ
α
A = −δαγ YA ∇γZ

α
A
= −δαγYA

∇γZ
α
A
= 0 ∇γZ

α
A = 0

as well as

∇cW
A

a = −PabX
A + Jb

cPbaiX
A

∇cX
A = WA

c

∇cYA = PcaZ
a
A − Jb

cPbaiZ
a
A

∇cZ
a
A = −δacYA .

2.8. The Thomas D-operator. The Thomas D-operator DA : E•(w,w′) → E•
A
(w − 1, w′) is

a c-projectively invariant operator. Here E• denotes any tractor bundle constructed tensorially
out of EA , and EA . For our purposes it will be sufficient to explicitly describe the action of the
Thomas D-operator on sections s of E(w,w′). In a splitting the Thomas D-operator is given by

DA s :=

(

ws
∇as

)

= YA ws+ Za
A∇as.
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2.9. The metricity bundle. An almost pseudo-Hermitian manifold is a triple (M,J, g) where
(M,J) is an almost complex manifold and g is a Hermitian metric for J , i.e. gabJ

a
c J

b
d = gcd. An

almost pseudo-Hermitian manifold is called a pseudo-Hermitain manifold if J is integrable. Recall
the Kähler form of an almost pseudo-Hermitian manifold is the 2-form ωab = Jc

agcb, which clearly
satisfies ωabJ

a
c J

b
d = ωcd and ωabω

bc = −δca, where Ω
bc := Jc

ag
ba is the Poisson bivector. The almost

Hermitian manifold is said to be almost pseudo-Kähler if the Kähler form, ω, is closed. We can

also view a Hermitian metric gab as a real non-degenerate section gαβ = Πa
αΠ

b

βgab of Eαβ.

Now we consider the bundle EAB and its real subbundles H∗ (which, following [15], we term the
metricity bundle) and its skew counterpart P∗. H∗ and P∗ can also be viewed as subbundles of
E(A B) and E [A B], respectively, whose sections are Hermitian with respect to the almost complex
structure, JA

B
, on the tractor bundle EA . Note that JA

B
gives an isomorphism between H∗ and

P∗. In a splitting we have

EAB = Eαβ(−1,−1)⊕ Eα(−1,−1)⊕ Eβ(−1,−1)⊕ E(−1,−1)

H∗ = Herm(T ∗M)⊗ E(−1,−1)R ⊕ E
a(−1,−1)R ⊕ E(−1,−1)R,

P∗ = SkewHerm(T ∗M)⊗ E(−1,−1)R ⊕ E
a(−1,−1)R ⊕ E(−1,−1)R

where Herm(E) and SkewHerm(E) denotes the bundle of Hermitain metrics and Hermitian forms

on a vector bundle E, respectively. We write sections hAB ∈ Γ(EAB), hA B ∈ Γ(H∗), and
pA B ∈ Γ(P∗) as

hAB =





ζαβ

λα | µβ

ν



 hA B =





ζab

λc

ν



 pA B =





πab

ιc

ν





where we can identify the slots of hA B with real slots of EAB:

ζγβ = ζβγ , λα = µα, and ν = ν.

We also see that the slots of hA B are related to the slots of pA B = JB
C
hA C by

πab = Jb
c ζ

ca, and ιa = Ja
b λ

b.

We will also need to work with the dual bundles, namely EAB and its real subbundles H and P .
In a splitting these decompose into the following direct sums

EAB = Eαβ(1, 1)⊕ Eα(1, 1)⊕ Eβ(1, 1)⊕ E(1, 1)

H = Herm(TM)⊗ E(1, 1)R ⊕ Ea(1, 1)R ⊕ E(1, 1)R,

P = SkewHerm(TM)⊗ E(1, 1)R ⊕ Ea(1, 1)R ⊕ E(1, 1)R.

and we write sections hAB ∈ Γ(EAB) and hA B ∈ Γ(H∗) as

hAB =





ϕαβ

λα | µβ

τ



 hA B =





ϕab

λc

τ





The formulae for the tractor connection applied to H∗ and H, respectively, are given by:

∇T
c h

A B = ∇T
c





ζab

λa

ν



 =





∇cζ
ab + δ

(a
c λb) + J

(a
c J

b)
i λi

∇cλ
a + 2δac ν − 2Pcbζ

ab

∇cν − Pcbλ
b



 ,

∇T
c hA B = ∇T

c





τ
λa

ϕab



 =





∇cτ − 2λc

∇cλa + Pcaτ − ϕca

∇cϕab + 2Pc(bλa) + 2PciλjJ
i
(aJ

j

b)



 .

We can pass from sections of hA B ∈ Γ(H∗) to sections of hAB ∈ Γ(EAB), or vice versa, via the

Π and Π maps discussed earlier. The formulae for the tractor connection applied to sections of
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EAB(−1,−1) are given by:

∇T
γ h

AB = ∇T
γ





ζαβ

λα | µα

ν



 =







∇γζ
αβ + δαγ µ

β

∇γλ
α + 2δαγ ν − 2Pγβζ

αβ | ∇γµ
β − 2Pγβζ

βα

∇γν − Pγαµ
α − Pαβλ

β






,

∇T
γ h

AB = ∇T
γ





ζαβ

λα | µα

ν



 =







∇γζ
αβ + λαδβγ

∇γλ
α − 2Pγβζ

αβ | ∇γµ
α + 2νδαγ − Pγβζ

βα

∇γν − 2Pγαµ
α − 2Pγβλ

β






.

The formulae for the tractor connection applied to sections of EAB(1, 1) are given by:

∇T
γ hAB = ∇T

γ





ϕαβ

λα | µα

τ



 =





∇γτ − λγ

∇γλα + 2Pγατ | ∇γµβ + 2Pγατ − ϕγα

∇γϕαβ + Pγβλα + Pγαµβ



 ,

∇T
γ hAB = ∇T

γ





τ
λα | µα

ϕαβ



 =





∇γτ − µγ

∇γλα + 2Pγατ − ϕαγ | ∇γµα + 2Pαγτ
∇γϕαβ + Pγβλα + Pγαµβ



 .

2.10. C-projective BGG equations. Given a Cartan geometry (P ։ M,ω) of type (G,P ) and
a G-representation V, we form a tractor bundle V = P ×P V. Then, via the corresponding tractor
connection, we can form the exterior covariant derivative, d∇, on V-valued forms to obtain the de
Rham sequence twisted by V .

0 −→ V
d∇

−−→ V ⊗ Ea
d∇

−−→ V ⊗ E[ab]
d∇

−−→ ...

Then, via the canonical map

† : Ea → End(V), given explicitly by αa 7→ XBZa
A αa

in the case when V = EA , one can construct a special case of the Kostant codifferential ∂∗,
that gives a complex of natural bundle maps on V-valued differential forms going in the opposite
direction to the twisted de Rham sequence,

0
∂∗

←− V
∂∗

←− V ⊗ Ea
∂∗

←− V ⊗ E[ab]
∂∗

←− ...

The homology of this sequence gives natural subquotient bundles

Hk(M,V) := ker(∂∗)/ im(∂∗).

There are natural bundle projections Πk : ker(∂∗) ⊆ V ⊗ E[ab...c] → Hk(M,V), from the in-
dicated V-valued k-forms to the kth BGG homology. Given a smooth section ρ of Hk(M,V)
there is a unique smooth section Lk(ρ) of ker(∂∗) ⊆ V ⊗ E[a...b] such that Πk(Lk(ρ)) = ρ and

∂∗(d∇
V

(Lk(ρ)))= 0. This characterizes a projectively invariant differential operator L called the
BGG splitting operator, or just the splitting operator. We can then define the kth BGG oper-

ator Θk : Hk(M,V) → Hk+1(M,V) by ρ 7→ Πk+1(d
∇V

(Lk(ρ))). It follows from these definitions
that parallel sections of V are equivalent to (via Π0 and L0) a special class of so-called normal
solutions of the first BGG operator Θ0 : H0(M,V) → H1(M,V) associated with V . Equations
induced on the sections of H0(M,V) by the BGG operator Θ0 are known as (first) BGG equations.
Note that the BGG sequence, given by the BGG operators, is not a complex in general, unless
the connection ∇V is flat. Note that a parallel section of a tractor bundle is necessarily in the
image of the splitting operator. Next, we determine the first BGG equation and splitting operator
corresponding to the c-projective metricity bundle.
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Proposition 2.2. Let (M,J,D) be an almost c-projective manifold. The first BGG operator
Θ0 : H0(M,H∗)→ H1(M,H∗), induces the following projectively invariant first order equation on
Herm(T ∗M)⊗ E(−1,−1)R,

∇cζ
ab −

1

m
δ(ac ∇dζ

b)d −
1

m
J (b
c Ja)

e ∇dζ
ed = 0.(25)

Proof. Let hA B ∈ Γ(E(A B)). Then we compute ∇T
c h

A B.

∇T
c h

A B = ∇T
c





ζab

λa

ρ



 =





∇cζ
ab + δ

(a
c λb) + J

(a
c J

b)
i λi

∇cλ
a + 2δac ρ− 2Pcbζ

ab

∇cρ− Pcaλ
a



 .

Then ∂∗(∇T
c h

A B) = 0 tells us that the slots of Zc
D
X(A∇T

c h
B)D are trace-free1, i.e. we have the

following system of equations:

trace(∇cζ
ab + δ(ac λb) + J (a

c J
b)
i λi) = 0,(26)

trace(∇cλ
a − 2Pcbζ

ab + 2δacρ) = 0.

Therefore,

λa =
−1

m
∇bζ

ab,

ρ =
1

2m
Pbaζ

ab +
1

4m2
∇a∇bζ

ab.

Thus a Hermitian form, h, on the cotractor bundle in the image of the splitting operator is of the
form

hA B = L(ζab) =





ζab
−1
m
∇bζ

ab

1
2mPbaζ

ab + 1
4m2∇a∇bζ

ab



 .

Substituting gives the following first-order BGG equation on Herm(T ∗M)⊗ E(−1,−1)R

trace-free(∇cζ
ab) = 0⇐⇒ ∇cζ

ab −
1

m
δ(ac ∇dζ

b)d −
1

m
J (b
c Ja)

e ∇dζ
ed = 0.(27)

C-projective invariance follows from a straightforward computation. H0(M,H∗) = Herm(T ∗M)⊗
E(−1,−1)R follows from applications of the general BGG machinery of [22] and this particular case
is treated in Theorem 3.3 of [19]. So we have given the explicit form of Θ0(ζ

ab) := Π1(d
∇L(ζab)) =

0, which is the c-projective metrizability equation (25). �

Applying the procedure above to the bundle H yields H0(M,H) = E(1, 1) and also gives an
explicit formula for the splitting operator L : E(1, 1) → H. For later reference, we give the
formulae (cf. with Section 3.5 of [15]) for the BGG splitting operators mapping into H∗ and H,
respectively, in the following corollary,

Corollary 2.3. Let τ ∈ Γ(E(1, 1)R) and ζ ∈ Γ(Herm(T ∗M) ⊗ E(−1,−1)R). Then their images
under their respective splitting operators, both denoted by L, are given by

L(τ) =





τ
1
2∇aτ

1
2 (δ

i
(bδ

j

c) + J i
(bJ

j

c))(
1
2∇i∇jτ + Pijτ)





and

L(ζab) =





ζab
−1
m
∇iζ

ic

1
2mPijζ

ij + 1
4m2∇i∇jζ

ij



 .

1See the proof of Proposition 14 of [15] for a more details.
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2.11. Determinants. We now describe several methods of taking determinants which are relevant
to our purposes. Let ǫα1···αm

∈ Γ(E[α1···αm](m + 1, 0)) denote the canonical section giving the

identification E [α1···αm] ∼
−→ E(m + 1, 0). Then we get a well-defined notion of determinant for

sections of Eαβ(k, k) via the map:

det : Eαβ(k, k)→ E(km+m+ 1, km+m+ 1)

σαβ 7→
1

m!
ǫα1···αm

ǫβ1···βm
σα1β1 · · ·σαmβm .

For Hermitian sections of Eαβ(k, k), det is valued in E(km +m+ 1, km+m+ 1)R. The parallel
c-projectively invariant tractor

ǫA0···AmB0···Bm
:= ǫα1···αm

ǫβ1···βm
Y[A0

Zα1

A1
· · ·Zαm

Am]Y[B0
Z

β1

B1

· · ·Z
βm

Bm]
,

which is the (complex) c-projective tractor volume form, provides a method for taking determinants

of sections of EAB as follows,

det : EAB → E(0, 0)

hAB 7→
1

(m+ 1)!
ǫA0··· AmB0··· Bm

hA0B0 · · ·hAmBm .

This determinant is real-valued, i.e., valued in E(0, 0)R, for Hermitian sections of EAB.

Now, letting ǫa1···am
:= Πα1

a1
· · ·Παm

am
ǫα1···αm

and ǫb1···bm := Π
β1

b1
· · ·Π

βm

bm
ǫβ1···βm

, we define

ǫ2a1···amb1···bm
:= ǫ[a1···am

ǫb1···bm] ∈ Γ(E[a1···amb1···bm] ⊗ E(m+ 1,m+ 1)R).

So ǫ2a1···amb1···bm
is the canonical section identifying oriented real line bundles E [a1···amb1···bm] ∼

−→
E(m + 1,m + 1)R. Observe that this volume form gives a notion of determinant on sections of
SkewHerm(T ∗M)⊗ E(k, k)R defined by,

det : SkewHerm(T ∗M)⊗ E(k, k)R → E(km+m+ 1, km+m+ 1)R

πab 7→
1

m!
ǫ2a1···amb1···bmπa1b1 · · ·πambm .

Since J identifies SkewHerm(T ∗M) with Herm(T ∗M), we can pull the determinant back to
Herm(T ∗M). That is, let det(σab) := det(πab) where πab = Jb

cσ
ac. Then, we define the (real)

c-projective tractor volume form by

ǫA0··· AmB0··· Bm
:= ǫ2a1···amb1···bmΠA0

[A0
· · ·Π

Bm

Bm]Π
a1

α1
· · ·Π

bm

βm
Y[A0

Zα1

A1
· · ·Zαm

Am]Y[B0
Z

β1

B1

· · ·Z
βm

Bm]
.

Since Y[A0
Zα1

A1
· · ·Zαm

Am]Y[B0
Z

β1

B1

· · ·Z
βm

Bm]
, and hence ǫA0···AmB0···Bm

, is fixed under conjugation, it

follows that (28) is indeed a section of (Λ2m+2
R

T ∗). Thus it provides a notion of determinant on

the real subbundle P∗ of EAB via

det : P∗ → E(0, 0)R

pA B 7→
1

(m+ 1)!
ǫA0··· AmB0··· Bm

pA0B0 · · · pAmBm .

Since J (viewed as a complex structure at the tractor bundle level) identifies P∗ with H∗, we pull
the determinant back to H∗. That is, we let det(hA B) := det(pA B) where pA B = JB

C
hA C .

2.12. Scalar curvature. Let (M,J) be an almost complex manifold equipped with an admissible
Hermitian pseudo-Riemannian metric g. The volume form for g, volg ∈ Γ(E(−2m−2)), is parallel
for any affine connection ∇ preserving g and hence any root of volg is parallel for ∇ as well. In

particular, τ := vol
− 1

m+1

g ∈ Γ(E(1, 1)R) is parallel for the canonical connection ∇g of g. It follows
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that ζab := τ−1gab ∈ Γ(Herm(T ∗M)⊗E(−2)) is a solution to the metrizability equation. Further,
in the splitting determined by the canonical connection for g we see that

L(ζab) =





ζab

0
1

2mζijPij



 =





τ−1gab

0
τ−1

2m gijPij



 =





τ−1gab

0
τ−1Rg

4m(m+1)



 ,

where Rg denotes the scalar curvature of g. Then, up to a constant multiple, the determinant of
hA B = L(τ−1gab) agrees with the scalar curvature Rg of g, as was observed in Proposition 15

of [15] and (in the special case of parallel sections of EAB) in Proposition 4.8 of [12]. If (M,J)
can be realized as the interior of manifold with boundary M such that the c-projective structure
of ∇g admits a smooth extension to M , then τ−1gab and Rg can be extended from the interior
to M , for details see Corollary 16 of [15]. This is closely related to the questions we consider in
section 3.

3. Induced stratifications

We will show that given nondegeneracy of L(τ) or L(ζ) where τ ∈ Γ(E(1, 1)R) and ζ ∈
Γ(Herm(T ∗M) ⊗ E(−1,−1)R) is a solution to the metrizability equation (25) induces a strat-
ification of the underlying almost c-projective manifold in analogous fashion to the projective
cases considered in [31]. The following theorems can be viewed as generalizations of curved or-
bit decomposition result of Theorem 3.3 in [19] where we are primarily using the more hands-on
machinery developed in [15].

Theorem 3.1. Let (M,J,D) be an almost c-projective manifold with real dimension 2n equipped
with a real density τ ∈ Γ(E(1, 1)R) such that L(τ) ∈ Γ(H) is non-degenerate as a Hermitian form
on the tractor bundle. If L(τ) is definite then the zero locus Z(τ) is empty and (M,J,D, g) is

Hermitian with metric gbc = (δi(bδ
j

c) + J i
(bJ

j

c))Pij , which is not, in general, admissible. If L(τ)

has indefinite signature then Z(τ) is either empty or it is a smoothly embedded separating real
hypersurface such that the following hold:

(i) M is stratified by the strict sign of τ with curved orbit decomposition given by

M =
∐

i∈{+,0,−}

Mi

where τ is positive, zero ,and negative on M+, M0, and M−, respectively.
(ii) If M is closed, then the open components (M\M∓, J,D) are c-projective compactifications

of (M±, J,∇
τ ), with boundary M0.

(iii) The open components (M\M∓, J, g) are pseudo-Hermitian with metric gbc = (δi(bδ
j

c)+J i
(bJ

j

c))Pij .

The metric g is not admissible for D in general, but if L(τ) is parallel, then it is admissible
and further g is Kähler-Einstein.

(iv) M0 inherits a (possibly degenerate) almost CR structure of hypersurface type.

Proof. (i) Since L(τ) is non-degenerate observe that Z(τ) ∩ Z(∇τ) = ∅. The implicit function
theorem implies then that Z(τ) is a smoothly embedded real hypersurface, which is necessarily
separating since ∇τ 6= 0 on Z(τ).
(ii) Since τ is a defining density for M0 it follows from Proposition 2.1 that (M\M∓, J,D) are
c-projective compactifications of (M±, J,∇

τ ), with boundary M0.

(iii) Away from Z(τ), in the splitting ∇τ , we see that L(τ) = (τ, 0, (δi(bδ
j

c)+J i
(bJ

j

c))Pij). Nondegen-

eracy of L(τ) implies that the Hermitian form gbc = (δi(bδ
j

c) + J i
(bJ

j

c))Pij is itself non-degenerate,

and hence a Hermitian metric, away from Z(τ). If the bottom slot of ∇L(τ) vanishes in the
splitting ∇τ , then g is necessarily admissible and hence quasi-Kähler by our discussion in Section
2.32. In particular, if L(τ) is parallel, then g is admissible.
(iv) Observe that, for x ∈M0, Hx := TxM0 ∩ J(TxM0) defines a corank one smooth distribution
H ⊂ TM0 and the pullback i∗J of the almost complex structure along the inclusion i : M0 →֒M
defines an almost complex structure on H . Thus (M2n−1

0 , H, i∗J) is a (possibly degenerate) almost
CR structure of hypersurface type. If J is integrable then i∗J is integrable. �

2For details see Proposition 4.1 of [12] or Proposition 7 of [15].
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Next we examine an analogous result in the dual case.

3.1. Degenerate solutions of the c-projective metrizability equation: the order 2 c-

projective compactification case.

Theorem 3.2. Let (M,J,D) be a almost c-projective manifold with real dimension 2m equipped
with a solution ζ ∈ Γ(Herm(T ∗M) ⊗ E(−1,−1)R) of the metrizability equation such that L(ζ) ∈
Γ(H∗) is non-degenerate as a pseudo-Hermitian form on the cotractor bundle. If L(ζ) is definite
then the degeneracy locus D(ζ) is empty and (M,J,D, ζ) is a quasi-Kähler manifold with inverse
Hermitian metric g−1 = sgn(τ)τζ where τ = det(ζ). If L(ζ) has signature (p + 1, q + 1), with
p, q ≥ 0, then D(ζ) is either empty or it is a smoothly embedded separating real hypersurface such
that the following hold:

(i) M is stratified by the strict signature of ζ as a (density weighted) Hermitian form on T ∗M
with curved orbit decomposition given by

M =
∐

i∈{+,0,−}

Mi

where ζ has signature (p + 1, q), (p, q + 1),and (p, q, 1) on TM restricted to M+, M−, and
M0, respectively.

(ii) On M±, ζ induces a quasi-Kähler metric g± with nonvanishing scalar curvature Rg± , with
the same signature as ζ, with inverse g−1

± = sgn(τ)τζ|M±
where τ = det(ζ).

(iii) If M is closed, then the components (M\M∓, J,D) are c-projective compactifications of
(M±, J,∇

ζ), with boundary M0.
(iv) M0 inherits a signature (p, q) almost CR structure of hypersurface type.

Proof. (i) Let ΦA B := (hA B)−1 denote the pointwise inverse of hA B = L(ζab). Given a splitting,
say ∇ ∈D, we write h and Φ as

hA B =





ζab

λa

ρ



 and ΦA B =





τ̂
η̂a
ϕ̂ab



 ,(28)

for smooth sections ρ ∈ Γ(E(−1,−1)R), λ
a ∈ Γ(Ea(−1,−1)R), ζ

ab ∈ Γ(Herm(T ∗M)⊗E(−1,−1)R),
τ̂ ∈ Γ(E(1, 1)R), η̂a ∈ Γ(Ea(1, 1)R), and ϕ̂ab ∈ Γ(Herm(TM) ⊗ E(1, 1)R). Observe that, up to a

non-zero constant, τ̂ = det(ζab)
det(hA B)

.

By definition we have

ΦA ChCB = δB

A .(29)

Applying the tractor connection, ∇T
i , to both sides gives

−(∇T
i ΦA C )hCB = ΦA C∇

T
i h

CB.

Applying ΦBD to each side gives

−∇T
i ΦA D = ΦA C (∇T

i h
CB)ΦBD .(30)

Computing, the top two slots of (30) are given by

2η̂i −∇iτ̂ = τ̂2βi − 2τ̂ η̂bα
b
i

ϕ̂ic −∇iη̂c − Picτ̂ = τ̂ η̂cβi + τ̂ ϕ̂jcα
j
i + η̂cα

j
i η̂j

where ∇T
i h

CB = (0, αb
i , βi)

t. On D(ζ) = Z(τ̂ ) these reduce to

∇iτ̂ = 2η̂i(31)

ϕ̂ic = η̂cα
j
i η̂j +∇iη̂c.(32)

It follows that, on D(ζ), Φ has the form

ΦA B =





τ̂
1
2∇cτ̂

1
2∇a∇bτ̂ + 1

4 (∇bτ̂ )(∇iτ̂ )α
i
a



 .(33)
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Nondegeneracy of Φ implies that Z(τ̂)∩Z(∇τ̂ ) = ∅ whence we conclude that Z(τ̂ ) is a smoothly
embedded real hypersurface that is necessarily separating.

(ii) On the open orbits M± the complex connection ∇ζ ∈ D preserving ζ necessarily pre-
serves det(ζ), and hence preserves the pseudo-Riemannian metric g−1

± = sgn(τ)τζ|M±
. Since ζ

is Hermitian it follows that g± is Hermitian and hence admissible. As observed in Section 2.4, a
Hermitian pseudo-Riemannian metric, on an almost complex manifold, is admissible if and only
if it is quasi-Kähler.
On M± in the splitting ∇ζ we see that L(ζ) = (sgn(τ)τ−1g−1

± , 0, 1
4m(m+1) sgn(τ)τ

−1Rg±)t. Nonde-

generacy of L(ζ) implies that the scalar curvature Rg± is nonvanishing.
(iii) Since the (1, 1)R-density τ = det(ζ) is a defining density for M0 and it is necessarily pre-

served by ∇ζ , it follows from Proposition 2.1 that the components (M\M∓, J,D) are c-projective
compactifications of (M±, J,∇

ζ), with boundary M0.
(iv) Observe that, for x ∈M0, Hx := TxM0∩J(TxM0) defines a corank one smooth distribution

H ⊂ TM0 and the pullback i∗J of the almost complex structure along the inclusion i : M0 →֒M
defines an almost complex structure on H . Thus (M2n−1

0 , H, i∗J) is a (possibly degenerate) almost
CR structure of hypersurface type. If J is integrable then i∗J is integrable.

Since ∇aτ is conormal to TM0 ⊂ TM it follows that Ja
b∇aτ is conormal to J(TM0) ⊂ TM so

that ∇aτ ⊥ H and Ja
b∇aτ ⊥ H . Now we show that when ζ degenerates, its nullity is pointwise

spanned by ∇aτ and Ja
b∇aτ . Since ζ is Hermitian we need only show ∇aτ is in the nullity of ζ

and it will follow that Ja
b∇aτ is in the nullity as well.

Now we show that there exists a scale such that Y is null, i.e. HA BYA YB = 0, along M0.
Given f a non-vanishing section of E(1, 1), then in the scale corresponding to f , we have that

f−1DA f = f−1YA f + f−1Za
A∇af = YA .

Observing that, on D(ζ),

DA τ̂ = YA τ̂ + Za
A∇aτ̂ = 2ΦA BXB,

This implies that along D(ζ)

hA B(DA τ̂ )(DBτ̂ ) = 4hA BΦA DXDΦBCXC = 4ΦA DXDXA = τ̂ = 0.

Also, observe that

1

2
hA CDA τ̂ = XC .

Define ξ := − 1
4fρ where f is an arbitrary non-vanishing section of E(1, 1) and ρ := YA YBhA B.

Now let γ := f + ξτ̂ . Then along D(ζ) we have

hA BY γ
A
Y γ

B
= γ−2(DA γ)(DBγ)hA B

= f−2(DA f + ξDA τ̂ )(DBf + ξDBτ̂)hA B

= f−2(DA f)(DBf)hA B + f−2ξ(DA τ̂ )(DBf)hA B + f−2ξ(DA f)(DBτ̂ )hA B

+ f−2ξ2(DA τ̂ )(DBτ̂ )hA B

= YA YBhA B + 2f−2ξXB(DBf) + 2f−2ξXA (DA f) + 0

= ρ+ 4f−1ξ

= ρ− ρ

= 0.

A scale ∇γ preserving γ such that Y γ is null along along D(ζ) will be known as a special boundary
scale.3 In such a scale, ρ necessarily vanishes along D(ζ).

3This term and the method of constructing a special boundary scale was first done the setting of projective
differential geometry by Sam Porath in [40].
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Computing the slots of 29 along D(ζ) in a special boundary scale yields the following system
of equations

1

2
(∇aτ̂ )ζ

ab = 0(34)

1

2
(∇c∇aτ̂ )∇jζ

jc +
1

4
(∇aτ̂ )(∇iτ̂ )α

i
c∇jζ

jc = 0(35)

1

2m
(∇cτ̂ )(∇iζ

ic) = 1(36)

1

2m
(∇aτ̂ )(∇iζ

ib) +
1

2
(∇c∇aτ̂ )ζ

cb +
1

4
(∇aτ̂ )(∇iτ̂ )α

i
c∇jζ

jc = δba.(37)

It follows from (34) that the kernel of ζ on D(ζ) is spanned by ∇aτ̂ and Ja
b∇aτ̂ . So ζ induces

a pseudo Hermitian metric with signature (p, q) on the distribution H . Contracting ξa ∈ Γ(H)
into (35) gives us

1

2
(∇c∇aτ̂)(∇jζ

jc)ξa = 0.(38)

The restriction of θa := J i
a∇iτ̂ to TM0 is a weighted contact form for the CR structure induced

on D(ζ). Then (38) together with (36) this implies that T a := − 1
2mJa

j ∇iζ
ij is a candidate for the

Reeb vector field since θaT
a = 1.

Contracting ξa ∈ Γ(H) into (37) gives us

1

2
(∇c∇aτ̂ )ζ

cbξa = δbaξ
a = ξb,

whence (ζ|H)−1 = 1
2∇∇τ̂ . Since and the real part of the CR Levi form corresponding to θa is the

restriction of (dθ)ab = 2∇[aJ
i
b]∇iτ̂ to H , it follows immediately that the real part of the CR Levi

form is (Ja
b ζ̌

bc)−1, where ζ̌ := ζ|H . Thus the CR structure is Levi-non-degenerate with signature
(p, q) and, since T a(dθ)ab = 0, we see that T a is indeed the Reeb. �

Remark 3.3. If the original almost complex structure is integrable then the open orbits are
in fact pseudo-Kähler and the c-projective Schouten tensor Pab is symmetric and Hermitian, so
by Theorem 23 of [15], g± satisfies an asymptotic version of the Einstein equation. If L(ζ) is
parallel then the vanishing of the middle slot of ∇L(ζ) implies that the quasi-Kähler metrics on
the open orbits are Einstein. If J is integrable and L(ζ) is parallel then the open orbits are
pseudo-Kähler-Einstein.

Corollary 3.4. Let (M,J) be a connected almost complex manifold with boundary ∂M and in-
terior M , equipped with a pseudo-quasi-Kähler metric g on M which is Hermitian for J , has
nonvanishing scalar curvature, and such that the minimal complex connection ∇g preserving g
does not extend to any neighborhood of a boundary point, but the almost c-projective structure

D := [∇g] does extend to the boundary. Let τ := vol(g)−
1

m+1 . Then ζab := τ−1gab extends to the
boundary. If L(ζab) is non-degenerate on M , then (M,J,∇g) is c-projectively compact.

Proof. L(ζ) is defined on the interior M . It extends via parallel transport for the prolongation
connection4 to a parallel (for the prolongation connection) tractor onM . Projection to the quotient
bundle Herm(T ∗M)⊗ E(−1,−1)R gives a smooth extension of ζ to all of M (cf. Corollary 16 of
[15]). The degeneracy locus of ζ is precisely ∂M , otherwise it would contradict our assumption
that ∇g does not extend to any neighborhood of a boundary point. Then the result follows from
Theorem 3.2. �

3.2. The Model. We briefly discuss here the model for the structures considered in Theorem 3.2.
The standard homogeneous model for c-projective geometry is the complex projective space arising
as the complex scalar projectivization, CPm = P(Cm+1), of Cm+1. The J-planar curves in CP

m

are the smooth (real) curves lying in linearly embedded complex curves CP
1 →֒ CP

m. On CP
m

the group G = SL(Cm+1) acts transitively. On this c-projective structure it is well known that the
tractor connection is induced by the trivial connection on Cm+1. Now suppose we fix, on Cm+1,

4The prolongation connection is a natural modification of the tractor connection. See, e.g., [?] for a construction
for general BGG operators
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a non-degenerate symmetric bilinear form h of signature (p + 1, q + 1). This may be identified
with a corresponding parallel tractor. In G consider the subgroup H := SU(h) ∼= SU(p+1, q+1)
fixing h (so p+ q = m− 1). This acts on the complex projective space CP

m but now with orbits
parametrized by the strict sign of h(X,X) whereX denotes the homogeneous coördinates of a given
point on CP

m. Complex projective space CPm equipped with this action of H and accompanying
orbit decomposition is the model for the structure discussed in Theorem 3.2. This follows easily
from the tractor approach that we use with the interpretation of the tractor bundles over the
homogeneous space G/P . So the Theorem also reveals, for this model, the general features of the
orbits and the geometries thereon. In fact, h−1 = L(ζ) where ζ is the corresponding solution of
(25) and, in the language of [21], this is a holonomy reduction of a flat Cartan geometry (namely
G → CP

m). Turning this around, we see that Theorem 3.2 shows that solutions ζ of equation
(25), satisfying that det(L(ζ)) is nowhere zero, provide well behaved curved generalizations of this
model even though ζ is not required to be normal (i.e. L(ζ) is not required to be parallel).
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[8] T. Branson, A. Čap, M. Eastwood, A. R. Gover. Prolongations of geometric overdetermined systems. Internat.
J. Math. 17 (2006), no. 6, 641–664.

[9] T. Branson, A.R. Gover. Conformally invariant non-local operators Pacific Journal of Mathematics, 201 (2001),
19–60.

[10] R. Bryant, M. Dunajski, M. Eastwood. Metrisability of two-dimensional projective structures. J. Differential
Geom. 83 (2009), no. 3, 465–499.

[11] D. Calderbank, T. Diemer. Differential invariants and curved Bernstein-Gelfand-Gelfand sequences. J. Reine
Angew. Math. 537 (2001), 67–103.

[12] D. M. J. Calderbank, M. G. Eastwood, V. S. Matveev, K. Neusser. C-projective geometry. Mem. Amer. Math.
Soc. 267 (2020), no. 1299, v+137.
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