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Abstract—As the most computationally intensive part of a
stereo vision system, stereo matching has been the focus of intense
research activities for the last four decades. We present the first
attempts to compare a quantum stereo matching solution with
state-of-the-art approaches on the Middlebury stereo datasets.
We first looked at quantum annealing computation as a way to
interact with the D-Wave quantum computer and then improved
the quantum solution to the stereo matching problem found in
the literature. Using a line-by-line approach, we traded accuracy
off for the qubits availability in the QPU (Quantum Processor
Unit). Our findings show that it is possible to obtain results from
real-sized images despite the scarcity of physical qubits in the
quantum hardware. While the current quantum solution solves a
class P stereo matching problem, its real advantage over classical
stereo matching algorithms will arise with NP-hard problems
which will be the focus of our future research.

Index Terms—Quantum annealing, D-Wave, Stereo matching

I. INTRODUCTION

Researchers have been looking for efficient methods to solve
image processing and computer vision problems for some
time, including quantum approaches. A quantum orthogonal
image classifier [1] was proposed in 1997, and a definition of
a quantum image [2] in 2003. The central promise of quantum
techniques comes from their potential to reduce the algorith-
mic time complexity of some solutions significantly [3]. For
this reason, significant effort is being made to solve image
processing problems using quantum algorithms. Stereo vision
has been a focus of interest for decades due to its potential to
solve 3D mapping problems in real-world applications such
as automotive [4] and robot vision [5]. A stereo vision system
mimics human vision to estimate a 3D model of a scene
using two or more digital cameras. It has many steps, from
camera calibration and rectification to the final output used
for distance measurement or 3D reconstruction [6]. The most
computationally intensive part of the system is known as stereo
matching. Many different stereo matching methods have been
studied, such as block matching, dynamic programming, belief
propagation, graph-cut, and learning-based techniques [7], [8].
As one of the most accurate stereo matching techniques,
graph-cut-based methods [9], [10] use max-flow and min-cut
methods on a particular structured graph to obtain the disparity
map. Later research has used machine learning methods based
on random forests and decision trees [11]. In addition, further

research has recently used deep learning for the stereo match-
ing problem [12]. Despite dramatic improvements in parallel
processing hardware capability, deep-learning-based methods
have great accuracy but are still computationally expensive.
To date, only one paper [13] used quantum techniques for
the stereo matching problem, namely the theoretical layout of
a quantum annealing algorithm using a graph-cut approach.
Here, we improve the method proposed [13] in terms of
qubits requirements, thus allowing an entire run on the D-
wave quantum computer and the first results on accepted stereo
matching evaluation datasets [7]. The paper is organised as
follows: Section II describes quantum annealing computation,
an improved version of the quantum algorithm [13], and
its complexity. In Section III, we describe the experimental
results. We conclude with some comments and open problems
in Section IV.

II. AN IMPROVED QUANTUM SOLUTION

A. Quantum Annealing

The most noticeable difference between classical and quan-
tum computations is the concept of state. A state in a classical
algorithm is shown by a register of n bits, each having value 0
or 1, while in a quantum algorithm, each state is represented
by a register of n qubits having particular properties (such
as superposition and entanglement). Superposition means that,
unlike classical bits, a qubit can be 0 and 1 simultaneously, and
entanglement refers to a situation where qubits after interaction
are not independent anymore [14]. There are two main models
of quantum computing: the quantum gate model [15] and
the quantum annealing model [16]. The former is based on
operating quantum circuits on a register of n qubits. The
superposition property of qubits makes the register hold all 2n

states simultaneously, and the entanglement property makes
it possible to apply a quantum circuit on all 2n states in
a constant time. This is called quantum parallelism, which
promises considerable speedups over classical computations
because a classical computation model such as the Turing
machine would have to update 2n registers to obtain the same
results [14]. The advantages of the quantum gate model are
that it is theoretically well studied and has many physical
implementations. The main disadvantage is the fragility of
qubits, a significant obstacle for manufacturing, controlling,



error-correcting, protecting from noise, and, of course, cost.
The quantum annealing model, a relatively new model of
quantum computing, was introduced in [16] as an alternative
equivalent [17] to the quantum gate model, where qubits are
particles in a quantum system that evolves based on special
forces acting on them. These forces are either external (from
other sources) or internal (from interactions among qubits),
and at any time, they are characterised by a time-varying
Hamiltonian1 (see [14]). What quantum annealing tries to
do is to find a state of the quantum system which has the
lowest energy. Therefore, quantum annealing algorithms are
developed to solve optimisation problems. These problems are
often represented mathematically as Quadratic Unconstrained
Binary Optimisation (QUBO). A QUBO problem is a mathe-
matical problem consisting of the minimisation of a quadratic
objective function q(x) = xTQx, where x is an n-vector of
binary variables and Q is an n × n matrix. The matrix Q
can be chosen to be upper-diagonal, and therefore q(x) can
be rewritten as: q(x) =

∑
iQi,ixi +

∑
i<j Qi,jxixj , where

the diagonal terms Qi,i are the linear coefficients and the off-
diagonal terms Qi,j , i < j are the quadratic coefficients [14].
Linear coefficients are the external forces, and quadratic coef-
ficients are the internal forces in the Hamiltonian description.
Take the Xor of two binary variables x = (x1, x2) ∈ {0, 1}2
as a simple problem. Xor(x1, x2) = 1 if the values of x1 and
x2 are not identical. If we define q(x) = −x1 − x2 + 2x1x2,
then we have

{x1 = 0, x2 = 0}, {x1 = 1, x2 = 1} → q(x) = 0, (1)
{x1 = 0, x2 = 1}, {x1 = 1, x2 = 0} → q(x) = −1. (2)

The objective function q(x) is the QUBO model of the
problem Xor over two binary variables. Considering (2), the
lowest energies belong to those states of x1 and x2 which have
different values. Therefore, minimising q(x) gives optimal
solutions of the Xor problem. The binary variables in a QUBO
model are called logical variables. To minimise a QUBO
model using a quantum annealer, depending on the complexity
of the QUBO model, one or more physical qubits in a
quantum computer are allocated to each logical variable in the
QUBO formula. D-Wave Systems made the first commercially
available quantum annealer in 2011. The D-Wave quantum
computer solves QUBO problems using its Quantum Processor
Unit (QPU), a network consisting of tiny metal loops called
physical qubits connected via couplers. The newly released D-
Wave machine Advantage works with 5, 000 qubits, 35, 000
couplers, and a 15-way qubit connectivity graph called Pe-
gasus2. In a QUBO model, the linear coefficients define the
external forces to physical qubits, and the quadratic ones define
the internal forces related to the interactions between physical
qubits (couplers). In the QPU, these forces are applied to
qubits (the tiny metal loops) using magnetic fields. Given a
QUBO problem to the QPU, quantum annealing begins to
reach a state of the model with the lowest energy. This state is

1A mathematical description of a system to show its total energy.
2https://www.dwavesys.com/solutions-and-products/systems/

Fig. 1. A simple illustration to describe the concept of disparity.

the optimal solution to the problem. Before using the D-Wave
quantum computer for stereo matching, we first provide the
preliminaries in the next section.

B. Notation

Set I l and Ir as the left and right stereo images defined by
n×m matrices of positive 8-bits integers between 0 and 255.
I li,j = I l(i, j) shows the left image intensity at position (i, j),
where 0 ≤ I li,j ≤ 255. Suppose D is an n×m disparity matrix,
where each element of D named di,j denotes the allocated
disparity value to the pixel at position (i, j), where 1 ≤ i ≤ n
and 1 ≤ j ≤ m. As Fig. 1, we define the disparity of a pixel
at position (i, j) as di,j , which locates the corresponding pixel
of I li,j in the right image as I li,j = Iri,(j−di,j) [7]. Furthermore,
given a set of disparity values L = {dmin, . . . , dmax}, di,j ∈
L; where dmin and dmax are the lowest and highest possible
values for the disparities, respectively. The energy of allocating
D to I l and Ir is computed by E(D) (3) [7].

E(D) = Ed(D) + λEs(D), (3)

Ed(D) =
n∑
i=1

m∑
j=1

(
I li,j − Iri,(j−di,j)

)2
, (4)

Es(D) =
n−1∑
i=1

m−1∑
j=1

ρ (di,j − di+1,j) + ρ (di,j − di,j+1) , (5)

where Ed computes the cost of allocating different disparity
values to the pixels, Es denotes the defined smoothness
assumption, which penalises the energy function when dis-
parity values of neighbouring pixels are different, and λ
is a weighting factor for setting the relative importance of
the smoothness term. Finally, ρ is a function to adjust the
smoothness assumption [7]. The primary goal of minimising
(3) is to find the optimal disparity values of all pixels with the
minimum energy. In the simplest case, when ρ is a function
that returns the absolute value of its input, a configuration
of D which minimises (3) can be computed by solving the
minimum s-t cut problem in a specially structured graph with
two terminals s and t [10, p. 42]. This type of graphs was first
introduced in [18] for an N -camera stereo matching problem,
and then modified in [10] for a pair of stereo images. The
following explains the graph structure described in [13], and
the minimum s-t cut definition.
Set G = (V, E , C) as an undirected weighted graph, where V
and E are sets of vertices and edges, respectively, and C is

https://www.dwavesys.com/solutions-and-products/systems/


Fig. 2. The structured graph for a pair of stereo images with size 5×5 when
L = {0, . . . , 3} and k = 4.

a function which allocates a positive weight to each edge.
Given a set of possible disparities L = {dmin, . . . , dmax},
Algorithm 1 shows how to structure the graph. We first set k
as the number of disparities, and then a chain of k+1 vertices
is defined. Edges of the chain are called t-link. Next, vertices
of the chain are connected to the chains related to the pixels at
positions (i+1, j) and (i, j+1) correspondingly. These edges
are called n-link. Furthermore, two special vertices named s
and t are defined, which are connected to pdmini,j and pdmax+1

i,j ,
respectively [13]. Fig. 2 illustrates the graph structure for a
pair of stereo images with size 5 × 5 when L = {0, . . . , 3}
and k = 4.

Algorithm 1 Graph structure G(V, E , C)
1: k ← (dmax − dmin) + 1 . number of disparities
2: for each pixel at position (i, j) do
3: V ← {pdmini,j , . . . , pdmax+1

i,j } . k + 1 vertices
4: E ← {pdi,j , p

d+1
i,j }, dmin≤d≤dmax . t-link edges

5: for each pdi,j ∈ V, dmin≤d≤dmax + 1 do
6: if pdi+1,j ∈ V then
7: E ← {pdi,j , pdi+1,j} . n-link edges

8: if pdi,j+1 ∈ V then
9: E ← {pdi,j , pdi,j+1} . n-link edges

10: V ← s, t
11: for pdmini,j ∈ V do
12: E ← {s, pdmini,j }
13: for pdmax+1

i,j ∈ V do
14: E ← {pdmax+1

i,j , t}

The number of vertices |V|, and the number of edges |E| in G
can be given as (6) and (7) [13].

|V| = (k + 1)nm+ 2, (6)
|E| = nm(k + 2) + ((m− 1)n+ (n− 1)m)(k + 1). (7)

Given G(V, E , C) with two terminals s and t, an s-t cut
partitions V into two subsets S and T , where s ∈ S and

t ∈ T . The cost of an s-t cut is the sum of weights of all
edges that start at a vertex u ∈ S and end at a vertex v ∈ T .
The minimum s-t cut is the smallest possible s-t cut cost [19].
The following shows the weight initialisation in G. Set a t-link
edge in G as tdpi,j = {pdi,j , p

d+1
i,j }, where dmin ≤ d ≤ dmax.

The function C allocates a positive weight to tdpi,j as (8) [13].

C(tdpi,j ) =
(
I li,j − Iri,(j−d)

)2
+ c, (8)

where, c is a constant, and
(
I li,j − Iri,(j−d)

)2
computes the

cost of choosing d as the allocated disparity to the pixel at
position (i, j). To initialise n-link edges, C allocates λ to
them; where λ is a weighting factor for setting the relative
importance of the smoothness term which is often set to a
constant in our case. The constant c is set as c > 4kλ [10,
p. 42] to make sure that an s-t cut severs just one t-link for
each pixel. Finally, edges {s, pdmini,j } and {pdmax+1

i,j , t} are
initialised by a number large enough so as not be selected for
the minimum s-t cut [13] (they should be greater than all other
edge weights). Different classical algorithms can be used, such
as Ford-Fulkerson [20] and Dinic [21], to find the minimum s-
t cut in the structured graph. The minimum s-t cut Ecut ⊂ E is
a subset of edges which includes t-link and n-link edges. The
selected t-link edges (tdpi,j = {p

d
i,j , p

d+1
i,j }, dmin ≤ d ≤ dmax)

define directly the disparity assigned to the pixel at position
(i, j) [13]. We set D as the disparity map defined by an n×m
matrix, with di,j as its element. If tdpi,j ∈ Ecut, then di,j is set
to d [13]. Therefore, D will be the final output, showing the
allocated disparity values. In the next section, we present an
improved quantum solution to find the minimum s-t cut in the
structured graph, and therefore to obtain the disparity map.

C. The improved quantum algorithm

The method [13] suggests a QUBO model for the graph
G(V, E , C) to solve the stereo matching problem. Recently,
Krauss et al. [19] introduced a QUBO model that solves
the minimum s-t cut problem with significantly fewer logical
variables than [13]. Here, the QUBO model [19] is used
to improve the quantum solution [13] in terms of QUBO
requirements. Given G(V, E , C), we set a binary variable xv
for each vertex v ∈ V , which indicates v ∈ S if xv = 1, and
v ∈ T if xv = 0. The variables allocated to vertices s and
t are xs and xt, respectively. Therefore, we have a vector of
binary variables as x ∈ {0, 1}|V|, where |V| is the number of
vertices (6) in G. The objective function to find the minimum
s-t cut can be given as (9) [19, p. 5].

H(x) = H1(x) +H2(x), (9)
H1(x) = αs,t(−xs + xsxt), (10)

H2(x) =
∑
{u,v}∈E

C({u, v})(xu − xuxv), (11)

where C({u, v}) returns the weight of {u, v} ∈ E , and αs,t
is a scaling factor such that αst >

∑
{u,v}∈E C({u, v}) [19].

Considering (10), H1 is to ensure that we have always s ∈ S
and t ∈ T because αs,t(−xs + xsxt) has the lowest energy



Fig. 3. The QUBO model [19] for a simple graph.

when xs = 1 and xt = 0 (which means s ∈ S and t ∈ T ).
According to the s-t cut definition, a given edge {u, v} ∈ E is
in the s-t cut if it starts at u ∈ S and ends at v ∈ T . Therefore,
H2 (11) indicates that for each {u, v} ∈ E , xu − xuxv is
zero except when xu = 1 and xv = 0 (which means v ∈ S
and u ∈ T ). Because xu − xuxv is scaled by C({u, v}), the
penalty of choosing {u, v} in the s-t cut is exactly its weight.
Therefore, minimising H(x) gives an optimal solution which
partitions V into two subsets S and T with the lowest cost
such that s ∈ S and t ∈ T . Fig. 3 illustrates a simple graph
with four vertices. Minimising H(x) for this graph gives a
unique solution as xs = 1, x1 = 0, x2 = 1 and xt = 0.
Therefore, edges {s, 1} and {2, t} are in the minimum s-t
cut. Regarding the stereo matching problem, we first structure
the discussed graph G(V, E , C) from a pair of stereo images.
Next, the objective function (9) is defined as a QUBO model
to find the minimum s-t cut in G. In fact, H is given to the
D-Wave QPU for minimisation. The optimal solution gives us
|V| binary variables which partitions V into two subsets S and
T . An edge {u, v} ∈ E is in the minimum s-t cut if xu = 1
and xv = 0. The t-link edges in the minimum cut are used
to define the allocated disparities as discussed in the previous
section.

D. The complexity of the quantum algorithm

As the number of qubits in today’s quantum computers are
very limited, even a simpler QUBO formula for our problem
would be ideal. Given (6) and (7), the method [13] needs
2|E|+ |V| QUBO variables while our method works with only
|V| QUBO variables to solve the stereo matching problem.
For instance, if we have a 40×40 pixels pair of stereo images
with 8 disparity levels, the number of needed logical variables
in [13] would be 102, 562, while our method would only
require 14, 402 logical variables. Considering the complexity
of the methods, both are based on solving the minimum s-t cut
problem, a class P problem, which can be efficiently solved
in polynomial time [22] using classical algorithms (such as
Ford-Fulkerson [20] and Dinic [21]). In order to evaluate the
performance of a quantum annealing algorithm, we need to
assess the time complexity of filling the QUBO matrix and the
annealing process. Generally, the annealing time of a QUBO
problem scales as O(eσNβ ), where N is the number of logical

Fig. 4. The line-by-line graph structure for a simple image. a) The left and
right images, and b) the graph structure for the first line. Here, n = 5, m = 8,
k = 4, and λ = k = 4. We ignored the first three columns in the stereo
images as they are occluded in the right image.

variables in the QUBO formula, σ and β are factors dependent
to the problem and machine [19]. While we acknowledge that
the time complexity of the annealing is a subject of ongoing
research [19], we will assume that it is O(1) through this
article. Therefore, we only need to compute the time complex-
ity of QUBO preparations for the quantum stereo matching
methods. The method [13] scales as O(|E|) to fill the QUBO
matrix. We used the QUBO model [19] to improve [13],
which needs 3|E| + 2 operations [19]. Hence, the QUBO
preparations of both methods scale as O(|E|). However, to
find the minimum s-t cut in G, classical algorithms Ford-
Fulkerson [20], and Dinic [21] have complexity of O(|E|f)
and O(|V|2|E|), respectively; where f is the maximum flow
value through the graph.

III. EXPERIMENTAL RESULTS

The newly released D-Wave Advantage accommodates 5000
physical qubits. Although the method [13] has been improved,
there are still technical limitations to working with real-world
image sizes due to the scarcity of available physical qubits
in the QPU. We, therefore, took two approaches to tackle
the problem. Firstly, we decided to independently structure
a graph for each line of pixels followed by independent
minimisation on the D-Wave QPU. This means in structuring
graph Gr, where 1 ≤ r ≤ n, for each line of pixels, we only
connected each chain of vertices pdminr,j , . . . , pdmax+1

r,j to the
corresponding chain of adjacent pixel at position (r, j + 1),
where 1 ≤ j ≤ m. Fig. 4 illustrates this graph structure for
the first line of pixels in a pair of stereo images with size 5×8
when L = {0, . . . , 3}, and k = 4. The second approach was
to leverage D-Wave QPU using cloud-based Leap’s Hybrid



Fig. 5. Obtained disparity maps for the algorithms including the improved
quantum solution, Block-matching, Belief propagation, and Continuous 3D-
label stereo matching method which uses local expansion moves [12].

Solvers3, by which both classical and quantum resources are
used to minimise the energy function optimally. When using
hybrid solvers, a big-sized QUBO problem is decomposed into
small sub-problems for the minimisation. They also identify
which part of the problem is better to be directly solved by
the QPU. Finally, we used D-Wave Ocean SDK toolkit to
submit our problem to the cloud-based Leap’s Hybrid Solver.
Furthermore, we selected four pairs of stereo images from the
Middlebury 2001-datasets, namely Tsukuba (288× 384), Bull
(381 × 433), Venus (380 × 434), and Sawtooth (383 × 434)
having disparity levels {5, . . . , 14}, {3, . . . , 20}, {2, . . . , 20},
and {4, . . . , 18}, respectively. We could not use the newest
Middlebury image datasets because of their large sizes and
high disparity levels. Fig. 5 illustrates the left images in the
first row, truth maps in the second row, and the corresponding
D-Wave disparity maps (named DW) in the third row. The
streaky lines in our results are because of using only one line
of pixels to make the graph at each step. We, therefore, post-
processed the results using a vertical median image filter fol-
lowed by bilateral filtering to smooth images without blurring
the edges. The improved DW maps can be seen in the forth
row in Fig. 5. We have also provided results of some classical
methods on the selected image datasets: Block matching (BM),
Belief propagation (BP), and Local-expansion based method

3https://docs.dwavesys.com/docs/latest/doc leap hybrid.html

TABLE I
COMPUTED RMS AND B FOR THE OBTAINED DISPARITY MAPS.

datasets DW BM BP LE
rms b rms b rms b rms b

Tsukuba 1.8 12.8 1.74 13 1.66 9 1.01 2.9
Bull 1.3 5.4 2.76 23 1.71 8 0.25 0.3
Sawtooth 1.9 9.9 3.34 22 1.96 10 0.81 2.8
Venus 1.4 9.8 3.27 26 2.40 6 0.62 2.31

TABLE II
PER-LINE RUNNING TIME (IN SECONDS) FOR THE DISCUSSED METHODS.

datasets n m k DW BM BP LE
Tsukuba 288 384 10 0.15 0.03 0.16 0.14
Bull 381 433 18 0.21 0.05 0.31 0.15
Sawtooth 380 434 15 0.17 0.05 0.26 0.13
Venus 383 434 19 0.21 0.05 0.34 0.16
Tree 240 295 18 0.18 0.03 0.21 0.11
Lib 175 297 18 0.17 0.04 0.21 0.11
Castle 282 398 39 0.49 0.08 0.52 0.15

(LE) proposed in [12]. We also used two metrics defined in
[7] for the evaluation, namely root-mean-squared (12), and
percentage of bad matching pixels (13).

rms =

√√√√ 1

nm

n∑
i=1

m∑
j=1

(di,j − ti,j)2, (12)

b =
1

nm

n∑
i=1

m∑
j=1

(|di,j − ti,j | > δd)× 100, (13)

where di,j is the element of the disparity matrix D obtained
from the given algorithm, and ti,j is the corresponding element
in the truth disparity matrix. Furthermore, nm is the total
number of pixels, and δd is the disparity error tolerance. We
set δd = 1.0 as defined in [7]. Table I shows the computed
rms and b for the discussed methods. We traded accuracy
off for the qubits availability in the QPU using a line-by-
line approach to get results from bigger images. Despite these
practical limitations, Table I shows that our proposed method
is significantly better than the BM method, and it is very close
to the BP results. However, the LE method’s results are much
better than ours. For further analysis, we also chose three
natural images named Tree (240× 295), Lib (175× 297), and
Castle (282 × 398) having disparity levels {11, 26}, {6, 23},
and {1, 38}, respectively. Figure 6 shows the results for the
discussed methods. Furthermore, to have some comparisons
in terms of running time, we have provided Table II, which
shows the per-line running time for the discussed methods. We
used hybrid solvers for the minimisation, which are accessible
through the D-Wave cloud-based services. These solvers use
both classical and quantum resources. Therefore, Table II
shows the QPU-access time of our method as we did not access
the D-Wave classical resources.

https://docs.dwavesys.com/docs/latest/doc_leap_hybrid.html


Fig. 6. Disparity maps for the selected natural images.

IV. CONCLUSION

This paper provided the first attempt at a practical quan-
tum solution to stereo matching by leveraging the inherent
epipolar geometry constraints by reducing the previously
introduced quantum solution 2D search space to a line-by-
line method. Our solution improved the number of QUBO
variables required, thus allowing to run stereo pairs with up
to 39 disparity levels and 383 × 434 pixels size. We further
provided the first comparison with state-of-the-art and best
performing algorithms on the Middlebury stereo datasets. We
first addressed the practicability of quantum annealing for a
stereo matching problem on real-world image sizes by trading
accuracy off for the qubit availability in the QPU using a
line-by-line approach. We showed that it is possible to obtain
good results from the Middlebury stereo datasets and real-
world image sizes. Regarding the advantages of the current
quantum solution (theoretically) over the classical graph-cut
stereo matching methods, we concluded that despite having
time-complexity superiority over classical graph-cut methods,
the class complexity of the problem is P, which means
classical algorithms deal with such problems efficiently in
polynomial time. Further research will explore more complex
stereo matching problems to show the advantage of using
quantum solutions over classical ones, notably by defining
more complex smoothness assumption functions such as trun-
cated linear ones which are NP-Hard4.
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