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Abstract

This thesis presents a detailed study and improvement to local descriptor processes for

registering images for the purpose of three-dimensional reconstruction, using four M̄aori

artefacts as case studies. The motivation for the research came from the issues which still

exist in image registration when dealing with large magnitudes of image transformations.

Four major pieces of work were carried out in the course of this research. First, an

evaluation was carried out to study the performance of localdescriptor processes and based

on the results, the local descriptor process was divided into three stages, of which two

were closely analysed. Second, the local descriptor formation stage was studied, and two

methods, colour and hybrid local descriptor methods, were developed using colour images

instead of greyscale images to improve the uniqueness of local descriptors. Third, the local

descriptor matching stage was studied, and a new method based on support vector machines

was developed. Fourth, an assisted image registration programme was developed and is a

semi-automatic approach for registering images.

Extensive amount of experiments were carried out to validate these work. It was found

that the colour and hybrid local descriptor methods had gains in matching accuracy of

up to 10% over existing methods, and the support vector machine maching method had

increased matching performance of up to 20%. When the two methods were combined, it

was found that performance gains of up to 25% could be achieved. For the assisted image

registration programme, up to 50% improvement was achieved, and the advantage was more

significant as the magnitude of image transformation increased, highlighting the need for

such programme.

These results show that the proposed work in this research are significant contributions to

literature. In addition, these results show that the proposed methods can be used successfully

for registering images for three-dimensional reconstruction, where the image transformation

between images are often large. As there is currently a need to reconstruct M̄aori artefacts,

this research has provided a new approach for registering images of these artefacts, which

could then be used to construct three-dimensional models ofthe artefacts.
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colour model

V Eigenvectors
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wL2, wMNCC Weights for the Euclidean distance measure and modified normalised

cross-correlation values, respectively

wm1, wm2, wm3 Weights for the three colour channels of them1m2m3 colour model

(x,y), (u,v) Indices for the pixels in an image

x1
i , x2

i ith vector of local descriptors from the reference image and sensed image,

respectively

x̃(m1), x̃(m2),

x̃(m3)

Median for the three colour channels of them1m2m3 colour model

x1, x2 Image locations of two neighbouring pixels

X Input data matrix

Y Greyscale pixel

δangO Opponent angle with error analysis

δangS Spherical angle with error analysis

λi ith eigenvalue

τHLD Threshold for the hybrid local descriptor method

τL2 Threshold for the threshold matching method using the Euclidean distance

measure

List of symbols from Chapter 5: Local Descriptor Matching with Support Vector Machines.

b Bias term for SVM

C, σ Penalty and threshold for SVM with a Gaussian kernel

ci Square of the weights for RFE-SVMs

d Order of polynomial for SVM with a polynomial kernel

G(x,ci) Gaussian kernel

k Number of iterations for cross-validation

L1 Rectilinear distance measure

Lp p-norm distance measure

n Number of available classes for SVM

n(LD1),

n(LD2)

Number of local descriptors in the reference and sensed images,

respectively

n(LDcorrect),

n(LD incorrect)

Number of correctly and incorrectly matched local descriptor pairs,

respectively

n(LDtotal) Total number of local descriptors

p Number of features to be removed at each iteration by RFE-SVMs

r Ranking vector for RFE-SVMs

s Indices of vectors of local descriptors to be emptied and ranked inr
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wi Weight of theith value in the difference vector for SVM with a Gaussian

kernel

wi Weights of each input vector for RFE-SVMs

x, xi Input matrix for SVM and theith input vector

X0 Input matrix for RFE-SVMs

y yi Output vector for SVM and theith output value

ℜn n-dimension real number

τT Threshold for the threshold matching method

τNN Threshold for the nearest neighbour method

τNNR Threshold for the nearest neighbour ratio method

τSVM Threshold for SVM output in the range of [-1, 1]

xxx
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