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Abstract

This paper proposes a novel Lasso-based approach to handle unobserved parameter hetero-

geneity and cross-section dependence in nonstationary panel models. In particular, a penalized

principal component (PPC) method is developed to estimate group-specific long-run relationships

and unobserved common factors and jointly to identify the unknown group membership. The PPC

estimators are shown to be consistent under weakly dependent innovation processes. But they suf-

fer an asymptotically non-negligible bias from correlations between the nonstationary regressors

and unobserved stationary common factors and/or the equation errors. To remedy these short-

comings we provide three bias-correction procedures under which the estimators are re-centered

about zero as both dimensions (N and T ) of the panel tend to infinity. We establish a mixed

normal limit theory for the estimators of the group-specific long-run coefficients, which permits

inference using standard test statistics. Simulations suggest good finite sample performance. An

empirical application applies the methodology to study international R&D spillovers and the re-

sults offer a convincing explanation for the growth convergence puzzle through the heterogeneous

impact of R&D spillovers.
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1 Introduction

Nonstationary panel models have been extensively used in empirical analyses. Their asymptotic

properties are well explored in classical settings when assumptions of common coefficients and inde-

pendence across individuals are in place. Although these assumptions offer efficient estimation and

simplify asymptotic theory, they are often hard to meet in real-world economic problems. On the one

hand, researchers often face the issue of unobserved parameter heterogeneity in empirical models; see

the study of the “convergence clubs” (e.g., Durlauf and Johnson (1995), Quah (1997), Phillips and

Sul (2009)), the relation between income and democracy (e.g., Acemoglu et al. (2008) and Lu and Su

(2017)), and the “resource curse” (e.g., Van der Ploeg (2011)). On the other hand, globalization and

international spillovers give rise to a new challenge — the presence of cross-section dependence. In

general, ignoring these two features may lead to biased or even inconsistent estimators in nonstation-

ary panels, which can severely distort the reliability of classical methods. The goal of this paper is to

study efficient estimation (in terms of convergence rates) and inference in nonstationary panel data

models by allowing for the presence of both unobserved parameter heterogeneity and cross-section

dependence.

Specifically, we consider a nonstationary panel data model with latent group structures and

unobserved common factors. First, we assume that the long-run cointegration relationships associated

with the observables are heterogeneous across different groups and homogeneous within a group. The

latent grouped patterns offer flexible parameter settings by allowing for different slope coefficients

across groups and remain parsimonious and efficient by pooling the cross-section observations within

a group in the estimation procedure. Moreover, there is often economic intuition for considering

grouped patterns in long-run relationships. For example, long-run equilibria in the growth regressions

typically share some common features within a subsample, such as developing or developed countries,

but reveal distinct patterns across subsamples. We also allow for stationary regressors and their

parameters are completely heterogeneous. Second, we employ factor structures to model cross-

section dependence. In our nonstationary panel model we consider both unobserved stationary and

nonstationary common factors. For example, both oil price shocks and global technology innovations

affect GDP levels in all countries. Similarly, both stock market shocks and macro-economic news

affect security prices. But it is hard to tell whether these shock processes are stationary or not. In

general, our framework allows us to fit more complex features to the data in empirical applications

and offers flexibility so that the methods encourage the data to reveal latent features that may not

be immediately apparent.

We take advantage of a growing literature on Classifier-Lasso (C-Lasso) techniques and models

with interactive fixed effects (IFEs); see, e.g., Bai (2009), Su, Shi, and Phillips (2016a, SSP hereafter),

Qian and Su (2016), Moon and Weidner (2017), Su and Ju (2018), Miao et al. (2020), among others.

We propose a penalized principal component (PPC) method, which can be regarded as an iterative

procedure between penalized regression and principal component analysis (PCA). In the first step, we

introduce the unobserved nonstationary common factors into the PPC-based objective function and
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iteratively solve a regularized least-squares problem and an eigen-decomposition problem to obtain

the C-Lasso estimators of the group-specific long-run coefficients and the nonstationary factors and

factor loadings. We can do this simply because the presence of unobserved stationary common factors

will not affect the consistency of the long-run coefficient estimators while neglecting the unobserved

nonstationary factors would lead to inconsistency of such estimators due to the induced spurious

regression. Note that the individual’s group membership is also estimated at this stage. In the

second step, we can explore the first-stage residuals to estimate the unobserved stationary factors

and factor loadings. In the third step, we introduce three bias-correction procedures to obtain the

bias-corrected estimators of the group-specific coefficients.

Our theoretical results are concerned with developing a limit theory for Lasso-type estimators

in the present model setting which allows for stationary, nonstationary variates, and various coin-

tegrating linkages. The presence of unobserved common factors complicates the asymptotic analy-

sis in several ways. First, we establish preliminary rates of convergence for the estimators of the

group-specific long-run coefficients and the unobserved nonstationary common factors. To show

classification consistency, we also prove several uniform convergence results with the involvement of

unobserved common factors. Given these uniform results, we show that all individuals are classified

into the correct group with probability approaching one (w.p.a.1). The group-specific estimators en-

joy the oracle property in the latent group literature, so that the three bias-corrected estimators are

asymptotically equivalent to the corresponding infeasible ones that are obtained with full knowledge

of the individual group identities.

Since our model allows for both contemporaneous and serial correlation in the errors, nonsta-

tionary regressors, and unobserved common factors, the usual endogeneity bias in nonstationary

panels is present, originating in two primary sources. The first bias is commonly noted in nonsta-

tionary panels due to the weak dependence between the errors and nonstationary regressors (e.g.,

Phillips and Moon (1999)). As expected, the unobserved nonstationary common factors enter into

the bias formula. The second bias arises from the presence of unobserved stationary common factors

that can be correlated with the nonstationary regressors. We show that stationary common factors

complicate the asymptotic biases and covariance structures but do not affect the consistency of the

long-run coefficient estimators. Based on the bias formula we can employ the Phillips and Hansen

(1990) fully-modified OLS (FM-OLS) procedure to achieve bias correction. Further, we explore a

continuous-updating mechanism to obtain continuously updated Lasso (Cup-Lasso) estimators of

the group-specific parameters, in which procedure we update the estimators of the individual’s group

membership, and the unobserved nonstationary and stationary common factor components. With

these modifications our estimators are centered on zero and achieve the
√
 consistency rate that

usually applies in homogeneous nonstationary panel models. Lastly, we establish a mixed normal

limit theory for the bias-corrected group-specific long-run estimators, which validates the use of t,

Wald, and F statistics for inference.

In the above analyses we assume that the numbers of groups and common factors are known. For
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practical work we propose three information criteria to determine the number of groups, the number

of nonstationary common factors and stationary common factors, respectively. These information

criteria are shown to select the correct numbers of groups and common factors w.p.a.1.

We illustrate the use of our methods by studying potentially heterogeneous behavior in the

international R&D spillover model using a sample of OECD countries for the period 1971-2004. As

in earlier work by Coe and Helpman (1995) we regress total factor productivity (TFP) on domestic

R&D capital stock and foreign R&D capital stock. Coe and Helpman assume all countries obey a

common linear specification and ignore the presence of common shocks across countries. In seeking

greater flexibility, our methods allow parameters to vary across countries but with certain latent

group structures and model the common shocks through the use of IFEs. Our latent group structural

model is consistent with the fact that cross-country productivity may exhibit multiple long-run steady

states. As a result, our methods reveal different spillover patterns than those discovered in Coe and

Helpman (1995).

Specifically, our empirical analysis yields two key findings. First, we confirm positive technology

spillovers in the pooled sample by allowing for the presence of common factors. This finding implies

overall convergence behavior in technology growth through direct R&D spillovers when controlling for

the unobserved global technology trend. Second, the group-specific estimates identify heterogeneous

spillover patterns across countries and indicate the existence of two types of R&D spillovers — positive

technology spillovers and negative market rivalry effects in the country-level data. This corroborates

the findings of Bloom et al. (2013) who also found two types of R&D spillovers from firm-level

data. Based on the empirically determined group patterns, we classify the OECD countries into

three groups designated as Convergence, Divergence, and Balance. The major sources of technology

change in the Convergence group come from positive technology diffusion and, as a result, the catch-

up effects through technology diffusion favor the growth convergence hypothesis. Conversely, when

market rivalry effects dominate technology spillovers, we observe overall negative R&D spillovers. For

these countries, technology growth relies on domestic innovations and exhibits divergence behavior.

Our findings therefore explain the growth convergence puzzle through heterogeneous behavior in

R&D spillovers.

A major contribution of this paper is to offer a practical approach that accommodates both

unobserved heterogeneity and cross-section dependence in nonstationary panels. We provide consis-

tent and efficient estimators of group-specific long-run relationships for the observables even when

individual group membership is unknown. The penalization method borrows from the C-Lasso for-

mulation in SSP (2016a), but is modified here by using the principal component method to account

for cross-section dependence simultaneously. Various papers account for unobserved heterogeneity

in large dimensional panel models by clustering and grouping; see, e.g., Bonhomme and Manresa

(2015) on grouped fixed effects, Qian and Su (2016) on structural changes, and Ando and Bai (2016)

on grouped factor models. But almost all the literature focuses on stationary panel data models.

Recently, Huang et al. (2020) have considered latent group patterns in cointegrated panels but they
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do not allow for cross-section dependence.

Our theoretical results also contribute to two strands of the literature on cointegrated panels and

factor models. First, it is noted that the average and common long-run estimators permit normal

asymptotic distributions, whereas the heterogeneous and time-series long-run estimators have a non-

standard limit theory; see, e.g., Phillips and Moon (1999), Kao and Chiang (2001), and Pedroni

(2004). In our context, due to the presence of the common components, we maintain the simplicity

of asymptotic mixed normality under grouped parameter heterogeneity. Second, there is a growing

literature using factor models to capture cross-section dependence under the large  and large 

settings; see, e.g., Bai and Ng (2002, 2004), Phillips and Sul (2003), Pesaran (2006), Bai (2009),

and Moon and Weidner (2017). Compared with existing work, our approach accommodates both

stationary and nonstationary common factors and provides a corresponding limit theory for inference.

Our asymptotic theory therefore applies to more general forms of nonstationary panel data models

with internally grouped but unknown patterns of behavior and to models of this type with both

stationary and nonstationary common factors.

The rest of the paper is structured as follows. Section 2 introduces a nonstationary panel model

with latent group structures and cross-section dependence and proposes a penalized principal compo-

nent method for estimation. Section 3 explains the main assumptions and establishes the asymptotic

properties of the three Lasso-type estimators. Section 4 reports the Monte Carlo simulation results.

Section 5 applies the methodology to study heterogeneous cross country behavior in R&D spillovers.

Section 6 concludes. The proofs of the main results are given in the online supplement that also

contains some additional discussions and simulation results.

NOTATION. We write integrals such as
R 1
0  () simply as

R
 and define Ω12 to be any

matrix such that Ω = (Ω12)(Ω12)0 (Ω) denotes Brownian motion with covariance matrix Ω.
For any  ×  real matrix , we write its Frobenius norm, spectral norm and transpose as kk
kk, and 0 respectively. When  is symmetric, we use max() and min() to denote its largest
and smallest eigenvalues, respectively. Let  = (0)−10 and  =  −  where 

0 is of

full rank, and  is an identity matrix. Let 0×1 denote a  × 1 vector of zeros,  a  ×  identity

matrix, and 1{·} an indicator function. Let  denote a generic positive constant whose values can

vary in different locations. We use “p.d.” and “p.s.d.” to abbreviate “positive definite” and “positive

semidefinite,” respectively. The operator
→ denotes convergence in probability,⇒ weak convergence,

 almost surely, and the floor function bc to denote the largest integer less than or equal to .

Unless indicated otherwise, we use ( )→∞ to signify that  and  pass to infinity jointly.

2 Model and Estimation

This section introduces a nonstationary panel model with latent group structures and unobserved

common factors. A penalized principal component method is then proposed to estimate the parame-

ters of the model and the unobserved group structure.

5



2.1 Model setup

We start by considering a panel cointegration model with both nonstationary and stationary regres-

sors. Assume that for individuals  = 1   , we observe { 1 2}=1 where 1 denotes

nonstationary regressors of order one ((1) process) and 2 denotes stationary ones ((0) process),

such that ⎧⎨⎩ = 0011 + 0022 + 

1 = 1−1 + 
 (2.1)

where  is a scalar, 
0
1 is a 1 × 1 vector of parameters that is associated with the long-run

cointegration relationship, 2 is a 2 × 1 vector of parameters that may capture the short-run
dynamics, and  has zero mean and finite long-run variance. We assume that the error terms 

are cross-sectionally dependent due to the presence of some unobserved common factors, specified as

 = 00 
0
 +  = 001

0
1 + 002

0
2 +  (2.2)

where 0 is an  × 1 vector of unobserved common factors that contains an 1 × 1 vector of non-
stationary factors 01 of order one (I(1) process) and an 2 × 1 vector of stationary factors 02 (I(0)
process), 0 = (

00
1 

00
2)
0 is an ×1 vector of factor loadings, and  is the idiosyncratic component of

 with zero mean and finite long-run variance. For simplicity,  is assumed to be cross-sectionally

independent so that the cross-section dependence among the  only arises from the common factors

0 , and E() = E(00 0 00 0 ) 6= 0 in general.
In addition, we introduce latent group structures in 01, which are heterogeneous across different

groups and homogeneous within a group:

01 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
01 if  ∈ 01
...

...

0 if  ∈ 0

 (2.3)

where 0 6= 0 for any  6= ,
S
=1

0
 = {1 2    }, and 0

T
0 = ∅ for any  6= . Let

 = # denote the cardinality of the set 
0
. For the moment in this section, we assume that the

number of groups,  is known and fixed, but each individual’s group membership is unknown. In

Section 3.7, we propose an information criterion to determine the number of groups.

There are three main complications in this panel cointegration model. First, least-squares estima-

tors that ignore the factor component are inconsistent due to the presence of nonstationary common

factors. Noting that the components
©
00101 + 00202  ≥ 1

ª
are still (1) processes in general when

1 ≥ 1, the least-squares estimators of 01 and 02 from the time series regression of  on 1

and 2 suffer from spurious regression. For this reason, we must take account of the nonstationary

factor component to obtain consistent estimators of the slope coefficients. Therefore, our panel la-

tent factor cointegration model is more general than the traditional panel cointegration model: the
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cointegration vector here is (1−001 001) and the equilibrium errors { − 0011 − 00101  ≥ 1}
are stationary whereas standard cointegrating equilibrium errors do not involve unobserved factors

such as 01. Second, even though Bai et al. (2009) study a homogeneous panel cointegration model

with nonstationary common factors, it is a big further step to establish desirable asymptotic proper-

ties of the group-specific long-run coefficient estimators and to recover unobserved group identities.

Due to the presence of common factors, the grouping C-Lasso algorithm and derivation of the oracle

property are considerably more difficult than that those of SSP (2016a).1 Third, both unobserved

group structures and common factors complicate the non-negligible asymptotic bias in the long-run

estimators arising from endogeneity and serial correlations. An effective new bias-correction proce-

dure is then needed to re-center the limit distributions around zero to facilitate inference. All these

complications call for a new estimation methodology and asymptotic theory.

In the next subsection, we introduce the estimation procedure based on the level equations in

(2.1). A natural question (raised by a referee) is why not proceed to first difference the data and use

an estimation procedure based on the first-differenced equation

∆ = 001∆1 + 002∆2 + 001∆
0
1 + 002∆

0
2 +∆ (2.4)

where, e.g., ∆ =  − −1 To appreciate the importance of working on the level equations in
(2.1), we make two remarks.

Remark 2.1. Let  = (
0
1  

0
 )

0  = (01  
0
 )

0 and  =  − 

³
0

´
0 for

 = 1 2 If the error terms  are independent across individuals such that the common components

are absent in (2.2), we can run time series OLS estimation of  on (
0
1 

0
2) for each  to obtain

the OLS estimators (̃
0
1 ̃

0
2) of (

00
1 

00
2) It is well known that the OLS estimator ̃1 is super-

consistent and robust to problems such as omitted (stationary) regressors, serial correlations, and

endogeneity (see Phillips (1995), which also allowed for cointegrated regressors in a VAR setting).

For simplicity, we review the asymptotic properties of ̃1 and ̃2 by assuming E(2) = 0 Then,
under some standard conditions that ensure proper behavior of 1

2
011

1

022, and

1

012

inter alia, we have

 (̃1 − 01) =

µ
1

 2
0121

¶−1 1

012 =

µ
1

 2
011

¶−1 1

012 +  (1)

√

³
̃2 − 02

´
=

µ
1


0212

¶−1 1√

021 =

µ
1


022

¶−1 1√

02 +  (1)

1


012 =  (1) and

1√

021 =  (1) as  →∞

1The oracle property in the latent group literature is that the group-specific estimators are asymptotically equivalent

to the corresponding infeasible estimators that are obtained by knowing all individual group identities.
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where we use the facts that

1

 2
0121 =

1

 2
011 −

1



µ
1


012

¶µ
1


022

¶−1µ 1

021

¶
=
1

 2
011 + (

−1)

1


0212 =

1


022 −

1



µ
1


021

¶µ
1

 2
011

¶−1µ 1

012

¶
=
1


022 + (

−1)

and similarly 1

21 =

1

02 − 1



³
1

021

´³
1
2
011

´−1 ³
1

01

´
= 1


02 +  (

−1)

The above results imply different convergence rates for ̃1 and ̃2 In particular, ̃1 is super-

consistent regardless of the properties of (0) regressors or the endogeneity caused by the correlation

between {∆1} and {}. If one further assumes orthogonality conditions on the stationary regres-
sors that ensure 1


02 =  (1), then we also have

 (̃1 − 01) =

µ
1

 2
011

¶−1 1

01 +  (1)

In this case, we have the asymptotic independence between ̃1 and ̃2 In the presence of the

factor structure in (2.2), we can continue to obtain super-consistent estimators of 01 and consistent

estimators of 02 even if {∆1} and {} are contemporaneously correlated. These appealing
properties are completely lost if one works on the first-differenced data. See the next remark.

Remark 2.2. In the absence of the factor structure in (2.2), we have the following first-differenced

equation:

∆ = 001∆1 + 002∆2 +∆ (2.5)

Apparently, the OLS estimator of (001 
00
2) based on the time series regression of∆ on (∆

0
1∆

0
2)

is inconsistent if E [∆1∆] 6= 0 (or E [∆2∆] 6= 0) not to mention the super-consistency of
the estimator of 01 Since we allow for correlation between {∆1} and {∆}  estimation based
on (2.5) inevitably leads to inconsistency. This inconsistency of OLS-type estimators of (001 

00
2)

continues to hold in (2.4) even when PCA is used to handle the factor components.

To proceed with the development of level equation estimation in (2.1), let

α ≡ (1  ) β ≡ (1  ) β ≡ (1  ) Λ ≡ (1  )0

Λ ≡ (1   )
0  ≡ (1   )0 and  ≡ (1   )0 where  = 1 2

The true values of α β β Λ Λ  , and  are denoted α
0β, β0  Λ

0 Λ0  
0, and  0 . We also use

0 
0
  

0
1 

0
2 

0
 = (

00
1 

00
2)
0 and 0 = (001 002)0 to denote the true values of   1 2  =

(01 
0
2)
0 and  = ( 01  02)0 Interest focuses primarily on establishing each individual’s group

identity and on consistent estimation of the group-specific long-run relationships  in the presence

of stationary regressors and both unobserved stationary and nonstationary common factors.
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2.2 Penalized principal component estimation

In this subsection we propose an iterative PPC-based procedure to jointly estimate the long-run

cointegrating coefficients 1, the short-run parameters 2 and unobserved common factors  and

to identify the group structure in these long-run relationships. Combining (2.1)-(2.2) yields

 = 0011 + 0022 + 001
0
1 + 002

0
2 +  (2.6)

or in vector observation form:

 = 
0
 +  01 

0
1 +  02 

0
2 +  = 1

0
1 + 2

0
2 +  01 

0
1 +  02 

0
2 +  (2.7)

where  = (1   )
0 1, 2,  01 ,  02 and  are similarly defined, and  = (1 2).

Ideally, one might attempt to estimate both the stationary and nonstationary common compo-

nents along with the parameters of interest, 1 and 2. But due to the fact that the stationary

components and nonstationary components behave differently and require different normalization

rules, it is difficult to study the asymptotic properties of the resulting joint estimators. Nevertheless,

as mentioned above, one can obtain least square estimators of 1 and 2 by taking into account

the nonstationary factor component and ignoring the stationary factor component. As we discussed

in the model setup, the estimators of the coefficients of the nonstationary regressors still achieve

consistency regardless of endogeneity, serial correlation or the presence of stationary regressors, and

the estimators of the coefficients of the stationary regressors are consistent under some orthogonality

conditions.2 Lastly, we estimate the stationary common component from the resultant residuals.

This motivates the following sequential approach to estimate the unknown parameters in the model.

We first estimate the nonstationary factor component along with 1 and 2, then estimate the

stationary factor component along with 2 from the resultant residuals. The step-wise procedure is

as follows.

Step 1. We estimate (β 1Λ1) by minimizing the following least squares (LS) objective function:

SSR(β 1Λ1) =
X
=1

( −  − 11)
0( −  − 11) (2.8)

under the constraints that 1
 2
 011 = 1 and Λ

0
1Λ1 is diagonal. It is well known that the LS

2We require the stationary regressors to be uncorrelated with the stationary common factors, factor loadings and

error terms (c.f., Phillips (1995) and Bai et al.(2009)).
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estimator (̃ ̃1) is the solution to the following set of nonlinear equations:

̃ =
³
̃
0
1 ̃

0
2

´0
=
³
0̃1



´−1
0̃1

 (2.9)

̃1̃1 =

"
1

 2

X
=1

( − ̃)( − ̃)

#
̃1 (2.10)

where ̃1
=  − 1

 2
̃1̃

0
1

1
 2
̃ 01̃1 = 1  and ̃1 is a diagonal matrix consisting of the 1

largest eigenvalues of the matrix inside the square brackets in (2.10), arranged in decreasing

order. The LS estimator of Λ1 = (11  1)
0 is given by Λ̃1 = (̃11  ̃1)

0 where ̃
0
1 =

1
 2
(−̃)0̃1 It is easy to verify that 1


Λ̃01Λ̃1 = −2̃ 01[

1
 2

P
=1(−̃)(−̃)0̃1] =

−2̃ 01̃1̃1 = ̃1 

Step 2. Using the initial estimates of ̃ and ̃1 as starting values, we employ the methodology of SSP

(2016a) by minimizing the following PPC criterion function to obtain estimates of (βα 1) :



 (βα 1) =  (β1β2,1) +





X
=1

Y
=1

°°1 − 
°°  (2.11)

where  (β1β2,1) =
1

 2

P
=1

¡
 − 11 − 22

¢0
1

¡
 − 11 − 22

¢
 and

 = ( ) is a tuning parameter. Minimizing the PPC criterion function in (2.11) pro-

duces the C-Lasso estimators (̂ ̂ ̂1) of (  1) where ̂1 = (̂11  ̂1 )
0 and ̂ =

(̂
0
1 ̂

0
2)

0 Note that

̂11 =

"
1

 2

X
=1

( − 1̂1 − 2̂2)( − 1̂1 − 2̂2)
0
#
̂1 (2.12)

where 1
 2
̂ 01̂1 = 1 and 1 is a diagonal matrix consisting of the 1 largest eigenvalues of the

matrix inside the square brackets in (2.12), arranged in decreasing order. The PPC estimator

of Λ1 = (11  1)
0 is given by Λ̂1 = (̂11  ̂1 )0 where ̂

0
1 =

1
 2
(−1̂1−2̂2)0̂1

Define the resulting estimated groups

̂ = { ∈ {1 2 } : ̂1 = ̂} for  = 1  (2.13)

Step 3. Given the estimates ̂1 ̂ and ̂1 we obtain the cointegration residuals ̂ = − ̂011−
̂
0
1̂1 Based on the consistency in estimation of the nonstationary part, we have ̂ = 00202+

0022 +  +  where  signifies the estimation error from the early stages. Then we can

employ the standard procedure in stationary panel models with interactive fixed effects, see

Bai (2009), Moon and Weidner (2017). The LS estimator of (̆2 ̂2) is the solution to the
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following set of nonlinear equations:

̆2 =
³
02̂2

2

´−1
02̂2

̂ (2.14)

̂2̃2 =

"
1



X
=1

(̂ − 2̆2)(̂ − 2̆2)

#
̂2 (2.15)

where 1

̂ 02̂2 = 2 and 2 is a diagonal matrix consisting of the 2 largest eigenvalues of

the matrix inside the square brackets in (2.15), arranged in decreasing order.

Let β̂ ≡ (̂1  ̂) and α̂ ≡ (̂1  ̂) for  = 1 2. We will study the asymptotic properties
of ̂1 ̂ and ̂1 in Section 3.2 and the classification consistency of the group structure in Section

3.3. Noting that ̂ has an asymptotic bias, we will propose various methods to correct its bias in

Section 3.4. The asymptotic properties of ̆2 and ̂2 may also be studied but they are not the focus

of the present paper.

3 Asymptotic Theory

3.1 Main assumptions

We introduce the main assumptions used to study the asymptotic properties of the estimators β̂1

α̂ and ̂1. Let (1) =
1
 2
0111, 1(1) = diag(1(1)  (1)) and

2(1) =

⎛⎜⎜⎜⎜⎜⎝
1

 2
01111111

1
 2

01111212 · · · 1
2

011111
1

 2
01211121

1
 2

01211222 · · · 1
2

011112
...

...
. . .

...
1

 2
011111

1
 2

011122 · · · 1
 2

0111

⎞⎟⎟⎟⎟⎟⎠ 

where 1 satisfies
1
 2
 011 = 1 and  = 001(

1

Λ001 Λ01)−1

0
1 . Note that 2(1) is an 1×1 ma-

trix. Let C = (Λ0  0) the sigma algebra generated by the common factors and factor loadings. Let

 denote a generic constant that may vary across occurrences. Define  = ( 
0
∆

00
1 

00
2 

0
2)

0

and let Ω =
P∞

=−∞ E(
0
0) be the long-run covariance matrix of {}  We also define the

contemporaneous variance matrix Σ = E(0
0
0) and the one-sided long-run covariance matrix

∆ =
P∞

=0 E(0
0
) = Γ +Σ Note that Ω = Γ

0
 + Γ +Σ Conformably with  Ω and ∆ are

partitioned as follows

Ω =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Ω11 Ω12 Ω13 Ω14 Ω15

Ω21 Ω22 Ω23 Ω24 Ω25

Ω31 Ω32 Ω33 Ω34 Ω35

Ω41 Ω42 Ω43 Ω44 Ω45

Ω51 Ω52 Ω53 Ω54 Ω55

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and ∆ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∆11 ∆12 ∆13 ∆14 ∆15

∆21 ∆22 ∆23 ∆24 ∆25

∆31 ∆32 ∆33 ∆34 ∆35

∆41 ∆42 ∆43 ∆44 ∆45

∆51 ∆52 ∆53 ∆54 ∆55

⎞⎟⎟⎟⎟⎟⎟⎟⎠
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Partition Σ correspondingly. Let  = 1 + 2 Let 1 2 3, 4, and 5 denote, respectively, the

1× (1++ ) 1× (1++ ) 1× (1++ ) 2× (1+ + ) and 2× (1++ ) selection matrices

for which 1 =  2 =  3 = ∆
0
1 4 = 02 and 5 = 2. Let 23 = (

0
2 

0
3)
0

a (1 + 1) × (1 +  + ) selection matrix. We assume without loss of generality that 2 has zero

mean.3

We make the following assumptions on {} and {} 
Assumption 3.1 (i) For each  , {  ≥ 1} is a linear process:  = () =

P∞
=0 −,

where  = ( 
0
  

10
  

20
  20 )

0 is a (1 +  + ) × 1 random vector that is i.i.d. over  with

zero mean and variance matrix 1++; sup≥1max1≤≤ (kk2+)   where   4 and 

is an arbitrarily small positive constant;  

 

1
  

2
  and 2 are mutually independent; and

( 
0
  

20
 )

0 are independent across 
(ii) sup≥1max1≤≤

P∞
=0 

kk ∞ for some  ≥ 2 and 23Ω
0
23 has full rank uniformly

in .

(iii)
³
 

0
 

0
2

´
are independent across  conditional on C.

(iv) E(2) = 0 and E(2002) = 0 for  ≥ 

(v) 0 is independent of  for all  and .

Following Phillips and Solo (1992, PS hereafter), we assume that {  ≥ 1} is a linear process
in Assumption 3.1(i). For later reference, we partition the matrix operator () conformably with

 as follows:

()=

⎛⎜⎜⎜⎜⎜⎝
 ()  () 

1
 () 

2
 () 2 ()

 ()  () 
1
 () 

2
 () 

2
 ()

1() 1() 11() 12() 12()

2() 2() 21() 22() 22()

2 () 2 () 
21
 () 

22
 () 

22
 ()

⎞⎟⎟⎟⎟⎟⎠=
⎛⎜⎜⎜⎜⎜⎝

 ()  () 0 0 2 ()

 ()  () 
1
 () 

2
 () 

2
 ()

0 0 11() 12() 0

0 0 21() 22() 0

2 () 2 () 
21
 () 

22
 () 

22
 ()

⎞⎟⎟⎟⎟⎟⎠ 

(3.1)

Since nonstationary and stationary common factors do not depend on , 1() 1() 12()

2() 2() and 22() are all matrices of zeros. Moreover, we assume that  () = 0

for  = 1 2 This assumption indicates that there exists no serial or contemporaneous correlation

between the regression error  and
¡
∆001 002

¢
 In Assumption 3.1(iv), we also require the stationary

regressors to be sequentially exogenous to simplify the asymptotic analysis. These conditions ensure

the consistency of the initial estimators of 01’s and impose some restrictions on 2 () 2 ()

and 
22
 (). For the consistency of the estimators of 02’s, we further require that the stationary

regressors are uncorrelated with the stationary common factors as in Assumption 3.1(iv).

The moment condition in Assumption 3.1(i) is needed to ensure the validity of the functional

central limit theorem for the weakly dependent linear process {}. We apply the Beveridge and
3If (2) = 2 6= 0 , we can rewrite the model (2.6) with the inclusion of an intercept, such that  =  +

0011 + 002
∗
2 + 001

0
1 + 002

0
2 + , where 

∗
2 = 2 − 2 has zero mean and  = 0022.
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Nelson (1981, BN hereafter) decomposition

 = (1) + ̃−1 − ̃ (3.2)

where ̃ =
P∞

=0 ̃− and ̃ =
P∞

=+1 . Assumption 3.1(ii) imposes a uniform -summability

condition on the coefficient matrix  that ensures
P∞

=0 k̃k ∞ by Lemma 2.1 in PS, thereby

assuring the validity of (3.2). This condition further implies that ̃ behaves like a stationary process

with a finite th moment. The second part of Assumption 3.1(ii) rules out potential cointegration

relationships among the variables in (01 
00
1)

0. Assumption 3.1(iii) allows ( 0 
0
2) to be cross-

sectionally dependent, but they become independent across  given C. By saying that “( ) are
cross-sectionally dependent but they become independent across  given C,” we mean that cross-
section dependence among {( )}  if it exists, only comes from the sigma algebra generated by

the common factors and factor loadings, C = (Λ0  0). Unconditionally, we allow for cross-section

dependence among {( )}  Assumption 3.1(v) ensures that the factor loadings are independent
of the generalization of the error processes over  and across . Assumption 3.1 validates the following

multivariate invariance principle for partial sums of 

1√


b ·cX
=1

 ⇒ (·) ≡ (Ω) as  →∞ for all 

where  = (1 
0
2 

0
3 

0
4 

0
5)
0 is a (1 +  + ) × 1 vector Brownian motion with a covariance

matrix Ω.

Assumption 3.2 (i) As  →∞, 1

Λ00Λ0 → Σ  0 and Λ001 Λ02 = 

¡
12

¢
. sup≥1max1≤≤ k0 k

≤ ̄ ∞

(ii) Ek∆01k2+ ≤  and Ek02k2+ ≤  for some   0  ≥ 4 and for all  . As  →∞,
1
 2

P
=1 

0
1

00
1

→ R
3

0
3 and

1


P
=1 

0
2

00
2

→ Σ44  0, where 3 is an 1-vector of Brownian

motions with a long-run covariance matrix Ω33  0

(iii) Let ( ) =
1


P
=1 E() and  =

1


P
=1[−E()] Then sup≥1 sup≥1

max1≤≤ 2E||4 ≤ and sup≥1 sup≥1 −1
P

=1

P
=1 k ( )k2 ≤

(iv) We consider the linear combinations of the nonstationary regressors 11 where 1 is a

1 × 1 vector. Let b1 = (11  1)  1 ∈ F1 and π1 = (1  1 )
0  where F1 = {1 ∈ R×1 :

1
 2
 011 = 1} and 1 is an 1 × 1 real vector. Let b1 = 11 −  01 

0
1 We assume

(a) There does not exist (b1 1π1) ∈ R1× ×F1×R×1 with b1 = (11  1) 6= 0 such
that we can write

11 = (
0
1  1)

Ã
01

1

!
a.s. ∀; (3.3)
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(b) There exists a constant 1  0 such that

min
{b1∈R1× : 1 kb1k2=}

X
=1+1



Ã
1

 2

X
=1

b1
0
b1

!
≥ 1 w.p.a.1.; (3.4)

(c) There exists a constant min  0 such that 
¡
min

¡
1(

0
1 )−2(

0
1 )
¢ ≥ min

¢
=

1− (−1).
(v) There exist constant bounds {2 ̄2} such that 0  2 ≤ min1≤≤ min

³
E(202)

´
≤

max1≤≤ max

³
E(202)

´
≤ ̄2 ∞

Assumption 3.2(i)-(iii) imposes some standard moment conditions in the factor literature; see,

e.g., Bai and Ng (2002, 2004). Assumption 3.2(i) indicates that the stationary factor loadings and

the nonstationary factor loadings can only be weakly correlated, which facilitates derivations. As-

sumption 3.2(iii) imposes conditions on the error process {}, which are adapted from Bai (2003)

and allow for weak forms of cross-section and serial dependence in the error processes. Assumption

3.2(iv.a) is the key identification condition that will be satisfied provided no linear combinations of

1 can be written as a pure factor structure with 21 factors for all  In particular, if there exists

a combination (b1 1π1) such that

011 = 001
0
1 + 011 for all ( ) 

then we must have b1 = 0 and 011 = −00101 for all ( )  This condition does not rule out
common regressors in the model. For example, we can consider the simplest case where 1 = 1 and

1 = 1 is I(1)  As long as 
0
1 varies across  and 1 is not proportional to 01 (1 and 01

are not collinear in the general case), Assumption 3.2(iv.a) can still hold. See the Online Appendix

C for more details. Assumption 3.2(iv.b) is used to establish the preliminary consistent rates in

Theorem 3.1(i) below and it is in the same spirit as Assumption 4(ii.a) in Moon and Weidner (2017).

Assumption 3.2(iv.c) is used to establish the uniform classification consistency in Theorem 3.3 below.

It assumes 1(
0
1 ) − 2(

0
1 ) is positive definite in the limit. Assumption 3.2(v) is required for the

identification of 02 and apparently it allows for the presence of both common stationary regressors

and time-invariant regressors in 2

Assumption 3.3 (i) For each  = 1 0  →  ∈ (0 1) as  →∞.
(ii) min1≤ 6=≤

°°°0 − 0

°°° ≥  for some fixed   0

(iii) As ( )→∞  2 → 1 ∈ [0∞) and 2 → 2 ∈ [0∞)
(iv) Let  = log log  As ( ) → ∞ 

√
 → 0 −1−2  (log )1+ → ∞ and

2
1−1 × (log  )1+ → 0

Assumptions 3.3(i)-(ii) were used in SSP (2016a). Assumption 3.3(i) implies that each group has

an asymptotically non-negligible number of individuals as  → ∞ and Assumption 3.3(ii) requires

the separability of group-specific parameters. Similar conditions are assumed in the panel literature
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with latent group patterns, e.g., Bonhomme and Manresa (2015), Ando and Bai (2016), SSP (2016a),

and Su and Ju (2018). Assumption 3.3(iii)-(iv) imposes conditions to control the relative rates at

which  and  pass to infinity. They require that  pass to infinity at a rate faster than  12

but slower than  2 The involvement of the factor  is due to the law of iterated logarithm as in

Huang et al. (2020). For example, it appears in the study of limiting behavior of 1
 2
 0

 where

 =
¡
1 

0
1

¢
. Lemma A.2 in the appendix shows that both lim sup→∞ max(

1
 2

 0
) and

lim inf→∞ min(

 2
 0

) are bounded away from the infinity and zero almost surely, respectively.

One can verify that the permissible range of values for  that satisfy Assumption 3.3(iv) is  ∝ −

for  ∈ (12  −1 ) for  ≥ 4.

3.2 Preliminary rates of convergence

Let ̂ = ̂ − 0 for  = 1 2  = min(
√
 ),  = min(

√

√
 ), 21 =

1


P
=1

°°°̂1°°°2,
and 1 = (

1

Λ001 Λ01)(

1
 2
 001 ̂1)

−1
1 . The following theorem establishes consistency of ̂1 ̂2 and

̂1

Theorem 3.1 Suppose that Assumptions 3.1-3.3 hold. Recall that  = log log  Then

(i) 1


P
=1 k̂1 − 01k2 =  ((

3
 )
−12)

(ii)
°°°̂1 −  01

°°°2 =  ((
3
 )
−12)

(iii) 1

k̂1 −  011k =  (1 + −12−1 ).

Theorem 3.1(i) establishes the preliminary mean-square consistency of {̂1}. Theorem 3.1(ii)

shows that the spaces spanned by the columns of ̂1 and  01 are asymptotically the same. Theorem

3.1(iii) indicates that the true factor  01 can only be identified up to a nonsingular rotation matrix1.

Compared with Bai and Ng (2004) and Bai et al. (2009), our results allow for heterogeneous slope

coefficients, stationary regressors and unobserved stationary and nonstationary common factors.

The following theorem establishes the rate of convergence for the individual and group-specific

estimators, as well as for the estimated factors up to rotation.

Theorem 3.2 Suppose that Assumptions 3.1-3.3 hold. Recall that  = log log  Then

(i) 1


P
=1 k̂1 − 01k2 =  (

−2),
(ii) ̂1 − 01 =  (

12
 −1 + ) and ̂2 − 02 =  (

12
 −12 +−12) for  = 1  ,

(iii) (̂(1)  ̂()) − (01  0) =  (
12
 −1) for some suitable permutation (̂(1)  ̂())

of (̂1  ̂),

(iv) −1k̂1 −  011k =  (
12
 −1 + ( )−12)

Theorem 3.2(i) establishes the mean-square convergence for the estimators of 01 while Theorem

3.2(ii) studies the preliminary point-wise convergence of ̂1 and ̂2. The usual super consistency of

nonstationary estimators ̂1 is preserved if  = (−1) despite the fact that we ignore unobserved
stationary common factors and allow for correlation between  and

¡
0 

00
1

¢
. Theorem 3.2(iii)
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indicates that the group-specific parameters, 01  
0
  can be consistently estimated. Theorem

3.2(iv) updates the convergence rate of the unobserved nonstationary factors in Theorem 3.1(iii).

For notational simplicity, hereafter we simply write ̂ for ̂() as the consistent estimator of 
0
.

3.3 Classification consistency

We now study classification consistency. Define

̂ = { 6∈ ̂| ∈ 0} and ̂ = { 6∈ 0| ∈ ̂}

where  = 1  and  = 1  Let ̂ = ∪∈̂
̂ and ̂ = ∪∈̂

̂. The events

̂ and ̂ mimic type I and type II errors in statistical tests. Following SSP (2016a), we say

that a classification method is individually consistent if  (̂) → 0 as ( ) → ∞ for each

 ∈ 0 and  = 1 , and  (̂) → 0 as ( ) → ∞ for each  ∈ 0 and  = 1 . It is

uniformly consistent if  (∪=1̂ )→ 0 and  (∪=1̂ )→ 0 as ( )→∞.
The following theorem establishes uniform classification consistency.

Theorem 3.3 Suppose that Assumptions 3.1-3.3 hold. Then

(i)  (∪0
=1̂ ) ≤

P0
=1  (̂ )→ 0 as ( )→∞

(ii)  (∪0
=1̂ ) ≤

P0
=1  (̂ )→ 0 as ( )→∞

Theorem 3.3 implies uniform classification consistency — all individuals within a certain group,

say 0 can be simultaneously and correctly classified into the same group (denoted ̂) w.p.a.1.

Conversely, all individuals that are classified into the same group, say ̂, simultaneously belong to

the same group (0) w.p.a.1. Let ̂ = #̂ One can easily show that  (̂ = 0) → 1 so that

 (̂ = )→ 1.

Note that Theorem 3.3 is an asymptotic result. It does not ensure that all individuals can

be classified into one of the estimated groups when  is not large or  is not sufficiently big if

we stick to the classification rule in (2.13). In practice, we classify  ∈ ̂ if ̂1 = ̂ for some

 = 1  and  ∈ ̂ for some  = 1  if ||̂1 − ̂|| = min{||̂1 − ̂1||  ||̂1 − ̂ ||}
and

P
=1 1{̂1 = ̂} = 0 Since Theorem 3.3 ensures

P
=1  (̂1 = ̂) → 1 as ( ) → ∞

uniformly in  we can ignore such a modification in large samples in subsequent theoretical analyses

and restrict our attention to the classification rule in (2.13) to avoid confusion.
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3.4 Oracle properties and post-Lasso and Cup-Lasso estimators

We examine the oracle properties of the three Lasso-type estimators. To proceed, we add some

notation. For  = 1  we define

 =
1√


X
∈0



01 01

⎛⎝¡ +  02 
0
2

¢− 1



X
=1

¡
 +  02 

0
2

¢


⎞⎠ 

1 =
X
=1

1 =
1√


X
∈0



Ã
X
=1

X
=1

1 { = }− κ1 { ≤ }
!
∆21

2 =
X
=1

2 =
1√


X
∈0



EC (1)0 01
 02

⎛⎝02 −
1



X
=1

02

⎞⎠ 

 =
1√


X
∈0




†
 (1)

X
=1

X
=1

©
κ̄

¡
 
 0

¢− [1 { = }− κ1 { ≤ }] 1+
ª

†
 (1)

00

+
1√


X
=1

⎧⎨⎩EC ¡01¢1© ∈ 0
ª− 1



X
∈0



EC(01)

⎫⎬⎭ 01


+
1√


X
∈0



[1 − EC (1)]0 01
 02 

0
2

where κ = 001( 001  01 )−101 κ̄ = 1 { = }− κ  = ( 0 20 )
0,  

 =
P

=1 

  EC (·) =

E (·|C), † () =
Ã


†
 ()


†
 ()

!
=

Ã
 ()  () 2 ()

 ()  () 2 ()

!
  = (1 01×)   = (01×1 1×)

and  is a vector of ones Let 1 =diag
³

1
1 2

P
∈01 

0
101

1    
1

 2

P
∈0


01 01

1

´
and 2 =

1
 2

P
∈0



P
∈0


01 01

1 for   = 1  Let  = 1 −2 

2 =

⎛⎜⎜⎝
211 · · · 21

...
. . .

...

21 · · · 2

⎞⎟⎟⎠ and 0 =

⎛⎜⎜⎜⎜⎜⎝
11 −211 −212    −21
−221 12 −222    −22
...

...
. . .

...

−21 −22    1 −2

⎞⎟⎟⎟⎟⎟⎠ 

where1 = lim→∞ 1


P
∈0


EC
³R

̃2̃
0
2

´
 2 = lim→∞ 1



P
∈0



P
∈0


EC

³R
̃2̃

0
2

´


and ̃2 = 2 −
R
2

0
3

¡R
3

0
3

¢−1
3

Let α̂ = (̂1  ̂). Let  = ( 01      
0
 )

0
  = (01      

0
 )

0
  =

( 01      
0
 )

0 and  = 1 +2. The following theorem reports the Bahadur-type

representation and asymptotic distribution of vec(α̂−α0).

Theorem 3.4 Suppose that assumptions 3.1-3.3 hold. Let ̂ be obtained by solving (2.11). Then

(i)
√
vec(α̂−α0) = √

−1
 +  (1) =

√


−1
 ( + ) +  (1)
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(ii)
√
vec(α̂−α0)−√

−1
 ⇒MN (0 0−10 Ω0−10 ) as ( )→∞

where  =diag
³


1

  


´
⊗1  0 =diag

³
1
1
  1



´
⊗1  Ω0 = lim( )→∞Ω  and Ω =

Var( |C) 

Theorem 3.4 indicates that  and  are associated with the asymptotic variance and bias

of ̂. The decomposition  = 1 + 2 indicates two sources of the bias. The first

bias term 1 results from the contemporaneous correlation between (1 1) and  and the

serial correlation among the innovation processes {}. Apparently, the presence of unobserved
nonstationary factors 01 complicates the formula for 1 through the term κ. The second bias
term 2 is due to the presence of the unobserved stationary factors 

0
2. In the special case where

neither 01 nor 
0
2 is present in the model, we have  = 1 =

1√


P
∈0


∆21. This is

the usual asymptotic bias term for panel cointegration regression that is associated with the effects

of the one-sided long-run covariance (c.f., Phillips (1995) and Phillips and Moon (1999)). The th

element of  is independent across  conditional on C and EC ( ) = 0 This makes it possible

for us to derive a version of the conditional central limit theorem for  and establish the limiting

mixed normal (MN ) distribution of the estimators α̂ in Theorem 3.4(ii).

As shown in the proof of Theorem 3.4, the asymptotic bias term  is  (
√
), which implies

the  -consistency of the C-Lasso estimators ̂. To obtain the
√
 -rate of convergence, we need

to remove the asymptotic bias by constructing consistent estimates of  .

3.4.1 Bias correction, fully modified and continuous updating procedures

Three types of bias-corrected estimators are considered: the bias-corrected post-Lasso estimator ̂
̂
,

the fully-modified post-Lasso estimator ̂


̂

 and the fully-modified continuously updated post-Lasso

(Cup-Lasso) estimator ̂


̂

, whose definitions are given below.

Following Phillips and Hansen (1990) and Phillips (1995), we first construct consistent time series

estimators of the long-run covariance matrix Ω and the one-sided long-run covariance matrix ∆ by

Ω̂ =
−1X

=−+1


µ




¶
Γ̂() and ∆̂ =

−1X
=0



µ




¶
Γ̂()

where (·) is a kernel function,  is a bandwidth parameter, and Γ̂() = 1


P−
=1 ̂+̂

0
 with

̂ = (̂∆
0
1∆̂

0
1 ̂

0
2 

0
2)

0. We partition Ω̂ and ∆̂ conformably with Ω For example, ∆̂

denotes a submatrix of ∆̂ given by ∆̂
0
 for   = 1  5

We make the following assumption on the kernel function and bandwidth.

Assumption 3.4 (i) The kernel function (·):  → [−1 1] is a twice continuously differen-
tiable symmetric function such that

R∞
−∞ ()2 ≤ ∞ (0) = 1 () = 0 for || ≥ 1, and

lim||→1 ()(1− ||) =   0 for some  ∈ (0∞).
(ii) As ( )→∞ 2 → 0 and  → 0
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We modify the variable  with the following transformation to correct for endogeneity:

̂+ =  − Ω̂12Ω̂−122∆1 (3.5)

This would lead to the modified equation ̂+ = 0011 + 0022 + 00101 + 00202 + ̂+  where

̂+ =  − Ω̂12Ω̂−122∆1. Define

∆̂+12 = ∆̂12 − Ω̂12Ω̂−122∆̂22 (3.6)

Note that (3.5) and (3.6) help to correct for endogeneity and for serial correlation, respectively. Let

̂+ = (̂
+
1  ̂

+
 )

0 and ∆̂+21 = ∆̂
+0
12

We can obtain the bias-corrected post-Lasso estimator α̂

̂
 the fully modified post-Lasso esti-

mator ̂


̂

, ̂1 and ̂2 by iteratively solving the following equations (3.8) to (3.10)

vec
³
α̂

̂

´
= vec (α̂)− 1√



p
̂

−1


³
̂1 + ̂2

´
 (3.7)

̂


̂

=

⎛⎝X
∈̂

01̂1
1

⎞⎠−1⎧⎨⎩X
∈̂

01̂1
̂+ − 

p


³
̂+1 + ̂2

´⎫⎬⎭  (3.8)

̂11 =

⎡⎣ 1

 2

X
=1

X
∈̂

(̂ − 1̂


̂

− 2̂2)(̂ − 1̂


̂

− 2̂2)
0
⎤⎦ ̂1 (3.9)

̂22 =

⎡⎣ 1



X
=1

X
∈̂

(̂ − 1̂


̂

− 2̂2 − ̂1̂1)(̂ − 1̂


̂

− 2̂2 − ̂1̂1)
0
⎤⎦ ̂2
(3.10)

where ̂ = (̂01  ̂
0
)

0 for  = 1 2 ̂1 =
1√
̂

P
∈̂

³P
=1

P
=1

ˆ̄κ
´
∆̂21

̂2 =
1√
̂

P
∈̂

³P
=1

P
=1

ˆ̄κ
´
∆̂24

ˆ̄2 ̂
+
1 =

1√
̂

P
∈̂

³P
=1

P
=1

ˆ̄κ
´
∆̂+21

ˆ̄κ = 1 { = } − κ̂ κ̂ = ̂ 01(̂ 01̂1)−1̂1 = ̂ 01̂1 2
ˆ̄2 = ̂2 − 1



P
=1 ̂2 ̂ , and ̂ =

̂
0
1(

1

Λ̂01Λ̂1)−1̂1  Here the definitions of ̂1 1  ̂2 and 2 are similar to those defined

above.

We obtain the fully modified Cup-Lasso estimators ̂


̂

by iteratively solving (2.11), and (3.8)

to (3.10), where we also update the group structure estimates {̂} Note that ̂1 1  ̂2 2 ,

and the factor loading estimates {̂1 ̂2} are also updated continuously in the procedure to obtain
̂


̂



Let α̂

̂
= (̂

̂1
  ̂



̂
) and α̂

̂
= (̂

̂1
  ̂



̂
). We establish the limiting distribution of

the bias-corrected post-Lasso estimators α̂

̂
 the fully modified post-Lasso estimators α̂

̂
 and the

Cup-Lasso estimators α̂

̂
in the following theorem.
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Theorem 3.5 Suppose that assumptions 3.1-3.4 hold. Let α̂

̂
be obtained by iteratively solving

(3.7), (3.9)-(3.10); let α̂

̂
be obtained by iteratively solving (3.8)-(3.10); and let α̂

̂
be obtained

by iteratively solving (2.11) and (3.8)-(3.10). Then as ( )→∞,
(i)
√
vec(α̂

̂
− α0)⇒MN (0 0−10 Ω0−10 )

(ii)
√
vec(α̂

̂
− α0)⇒MN (0 0

−1
0 Ω

+
0 

−1
0 )

(iii)
√
vec(α̂

̂
− α0)⇒MN (0 0

−1
0 Ω

+
0 

−1
0 )

where Ω+0 = lim→∞Ω+  Ω
+
 =Var

¡
 + |C

¢
  + is defined in the proof of Theorem 3.5, and

0 and Ω0 are as defined in Theorem 3.4.

Theorem 3.5 indicates that all three types of estimators achieve the
√
 -rate of convergence

and have a mixed normal limit distribution. Asymptotic t-tests and Wald tests may be constructed

as usual, provided that one can obtain suitable estimates of 0 Ω , and Ω
+
  We can estimate

0 by ̂0 = ̂1 − ̂2 where ̂1 and ̂2 are analogously defined as 1 and 2 with

 
0
 

0
1  and Λ

0
1 replaced by ̂ ̂ ̂1 and Λ̂1 respectively. We can also show that Ω and

Ω+ can be consistently estimated by

Ω̂ =
̂

 2

X
=1

X
=1

X
=1

X̂X̂
0
̂

∗
̂
∗
 −

X
=1

̂ ̂
0
 

Ω̂+ =
̂

 2

X
=1

X
=1

X
=1

X̂X̂
0
̂

∗+
 ̂

∗+
 −

X
=1

̂+ ̂
+0
 

where X̂ = (X̂
0
1  X̂

0
)

0 X̂0 is the th row of X̂ X̂ =
̂1
11{ ∈ ̂}− 1



P
∈̂

̂̂1
1 ,

̂ =diag (


̂1
  

̂
)⊗1  ̂ = (̂

0
1   ̂

0
 )

0 ̂ = ̂1+̂2 ̂1 =

1√
̂

³P
=1

P
=1

ˆ̄κ
´
∆̂211{ ∈ ̂} ̂2 =

1√
̂

³P
=1

P
=1

ˆ̄κ
´
∆̂24

ˆ̄21{ ∈ ̂},
̂∗ = − ̂

0
 1− ̂

0
22− ̂

0
1̂1 for  ∈ ̂, ̂

+
 = (̂

+0
1   ̂

+0
 )

0 ̂+ = ̂+1+

̂2 ̂
+
1 =

1√
̂

³P
=1

P
=1

ˆ̄κ
´
∆̂+211{ ∈ ̂}, and ̂∗+ = ̂+ − ̂

0
 1 − ̂

0
22 −

̂
0
1̂1 for  ∈ ̂. See the proof of Lemma A.11(ix) in the Online Supplement. Given these estimates,

it is standard to conduct inference on elements of α0

3.5 Estimating the number of unobserved factors

Our analysis has so far assumed that the numbers of nonstationary and stationary factors, 1 and 2,

are known. We also note the nonstationary factors play a key role in the PPC estimation. We notice

that the presence of stationary factors does not affect the consistency of nonstationary coefficients

estimates despite its introduction of a second-order endogeneity bias. Thus, we consider a two-step

approach to determine 1 and 2 In the first step, we introduce an information criterion to determine

the number of unobserved nonstationary factors, 1 without any information about the unobserved

stationary factors. In the second step, we propose another information criterion to the resultant

residuals to obtain the number of stationary factors, 2. Below, we use 1 and 2 to denote a generic
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number of nonstationary factors and stationary factors, respectively. Their true values are denoted

as 01 and 02 which are assumed to be bounded above by a finite integer max.

In the first step, we estimate the number of unobserved nonstationary factors, 01 consistently

based on the level data. Let  1
1 be a matrix of  × 1 nonstationary factors and 11 be an 1 × 1

vector of nonstationary factor loadings. Let Λ101 = (111  
1
1 ) Given the preliminary consistent

estimators of ̂1 and ̂2 based on max nonstationary factors, we consider the following minimization

problem:

n
̂ 1
1  Λ̂1

o
= arg min

Λ1 
1
1

1



X
=1

X
=1

( − ̂
0
11 − ̂

0
22 − 101 

1
1 )

2

s.t.  10
1  1

1  2 = 1 and Λ
10
1 Λ

1
1 is diagonal.

Given ̂ 1
1 = (̂ 111   ̂

1
1 )

0 we can solve for Λ̂11 = (̂
1
11  ̂

1
1)

0 as a function of ̂ 1
1 by least squares

regression. We suppress the dependence of Λ̂11 on ̂ 1
1 and define 1(1 ̂

1
1 ) =

1


P
=1

P
=1(−

̂
0
11 − ̂

0
22 − ̂

10
1 ̂

1
1 )

2 Then we consider the information criterion:

1(1) = log 1(1 ̂
1
1 ) + 11( ) (3.11)

where 1( ) is a penalty function. Let ̂1 = argmin0≤1≤max 1(1). We add the following
condition.

Assumption 3.5 As ( )→∞ 1( ) log log( )


→ 0 and 1( )→∞.
The conditions on 1( ) differ from the conventional conditions for the penalty function used

in information criteria in the stationary framework (e.g., 2( ) in Assumption 3.5 below). In

particular, we now require that 1( ) diverge to infinity rather than converge to zero. The

intuition for this requirement is that the mean squared residual, 1(1 ̂
1
1 ) does not have a finite

probability limit when the number of nonstationary common factors is under-specified. We can show

that log log


1(1 ̂
1
1 ) converges in probability to a positive constant when 0 ≤ 1  01. By contrast,

we have 1(1 ̂
1
1 )− 1(

0
1 ̂

01
1 ) =  (1) when 1  01

The following theorem shows that the use of 1(1) determines 
0
1 consistently.

Theorem 3.6 If Assumptions 3.1-3.3 and 3.5 hold, then  (̂1 = 01)→ 1 as ( )→∞.

Once we obtain a consistent estimate of 01 we can also obtain a consistent estimator of the

number of unobserved stationary factors, 02 from the resultant residuals based on standard methods

in Bai and Ng (2002). In the second step, the resultant residual takes the form:

̂ =  − ̂
0
11 − ̂

0
22 − ̂

0
1̂1  = 1   (3.12)

where ̂ = 00202+ +  and  accounts for the asymptotically negligible estimation error from

the early stages. Since the true dimension 02 is unknown, we start with a model with max unobserved
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common factors. Let  2
2 be a matrix of  × 2 nonstationary factors and 22 be an 2 × 1 vector

of nonstationary factor loadings. Let Λ202 = (221  
2
2 )We consider the following minimization

problem:

n
̂ 2
2  Λ̂2

o
= arg min

Λ2 
2
2

1



X
=1

X
=1

(̂ − 20 22 )
2

s.t.  20
2  2

2  2 = 2 and Λ
20
2 Λ

2
2 is diagonal,

where ̂ 2
2 = (̂221   ̂

2
2 )

0 and Λ̂22 = (̂
2
21  ̂

2
2)

0 and ̂1, ̂2, ̂
0
1̂1 are consistently estimated

based on ̂1 nonstationary factors from the first step. It is easy to show that the ̂1 are  -

consistent and ̂2 are
√
 -consistent under appropriate orthogonality conditions, which suffices for

our purpose. It is well known that given ̂ 2
2  we can solve Λ̂2 = Λ̂2(̂ 2

2 ) from the least squares

regression as a function of ̂ 2
2  Then we can define 2(2 ̂

2
2 ) =

1


P
=1

P
=1(̂ − ̂

20
2 ̂

2
2 )

2

Following Bai and Ng (2002) we consider the information criterion

2() = log 2(2 ̂
2
2 ) + 22( ) (3.13)

where 2( ) is a penalty function. Let ̂2 = argmin0≤≤max 2(). We add the next assumption.

Assumption 3.6 As ( )→∞ 2( )→ 0 and 2 2( )→∞ where  = min(
√

√
 ).

Assumption 3.6 is common in the literature. It requires that 2( ) pass to zero at a certain

rate so that both over- and under-fitted models can be eliminated asymptotically. The following

theorem demonstrates that we can apply 2(2) to estimate 
0
2 consistently.

Theorem 3.7 If Assumptions 3.1-3.3 and 3.6 hold, then  (̂2 = 02)→ 1 as ( )→∞.

In the simulations and applications, we simply follow Bai and Ng (2002) and Bai (2004) and set

1( ) =  2( ) and 2( ) =
 + 


log
¡
2

¢
or

 + 


log

µ


 + 

¶


where  =


4 log log . We first estimate the number of unobserved nonstationary factors by ̂1 based

on level data, and next estimate the number of unobserved stationary factors by ̂2 based on the

resultant residuals from the first step.

3.6 Determination of the number of groups

We propose a BIC-type information criterion to determine the number of groups, . We assume

that the true number of groups, 0 is bounded from above by a finite integer max.

By minimizing the criterion function in (2.11), we obtain estimates ̂1() ̂2() ̂()

̂1() and ̂1() of 01 
0
2 

0
 

0
1 and 01 in which we make the dependence of the

estimates ̂1 ̂2 ̂ ̂1, and ̂1 on () explicit. Let ̂() = { ∈ {1 2  } : ̂1() =
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̂()} for  = 1  and ̂() = {̂1()  ̂()}. Let ̂
̂()

denote the Cup-

Lasso estimate of 0. Define

3() =
1



X
=1

X
∈̂()

X
=1

h
 − ̂

0
̂()

1 − ̂
0
22 − ̂()0̂()

i2


Following SSP (2016a) and Lu and Su (2016), we consider the following information criterion:

3() = log3() + 3( ) (3.14)

where 3( ) is a penalty function. Let ̂() = argmin1≤≤max 3().

Let G() = (1  ) be any -partition of the set of individual index {1 2  }. De-
fine ̂2G() =

1


P
=1

P
∈

P
=1[ − ̂

0
̂()

1 − ̂
0
22 − ̂1( )0̂1()]2, where

{̂
 ̂2(G()) ̂1(G()) ̂1(G())} is analogously defined as {̂̂()

 ̂2() ̂1()

̂1()} with {̂()} being replaced by {}. Let 20 =plim( )→∞ 1


P
=1

P
∈0



P
=1[−

00 1 − 0022 − 00101]2 Define

 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

( )−12 when there are neither stationary regressors nor unobserved common factors,

−12 when there are stationary regressors but no unobserved common factors,

−12 when there are common nonstationary factors but no stationary factors or regressors,

−1 in other cases.



and note that  indicates the effect of estimating the nonstationary panel on the use of 3()

under four different scenarios.

We add the following assumption.

Assumption 3.7 (i) As ( )→∞ min1≤0 inf()∈G ̂2G()
→ 2  20

(ii) As ( )→∞, 3( )→ 0 and 3( )2 →∞

Assumption 3.7(i) requires that all under-fitted models yield asymptotic mean square errors larger

than 20, which is delivered by the true model. Assumption 3.7(ii) imposes typical conditions on the

penalty function 3( ) requiring that it cannot shrink to zero too fast or too slowly.

The following theorem justifies the validity of using 3 to determine the number of groups.

Theorem 3.8 Suppose that Assumptions 3.1-3.4 and 3.7 hold. Then  (̂() = 0) → 1 as

( )→∞.

Theorem 3.8 indicates that as long as  satisfies Assumption 3.3(iv) and 3( ) satisfies As-

sumption 3.7(ii), we have inf1≤≤max 6=0 3()  3(0 ) as ( )→∞. Consequently,
the minimizer of 3() with respect to  equals 0 w.p.a.1 for a variety of choices of . In
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practice, we can further choose  over a finite grid of values to minimize 3(̂() ) The next

section provides details.

4 Monte Carlo Simulations

In this section we conduct simulations to evaluate the finite sample performance of the C-Lasso

procedure, the bias-corrected post-Lasso, the fully-modified post-Lasso regression, and the Cup-

Lasso estimators with and without unobserved factors, stationary regressors and incidental time

trends. See Appendix E in the online for the introduction of incidental time trends into our model.

For comparison, we also consider the Lasso-type estimators using first-differenced data, which is

proposed for stationary panels with interactive fixed effects. Note that the method proposed by

Su and Ju (2018) requires the regressors to be predetermined. In general, their method is not

suitable for the first-differenced data in panel cointegration models with both contemporaneous and

serial correlations. Before estimation, we evaluate the performance of the information criteria for

determining the number of unobserved common factors and groups.

4.1 Data generating processes

We consider five data generating processes (DGPs) with stationary and/or nonstationary unobserved

common factors. The observations in each of these DGPs are drawn from three groups with 1 : 2 :

3 = 03 : 04 : 03. There are four combinations of sample sizes, with  = 50 100 and  = 40 80.

Data are generated based on the following design. For  = 1      and  = 1      ,⎧⎪⎪⎪⎨⎪⎪⎪⎩
 =  + + 011 + 022 + 1

0
11 + 2

0
22 + 

1 = 1 + 1−1 + 

1 = 1 + 1−1 + 

 (4.1)

For DGPs 1-4 below, we do not allow for stationary regressors so that 2 = 0 and  ≡ ( 0∆ 01  02)0
are generated from the linear process:  =

P∞
=0 −  where  = ()Ω12, () = 1 or −35,

Ω =

⎛⎜⎜⎜⎜⎝
025 Ω12 Ω13 01×2
Ω21 Ω22 Ω23 Ω24

01×1 01×1 Ω33 Ω34

02×1 02×1 Ω43 Ω44

⎞⎟⎟⎟⎟⎠,  = (0  
10
  

20
 )

0,  ∼ i.i.d. (0 1+1) for  = 1   ,

and (10  
20
 )

0 ∼ i.i.d. (0 1+2). The factor loadings  = (01 02)0 are i.i.d.  ∼ ( 1+2)

and  = 01 · (1+2)×1 with  an × 1 vector of ones. The long-run slope coefficients 1 exhibit
the group structure in (2.3) for  = 3 and the true values for the group-specific parameters are

(01 
0
2 

0
3) =

ÃÃ
04

16

!


Ã
1

1

!


Ã
16

04

!!
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We allow for stationary regressors in DGP 5 and incidental linear time trends in DGP 6 below.

Endogeneity and serial correlations in the system are controlled by  and the non-zero block

matrices in Ω. The parameters 1 and 2 control the importance of unobserved common factors. The

estimates of long-run covariance matrices are obtained by using the Fejér kernel with the bandwidth

set at 10.4 The maximum number of iterations for Cup-Lasso regression is set to 20. All simulation

results are obtained from 500 replications.

DGP 1. We consider a panel cointegration model with nonstationary regressors and unobserved

stationary common factors such that 1 = 2, 2 = 0 1 = 0 and 2 = 2. Let 2 = 05  =  =

1 = 0 and 1 = 02×1. There is neither contemporaneous correlation nor serial correlation among

the errors where () = 1 and Ω =

Ã
025 01×4
04×1 4

!
.

DGP 2. The DGP is similar to DGP 1 except that we now introduce contemporaneous corre-

lations among the errors by setting  = Ω
12 with Ω12 = Ω

0
21 =

³
02 02

´
, Ω24 =

Ã
02 02

02 02

!
and

Ω22 = Ω44 =

Ã
1 02

02 1

!
.

DGP 3. We consider a panel latent factor cointegration model with both nonstationary regressors

and unobserved nonstationary common factors, such that 1 = 2, 2 = 0 1 = 2, and 2 = 0 Let

1 = 1,  =  = 0 and 1 = 1 = 02×1. We allow for general forms of weak dependence among

the errors where  = −35Ω12, Ω12 = Ω021 =
³
02 02

´
, Ω23 =

Ã
02 02

02 02

!
and Ω22 = Ω33 =Ã

1 02

02 1

!
.

DGP 4. We consider a panel latent factor cointegration model with both nonstationary regressors

and mixed unobserved common factors such that 1 = 2, 2 = 0 1 = 2, and 2 = 1 Let 1 = 1

2 = 05  =  = 0 and 1 = 1 = 02×1. We allow for general forms of weak dependence among

the errors where  = −35Ω12, Ω12 = Ω021 = Ω024 = Ω43 = Ω043 =
³
02 02

´
, Ω23 =

Ã
02 02

02 02

!
,

Ω22 = Ω33 =

Ã
1 02

02 1

!
and Ω44 = 1. In addition, we allow for weak correlation among the factor

loadings with  = (
0
1 

0
2)
0 ∼ i.i.d. (01 · 3Ω), where Ω =

⎛⎜⎝ 1 0 2
√


0 1 2
√


2
√
 2

√
 1

⎞⎟⎠.
DGP 5. We consider a panel latent factor cointegration model with mixed regressors and

mixed unobserved common factors such that 1 = 2, 2 = 1, 1 = 2, and 2 = 1 Let 1 = 1

2 = 05  =  = 0 and 1 = 1 = 02×1. The settings of the errors are the same as in DGP

4Findings based on other kernels (the quadratic spectral kernel and Parzen kernel) and other choices of bandwidth

are similar and are not reported
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4. For the stationary regressors and associated coefficients, we generate 2 ∼ i.i.d. (0 1) and

2 ∼ (05 1).

DGP 6. We consider a panel latent factor cointegration model with unobserved nonstationary

common factors and incidental deterministic trends such that 1 = 1 = 2 and 2 = 2 = 0 We set

1 = 1. For the incidental time trends, we generate (  
0
1 

10)0 ∼ i.i.d. (0 6). The errors are
generated as in DGP 3.

4.2 Estimating the number of unobserved factors

We assess the performance of the two information criteria proposed in Section 3.6 before determining

the number of groups and running the PPC-based estimation procedure. We first obtain the pre-

liminary time-series estimates of both nonstationary and stationary slope coefficients 1 and 2

by setting the number of nonstationary factors 1 = max We choose the BIC-type penalty function

1( ) = 
4 log log 2( ) to determine the number (1) of unobserved nonstationary factors and

2( ) = +


log( 
+ ) to determine the number (2) of unobserved stationary factors. Note that

01 = 0 0 2 2, 2, and 2 for DGPs 1-6, respectively and 02 = 2 2 0 1, 1, and 0 for DGPs 1-6,

respectively.

Table 1 displays the probability that a particular factor number from 0 to 4 is selected according

to the information criteria proposed for the level data and the resultant residual data based on

500 replications. For the level data, the precision for selecting the number of nonstationary factors

generally increases and approaches 1 in all DGPs as both  and  become larger. For DGPs 3-6,

the performance in the case of  = 50 and  = 80 slightly deteriorates in comparison with the case

 = 50 and  = 40 Similar phenomenon may occur in the use of information criteria for stationary

factor models.

For the resultant residual data, the probabilities for selecting the number of stationary factors

are influenced by the results in nonstationary factors. In general, it preserves similar finite sample

performance as the level data. As both  and  increase, the probabilities of selecting the number

of stationary factors approach 1 in all DGPs. In general, the simulation results show that the two

information criteria work fairly well in finite samples.

4.3 Determination of the number of groups

The results above show that the information criteria (1(1) and 2(2)) in Section 3.6 are useful

in determining the number of nonstationary and stationary factors. We emphasize that these infor-

mation criteria do not require the knowledge of the latent group structure or even the number of

groups.

Next, we focus on the performance of the information criterion (3()) for determining the

number of groups by assuming that the number of unobserved factors is known. We follow SSP

(2016a) and set 3( ) = 2
3 log(min( ))min( ) and  = 

−34 with  = 005 01 0.2,

0.4. Note that 3( ) satisfies the two restrictions in Assumption 3.7. Due to space limitations, we
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Table 1: Frequency for selecting 1 2 = 0 1 2 3 4 nonstationary and stationary factors

Level Data Resultant Residual Data

  1 = 0 1 = 1 1 = 2 1 = 3 1 = 4 2 = 0 2 = 1 2 = 2 2 = 3 2 = 4

DGP 1 50 40 1 0 0 0 0 0 0 1 0 0

50 80 1 0 0 0 0 0 0 1 0 0

100 40 1 0 0 0 0 0 0 1 0 0

100 80 1 0 0 0 0 0 0 1 0 0

1000 1000 1 0 0 0 0 0 0 1 0 0

DGP 2 50 40 1 0 0 0 0 0 0 1 0 0

50 80 1 0 0 0 0 0 0 1 0 0

100 40 1 0 0 0 0 0 0 1 0 0

100 80 1 0 0 0 0 0 0 1 0 0

1000 1000 1 0 0 0 0 0 0 1 0 0

DGP 3 50 40 0 0.014 0.93 0.054 0.002 0.984 0.014 0 0.002 0

50 80 0.016 0.048 0.92 0.016 0 0.932 0.004 0.002 0 0.012

100 40 0 0 0.998 0.002 0 1 0 0 0 0

100 80 0 0 0.988 0.012 0 1 0 0 0 0

1000 1000 0 0 1 0 0 1 0 0 0 0

DGP 4 50 40 0.004 0.074 0.908 0.014 0 0.002 0.920 0.042 0.014 0.014

50 80 0.042 0.114 0.836 0.008 0 0 0.844 0 0.012 0.016

100 40 0 0.008 0.988 0.004 0 0.002 0.990 0.006 0.002 0

100 80 0 0.004 0.996 0 0 0 0.996 0.002 0.002 0

1000 1000 0 0 1 0 0 0 1 0 0 0

DGP 5 50 40 0.010 0.086 0.892 0.012 0 0 0.900 0.052 0.016 0.012

50 80 0.044 0.134 0.818 0.004 0 0 0.822 0.004 0.014 0.014

100 40 0 0.008 0.984 0.008 0 0.004 0.988 0.008 0 0

100 80 0 0.004 0.996 0 0 0 0.996 0.002 0 0.002

1000 1000 0 0 1 0 0 0 1 0 0 0

DGP 6 50 40 0.004 0.022 0.974 0 0 0.974 0.02 0.004 0 0.002

50 80 0.082 0.036 0.882 0 0 0.882 0.014 0.006 0.006 0.008

100 40 0 0.002 0.998 0 0 0.998 0.002 0 0 0

100 80 0 0 1 0 0 1 0 0 0 0

1000 1000 0 0 1 0 0 1 0 0 0 0
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Table 2: Frequency for selecting  = 1 2  6 groups

  1 2 3 4 5 6

DGP 1 50 40 0 0 1 0 0 0

50 80 0 0 1 0 0 0

100 40 0 0 1 0 0 0

100 80 0 0 1 0 0 0

DGP 2 50 40 0 0 0.992 0.008 0 0

50 80 0 0 1 0 0 0

100 40 0 0 0.996 0.004 0 0

100 80 0 0 1 0 0 0

DGP 3 50 40 0 0 0.996 0.002 0.002 0

50 80 0 0 0.996 0.002 0.002 0

100 40 0 0 0.996 0.004 0 0

100 80 0 0 1 0 0 0

DGP 4 50 40 0 0 0.99 0.01 0 0

50 80 0 0 0.992 0.008 0 0

100 40 0 0 0.996 0.004 0 0

100 80 0 0 1 0 0 0

DGP 5 50 40 0 0 0.998 0.002 0 0

50 80 0 0 1 0 0 0

100 40 0 0 1 0 0 0

100 80 0 0 0.996 0 0 0.004

DGP 6 50 40 0 0 1 0 0 0

50 80 0 0 1 0 0 0

100 40 0 0 1 0 0 0

100 80 0 0 1 0 0 0

only report the outcomes for  = 01 based on 500 replications for each DGP in Table 2 as the other

choices of  produce similar results. Recall that the true number of groups is 3 in all DGPs. Table

2 displays the probability that a particular group number from 1 to 6 is selected according to 3.

The probabilities are higher than 99% in all cases and tend to unity when  increases to 80. This

indicates good finite sample performance of the criterion 3 in determining the number of groups.

4.4 Classification and point estimation

We now examine the performance of classification and estimation when we have a priori knowledge of

the numbers of groups and unobserved common factors. Table 3 compares finite sample performance

between our estimators obtained from the level data and the estimators obtained from the first-

differenced data for DGPs 1-2. The latter are obtained by implementing the method of Su and Ju

(2018) for stationary models. Tables 4-5 report classification and point estimation results for DGPs

3-6 and check the sensitivity of classification and estimation performance for different ’s. Here, we

set  = 
−34 where  = {005 01 02 04}. Due to space constraints, we only report results
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for  = 01 in DGPs 1-2 and  = 01 02 in DGPs 3-6. The focus of our analysis is the latent

group patterns in nonstationary slope coefficients. For  = (1 2)
0 we only report results for

the estimation of the first nonstationary slope coefficient 1 in each DGP.

For comparison, Table 3 summarizes group classification and estimation results from both the level

data and first-differenced data. Tables 4-5 only report the corresponding results for the level data.

Columns 4 and 9 in Table 3 and Columns 4 and 8 in Tables 4-5 report the percentage of correct

classification over the  cross-section units, calculated as 1


P0
=1

P
∈̂

1{01 = 0}, averaged
over the 500 replications. Columns 5-7 and 10-11 in Table 3 and Columns 5-7 and 9-11 in Tables

4-5 summarize estimation performance in terms of root-mean-squared error (RMSE), bias (Bias),

and 95% coverage probability (% coverage). For simplicity, we define the weighted average RMSE as
1


P
=1RMSE(̂1) with ̂1 being the estimate of 1. We define the weighted average bias

and 95% coverage probability analogously. For comparison, we report the estimation and inference

results based on the estimates of the C-Lasso, bias-corrected post-Lasso, fully-modified post-Lasso

and Cup-Lasso methods defined in Section 3.4. We also report estimation and inference results for

the oracle estimates that are obtained by utilizing the true group structures {0}.
For brevity, we only summarize the main findings in Tables 3. First, when there is no endogeneity

issue in DGP 1, both level data and first-differenced data lead to consistent estimation and there

is no bias in the C-Lasso estimation. In terms of RMSEs, there is a considerable convergence rate

advantage to use level data, where the estimators of the nonstationary slope coefficients enjoy super-

consistency–
√
 -consistency, which is in contrast with the

√
 -consistency of the estimators

in the first-differenced model. The correct classification results generally approach 100% in both

cases. Second, when there is endogeneity in DGP 2, the first-differencing approach does not lead to

consistent estimation. For the first-differenced data, there is no evidence of consistency in terms of

RMSE and Bias. However, the PPC-based estimators obtained from the level data generally show

good finite sample performance with the bias of the C-Lasso estimator being approximately halved

as  doubles.

The classification and estimation are reported in Tables 4-5 below and will now be discussed. In

these tables, we first notice that the results with different ’s are similar, indicating some robustness

in our algorithm to the choice of the tuning parameter . Second, the correct classification percentage

approaches 100% when  increases. As expected, the correct classification percentages for the Cup-

Lasso estimates are higher than those of the C-Lasso and post-Lasso estimates in all cases. This

outcome suggests that iterations do help in finite samples to achieve better classification. Third,

regarding parameter estimation Tables 3-5 show that the fully-modified procedure works slightly

better than the direct bias-correction procedure. For DGP 2, the endogeneity bias issue is not very

serious in the C-Lasso estimate since we only introduce contemporaneous correlation among the

errors, nonstationary regressors, and stationary common factors. The two post-Lasso estimates and

the Cup-Lasso estimates are found to perform as well as the oracle estimates in terms of RMSE, bias

and coverage probability. For DGPs 3-6, the performance of the C-Lasso estimates is poorer due
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Table 3: Classification and point estimation of 1 for DGPs 1-2

Level Data First-Differenced Data

  % Correct RMSE Bias %Coverage % Correct RMSE Bias

classification classification

DGP 1

50 40 C-Lasso 99.98 0.0085 0.0002 90.90 C-Lasso 99.92 0.0340 -0.0007

post-Lasso 99.98 0.0083 0.0002 90.42 C-Lasso BC 99.92 0.0340 -0.0007

post-Lasso 99.98 0.0083 0.0002 90.24 Post-Lasso 99.92 0.0309 -0.0006

Cup-Lasso 99.98 0.0083 0.0002 90.24 Post-Lasso BC 99.92 0.0308 -0.0006

Oracle - 0.0082 0.0002 90.18 Oracle - 0.0309 -0.0004

50 80 C-Lasso 100.00 0.0040 0.0001 91.90 C-Lasso 100.00 0.0223 0.0002

post-Lasso 100.00 0.0040 0.0001 91.60 C-Lasso BC 100.00 0.0223 0.0002

post-Lasso 100.00 0.0040 0.0001 91.52 Post-Lasso 100.00 0.0207 0.0004

Cup-Lasso 100.00 0.0040 0.0001 91.52 Post-Lasso BC 100.00 0.0207 0.0004

Oracle - 0.0040 0.0001 90.68 Oracle - 0.0207 0.0004

100 40 C-Lasso 99.99 0.0057 -0.0001 93.14 C-Lasso 99.95 0.0234 0.0004

post-Lasso 99.99 0.0056 0.0000 92.82 C-Lasso BC 99.95 0.0234 0.0004

post-Lasso 99.99 0.0056 0.0000 93.06 Post-Lasso 99.95 0.0202 0.0004

Cup-Lasso 99.99 0.0056 0.0000 93.06 Post-Lasso BC 99.95 0.0202 0.0004

Oracle - 0.0056 0.0000 93.66 Oracle - 0.0202 0.0004

100 80 C-Lasso 100.00 0.0029 -0.0001 92.04 C-Lasso 100.00 0.0162 0.0011

post-Lasso 100.00 0.0028 0.0000 93.08 C-Lasso BC 100.00 0.0162 0.0011

post-Lasso 100.00 0.0028 0.0000 93.08 Post-Lasso 100.00 0.0142 0.0010

Cup-Lasso 100.00 0.0028 0.0000 93.08 Post-Lasso BC 100.00 0.0142 0.0010

Oracle - 0.0028 0.0000 93.08 Oracle - 0.0142 0.0010

DGP 2

50 40 C-Lasso 99.98 0.0098 0.0054 83.42 C-Lasso 99.75 0.0981 0.0918

post-Lasso 99.98 0.0081 0.0004 91.12 C-Lasso BC 99.75 0.0980 0.0918

post-Lasso 99.98 0.0080 0.0005 91.00 Post-Lasso 99.75 0.0974 0.0922

Cup-Lasso 99.98 0.0080 0.0005 91.00 Post-Lasso BC 99.75 0.0974 0.0922

Oracle - 0.0079 0.0005 91.00 Oracle - 0.0976 0.0924

50 80 C-Lasso 100.00 0.0048 0.0026 84.12 C-Lasso 99.99 0.0974 0.0947

post-Lasso 100.00 0.0039 0.0001 91.32 C-Lasso BC 99.99 0.0974 0.0947

post-Lasso 100.00 0.0038 0.0002 92.04 Post-Lasso 99.99 0.0972 0.0949

Cup-Lasso 100.00 0.0038 0.0002 92.04 Post-Lasso BC 99.99 0.0972 0.0949

Oracle - 0.0038 0.0002 92.04 Oracle - 0.0972 0.0948

100 40 C-Lasso 99.97 0.0075 0.0050 79.48 C-Lasso 99.79 0.0960 0.0931

post-Lasso 99.97 0.0056 0.0002 92.30 C-Lasso BC 99.79 0.0960 0.0931

post-Lasso 99.97 0.0055 0.0003 92.60 Post-Lasso 99.79 0.0962 0.0940

Cup-Lasso 99.97 0.0055 0.0003 92.60 Post-Lasso BC 99.79 0.0962 0.0940

Oracle - 0.0054 0.0002 92.60 Oracle - 0.0961 0.0938

100 80 C-Lasso 100.00 0.0037 0.0024 80.04 C-Lasso 100.00 0.0969 0.0955

post-Lasso 100.00 0.0028 0.0000 92.24 C-Lasso BC 100.00 0.0969 0.0955

post-Lasso 100.00 0.0027 0.0001 92.60 Post-Lasso 100.00 0.0969 0.0958

Cup-Lasso 100.00 0.0027 0.0001 92.60 Post-Lasso BC 100.00 0.0969 0.0958

Oracle - 0.0027 0.0001 92.60 Oracle - 0.0969 0.0958
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to the presence of unobserved nonstationary common factors. In addition, the Cup-Lasso estimates

generally outperform the two post-Lasso estimates due to the updated group classification results.

In DGP 5, we show that the presence of stationary regressors does not affect the finite sample

performance of our estimates for nonstationary slope coefficients. We introduce incidental time trends

in DGP 6 and show that our PPC-based estimation procedure work fairly well with the detrended

data. In addition, the finite sample performance of the long-run estimates preserves similar patterns.

In general, the finite sample performance of the Cup-Lasso estimators is close to that of the oracle

estimates, which corroborates the oracle efficiency of the Cup-Lasso estimates. Accordingly, we

recommend for practical implementation the use of Cup-Lasso estimates for both estimation and

inference.

5 An Empirical Application to the Growth Convergence Puzzle

A longstanding leading question in the economic growth literature is whether national economies

exhibit convergence across countries over time. A benchmark model in the literature is the interna-

tional R&D spillover model proposed by Coe and Helpman (1995) who empirically identified positive

technology spillover effects. Since technological progress is a primary source of economic growth,

positive R&D spillovers are regarded as a force of convergence that activates through the channel

of technology catch-up. Notwithstanding the strength and relevance of this argument, two potential

problems have been identified in the Coe and Helpman study. First, the study fails to distinguish two

distinct types of spillover effects: positive technology spillovers and negative market rivalry effects

(Bloom et al., 2013). Second, the research does not account for unobserved common patterns across

countries, such as financial crisis shocks and technological progress. These two issues may lead to

biased or even inconsistent estimates for the parameters of interest — see, e.g., Griffith and Reenen

(2004), Coe et al. (2009, CHH hereafter), and Ertur and Musolesi (2017).

In this section we apply our model and methodology to re-investigate this issue by allowing

for heterogeneous convergence behavior through the channel of technology diffusion and unobserved

common patterns across countries. In particular, we impose latent group structures on the long-run

relationships between technological change, domestic R&D stock, foreign R&D stock, and human

capital, at the same time capturing any common patterns of behavior via the use of unobserved

factors. Interestingly, we find two directions of R&D spillover — positive technology spillovers and

negative market rivalry effects, which help to explain the economic convergence puzzle through the

channel of technology growth.

5.1 International R&D spillover model

We introduce two linear specifications for the international R&D spillover model. Following the

standard growth literature, we define the total factor productivity (TFP) as the Solow residual,

which is often regarded as a measure of technology change. That is, log( ) = log( )− log()−
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Table 4: Classification and point estimation of 1 for DGPs 3-4

 0.1 0.2

  % Correct RMSE Bias % Coverage % Correct RMSE Bias % Coverage

classification classification

DGP 3

50 40 C-Lasso 98.42 0.0420 0.0155 65.36 98.26 0.0443 0.0143 65.88

post-Lasso 98.42 0.0305 0.0028 91.62 98.26 0.0311 0.0029 91.74

post-Lasso 98.42 0.0305 0.0028 92.20 98.26 0.0311 0.0030 92.14

Cup-Lasso 100.00 0.0112 0.0021 90.28 99.98 0.0112 0.0021 90.28

Oracle - 0.0110 0.0021 90.28 - 0.0110 0.0021 90.28

50 80 C-Lasso 99.34 0.0283 0.0072 60.60 99.31 0.0285 0.0073 60.44

post-Lasso 99.34 0.0188 0.0009 91.34 99.31 0.0173 0.0014 91.74

post-Lasso 99.34 0.0188 0.0014 91.28 99.31 0.0172 0.0018 91.62

Cup-Lasso 100.00 0.0050 0.0009 90.44 100.00 0.0050 0.0009 90.44

Oracle - 0.0050 0.0009 90.44 - 0.0050 0.0009 90.44

100 40 C-Lasso 98.66 0.0281 0.0135 52.88 98.49 0.0300 0.0125 54.64

post-Lasso 98.66 0.0225 0.0027 89.72 98.49 0.0222 0.0033 89.86

post-Lasso 98.66 0.0226 0.0027 90.10 98.49 0.0223 0.0034 90.26

Cup-Lasso 100.00 0.0073 0.0025 89.78 99.98 0.0073 0.0025 89.78

Oracle - 0.0073 0.0025 89.78 - 0.0073 0.0025 89.78

100 80 C-Lasso 99.41 0.0184 0.0069 49.68 99.38 0.0194 0.0064 48.78

post-Lasso 99.41 0.0188 0.0009 92.72 99.38 0.0190 0.0009 92.84

post-Lasso 99.41 0.0188 0.0014 93.08 99.38 0.0190 0.0013 93.20

Cup-Lasso 100.00 0.0035 0.0010 93.12 100.00 0.0035 0.0010 93.12

Oracle - 0.0035 0.0010 93.12 - 0.0035 0.0010 93.12

DGP 4

50 40 C-Lasso 98.22 0.0479 0.0145 70.70 98.07 0.0511 0.0133 71.44

post-Lasso 98.22 0.0337 0.0022 91.64 98.07 0.0335 0.0020 91.48

post-Lasso 98.22 0.0338 0.0024 91.44 98.07 0.0335 0.0022 91.18

Cup-Lasso 99.97 0.0137 0.0015 89.98 99.93 0.0137 0.0015 90.10

Oracle - 0.0136 0.0015 89.96 - 0.0136 0.0015 89.96

50 80 C-Lasso 99.10 0.0454 0.0089 67.04 99.09 0.0451 0.0082 65.94

post-Lasso 99.10 0.0310 0.0008 91.52 99.09 0.0313 0.0007 91.40

post-Lasso 99.10 0.0310 0.0012 91.14 99.09 0.0313 0.0012 91.02

Cup-Lasso 100.00 0.0065 0.0007 90.58 100.00 0.0065 0.0007 90.58

Oracle - 0.0065 0.0007 90.58 - 0.0065 0.0007 90.58

100 40 C-Lasso 98.44 0.0319 0.0140 62.60 98.28 0.0355 0.0130 62.82

post-Lasso 98.44 0.0277 0.0024 91.16 98.28 0.0282 0.0021 90.92

post-Lasso 98.44 0.0279 0.0026 90.94 98.28 0.0283 0.0023 90.72

Cup-Lasso 99.97 0.0095 0.0021 91.12 99.94 0.0096 0.0021 91.22

Oracle - 0.0095 0.0021 91.12 - 0.0095 0.0021 91.12

100 80 C-Lasso 99.45 0.0198 0.0073 56.66 99.43 0.0216 0.0070 56.32

post-Lasso 99.45 0.0167 0.0007 92.62 99.43 0.0165 0.0006 92.66

post-Lasso 99.45 0.0167 0.0011 92.70 99.43 0.0165 0.0011 92.88

Cup-Lasso 100.00 0.0047 0.0006 93.00 100.00 0.0047 0.0006 93.00

Oracle - 0.0047 0.0006 93.00 - 0.0047 0.0006 93.00
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Table 5: Classification and point estimation of 1 for DGPs 5-6

 0.1 0.2

  % Correct RMSE Bias % Coverage % Correct RMSE Bias % Coverage

classification classification

DGP 5

50 40 C-Lasso 98.01 0.0538 0.0165 63.74 97.78 0.0585 0.0150 63.60

post-Lasso 98.01 0.0365 0.0028 91.46 97.78 0.0391 0.0033 91.28

post-Lasso 98.01 0.0364 0.0029 91.96 97.78 0.0390 0.0034 91.78

Cup-Lasso 99.98 0.0112 0.0026 90.80 99.96 0.0114 0.0025 90.80

Oracle 0.0111 0.0026 90.72 0.0111 0.0026 90.72

50 80 C-Lasso 99.33 0.0254 0.0074 60.48 99.31 0.0278 0.0071 60.28

post-Lasso 99.33 0.0223 0.0009 91.66 99.31 0.0220 0.0009 91.86

post-Lasso 99.33 0.0223 0.0014 92.12 99.31 0.0219 0.0014 92.32

Cup-Lasso 100.00 0.0051 0.0010 91.92 100.00 0.0051 0.0010 91.92

Oracle 0.0051 0.0010 90.98 0.0051 0.0010 90.98

100 40 C-Lasso 98.72 0.0292 0.0133 53.10 98.57 0.0309 0.0126 54.30

post-Lasso 98.72 0.0245 0.0029 89.00 98.57 0.0252 0.0032 89.32

post-Lasso 98.72 0.0246 0.0031 89.44 98.57 0.0252 0.0034 89.80

Cup-Lasso 100.00 0.0076 0.0027 89.64 99.99 0.0076 0.0027 89.64

Oracle 0.0076 0.0027 90.68 0.0076 0.0027 90.68

100 80 C-Lasso 99.34 0.0184 0.0075 48.18 99.29 0.0203 0.0068 49.24

post-Lasso 99.34 0.0177 0.0008 91.04 99.29 0.0187 0.0008 91.06

post-Lasso 99.34 0.0178 0.0013 91.44 99.29 0.0187 0.0013 91.40

Cup-Lasso 100.00 0.0036 0.0011 91.54 100.00 0.0036 0.0011 91.54

Oracle 0.0036 0.0011 91.54 0.0036 0.0011 91.54

DGP 6

50 40 C-Lasso 99.90 0.0322 0.0244 61.72 99.90 0.0308 0.0227 64.06

post-Lasso 99.90 0.0233 -0.0100 87.76 99.90 0.0233 -0.0100 87.76

post-Lasso 99.90 0.0176 0.0014 91.42 99.90 0.0177 0.0014 91.42

Cup-Lasso 99.99 0.0172 0.0015 91.40 99.99 0.0172 0.0014 91.40

Oracle 0.0172 0.0014 89.08 0.0172 0.0014 89.08

50 80 C-Lasso 99.98 0.0167 0.0128 62.20 99.98 0.0164 0.0119 63.64

post-Lasso 99.98 0.0125 -0.0079 86.18 99.98 0.0125 -0.0079 86.18

post-Lasso 99.98 0.0082 0.0008 93.58 99.98 0.0082 0.0008 93.58

Cup-Lasso 100.00 0.0081 0.0009 93.58 100.00 0.0081 0.0009 93.58

Oracle 0.0081 0.0009 91.54 0.0081 0.0009 91.54

100 40 C-Lasso 99.94 0.0277 0.0236 41.88 99.94 0.0264 0.0222 45.64

post-Lasso 99.94 0.0176 -0.0103 82.98 99.94 0.0175 -0.0102 83.10

post-Lasso 99.94 0.0122 0.0013 93.42 99.94 0.0122 0.0014 93.42

Cup-Lasso 100.00 0.0120 0.0013 93.30 99.99 0.0120 0.0013 93.24

Oracle 0.0120 0.0013 91.68 0.0120 0.0013 91.68

100 80 C-Lasso 99.94 0.0125 0.0097 50.38 99.94 0.0124 0.0093 51.56

post-Lasso 99.94 0.0104 -0.0077 73.66 99.94 0.0104 -0.0077 73.66

post-Lasso 99.94 0.0061 0.0004 93.50 99.94 0.0060 0.0004 93.44

Cup-Lasso 100.00 0.0050 0.0004 93.44 100.00 0.0050 0.0004 93.44

Oracle 0.0050 0.0004 95.06 0.0050 0.0004 95.06
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(1− ) log() where  ,  and  denotes final output, labor force, capital stock, respectively, and

 is the share of capital in GDP. In the first place, domestic R&D investment is a major source of

technology change that stimulates innovation. Second, trade in intermediate goods enables a country

to gain access to inputs available throughout the rest of the world. In this respect, foreign R&D

stocks from a country’s trading partners affect TFP by directly enhancing the transfer of R&D. Coe

and Helpman (1995) empirically identify two sources of technology growth — innovation and catch-up

effects — by running the following regression:

log() =  +  log() +  log() + 

where  is the country index,  is the year index,  are the unobserved individual fixed effects,

 is total factor productivity,  is real domestic R&D capital stock, and  is real foreign R&D

capital stock. We follow their specification on the international R&D spillover model and introduce

unobserved common patterns to obtain

log() =  log(

) + 


 log(


) + 0 +  (5.1)

where  denotes the unobserved technology trends or global financial shocks, and the fixed effects 

are absorbed into the factor structure. We shall assume that the slope vector  = (

  


 )
0 exhibits

the latent group structures studied in this paper. This specification is important because the latent

group structures on 

 allow us to study the two types of spillover effects discussed above — positive

technology spillovers and negative market rivalry effects, respectively.

In addition, we consider the following specification

log() =  log(

) + 


 log(


) +  log() + 0 +  (5.2)

where  denotes human capital for country  in year  Human capital accounts for innovation

outside the R&D sector and other aspects of human capital not captured by formal R&D. Engelbrecht

(1997) finds that human capital affects TFP directly as a factor of production and as a channel for

international technology diffusion associated with catch-up effects across countries. As above, we

allow the slope vector  = (

  


  


 )
0 to exhibit latent group structures.

CHH further extend the analysis to include institutional variables. In particular, they use various

proxies for institutions to test if the estimated parameters on domestic and foreign R&D capital

and on human capital vary among countries. For example, they first define the dummy variables

( and ) for some institutional variables and then consider their interaction with log() in

order to provide sub-sample regression results for the above two specifications. Their results suggest

that institutional differences introduce heterogeneous impacts on both innovation effects and R&D

spillovers. In general, CHH employ observed institution variables to group countries into different

subsamples and reveal heterogeneous degrees of R&D spillover effects from institutional differences.
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Instead of using observed characteristics, such as institution variables, our PPC-based method

allows us to analyze parameter heterogeneity empirically by encouraging the data to reveal latent

features that may not be immediately apparent. In particular, the latent group structures on slope

coefficients allow us to study potentially different impacts of innovation and catch-up effects. We

can also analyze two opposite spillover effects – positive technology spillovers and negative market

rivalry effects, respectively. These features of the methodology help us explain the growth convergence

puzzle by means of different aspects of technological diffusion.

5.2 Data

We use the same dataset as CHH. This dataset is similar to that used in Coe and Helpman (1995)

and is expanded to include two more countries and annual observations. It contains observations for

log() log(

) log(


) and log() for 24 OECD countries from 1971-2004. The bilateral import-

weighted R&D variable − from trading partners is a measure of foreign R&D stock. Human

capital is measured by years of schooling. In CHH, the relevant variables are pre-tested for unit roots

and cointegration. All variables we consider have a unit root, i.e., all are non-stationary. We refer

the readers directly to CHH for details on the definition and construction of these variables, and for

summary statistics of the data.

5.3 Empirical results

We first determine the number of unobserved factors and the number of groups as was done in the

simulation exercises. Then we report the results for the estimation of the group structures and

group-specific parameters.

5.3.1 Estimation of the number of factors

Before running the PPC-based estimation procedure, we employ the information criteria 1 and

2 in Section 3.6 to estimate the number of unobserved factors. Following the simulation design,

we set 1( ) = 
4 log log 2( ) and 2( ) = +


log( 

+ ). Based on the results for level

data and resultant residuals, we obtain the estimates ̂1 = 1 and ̂2 = 0 That is, we find a single

nonstationary common factor and zero stationary common factors in the data. We fix 1 = 1 and

2 = 0 in the following empirical analysis.

5.3.2 Determination of the number of groups

As in the simulations, we set 3( ) = 2
3 log(min( ))min( ) and  = 

−34 We use the
following tuning parameter settings:  = 01 02 04 06 08. Table 7 reports the information

criterion 3 as a function of the number of groups under these tuning parameters. Following the

majority rule, we find that the information criterion suggests three groups for both model (5.1) and
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Table 6: Information criterion for the determination of the number of groups

Model (5.1) Model (5.2)

 \  0.1 0.2 0.4 0.6 0.8 0.1 0.2 0.4 0.6 0.8

1 -4.830 -4.807 -4.790 -4.776 -4.773 -4.680 -4.668 -4.671 -4.671 -4.669

2 -6.387 -5.545 -5.366 -5.234 -5.210 -4.671 -4.655 -4.430 -4.430 -4.429

3 -6.259 -6.235 -6.229 -6.206 -6.213 -4.871 -5.058 -4.869 -4.835 -4.218

4 -6.072 -6.099 -6.090 -6.177 -6.116 -4.865 -4.759 -4.783 -4.572 -4.784

5 -5.957 -5.974 -5.896 -5.951 -5.861 -4.528 -4.631 -4.526 -4.720 -4.137

6 -5.785 -5.706 -5.757 -5.814 -5.807 -4.255 -4.398 -4.261 -4.158 -3.701

model (5.2). Note that 3 achieves the minimal values for both model specifications when  = 02

Therefore, we set  = 3 and  = 02 in subsequent analyses.

5.3.3 Estimation results

For both model specifications, we employ the pooled fully modified OLS (FM-OLS) estimates un-

der the homogeneity assumption and the Cup-Lasso estimates with one unobserved nonstationary

common factor. Note that we also allow for one unobserved nonstationary factor to obtain the FM-

OLS estimates. Table 6 reports the main results for these two estimates along with the fixed effects

estimates of CHH.

In model (5.1), we have two explanatory variables (log() and log( )). We summarize some

of the more interesting findings from Table 7. First, a comparison between the estimates in CHH

and those obtained by pooled FM-OLS suggests that the estimate of the coefficient of log() in

CHH is similar to our pooled FM-OLS estimate, whereas the estimate of the coefficient of log( )

decreases substantially after introducing one unobserved nonstationary factor in the model. This

seems to suggest that direct spillover effects are partially offset by unobserved global technology

patterns. Noting that our asymptotic variance estimation allows for both serial correlation and

heteroskedasticity and appears more conservative than that of CHH, this difference explains why the

standard errors (s.e.) of our estimates are much larger than those in CHH. Second, once we allow

for latent group structures among the slope coefficients, our PPC estimation helps to identify quite

different behavior in the estimates of the effects of both domestic R&D stock and foreign R&D stock:

for Group 1, we observe the largest effect of domestic R&D stock, but the estimate on foreign R&D

is negative; for Groups 2 and 3, the coefficient estimates on both domestic and foreign R&D stocks

are positive. In addition, both estimates for Group 2 are larger than those for Group 3, but the

estimates of the coefficient of foreign R&D stocks in Groups 2 and 3 are not statistically significant

even at the 10% level.

The above findings from our PPC estimate have some interesting implications. First, the negative

estimate on foreign R&D in Group 1 indicates that negative market rivalry effects dominate the

technology spillovers for countries inside Group 1. Therefore, technology change in those countries

relies mainly on innovations from domestic R&D stock. Moreover, this result implies that countries
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Table 7: PPC estimation results

Model (5.1)

Slope coefficients Pooled Pooled Group 1 Group 2 Group 3

CHH2009 FM-OLS Cup-Lasso Cup-Lasso Cup-Lasso

log() 0.095*** 0.099*** 0.289*** 0.101*** 0.058**

(0.005) (0.027) (0.046) (0.023) (0.028)

log( ) 0.213*** 0.121*** -0.147*** 0.120 0.086

(0.014) (0.044) (0.057) (0.099) (0.068)

Model (5.2)

Slope coefficients Pooled Pooled Group 1 Group 2 Group 3

CHH2009 FM-OLS Cup-Lasso Cup-Lasso Cup-Lasso

log() 0.098*** 0.054** 0.464*** 0.055*** -0.104***

(0.016) (0.023) (0.064) (0.021) (0.027)

log( ) 0.035*** 0.121** -0.413** 0.022 0.219***

(0.011) (0.048) (0.138) (0.061) (0.063)

log() 0.725*** 0.615*** 1.405** 0.550*** 0.567***

(0.087) (0.138) (0.564) (0.158) (0.130)

Note: Standard errors are in parentheses. ***, **, and * denote significance at the 1%, 5%,

and 10% levels, respectively.

in Group 1 do not favor convergence through the technological change channel. We call this the

“Divergence” group. Second, technology change for countries in Group 2 comes from balanced sources

— the innovation effects from domestic R&D stock and the catch-up effects from technology spillovers,

and interestingly, the magnitudes of those estimates are similar. From this perspective, countries in

Group 2 favor the growth convergence hypothesis. We refer to this group as the “Balance” group.

Last, the technology change in Group 3 is mainly determined by foreign R&D stock and we refer to

Group 3 as the “Convergence” group, which also favors the growth convergence hypothesis.

In model (5.2), we introduce an additional regressor — human capital, which is regarded as another

source of technology change. Our results from the pooled FM-OLS estimates confirm that human

capital is one of the main sources of productivity growth and there exist direct technology spillovers in

the full sample. When using our PPC estimation methods, we find similar heterogeneous behavior for

model (5.2) as that for model (5.1). We can still classify countries into three groups and define them

as groups of Divergence, Balance-Human capital, and Convergence, respectively. For the Divergence

group (Group 1), technology growth relies on innovations and human capital and countries in Group 1

suffer from strong negative market rivalry effects. For Group 2, referred to as Balance-Human capital,

the estimates of the effect of foreign R&D are not significant at the 10% level, and technology growth

still benefits from the innovations and indirect catch-up effects from human capital. For Group 3,

referred to as Convergence, countries benefit directly from the dominating technology spillovers. In

general, the divergence behavior is more statistically significant than the convergence behavior.
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Table 8: Group classification results

Model (5.1)

Group 1 “Divergence” (1 = 7)

Austria Denmark France Germany New Zealand

Norway United States

Group 2 “Balance” (2 = 7)

Canada Ireland Israel South Korea Netherlands

Portugal United Kingdom

Group 3 “Convergence” (3 = 10)

Australia Belgium Finland Greece Iceland

Italy Japan Spain Sweden Switzerland

Model (5.2)

Group 1 “Divergence ” (1 = 2)

Ireland United States

Group 2 “Balance—Human capital ” (2 = 16)

Austria Belgium Denmark Finland Iceland

Israel Italy Japan South Korea Netherlands

New Zealand Norway Portugal Spain Sweden

Switzerland

Group 3 “Convergence” (3 = 6)

Australia Canada France Germany Greece

United Kingdom

5.3.4 Classification results

Table 8 reports the group classification results. We summarize several interesting findings. First,

based on the results for model (5.1), there are typically two types of countries in the Divergence

group — “Leaders” and “Losers”. Countries like France, Germany, the United States are already at

the global technology frontiers, and they own 61.1% of R&D stock in our sample. By contrast, the

remaining countries in Group 1 account for only 1.5% of R&D stock in our sample. Second, most

OECD countries are classified into Groups 2 and 3 when model (5.2) is used. We also notice that

four of the seven countries in the G7 are classified in the convergence group, viz., Canada, France,

Germany and the United Kingdom. These findings confirm those in Keller (2004) who finds that

the major sources of technical change leading to productivity growth in OECD countries are not

domestic but come from aboard through the channel of international technology diffusion.

In summary, we re-estimate Coe and Helpman’s model by using the pooled FM-OLS and the

PPC-based method with one unobserved global nonstationary factor. The pooled FM-OLS esti-

mates confirm the international R&D spillovers after allowing for an unobserved global factor. In

addition, our Cup-Lasso estimates show heterogeneous behavior in innovations and catch-up effects.

To the best of our knowledge, this finding is the first to empirically identify two types of technol-

ogy spillovers at the country level. Further, these results build an empirical connection between

the “Club convergence” theory (Quah (1996, 1997)) and the conditional convergence model (Barro
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and Sala-i-Martin (1997)). Consequently, economic growth patterns do vary across countries— some

exhibit convergence while others do not.

6 Conclusion

The primary theoretical contribution of this paper is to develop a novel approach that handles un-

observed parameter heterogeneity and cross-section dependence in nonstationary panel models with

latent cointegrating structures. We assume that cross-section dependence is captured by unobserved

common factors which may be stationary and nonstationary. In general, penalized least squares es-

timators are inconsistent due to variable omission and the induced spurious regression problem from

the presence of unobserved nonstationary factors. We propose an iterative procedure based on the

penalized principal component method, which provides consistent and efficient estimators for long-

run cointegration relationships under cross-section dependence. Lasso-type estimators are shown to

have a mixed normal asymptotic distribution after bias correction. This property facilitates the use

of conventional testing procedures using t, Wald, and F statistics for inference. A secondary contribu-

tion of the paper is to employ these methods in an empirical application that provides new findings to

explain the growth convergence puzzle through the heterogeneous behavior of R&D spillover effects.

Even though we do not allow for the presence of incidental time trends in our model, we have done

the extension to this case in Appendix E of the online supplement.

Several interesting topics for future research emerge. First, we do not allow the regressors to

share a similar factor structure as the dependent variable in our model. If the regressors are assumed

to exhibit factor structures, it seems possible to control for the unobserved common factors via the

cross-sectional averages of the dependent and independent variables and then one can extend the

common correlated effects (CCE) estimation of Pesaran (2006) to our framework. Second, as a

referee remarked, the factor loadings (especially those of the nonstationary factors) may also exhibit

a latent group structure, which may or may not be identical to those among the slope coefficients©
01

ª
 If the factor loadings are not required to share the same latent group structure as

©
01

ª


we can estimate the model as in the current paper and then estimate the latent group structure in

the estimated factor loadings, say by applying the sequential binary segmentation algorithm of Wang

and Su (2020). Formal analysis of these topics is left for future research.
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This online supplement is composed of five parts. Appendix A contains the proofs of the main
results in the paper. Appendix B contains the proofs of the technical lemmas stated and used
in Appendix A. Appendix C discusses the identification of 01 Appendix D contains the detailed
procedure for the proposed method in the paper. Appendix E discusses an extension of the basic
model in the paper by incorporating incidental time trends to the -equation. Appendix F reports
some additional simulation results. Let max = max1≤≤ and min = min1≤≤ 

A Proof of the Main Results in Section 3

This Appendix provides the proofs of Theorems 3.1-3.8 in the paper. These results rely on some sub-
sidiary technical lemmas whose proofs are provided in the Additional Online Supplement (Appendix
B).
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(iii) We want to establish the consistency of the estimated factor space ̂1, which extends the
results of Bai and Ng (2004) and Bai (2009). Our model allows for heterogeneous slope coefficients
in both nonstationary and stationary regressors and unobserved stationary common factors. Here
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k̂1k

≤ √1. For 2, we have

1


k2k ≤ k

00̂1k
 2

max
1≤≤

k0 k


(
1



X
=1

k̂1k2
)12(

1



X
=1

k1k2
 2

)12
=  (1 )

where we use the fact that
k 00 ̂1k

 2
=  (1) and k0 k =  (1) by Assumption 3.2(i). For 3,

1


k3k ≤ 1√



k̂1k


max
1≤≤

k1k


(
1



X
=1

k̂1k2
)12(

1



X
=1

k̃k2


)12
= 

Ãr



1

!


4



where 1


P
=1

k̃k2

≤ 2

³
1


P
=1

kk2


+max1≤≤
k2k2


1


P
=1 k̂2k2

´
=  (1) by Assumption

3.1(i) and (iv) and the fact that max1≤≤
k2k2


= max1≤≤ 1



P
=1[k2k2 − (k2k2)] +

max(k2k2) =  (1) + (1) =  (1) by Lemma S1.2(iii) in Su, Shi and Phillips (2016, SSPb
hereafter). Similarly, for 4 and 5,

1


k4k ≤ k 0k



k̂1k


max
1≤≤

°°0°°
(
1



X
=1

k̂1k2
)12(

1



X
=1

k1k2
 2

)12
=  (1 ) and

1


k5k ≤ 1√



k̂1k


max
1≤≤

k1k


(
1



X
=1

k̃k2


)12(
1



X
=1

k̂1k2
)12

= 

Ãr



1

!


where we use the fact that
k 0k

≤ k 01 k


+ 1√



k 02 k√

=  (1) For 6, we have

1


k6k = 1



°°°° 1

 2
 0Λ00̃̂1

°°°° ≤ 1√


µ
1



°°°̂1°°°¶µ 1


°° 0°°¶ 1√


°°Λ00̃°° =  (
−12−12)

where ̃ = (̃1  ̃)
0 and we have used the fact that 1



°°Λ00̃°°2 =  (1) and
1



°°°P
=1 

0
 ̂
0
22

°°°2
=  (1) by Assumption 3.1(iv) and straightforward calculations. Analogously, we can show that
1

k7k =  (

−12−12). For 8, 8 = 1
2

P
=1

³


0
 − ̂

0
2

0
2 − 2̂2

0
 + 2̂2̂

0
2

0
2

´
̂1 =

81 + 82 + 83 + 84 For 81

1

 2
k81k2 =

1

 2

°°°° 1

 2
0̂1

°°°°2 ≤ 2 X
=1

°°°°°−3
X
=1

 ( )̂
0
1

°°°°°
2

+ 2
X
=1

°°°°°−3
X
=1

̂
0
1

°°°°°
2

≡ 2 (k8()k+ k8()k) 

where  ( ) and  are defined in Assumption 3.2(iii). Note that k8()k = −3(−2
P

=1 k̂1k2)
×(−1P

=1

P
=1 k( )k2) =  (

−3) and k8()k = −2−1(−2
P

=1

°°°̂1°°°2)(−2P
=1

P
=1

kk2) =  (
−2−1) by the fact that −1

P
=1

P
=1 k( )k2 ≤ by Assumption 3.2(iii) (see

also Lemma 1(i) in Bai and Ng (2002)) and that E(kk2) ≤ −2 under Assumption 3.2(iii). Then
1

k81k =  (

−12−1 + −32). For 82 we have

1


k82k ≤ 1


max
1≤≤

k2k√


k̂1k


Ã
1



X
=1

k̂2k2
!12Ã

1



X
=1

kk2


!12
=  (

−1)

Similarly, we have 1

k83k =  (

−1) and 1

k84k ≤ 1


max1≤≤

k2k2


k̂1k


1


P
=1 k̂2k2 =

 (
−1) Then, we have 1


k8k =  (

−1). For 9 and 10 we have

1


k9k =

1



°°°° 1

 2
 02Λ

00
2 Λ

0
2

00
2 ̂1

°°°° ≤ 1



k 02 k2


k̂1k


°°°°Λ002 Λ02

°°°° =  (
−1) and

1


k10k =

1



°°°° 1

 2
 01Λ

00
1 Λ

0
2

00
2 ̂1

°°°° ≤ 1√


k 01 k


k 02 k√


k̂1k


°°Λ001 Λ02°°√


=  (( )−12)

5



where
Λ001 Λ

0
2√


=  (1) by Assumption 3.2(i). Analogously, we have

1

k11k =  (( )−12). In sum,

we have shown that 1


°°°̂1−1
1 −  01

°°° =  (1 + −12−1 ) Then (iv) follows. ¥

To prove Theorem 3.2 we need the following two lemmas.

Lemma A.5 Suppose that Assumptions 3.1-3.2 hold. Let ̂∗ =  +  02 
0
2 − 2̂2 Then

(i)
°°°̂1 −  01

°°° =  (1 + −12−1 )

(ii) 22 ≡ 1


P
=1 k̂2k2 =  (

−12−1 + 
2
1 )

(iii) 1

 0

0
1 (̂1 −  011) =  (1 + −1 + −14−12 )

(iv) 1

̂ 01(̂1 −  011) =  (1 + −1 + −14−12 )

(v) 1

̂∗0 (̂1

−1
1 −  01 ) =  (

√
1 + −1 ) for each  = 1 

Lemma A.6 Suppose that Assumptions 3.1-3.2 hold. Let 1 =
1
 2
01( 01 − 

̂1
)̂∗  2 =

1
 2
01̂1

 01 
0
1 − 1

 2

P
=1 

0
1̂1

1 ̂1+
1

 2

P
=1 

0
1̂1

  3 =
1

 2

P
=1 

0
1( 01−


̂1
)  and 4 =

1
 2
01 01

̂∗ − 1
 2

P
=1 

0
1 01

  Then

(i) 1 =  (1 ) for each  = 1   and −1P
=1 k1k2 =  ( 

2
1 )

(ii) 2 =  (2 ) for each  = 1   and −1P
=1 k2k2 =  ( 

2
2 )

(iii) 3 =  (1 ) for each  = 1   and −1P
=1 k3k2 =  ( 

2
1 )

(iv) 4 =  (
−1) for each  = 1   and −1P

=1 k4k2 =  (
−2)

where 1 = −121 + −1−1 and 2 = −54−12 + −121 + 
2
1 + −1−1 

Proof of Theorem 3.2. (i) Based on the sub-differential calculus, a necessary condition for ̂1 ̂2

̂, and ̂1 to minimize the objective function (2.11) is, for each  = 1   , that 01×1 belongs to

the sub-differential of 

 (β1β2α 1) with respect to 1 (resp. ) evaluated at {̂1} {̂2}

{̂} and ̂1 That is, for each  = 1   and  = 1 , we have

01×1 = −
2

 2
01̂1

( − 1̂1 − 2̂2) + 

X
=1

̂

Y
=1 6=

k̂1 − ̂k (A.9)

where ̂ =
̂1−̂
k̂1−̂k

if k̂1 − ̂k 6= 0 and k̂k ≤ 1 if k̂1 − ̂k = 0. Noting that  − 1̂1 −
2̂2 = −1̂1+ ̂1

−1
1 01+ ̂∗ +(

0
1 − ̂1

−1
1 )01, ̂

∗
 = + 02 

0
2− 2̂2 (A.9) implies that

̂̂1 =
1

 2
01̂1

̂∗ +
1

 2
01̂1

 01 
0
1 −



2

0X
=1

̂

Y
=1 6=

k̂1 − ̂k (A.10)

which can be rewritten as

̂̂1 =
1

 2

X
=1

01̂1
1 ̂1 + (A.11)

where = 1+2−3+4−5, 1 2 3 and4 are defined in the statement of Lemma A.6,
and 5 =


2

P
=1 ̂

Q
=1 6= k̂1−̂k By Lemma A.6(i)-(iv), we have that

P4
=1

1


P
=1 kk2 =

6



 (
−121 + 2

4
1 + 

−2) In addition, we can show that 1


P
=1 k5k2 = 

¡
2
¢
 It

follows that 1


P
=1 kk2 =  (

−121 + 2
4
1 + 

−2 + 2)

Let ̂1 =diag(̂1  ̂) and ̂2 as an1×1 matrix with typical blocks
1

 2
01̂1

1 ,

such that

̂2 =

⎛⎜⎜⎜⎜⎜⎝
1

 2
011̂1

1111
1

 2
011̂1

1212 · · · 1
 2

011̂1
11

1
 2

012̂1
1121

1
 2

012̂1
1222 · · · 1

 2
012̂1

12
...

...
. . .

...
1

 2
01̂1

111
1

 2
01̂1

122 · · · 1
 2

01̂1
1

⎞⎟⎟⎟⎟⎟⎠ 

Let  = (01  0 )
0. Then (A.11) implies that (̂1 − ̂2)vec(b̂1) = . It follows that

kk2 = tr
³
vec(b̂1)

0(̂1 − ̂2)
0(̂1 − ̂2)vec(b̂1)

´
≥ kb̂1k2

h
min

³
̂1 − ̂2

´i2


By Assumption 3.2(iv) and Lemma A.5(i), we can readily show that min(̂1 − ̂2) ≥ min2  0

w.p.a.1. Then 21 ≡ 1

kb̂1k2 ≤ 2min

4

P
=1 kk2 =  (

−121 + 2
4
1 + 

−2 + 2) This

implies that 1

kb̂1k2 = 1



P
=1 k̂1k2 = 

¡


−2 + 2
¢
.

Next, we want to strengthen the last result to the stronger version: 1


P
=1 k̂1k2 =  (

−2).
Let β1 = β01+

12
 −1v where v = (1   ) is a 1× matrix. Let  =vec(v) We want to show

that for any given ∗  0, there exists a large constant  = (∗) such that for sufficiently large 
and  we have



(
inf

1



=1 kk2=



 (β1 + 

12
 −1 β̂2 α̂ ̂1)  


 (β

0
1β

0
2α

0 ̂1)

)
≥ 1− ∗

regardless of the property of β̂2 ̂1 and ̂ This implies that w.p.a.1 there is a local minimum

β̂1 = (̂1  ̂) such that
1


P
=1 k̂1k2 =  (

−2). Note that

 2
h


 (β1 + 

12
 −1 β̂2 α̂ ̂1)−


 (β

0
1β

0
2α

0 ̂1)
i

≥ 
12




X
=1

Ã

12


 2
0

0
1̂1

01 −
2


0

0
1̂1

( 01 − ̂11)
0
1 −

2


0

0
1̂1

̂∗

!

=




X
=1

1

 2
0

0
1̂1

01

− 2
12




X
=1

0

⎧⎨⎩ ·2 + 1


01̂1

̂∗ +
1



X
=1


0
1̂1

1 ̂1 − 1



X
=1


0
1̂1



⎫⎬⎭
≡ 1 − 22 

where 2 =
1
2
01̂1

 01 
0
1 − 1

 2

P
=1 

0
1̂1

1 ̂ +
1

 2

P
=1 

0
1̂1

 as defined in

Lemma A.6. By Assumption 3.2(iv) and Lemma A.5(iv),1 =


0̂1 ≥ min(̂1)

−1 kvk2 ≥
min

−1 kvk2 2w.p.a.1. Note that |2 | ≤ { 1
P

=1 kk2}12
P4

=1 (2)
12  where21 =

7



 2



P
=1 k2k2 22 =

1
 2

P
=1 k01̂1

̂∗ k2 23 =
1

3 2

P
=1

P
=1 k01̂1

1 ̂1k2
and 24 =

1
3 2

P
=1

P
=1 k01̂1

k2 By Lemmas A.6(i)-(ii) and A.5(i), we can show
that 21 =  2 (

−52−1 +−121 + 2 
4
1 +−2−2 ) =  (1) and 22 ≤ 2 2



P
=1

|| 1
 2
01(̂1

− 01
)̂∗ ||2+ 2



P
=1 || 1 0 01

̂∗ ||2 =  (
2
1+

−1−2 )+ (1) =  (1) Next,

23 ≤ 1



1

3 2

X
=1

X
=1

kk2
°°°01̂1

1 ̂1

°°°2
≤  2



∙
min

µ
1


Λ001 Λ

0
1

¶¸−2(
max
1≤≤

k1k2
 2

)
max
1≤≤

°°01°°2
(

1

 2

X
=1

°°01°°2 k1k2
)
1



X
=1

°°°̂1°°°2
=

 2


 (1) (1) (1) (1)

¡


−2 + 2
¢
=  (1) 

where we use the fact that max1≤≤
k1k2
 2

=  (1) by Lemma A.2(i), max1≤≤
°°01°°2 =  (1)

by Assumption 3.2(i), and 1
 2

P
=1

°°01°°2 k1k2 =  (1) by Markov inequality and
1

||b̂1||2 =



¡


−2 + 2
¢
 Similarly, we have by Lemma A.5(i),

24 ≤ 1



1

3 2

X
=1

X
=1

kk2
°°°01̂1



°°°2
≤ 1



∙
min

µ
Λ001 Λ01


¶¸−2
2

3 2

X
=1

X
=1

°°01°°2 °°01°°2½°°°01(̂1
− 01

)

°°°2 + °°°01 01


°°°2¾
=
1


 (

−1 (21 + −1−2 ) + 1 =  (1) 

It follows that |2 | = 
−12 kvk  (1)  Then 1 dominates 2 for sufficiently large

. That is,  2
h


 (β1 + 

12
 −1 β̂2 α̂ ̂1)−


 (β

0
1β

0
2α

0 ̂1)
i
 0 for sufficiently large .

Consequently, the result in (i) follows.
(ii) We study the probability bound for each term on the right side of (A.10). For the first term,

we have by Lemma A.6(i) and straightforward calculations°°°° 1 201̂1
̂∗

°°°° ≤ °°°° 1 201 01
̂∗

°°°°+ °°°° 1 201(̂1
− 01

)̂∗

°°°°
=  (

−1) + (
−121 + −1−1 ) =  (

−1) (A.12)

For the second term, we can readily apply Lemmas A.6(ii), A.5(i) and A.3(iii), and Theorem 3.2(i)
to obtain

°°°° 1 201̂1
 01 

0
1

°°°° ≤ k2k+
°°°°°° 1

 2

X
=1

01̂1
 ̂

°°°°°°+
°°°°°° 1

 2

X
=1

01̂1


°°°°°°
=  (

−54−12 + −121 + 
2
1 + −1 ) + (1 ) + (

−1)

=  (
−1) (A.13)

8



The third term is  ()  By Lemma A.5(i), min(
1
2
01̂1

1) = min(
1
 2
01 01

1) +  (1) 

Noting that ( 1
 2
01 01

1)
−1 is the principal × submatrix of ( 1

 2
 0

)
−1 min( 12

0
1 01

1) ≥
min(

1
2
 0

) and the last object is bounded away from zero w.p.a.1. It follows that ̂1 =

 (
−1 + ) for  = 1 2  

Note that ̂2 =
³
02̂1

2

´−1
02̂1

( − 1̂1) and

k̂2k =
°°°°°
µ
1


02̂1

2

¶−1°°°°°


½°°°° 1 02̂1

¡
 +  02 

0
2

¢°°°°+ °°°° 1 02̂1
 01 

0
1

°°°°+ °°°° 1 02̂1
1̂1

°°°°¾ 

By the proof of Lemma A.5(ii) and Assumption 3.2(v), we can show that
°°°( 1 02̂1

2)
−1
°°°

≤

uniformly in  w.p.a.1. Note that k
̂1
− 01 k =  (1 +−12−1 ) =  (

12
 −1+( )−12)

and similarly 1


°°°̂1−1
1 −  01

°°° =  (
12
 −1 + ( )−12) by Theorem 3.1(iii) and Lemma A.5(i).

Thus°°°° 1 02̂1
( +  02 

0
2)

°°°° ≤°°°° 1 02 01
( +  02 

0
2)

°°°°+ k2k√


°°°̂1 − 01

°°° °° +  02 
0
2

°°
√


=  (
−12) + (

12
 −1 + ( )−12) =  (

−12)°°°° 1 02̂1
 01 

0
1

°°°° = °°°° 1 02̂1
(̂1

−1
1 −  01 )

0
1

°°°° ≤  12
k2k
 12

1



°°°̂1−1
1 −  01

°°°°°01°°
=  12 (

12
 −1 + ( )−12) =  (

12
 −12 +−12)°°°° 1 02̂1

1̂1

°°°° ≤°°°° 1 02 01
1

°°°° k̂1k+ k2k√


°°°̂1 −  01

°°° k1k


√
k̂1k

= (
−1 + ) + (

−1 + ( )−12) (1) =  (
−1 + )

where 1

02 01

(+
0
2 

0
2) =

1

02(+

0
2 

0
2)+

1


02
0
1



³
 001  01


´−1  001 (+
0
2 

0
2)


= 1


02

¡
 +  02 

0
2

¢
+

 (
−1) =  (

−12) by Assumption 3.1(v). It follows that
°°°̂2°°° =  (

12
 −12 + −12) for

 = 1 2   .

(iii) Let  (β1α) =
1


P
=1

Q
=1 k1−k and ̂ () =

Q−1
=1 k̂1−k+

Q−2
=1 k̂1−

k × k01 − k+ +
Q

=2 k01 − k. By SSP (2016a), we have that as ( )→∞,¯̄̄̄
¯
Y
=1

||̂1 − ||−
Y
=1

°°01 − 
°°¯̄̄̄¯ ≤ ̂ ()k̂1 − 0 k

where ̂ () ≤  ()(1+2k̂1−0 k) and  () = max1≤≤ max1≤≤≤−1
Q

=1 k01−
k−1− = max1≤≤ max1≤≤≤0−1

Q
=1 k0 − k−1− = (1) with  being finite inte-

9



gers. It follows that as ( )→∞

| (β̂1α)−  (β
0
1α)| ≤  ()

1



X
=1

k̂1k+ 2 ()
1



X
=1

k̂1k2

≤  ()

(
1



X
=1

k̂1k2
)12

+ (
−2) =  (

12
 −1) (A.14)

By (A.14) and the fact that  (β
0
1α

0
1) = 0 and that  (β̂1 α̂1)−  (β̂1α

0
1) ≤ 0. we have

0 ≥  (β̂1 α̂1)−  (β̂1α
0
1) =  (β

0
1 α̂)−  (β

0
1α

0) + (
12
 −1)

=
1



X
=1

Y
=1

k01 − ̂k+ (
12
 −1)

=
1



Y
=1

k̂ − 01k+
2



Y
=1

k̂ − 02k+ +




Y
=1

k̂ − 0k+ (
12
 −1) (A.15)

By Assumption 3.3(i),  →  ∈ (0 1) for each  = 1 . So (A.15) implies that
Q

=1 k̂ −
0 k =  (

12
 −1) for  = 1 . It follows that (̂(1)  ̂())− (01  0) =  (

12
 −1).

(iv) By Theorem 3.1(iii) and Theorem 3.2(i), we have 1

k̂1− 011k =  (

12
 1+

−12−1 ) =

 (
12
 −1 + ( )−12)¥

To prove Theorem 3.3 we use the following two lemmas.

Lemma A.7 Suppose that Assumptions 3.1-3.3 hold. Then for any   0

(i) 
³
max1≤≤

°°° 1
2
01̂

∗


°°°  

´
= (−1)

(ii) 
³
max1≤≤

°°° 1
 2
01 01

̂∗
°°°  

´
= (−1)

Lemma A.8 Suppose that Assumptions 3.1-3.3 hold. Then for any   0

(i) 
³
max1≤≤ k1k  

12
 (1 + −12−1 )

¡
 + −12(log  )3

¢´
= (−1),

(ii) 
³
max1≤≤ k2k  

12
 2

´
= (−1),

(iii) 
³
max1≤≤ k3k  

12
 1

´
= (−1),

(iv)  (max1≤≤ k4k   ) = (−1)
(v) 

³
max1≤≤

°°°̂1 − 01

°°°  
¡
 + (log  )2

¢´
= (−1) for any   0,

(vi) 

µ
1


P
=1

°°°̂1 − 01

°°°2  2
2


¶
= (−1) for any   0,

(vii) 
³
max1≤≤

°°° 1
 2
01̂1

 01 
0
1

°°°  
12
 (1 + −12−1 )

´
= (−1)

(viii) 
³
max1≤≤

°°°̂2 − 02

°°°  (log  )3(
12
 −12 + −1 )

´
= (−1) 

Proof of Theorem 3.3. (i) Fix  ∈ {1 }. By the consistency of ̂ and ̂1, we have

̂1− ̂
→ 0−0 6= 0 for all  ∈ 0 and  6= . Now, suppose that k̂1− ̂k 6= 0 for some  ∈ 0

Then the first order condition (with respect to 1) for the minimization of the objective function

10



(2.8) implies that

01×1 =−
2


01 01

̂∗ +
2


01( 01

−
̂1
)̂∗ −

2


01̂1

 01 
0
1 +

2

 2
01̂1

01 (̂ − 0)

+

Ã
2

 2
01̂1

01 +
̂

k̂1 − ̂k
1

!
 (̂1 − ̂) + 

X
=1 6=

̂

Y
=1 6=

k̂1 − ̂k

≡ −̂1 + ̂2 − ̂3 + ̂4 + ̂5 + ̂6 say,

where ̂ are defined in the proof of Theorem 3.2(i), ̂ =
Q

=1 6= k̂1− ̂k
→ 0 ≡

Q
=1 6= k0−

0 k  0 for  ∈ 0 by Assumption 3.3(ii). Let Ψ =  + (log  )2 Let  denote a generic
constant that may vary across lines. By Lemma A.8(v)-(vi), we have



Ã
max
∈0



°°°̂1 − 01

°°°  Ψ

!
= (−1) and 

Ã
1



X
=1

°°°̂1 − 01

°°°2  2
2


!
= (−1)

(A.16)
This, in conjunction with the proof of Theorem 3.2(i)-(iii), implies that

 (k̂ − 0k   ) = (−1) and  (max
∈0



¯̄
̂ − 0

¯̄ ≥ 02) = (−1) (A.17)

By (A.16)-(A.17) and the fact thatmax∈0


1
 2
01̂1

01 ≤ max a.s., 
³
max∈0



°°°̂4°°°  2

´
= (−1) and 

³
max∈0



°°°̂6°°°  Ψ

´
= (−1) By Lemmas A.7(ii), A.8(i), and A.8(vii),

we have 
³
max∈0


k̂1k  

´
= (−1) 

³
max∈0


k̂3k  

12
 (1 +  12−1 )

´
= (−1) and 

³
max∈0


k̂2k  

12
 (1 +  12−1 )

¡
 + −12(log  )3

¢´
= (−1)

For ̂5, we have

(̂1 − ̂)
0̂5 = (̂1 − ̂)

0
Ã
2

 2
01̂1

01 +
̂

k̂1 − ̂k
1

!
 (̂1 − ̂)

≥ 2̂k̂1 − ̂k2 + ̂k̂1 − ̂k ≥ 0k̂1 − ̂k

Combining the above results yields  (Ξ ) = 1− (−1), where

Ξ =

(
max
∈0



k̂2k  
12


³
1 +  12−1

´³
 + −12(log  )3

´)

∩
(
max
∈0



k̂3k  
12
 (1 +  12−1 )

)
∩
(
max
∈0



¯̄
̂ − 0

¯̄
 02

)

∩
(
max
∈0



°°°̂4°°°  2

)
∩
(
max
∈0



°°°̂6°°°  Ψ

)
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Then conditional on Ξ , we have that uniformly in  ∈ 0,¯̄̄
(̂1 − ̂)

0(̂2 + ̂3 + ̂4 + ̂5 + ̂6)
¯̄̄

≥
¯̄̄
(̂1 − ̂)

0̂5
¯̄̄
−
¯̄̄
(̂ − ̂)

0(̂2 + ̂3 + ̂4 + ̂6)
¯̄̄

≥
n
0 − 

³


12
 1 +  12

12
 −1 + 2 + Ψ

´o
k̂1 − ̂k

≥0k̂1 − ̂k2

where the last inequality follows by the fact that 
12
 1 +  12

12
 −1 + 2 + Ψ

= () for sufficiently large ( ) by Assumption 3.3(iv). It follows that

 (̂) =  ( ∈ ̂| ∈ 0) =  (̂1 = ̂2 + ̂3 + ̂4 + ̂5 + ̂6)

≤ 
³
|(̂1 − ̂)

0̂1| ≥ |(̂1 − ̂)
0̂5 − (̂1 − ̂)

0(̂2 + ̂3 + ̂4 + ̂6)
´

≤  (k̂1k ≥ 04Ξ ) + (−1)→ 0 as ( )→∞

where the last inequality follows because  À  by Assumption 3.3(iv). Consequently, we

can conclude that w.p.a.1, ̂1− ̂ must be in a position where k1−k is not differentiable with
respect to  for any  ∈ 0. That is,  (k̂1 − ̂k = 0| ∈ 0) = 1− (−1) as ( )→∞.

For uniform consistency, we have that  (∪=1̂ ) ≤
P

=1  (̂ ) ≤
P

=1

P
∈0


 (̂) ≤

 max1≤≤  (k̂1k ≥ 04) + (1)→ 0 as ( )→∞This completes the proof of (i). Then
the proof of (ii) directly follows SSP (2016a) and is therefore omitted. ¥

To prove Theorem 3.4, we use the following two lemmas.

Lemma A.9 Suppose that Assumptions 3.1-3.3 hold. Then for any  = 1 ,
(i) 1

2

P
∈̂

01̂1
 01 

0
1 =

1
 2

P
∈̂

1


P
=1 

0
1̂1

1 ̂1 − 1
 2

P
∈̂

1


P
=1


0
1̂1

 − 1
 2

P
∈̂

1


P
=1 

0
1̂1

 02 
0
2 +  (

−12−1),
(ii) 1

 2

P
∈̂

01̂1
1 =

1
 2

P
∈0


01 01

1 +  (1),

(iii) 1√


P
∈̂

0̂1

h¡
 +  02 

0
2

¢− 1


P
=1( +  02 

0
2)

i
=  +  (1),

(iv) 1
 2

P
∈̂

1


P
∈̂

01̂1
1 =

1
2

P
∈0



1


P
∈0


01 01

1 +  (1)

(v) 1
 2

P
∈̂

01̂1
2̂2 =  (

−12−1)

Lemma A.10 Suppose that Assumptions 3.1-3.3 hold. Then

(i) 
→ 0,

(ii)  =  + +  (1) for  = 1 ,

(iii) 
→  (0Ω0) conditional on C where Ω0 = lim→∞Ω .

Proof of Theorem 3.4. (i) To study of the oracle property of the C-Lasso estimator, we invoke

the sub-differential calculus. A necessary and sufficient condition for {̂1} and {̂} to minimize
the objective function in (2.11) is that for each  = 1  (resp.  = 1 ), the null vector 01×1
belongs to the sub-differential of 


 (β1,β2,α ̂1) with respect to 1 (resp. ) evaluated at

12



{̂1} and {̂}. That is, for each  = 1   and  = 1 , we have

01×1 = −
2

 2
01̂1

( − 1̂1 − 2̂2) +




X
=1

̂

Y
=1 6=

k̂1 − ̂k (A.18)

01×1 =




X
=1

̂

Y
=1 6=

k̂1 − ̂k (A.19)

where ̂ =
̂1−̂
k̂1−̂k

if k̂ − ̂k 6= 0 and k̂k ≤ 1 if k̂1 − ̂k = 0. First, we observe that

k̂1 − ̂k = 0 for any  ∈ ̂ by the definition of ̂, implying that ̂1 − ̂ → 0 − 0 6= 0

for any  ∈ ̂ and  6=  by Assumption 3.3(ii). It follows that k̂k ≤ 1 for any  ∈ ̂ and

̂ =
̂1−̂
k̂1−̂k

=
̂−̂
k̂−̂k w.p.a.1 for any  ∈ ̂ and  6= . This further implies that w.p.a.1P

∈̂

P
=1 6= ̂

Q
=1 6= k̂1 − ̂k =

P
∈̂

P
=1 6=

̂−̂
k̂−̂k

Q
=1 6= k̂ − ̂k = 01×1 and

01×1 =
X
=1

̂

Y
=1 6=

k̂1 − ̂k

=
X
∈̂

̂

Y
=1 6=

k̂ − ̂k+
X
∈̂0

̂

Y
=1 6=

k̂1 − ̂k+
X

=1 6=

X
∈̂

̂

Y
=1 6=

k̂ − ̂k

=
X
∈̂

̂

Y
=1 6=

k̂ − ̂k+
X
∈̂0

̂

Y
=1 6=

k̂1 − ̂k (A.20)

Then by (A.18)—(A.20) we have

2

 2

X
∈̂

01̂1
( − 1̂ − 2̂2) +





X
∈̂0

̂

Y
=1 6=

k̂1 − ̂k = 01×1 (A.21)

Noting that 1{ ∈ ̂} = 1{ ∈ 0}+ 1{ ∈ ̂ \0}− 1{ ∈ 0 \ ̂} and  = 1
0
 + 2

0
2 +

 01 
0
1 +  02 

0
2 +  when  ∈ 0, we have

1

 2

X
∈̂

01̂1
 =

1

 2

X
∈̂

01̂1
1

0
 +

1

 2

X
∈̂

01̂1
 01 

0
1 +

1

 2

X
∈̂

0̂1
̂∗

=
1

 2

X
∈0



01̂1
1

0
 +

1

 2

X
∈̂\0

01̂1
1

0
1 −

1

 2

X
∈0


\̂

01̂1
1

0


+
1

 2

X
∈̂

01̂1
2

0
2 +

1

 2

X
∈̂

01̂1
 01 

0
1 +

1

 2

X
∈̂

01̂1
( +  02 

0
2)

(A.22)
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Combining (A.21) and (A.22) yields

1

 2

X
∈̂

01̂1
1(̂ − 0) =

1

 2

X
∈̂

01̂1
 01 

0
1 +

1

 2

X
∈̂

01̂1

¡
 +  02 

0
2

¢
+ ̂1 − ̂2 + ̂3 − ̂4 (A.23)

where ̂1 =
1

 2

P
∈̂\0 

0
1̂1

1
0
1, ̂2 =

1
 2

P
∈0


\̂

01̂1
1

0
, ̂3 =


2

P
∈̂0 ̂

×Q
=1 6= k̂1 − ̂k and ̂4 =

1
 2

P
∈̂

01̂1
2̂2. By Theorem 3.3 and Lemmas S1.11-

S1.12 in Su et al. (2016b), we have  (12k̂1k ≥ ) ≤  (̂ ) → 0,  (12k̂2k ≥ ) ≤
 (̂ )→ 0, and  (12k̂3k ≥ ) ≤P

=1

P
∈0


 ( ∈ ̂0| ∈ 0)≤

P
=1

P
∈0


 (̂) =

(1). It follows that k̂1−̂2+̂3k =  (
−12−1) By Lemma A.9 (v), k 1

 2

P
∈̂

01̂1
2̂2k

=  (
−12−1) We have By Lemma A.9(i), we have as

√


→ 0

1

 2

X
∈̂

01̂1
 01 

0
1 =

1

 2

X
∈̂

1



X
=1

01̂1
1 ̂1 − 1

 2

X
∈̂

1



X
=1


0
1̂1



− 1

 2

X
∈̂

1



X
=1


0
1̂1

 02 
0
2 +  (

−12−1) (A.24)

In addition,

1

 2

X
∈̂

1



X
=1

01̂1
1 ̂1 =

1

 2

X
∈̂

1



X
=1

X
∈̂

01̂1
1

¡
̂ − 0

¢
+ (

−12−1)

(A.25)

by Theorem 3.3. Let ̂1 =diag
³

1
12

P
∈̂1 

0
1̂1

1    
1

 2

P
∈̂

01̂1
1

´
and ̂2

is a 1 ×1 matrix with typical blocks
1



P
∈̂

P
∈̂


0
1̂1

1 such that

̂2 =

⎛⎜⎜⎜⎜⎜⎝
1

1 2

P
∈̂1

P
∈̂1 

0
1̂1

1     1
12

P
∈̂1

P
∈̂


0
1̂1

1
1

2 2

P
∈̂2

P
∈̂1 

0
1̂1

1     1
2 2

P
∈̂2

P
∈̂


0
1̂1

1 
...

. . .
...

1
 2

P
∈̂

P
∈̂1 

0
1̂1

1  · · · 1
2

P
∈̂

P
∈̂


0
1̂1

1

⎞⎟⎟⎟⎟⎟⎠ 

Combining (A.23)—(A.25), we have
√
vec( α̂−α0) = (̂1−̂2 )

−1√̂+ (1) where

the th element of ̂ is

̂ =
1√


X
∈̂

01̂1

⎡⎣¡ +  02 
0
2

¢− 1



X
=1


¡
 +  02 

0
2

¢⎤⎦
and =diag(


1

  

)⊗1 . By Lemma A.9(ii)-(iv), we have that ̂1−̂2 = + (1),

̂ =  + (1), where  and  are defined in Theorem 3.4. Then we have
√
vec( α̂−

14



α0) = −1

√
+ (1) By Lemma A.10(ii), we have −1−2 = + (1),

where  and  = 1 +2 are defined in Theorem 3.4. Thus,

√
vec(α̂−α0) = −1

p
 ( + ) +  (1) (A.26)

where  = (
0
1   

0
 )

0 and  = (
0
1   

0
 )

0.
(ii) By Lemma A.10 (i) and (iii), 

→ 0 and 
→ (0Ω0) conditional C. This result, in

conjunction with (A.26), implies that
√
vec(α̂−α0)−√

−1


→MN (00
−1
0 Ω0

−1
0 )

¥

To prove Theorem 3.5 we use the following lemma.

Lemma A.11 Suppose that Assumptions 3.1-3.3 hold. Then, as ( )→∞

(i) 1√

k̂1̂1 −  01 

0
1k =  (

√
1 ) + (

−1
 ),

(ii) 1√

k̂2 −  022k =  (

−1
 )

(iii) 1√


P
∈̂

(̂2 −−1
2 02) =  (1)

(iv) 1√


°°°̂2̂2 −  02 
0
2

°°° =  (
−1
 )

(v) 1√


P
∈̂

(∆̂21 −∆21) =  (1)

(vi)
√




P
=1

P
=1 (κ̂ − κ)1 { ≤ } =  (1)

(vii) 1√


P
∈0


(∆̂24

ˆ̄2 −∆24̄02) =  (1)

(viii) 1√


P
∈0



P
=1

P
=1[κ̂1 { ≤ } ∆̂24 ˆ̄2 − κ1 { ≤ }∆24̄02] =  (1)

(ix) Ω̂ = Ω +  (1) and Ω̂
+
 = Ω

+
 +  (1)

where ̄
0
2 = 02 − 1



P
=1 

0
2 

Proof of Theorem 3.5. (i) We first consider the bias-corrected post-Lasso estimators vec(α̂

̂
). By

construction and Theorem 3.4, we have

√
vec(α̂

̂
− α0)

=
√
vec(α̂

̂
− α̂)+

√
vec(α̂− α0)

=
p


−1
 +

p


h
−1 (1 +2)− ̂−1 (̂1 + ̂2)

i
+  (1)

It suffices to show that
√
vec(α̂

̂
−α0) = √

−1
 +  (1) by showing that (i1) ̂1 −

̂2 =  +  (1) (i2) ̂1 = 1 +  (1) and (i3) ̂2 = 2 +  (1) (i1) holds by

Lemma A.9 (ii) and (iv). For (i2), it suffices to show that ̂1−1 =  (1) for  = 1  By
Theorem 3.3 and using arguments like those in the proof of Lemma A.9(ii), we can readily show that

̂1 = ̃1+ (1) where ̃1 =
1√


P
∈0


∆̂21− 1√



P
∈0



P
=1

P
=1 κ̂1 { ≤ } ∆̂21
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It follows that

̂1 −1 =
1√


X
∈0



(∆̂21 −∆21)− 1√


X
∈0



X
=1

X
=1

1 { ≤ }
h
κ̂∆̂21 − κ∆21

i
+  (1)

=
1√


X
∈0



(∆̂21 −∆21)− 1



X
=1

X
=1

κ̂1 { ≤ }
⎛⎝ 1√



X
∈0



(∆̂21 −∆21)
⎞⎠

−
√




X
=1

X
=1

(κ̂ − κ)1 { ≤ }
⎛⎝ 1



X
∈0



∆21

⎞⎠+  (1)

≡1 (1) +1 (2) +1 (3) +  (1)

We can prove ̂1 = 1+ (1) by showing that 1 () =  (1) for  = 1 2 3 Noting that¯̄̄
1


P
=1

P
=1 κ̂1 { ≤ }

¯̄̄
≤ 1

3

P
=1

P
=1

°°°̂1°°°°°°̂1°°° =  (1) and
1


P
∈0


∆21 =  (1) 

these results would follow by Lemma A.11(v)-(vi). To show (i3), we first observe that

2 =
1√


X
∈0



E
¡
01|C

¢
 01

 02

⎛⎝02 −
1



X
=1

02

⎞⎠
=

1√


X
∈0



E
¡
01|C

¢
 02 ̄

0
2 −

1√


X
∈0



E
¡
01|C

¢
 01

 02 ̄
0
2 ≡ 21 −22

where ̄
0
2 = 02 − 1



P
=1 

0
2 . Let 

212 = (21() 22()) 12 = (1 ()  2 ()) =

(1 ()  2 ()) and 12 = (10  
10
 )

0Note that  = 
 =  () 


+


 () 


+

2
 () 2

+1 () 1 + 2 () 2  By the BN decomposition and the independence of { } and {12 },
we have

02 =4 = 21()1 + 22()2 = 212()12

=212(1)12 + 4̃−1 − 4̃

EC (1) =EC

Ã
2

X
=1



!
=

X
=1

³

1
 () 1 + 

2
 () 2

´
= 12 () 12



=12 (1) 12
 + 2EC (̃0 − ̃) 

where 
12
 = ( 10

  
20
 )0 =

³P
=1 

10
 
P

=1 
20


´0
  and ̃ are defined in Assumption 3.1.
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Let ∗21 =
1√


P
∈0


2
P∞

=0

P∞
=0 +

0


0
4̄
0
2 It follows that

21 −∗21

=
1√


X
∈0



1



X
=1


12
 () 12

 
120
 212()0̄02 −

1√


X
∈0



2

∞X
=0

∞X
=0

+
0
4̄

0
2

=
1√


X
∈0



1



X
=1

12 (1) ( 12
 

120
 − )

212(1)0̄02

+
1√


X
∈0



2

(
1



−1X
=1

Ã
EC (+1) ̃

0
 −

∞X
=0

+1
0


!
04̄

0
2 −

1



∞X
=0

+1
0


0
4̄
0
2

− 1



X
=1

³
EC (̃0) 

120
 212(1)0 − ̃0(1)

004
´
̄
0
2 +

1



X
=1

EC (̃) 
120
 212(1)0̄02

− 1

EC

Ã
X
=1



!
̃0

0
4̄
0
2 +

1


EC (1) ̃

0
0

0
4̄
0
2

)
≡ 1√



X
∈0




2
 +

1√


X
∈0



2

n

2
1 +

2
2 +

2
3 +

2
4 +

2
5 +

2
6

o
04̄

0
2

where we use the fact that 
12
 (1)212(1)0 = 2 (1) (1)

0 04 by construction and thatP∞
=0

P∞
=0 +

0
 =  (1) (1)

0−P∞
=0 +1

0
+̃0(1)

0 Following the proof of Lemma A.7 in
HJS, we can show that 1√



P
∈0


2

2


0
4̄
0
2 =  (1) for  = 1  6 and

1√


P
∈0


E(2

 ) = 0

It follows that 21 = ∗21 +  (1) =
1√


P
∈0


∆24̄

0
2 +  (1) Analogously, we have

22 = ∗22 +  (1)  where 
∗
22 =

1√


P
∈0



1


P
=1

P
=1 κ1{ ≤ }2

P∞
=0

P∞
=0

+
0


0
4̄
0
2 Let 

∗
2 = ∗21 −∗22 Then

∗2 =
1√


X
∈0



1



X
=1

X
=1

(1{ = }− κ1 { ≤ })2
∞X
=0

∞X
=0

+
0


0
4̄
0
2

=
1



X
=1

X
=1

κ̄
∞X
=0

∞X
=0

³

1
+

21
 + 

2
+

22



´ 1√


X
∈0



̄
0
2

=
1



X
=1

X
=1

κ̄
1√


X
∈0



∆24̄
0
2

By Theorem 3.3 and using arguments as used in the proof of Lemma A.9(ii), we can readily show

that ̂2 = ̃2 +  (1) where ̃2 =
1√


P
∈0



1


P
=1

P
=1 κ̂∆̂24

ˆ̄2 Thus we can

prove that ̂2 = 2 +  (1) by showing ̃2 = ∗2 +  (1) for  = 1 . Note that

̃2−∗2 =
1√


P
∈0


(∆̂24

ˆ̄2−∆24̄02) − 1√


P
∈0



P
=1

P
=1 1 { ≤ } [κ̂∆̂24 ˆ̄2−

κ∆24̄
0
2] =  (1) −  (1) =  (1) by Lemma A.11(vii)-(viii). Consequently, ̂2 −2 =

17



 (1) In sum, we have
√
vec(α̂

̂
−α0) = √

−1
 +  (1)

(ii) For the fully-modified post-Lasso estimators ̂


, we first consider the asymptotic distribution

for the infeasible version of the fully modified post-Lasso estimator ̃


. Noting that + = 1

0
 +

2
0
2 +  01 

0
1 +  02 

0
2 + +  by (A.23) and (A.24) and Theorem 3.3, we have

1

 2

X
∈̂

01̂1
1(̃



− 0) =

1

 2

X
∈0



01̂1

¡
+ +  02 

0
2

¢
+

1

 2

X
∈̂

0̂1
 01 

0
1

− 1√


+1 −
1√


2 +  (
−12−1) (A.27)

Combining (A.25), (A.27) and Lemma A.9(i) yields

1

 2

X
∈̂

01̂1
1(̃



− 0)−

1

 2

X
∈̂

1



X
=1

01̂1
1 ̂1

=
1

 2

X
∈0



01 01

⎛⎝+ −
1



X
=1

+ 

⎞⎠+ 1

 2

X
∈0



01 01
 02

⎛⎝02 −
1



X
=1

02

⎞⎠
− 1√


+1 −

1√


2 +  (
−12−1)

By (A.25) and Lemma A.10 (i)-(iii), we have
√
vec(α̃

 −α0) = (̂1−̂2 )
−1√ [(

+
+


2
 ) −+1 −2] +  (1) =

√


−1


+
 +  (1) where

+
 =

1√


X
∈0



01 01

⎛⎝+ −
1



X
=1


+


⎞⎠ 


2
 =

1√


X
∈0



01 01

⎛⎝ 02 −
1



X
=1


0
2

⎞⎠ 

 +1 =
1√


X
∈0




†
 (1)

X
=1

X
=1

n
κ̄

³
 
 

+0


´
− [1 { = }− κ1 { ≤ }] 1+

o

†
 (1)

00

 +2 =
1√


X
=1

⎧⎨⎩ 1 E ¡01|C¢1© ∈ 0
ª− 1



X
∈0




1


E(01 |C)

⎫⎬⎭01
+ 

3 =
1√


X
∈0



[1 − EC (1)]0 01
 02 

0
2

and + = +
 + 

2
 and  + =  +1 +  +2 + 3 are the th block-elements of

+ and  + , respectively. We have a new error process + = (
+
 ∆

0
1∆

0
1 

0
2 

0
2)

0 whose
partial sum satisfies the multivariate invariance principle: 1√



P[ ·]
=1

+
 ⇒ + = (Ω+ ). Following

the proof of Lemma A.10(iii) (see also Theorem 9 in Phillips and Moon, 1999), we can show that
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 +

→ (0Ω+0 ) conditional on C where Ω+0 = lim→∞Ω+ and Ω
+
 =Var

¡
 + |C

¢
 Then we

have √
vec(α̃

 −α0) →MN (0 0
−1
0 Ω

+
0 

−1
0 )

Next, we show that α̂
 is asymptotically equivalent to α̃

 by showing that
√
 (α̂

 −α̃
 ) =

 (1)  Note that

√
 (α̂

 −α̃
 ) =

p


h
(̂1 − ̂2 )

−1(̂+ + ̂+1 + ̂2)−−1

³
+ ++1 +2

´i


Then it suffices to show (ii1) ̂1 − ̂2 =  +  (1) (ii2) ̂
+
1 = +1 +  (1)(ii3)

̂+ = + +  (1), and (ii4) ̂2 = 2 +  (1) (ii1) and (ii4) have been established in the
proof of part (i) of the theorem. For (ii2), we can apply arguments analogous to those used in the

proof of Lemma A.11(v) to establish that EC
°°° 1√



P
∈̂

(Ω̂ −Ω)
°°° =  (



+ 

2
) =  (1)  Since

∆+ = ∆ − ΩΩ
−1
∆ this implies that

°°° 1√


P
∈̂

(∆̂+21 −∆+21)
°°°2 =  (1)  The latter

further implies that ̂+1 = +1 +  (1) For (ii3) we can apply Theorem 3 to show that

̂+ − +

=̂+
 − ̃+

 + ̃+
 − +



=
1√


X
∈̂

01̂1

⎛⎝̂+ −
1



X
=1

̂
+


⎞⎠− 1√


X
∈̂

01̂1

⎛⎝+ −
1



X
=1


+


⎞⎠+  (1)

=
1√


X
∈0



01̂1

¡
̂+ − +

¢− 1√


X
∈0



X
=1

01̂1

³
̂+ − +

´
 +  (1)

=
1√


X
∈0



01∆1
³
Ω12Ω

−1
22 − Ω̂12Ω̂−122

´
− 1√



X
∈0



0̂1∆1
³
Ω12 Ω

−1
22 − Ω̂12Ω̂−122

´

− 1√


X
∈0



X
=1

01̂1
∆1

³
Ω12Ω

−1
22 − Ω̂12Ω̂−122

´
 +  (1)

≡1 + 2 + 3 +  (1)

where ̃+
 =

1√


P
∈0


01̂1

³
+ − 1



P
=1 

+


´
and ̃+

 − +
 =  (1) by Lemma

A.9(iii). Following the proof of Lemma A.11(v), we can show that  =  (1) for  = 1 2 3 Then
(ii3) follows. This completes the proof of (ii).

(iii) The proof is analogous to that of (ii) and is omitted. ¥

To prove Theorems 3.6-3.7 we use the following two lemmas.

Lemma A.12 Suppose that Assumptions 3.1-3.3 and 3.6 hold. Then

(i) For any 1 ≤ 1 ≤ 01, 1(1 ̂
1
1 )− 1(1 

0
1

1
1 ) =  (

√
 ),

(ii) For any 1 ≤ 1  01, plim inf( )→∞ 
−1[1(1  01

1
1 ) − 1(1 

0
1 )] = 1 for some

1  0,

(iii) For any 01 ≤ 1 ≤ max, 1(1 ̂
1
1 )− 1(

0
1 ̂

01
1 ) =  (1)
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where 1(1 
0
1

1
1 ) is defined analogously to 1(1 ̂

1
1 ) with ̂ 1

1 replaced by  01
1
1  and 1

1 =

(−1Λ00Λ0) ×(−2 001 ̂ 1
1 )

Lemma A.13 Suppose that Assumptions 3.1-3.3 and 3.5 hold. Then

(i) For any 1 ≤ 2 ≤ 02, 2(2 ̂
2
2 )− 2(2 

0
2

2
2 ) =  (

−1
 ),

(ii) For each r2 with 0 ≤ 2  02, there exist a positive number  such that plim inf( )→∞[2(2  02
2
2 )

−2(02  02 )] = ,

(iii) For any fixed 2, with 02 ≤ 2 ≤ max, 2(2 ̂
2
2 )− 2(

0 ̂
02
2 ) =  (

−2
 ),

where 2(2 
0
2

2
2 ) is defined analogously to 2(2 ̂

2
2 ) with ̂

2
2 replaced by  02

2
2  2

2 = (−1Λ002 Λ02)
×(−1 002 ̂ 2

2 )

Proof of Theorem 3.6. Noting that 1(1)−1(01) = 1(1 ̂
1
1 )−1(01 ̂ 01

1 )−(01−1)1( )

it suffices to show that 
³
1(1 ̂

1
1 )− 1(

0
1 ̂

01
1 )  (

0
1 − 1)1( )

´
→ 0 as ( )→∞ when

1 6= 01. First, when 1  01 we consider the decomposition

1(1 ̂
1
1 )− 1(

0
1 ̂

01
1 ) = [1(1 ̂

1
1 )− 1(1 

0
1

1
1 )] + [1(1 

0
1

1
1 )− 1(

0
1 

0
1

01
1 )]

+ [1(
0
1 

0
1

01
1 )− 1(

0
1 ̂

01
1 )] ≡ 11 +12 +13

By Lemma A.12,11 =  (
12) 12 is of exact probability order ( log log  ) and13 =

 (1). It follows that

 (1(1)  1(
0
1)) = 

³
1(1 ̂

1
1 )− 1(

0
1 ̂

01
1 )  (

0
1 − 1)1( )

´
→ 0

as 1( ) (log log  )  → 0 under Assumption 3.5.

Next, for 1  01, we have 1(1 ̂
1
1 ) − 1(

0
1 ̂

01
1 ) =  (1) for 1  01 by Lemma A.12(iii),

and (1 − 01)1( ) → ∞ by Assumption 3.5. This implies that  (1(1) − 1(
0
1)  0) =

 (1(1 ̂
1
1 )− 1(

0
1 ̂

01
1 )  (

0
1 − 1)1( ))→ 0 as  →∞. ¥

Proof of Theorem 3.7. Noting that 2(2)−2(02) = 2(2 ̂
2
2 )−2(02 ̂ 02

2 )−(02−2)2( )

it suffices to show that 
³
2(2 ̂

2
2 )− 2(

0
2 ̂

02
2 )  (

0
2 − 2)2( )

´
→ 0 as ( )→∞ when

2 6= 02. We consider the under- and over-fitted models, respectively. When 0 ≤ 2  02, we make
the following decomposition:

2(2 ̂
2
2 )− 2(

0
2 ̂

02
2 ) =[1(2 ̂

2
2 )− 1(2 

0
2

2
2 )] + [1(2 

0
2

2
2 )− 1(

0
2 

0
2

02
2 )]

+ [1(
0
2 

0
2

02
2 )− 1(

0
2 ̂

02
2 )] ≡ 21 +22 +23

1 =  (
−1
 ) for  = 1 3 by Lemma A.13(i). Noting that 1(2 

0
2

2
2 ) = 1(2 

0
2 ) plim inf( )→∞

12 =  when 2  02 by Lemma A.13(ii). It follows that  (2(2)  2(
0
2)) → 0 as

1( )→ 0 as ( )→∞ under Assumption 3.5.

Now, we consider the case where 02  2 ≤ max. Note that 
2
 [2(2 ̂

2
2 ) − 2(

0
2 ̂

02
2 )] =

 (1) and 2 (2− 02)2( )  2 2( )→∞ by Lemma A.13(iii) and Assumption 3.5, we

have  (2(2)  2(
0
2)) =  (2(2 ̂

2
2 )− 2(

0
2 ̂

02
2 )  (

0
2 − 2)2( ))→ 0 as ( )→∞.

¥

To prove Theorem 3.8 we use the following lemma.

20



Lemma A.14 Suppose that Assumptions 3.1-3.3 and 3.7 hold. Then max0≤≤max |̂2() −
̂2
̂(0)

| =  (
2
 ) where ̂2() =

1


P
=1

P
∈̂()

P
=1[ − ̂

0
̂()

1 − ̂
0
22 −

̂1()0̂1()]2 and  is defined in Section 3.6.

Proof of Theorem 3.8. First, we show that

3(0 ) = log[3(0)] + 03( )

= log
1



0X
=1

X
∈̂(0)

X
=1

h
 − ̂

0
̂(0)

1 − ̂
0
22 − ̂1(0 )

0̂1(0 )
i2
+  (1)

→ log(20)

We consider the cases of under- and over-fitted models separately. When 1 ≤   0 for 
() =

(1 ) we have

3() =
1



X
=1

X
∈̂()

X
=1

h
 − ̂

0
̂()

 − ̂2(̂())02 − ̂1()0̂1()
i2

≥ min
1≤0

inf
()∈G()

1



X
=1

X
∈

X
=1

h
 − ̂

0


 − ̂2(̂())02 − ̂1(
())0̂1(())

i2
= min
1≤0

inf
()∈G()

̂2
()



By Assumption 3.6 and Slutsky’s lemma, we can demonstrate

min
1≤0

3() ≥ min
1≤0

inf
()∈

log(̂2
()

) + 3( )
→ log(2)  log(20)

It follows that  (min1≤0 3()  3(0 ))→ 1.
When 0   ≤ max we can show that  [̂2

̂()
− ̂2

̂(0)
] =  (1) when there are no sta-

tionary regressors, unobserved common factors, or endogeneity in 1,  [̂
2
̂()

−̂2
̂(0)

] =  (1)

when there are stationary regressors but no unobserved common factors,  [̂2
̂()

− ̂2
̂(0)

] =

 (1) when there are nonstationary factors but no stationary regressors or factors, and 
2
 [̂

2
̂()

−
̂2
̂(0)

] =  (1) otherwise. Then by Lemma 14,



µ
min
∈K+

3()  3(0 )

¶
=

µ
min
∈K+

−2 log(̂
2
̂()

̂2
̂(0)

) + −2 3( )( −0)  0

¶
≈

µ
min
∈K+

−2 (̂
2
̂()

− ̂2
̂(0)

)̂2
̂(0)

+ −2 3( )( −0)  0

¶
→1 as ( )→∞

where K+ = { : 0   ≤ max} ¥
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B Proofs of the lemmas in Appendix A

Proof of Lemma A.1. (i) By Lemma 2.1(c) in Park and Phillips (1988), we can show that

1

 2
01 01

1 =
1

 2
011 −

1

 2
01 01 1

=
1

 2

X
=1

1
0
1 −

1

 2

X
=1

1
00
1

Ã
1

 2

X
=1

01
00
1

!−1
1

 2

X
=1

01
0
1

⇒
Z

2
0
2 −

Z
2

0
3

µZ
3

0
3

¶−1 Z
3

0
2 =

Z
̃2̃

0
2

where ̃2 = 2 −
R
2

0
3

¡R
3

0
3

¢−1
3.

(ii) By Lemma 2.1(e) in Park and Phillips (1988), we can show that

1


01 01

 =
1


01 −

1


01 01 

=
1



X
=1

1 − 1

 2

X
=1

1
00
1

Ã
1

 2

X
=1

01
00
1

!−1
1



X
=1

01

⇒
µZ

21 +∆21

¶
−
Z

2
0
3

µZ
3

0
3

¶−1µZ
31 +∆31

¶
=

Z ¡
2 − 03

¢
1 + (∆21 − 0∆31)

where  =
¡R

3
0
3

¢−1 R
3

0
2 ∆21 and ∆31 are the one-sided long-run variances, defined above

Assumption 3.1.¥

Proof of Lemma A.2. (i) This follows from Lemma A.3(i) in Huang, Jin, and Su (2020, HJS
hereafter).

(ii) This follows from Donsker and Varadhan (1977, eqn (4.6) on p.751) and Lai and Wei (1982
,eqn (3.23) on p.163).

(iii) Note that max

µ
0101

1

 2

¶
≤ max

³
011
 2

´
≤ max

³
 0


 2

´
where max( 01

) = 1. Then

the result follows from Lemma A.3(i) in HJS.

(iv) Noting that
³
1
2
01 01

1

´−1
is the principal 1 × 1 submatrix of

¡
1
 2
 0



¢−1
 we have

by (ii)

max

Ãµ


 2
01 01

1

¶−1!
≤ max

Ãµ


 2
 0



¶−1!
=

∙
min

µ


 2
 0



¶¸−1
≤ 2−1min

by the inclusion principle (see, e.g., Corollary 8.4.6 in Bernstein (2005)). It follows that

min

µ


 2
01 01

1

¶
=

("
max

µ


 2
0101

1

¶−1#)−1
≥ min2 ¥

Remark. By Lemma 2.1(c) in Park and Phillips (1988), the continuous mapping theorem and
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the inversion formula for partitioned matrix,

µ
1

 2
 0



¶−1
⇒
ÃR

2
0
2

R
2

0
3R

3
0
2

R
3

0
3

!−1
=

⎛⎝ ³R
̃2̃

0
2

´−1 −
³R

̃2̃
0
2

´−1


−0
³R

̃2̃
0
2

´−1 ¡R
3

0
3

¢−1
+ 0

³R
̃2̃

0
2

´−1


⎞⎠ 

where  is defined in the statement of Lemma A.1.

Proof of Lemma A.3. (i) Note that 1
 2
01 01

1 =
1
2
01 − 1

2
01 01 . It suffices to show

that 1


P
=1

°°°01 2

°°°2 =  (
−2) and 1



P
=1

°°° 1
 2
01 01 

°°°2 =  (
−2). Note that

1

 4

X
=1

°°°01 01 °°°2 = 1

 4

X
=1

tr(1
0
1 01


0
 01

) ≤ 1

 4

X
=1

tr(1
0
1)(

0
 01

)

≤  max


max

µ
011
 2

¶ ∙
min

µ
 001  01
 2

¶¸−1
1



X
=1

°°°° 001  2

°°°°2

=  ( )
1



X
=1

°°°° 001  2

°°°°2 
where we use the fact that the limit of

 001  01
2

is p.d. a.s. andmax max

³
011
 2

´
=  (1) by Lemma

A.2(i). The result in (i) follows provided 1


P
=1

°°°012

°°°2 =  (
−2) and 1



P
=1

°°° 001 
 2

°°°2 =
 (

−2). Noting that 1 =
P

=1  + 10 = 2
P

=1 and 01 = 3
P

=1 it is sufficient
to prove either of these two claims. Here we show the former one. Note that

1



X
=1

°°°° 1 201
°°°°2 = 1



X
=1

°°°°° 1 2
X
=1

2(
X

=1

)
0


0
1

°°°°°
2

≤ 2



X
=1

⎛⎝°°°°°2 1 2
X
=1

−1X
=1


0


0
1

°°°°°
2

+

°°°°°2 1 2
X
=1


0


0
1

°°°°°
2
⎞⎠ ≡ 21 + 22

By the panel BN-decomposition, we have  = (1) + ̃−1 − ̃ where ̃ =
P∞

=0 ̃−
and ̃ =

P∞
=+1  Then by the Cauchy-Schwarz inequality

1 ≤ 2



X
=1

⎛⎝°°°°°2 1 2
X
=1

Ã
−1X
=1



!
0(1)

001

°°°°°
2

+

°°°°°2 1 2
X
=1

Ã
−1X
=1



!
(̃−1 − ̃)

0 01

°°°°°
2
⎞⎠

≡ 2 (11 +12)  say

Let  = 2

³P−1
=1

´
0(1)

001 and F = ( −1 ), the sigma-field generated by the series
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{  ≤ }. Since E(|F−1) = 0, we have

E(11) =
1



X
=1

E

°°°°° 1 2
X
=1



°°°°°
2

≤ 1

 4

X
=1

X
=1

Ekk2 ≤ 

 4

X
=1

X
=1

 = (−2)

where the inequality follows by the fact that Ekk2 ≤ E
°°°P−1

=1

°°°2 Ekk2 ≤ . Then 11 =

 (
−2) by the Markov inequality. For 12 we have

12 =
1



X
=1

°°°°°2 1 2
−1X
=1



X
=+1

(̃−1 − ̃)
0 01

°°°°°
2

≤ 2



X
=1

⎛⎝°°°°°2 1 2
−1X
=1

̃
0


0
1

°°°°°
2

+

°°°°°2 1 2
−1X
=1

̃
0


0
1

°°°°°
2
⎞⎠ ≡ 2 (121 +122)  say

Under Assumption 3.1(i)-(ii) and Phillips and Solo (1992), we have E k̃k4 ≤   ∞ By similar
arguments in the proof of Lemma A.2. in HJS, we can show 121 =  (

−2) It’s easy to show
122 =  (

−2) Thus 1 =  (
−2) For 2, we have

E(2) =
1



X
=1

E

°°°°°2 1 2
X
=1


0
1

°°°°°
2

≤ 

 2

X
=1

E

Ã
1



X
=1

kk2
!2
≤ 

 2

X
=1

1



X
=1

Ekk4

= (−2)

where the second inequality comes from the Cauchy-Schwarz inequality. It implies that 2 =

 (
−2) Consequently, 1



P
=1 E

°°° 1
 2
01

°°°2 = (−2) and 1


P
=1

°°° 1
 2
01

°°°2 =  (
−2) by

the Markov inequality. This completes the proof of (i).
(ii) Note that

1



X
=1

°°°° 1 201 01
∗

°°°°2 ≤ 3



X
=1

Ã°°°° 1 201 01


°°°°2 + °°°° 1 201 01
 02 

0
2

°°°°2 + °°°° 1 201 01
22

°°°°2
!

≡ 3 ( +  + ) ,

where recall that 02 = 4 For , we have  =
1


P
=1

°°° 1
 2
001



°°°2 =  (
−2) by the result

in part (i). By arguments analogous to those used in the proof of part (i) and using  02 
0
2 in place

of , we can show that  =
1


P
=1

°°° 1
2
01 01

 02 
0
2

°°°2 =  (
−2). For , we have

 ≤ max


°°°° 1 201 01
2

°°°°2 1
X
=1

k2k2 =  (
−11(log  )(1+)2)

uniformly in 1

kb2k2 ≤ where we use the fact thatmax

°°° 1
 2
0101

2

°°°2 =  (
−11(log  )(1+)2)

by similar analysis as used in the proof of Lemma A.3(i) in HJS. Then the result in (ii) follows.
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(iii) Note that°°°°°° 1

 2

X
=1

01 01


°°°°°° ≤ 1

 2

X
=1

³°°01°°+ °°°01 01 °°°´

≤
⎧⎨⎩ 1



X
=1

°°°°01 2

°°°°2
⎫⎬⎭
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X
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kk2
⎫⎬⎭
12

+

∙
min

µ
 001  01
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¶¸−1 k01 01 k
 2

⎧⎨⎩ 1



X
=1

°°°° 01  2

°°°°2
⎫⎬⎭
12⎧⎨⎩ 1



X
=1

kk2
⎫⎬⎭
12

= (
−1) + (

−1) =  (
−1)

where we use the fact that 1


P
=1

°°°01 2

°°°2 =  (
−2), 1



P
=1

°°° 01  2

°°°2 =  (
−2), 1

 2
01

0
1 =R

2
0
3 +  (1) =  (1) by Lemma A.1(i), and

1


P
=1 kk2 =  (1) by Assumption 3.2(i).

Similarly, we can show that 1


P
=1

°°° 1
 2

P
=1 

0
1 01



°°° =  (
−1).

(iv) Noting that
°°°01 01

1

°°°2 =tr( 01
1

0
101

1
0
1) ≤tr(101 01

1
0
1) ≤ tr(101

1
0
1) =

°°°011°°°2 by the fact that max( 01
) = 1 we have 1



P
=1

°°° 1
 2
01 01

1

°°°2 ≤ 1


P
=1°°° 1

 2
011

°°°2  It suffices to show that 1


P
=1

°°° 1
 2
011

°°°2 =  (1). Using the panel BN decom-

position 1 = 2((1)
P

=1  + ̃0 − ̃) and Cauchy-Schwarz inequality, we have

1



X
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E
°°°° 1 2011

°°°°2 ≤ 3



X
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E

°°°°° 1 2
X
=1

X
=1

X
=1

2(1)
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For the first term, we have
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This proves (i).
(ii)-(iii) The proofs of (ii) and (iii) are analogous to that of (i) and are therefore omitted. ¥
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Proof of Lemma A.5. (i) We make the following decomposition
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where we use the fact that
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Combining the above results yields the conclusion in (v). ¥

Proof of Lemma A.6. We only prove the first part of (i)-(iv) as the second part can be shown

analogously by the repeated use of the fact that max
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(i) By the decomposition in (B.1),

1 =
1

 2
01(̂1 −  011

) ̂∗ =
1

 2
01(̂1 + ̂2 + ̂3 + ̂4) ̂

∗
 ≡ 1 +2 +3 +4 (B.2)

For1, we have k1k = 1
4

°°°01(̂1 −  011)(̂1 −  011)
0̂∗
°°° ≤ 1

 12
1
 2

°°°̂1 −  011

°°°2 k1k

k̂∗k
 12

=

−12 (
2
1 + −1−2 ) by Theorem 3.1(iii). For 2,

k2k =
°°°°° 1 2

X
=1

(̂1 − 0
1
0
1)

0 0
1

1

 2

X
=1

01̂
∗


0
1

°°°°°
≤ 1√



Ã
1

 2

X
=1

°°°̂1 − 0
1
0
1

°°°2!12
⎛⎝ 1


X
=1

°°°°° 1 2
X
=1

01̂
∗


0
1

°°°°°
2
⎞⎠12 k1k

= −12 (1 + −12−1 )

where we use the fact that 1
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 (1) by the proofs of Lemma A.5(iv) and Lemma A.3(i). Consequently, 1 =  (
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where we use the fact that 1


P
=1

°°°° ̃0 ̂1

°°°°2 ≤ 1


P
=1{

°°° 1 ̃0 011

°°°2 + °°° 1 ̃0(̂1 −  011)
°°°2} =

 (1) +  (
2
1 + −1−1 ). For ̄4, we have

k̄4k = 1

 4

°°°°°°01̂1

X
=1

 00 ̂
0
1

0
1̂11

0
1

°°°°°°
≤ k1k k01k

°°°̂1°°°


⎧⎨⎩ 1



X
=1

Ã°°°°°01̂1
( 01 − ̂1

−1
1 )

 2

°°°°° k01k+
°°°°°01̂1

 02

 2

°°°°° k02k
!
k1 ̂1k

⎫⎬⎭
≤ k1k k01k

°°°̂1°°°


max

k0k

(°°°°°01̂1
( 01 − ̂1

−1
1 )

 2

°°°°°+
°°°°°01̂1

 02

 2

°°°°°
)

×
⎧⎨⎩ 1



X
=1

k1k2
 2

⎫⎬⎭
12⎧⎨⎩ 1



X
=1

k̂1k2
⎫⎬⎭
12

= [ (1 + −12−1 ) + (
−121 + −1)] (1 ) =  (

2
1 + −12−11 )

where we use the fact that 1


°°° 01 − ̂1
−1
1

°°° =  (1 + −12−1 ) and that°°°°°01̂1
 02

 2

°°°°° ≤
°°°°°01 02 2

°°°°°+
°°°°°01̂1 2

̂ 01 02
 2

°°°°°
≤
°°°°°01 02 2

°°°°°+
°°°°°01̂1 2

°°°°°
(°°°°°(̂1 −  011)

0 02
 2

°°°°°+ k1k
°°°° 001  02 2

°°°°
)

= (
−1) +

h
 (

−121 + −1−1 ) + (
−1)
i
=  (

−121 + −1)

For ̄5 to ̄10 we have

°°̄5°° = 1

 4

°°°°°°01̂1

X
=1

̃ ̂
0
1

0
1̂11

0
1

°°°°°°
≤ 1


k1k k01k

k1k


max


k1k


⎧⎨⎩ 1



X
=1

k̂ 01̃k2
 2

⎫⎬⎭
12⎧⎨⎩ 1



X
=1

k̂1k2
⎫⎬⎭
12

=  (
−1p 1 )

°°̄6°° ≤ k1k k01k
⎧⎨⎩ 1

 2

X
=1

Ã°°°°°01̂1
( 01 − ̂1

−1
1 )

 2

°°°°° k01k+
°°°°°01̂1

 02

 2

°°°°° k02k
!°°°̃0̂1°°°

⎫⎬⎭
≤  (1)



Ã°°°°°01̂1
( 01 − ̂1

−1
1 )

 2

°°°°°+
°°°°°0̂1

 02

 2

°°°°°
!⎧⎨⎩ 1



X
=1

k0k2
⎫⎬⎭
12⎧⎨⎩ 1

 2

X
=1

k̃0̂1k2
⎫⎬⎭
12

= −1[ (1 + −12−1 ) + (
−121 + −1)] =  (

−11 + −32−1 )

37



°°̄71°° ≤ 1

 2

X
=1

°°°01̂1
2 ̂

0
2

°°° ≤ 1

 2

X
=1

n°°°0101
2 ̂

0
2

°°°+ °°°01(̂1 −  01
)2 ̂

0
2

°°°o

≤ −1

⎧⎪⎨⎪⎩ 1



X
=1

°°°01 01
2

°°°2
 2

2

⎫⎪⎬⎪⎭
12⎧⎨⎩ 1



X
=1

°°°̂2°°°2
⎫⎬⎭
12

+ −12
k1k


°°°̂1 −  01

°°°
⎧⎨⎩ 1



X
=1

k2k2


2

⎫⎬⎭
12⎧⎨⎩ 1



X
=1

°°°̂2°°°2
⎫⎬⎭
12

= −1 (2 ) + −12 (1 + −12−1 ) (2 ) =  (
−54−12 + −121 + 21 )°°̄72°° = 1

 4

°°°°°°01̂1

X
=1

̃
00
2

00
2 ̂11

0
1

°°°°°°
≤ 1

 3
k1kk01k

°°°°° 002 ̂1

°°°°°
⎧⎨⎩
°°°°°°

X
=1

01̃
00
2

°°°°°°+
°°°°°°

0
1̂1

 2

X
=1

̂ 01̃
00
2

°°°°°°
⎫⎬⎭

≤  (1)

 2

⎧⎪⎨⎪⎩
°°°°°° 1



X
=1

01̃
00
2

°°°°°°+
°°°01̂1°°°

 2

⎧⎨⎩ 1

 2

X
=1

°°°̂ 01̃°°°2
⎫⎬⎭
12⎧⎨⎩ 1



X
=1

°°02°°2
⎫⎬⎭
12
⎫⎪⎬⎪⎭

=  (
−2)

k̄8k = 1

 4

°°°°°°01̂1

X
=1

̃̃
0
̂11

0
1

°°°°°°
≤ 1

 4
k1kk01k

⎧⎨⎩
°°°°°°

X
=1

01̃̃
0
̂1

°°°°°°+
°°°°°°

0
1̂1

 2

X
=1

̂ 01̃̃
0
̂1

°°°°°°
⎫⎬⎭

≤  (1)

 2

⎧⎪⎨⎪⎩
⎛⎝ 1



X
=1

°°°°01̃

°°°°2 1
X
=1

°°°°° ̂ 01̃

°°°°°
2
⎞⎠12 + °°°°°01̂1 2

°°°°°
⎛⎝ 1



X
=1

°°°°° ̂ 01̃

°°°°°
2
⎞⎠
⎫⎪⎬⎪⎭

=  (
−2)

k̄9k ≤ 1

 2
k1kk01k

°°°°° ̂ 01 02

°°°°°
°°°°Λ002 Λ02

°°°°
(°°°°°01 02

°°°°°+ 01̂1
 2

̂ 01 02


)
=  (

−2) and

k̄10k ≤ 1√


k1kk01k
k1k


°°°° 01
°°°°
°°°°° ̂ 01 02

°°°°°
°°°°Λ001 Λ02√



°°°° =  (
−12−1)

Similarly, we can show that k̄11k =  (
−12−1). Then 2 =  (

−54−12 + −121 +


2
1 + −1−1 ) and the first part of (ii) follows.

38



(iii) By Lemma A.5(i),
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(iv) As in the proof of Lemma A.3(i), we can show that 4 =  (
−1) and −1P

=1 k4k2 =
 (

−2) ¥

Proof of Lemma A.7. (i) By the proof of Lemma A.5(ii),
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The first term on the right hand side (rhs) of the last equation is (−1) by Lemma A.2(i) in HJS.
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∙
min

µ


 2
 001 

0
1

¶¸−1
max


k1k2
 2

°° 001 ̂∗°°2
 4



where lim inf→∞ min

³

 2
 001  01

´
≥ min2 a.s. and lim sup→∞

k1k2
 2

≤ (1 + ) max a.s. by

Lemma A.2(i)-(ii). It follows that for some   0



µ
max


°°°° 1 201 01 ̂∗
°°°°  

¶
≤ 

µ
max


1

 2

°° 001 ̂∗
°°  

¶
= (−1)

where the equality holds by analogous arguments as used in the proof of (i). Consequently we have


³°°° 1

 2
01  01

̂∗
°°°  

´
= (−1) ¥

Proof of Lemma A.8. (i) Note that 1 =
−1
 2
01(̂1

− 01
)̂∗  where recall that ̂

∗
 =  +

 02 
0
2 − 2̂2 By (B.2) and the proof of Lemma A.6(i), it suffices to study the probability

bounds for max kk where  = 1 2 3 4. Let ̄1 = 1


°°°̂1 −  011

°°°  Note that k1k ≤
(
12
 ̄21 )

1


12



k1k 1 k̂∗ k  By Lemma S1.2 (iii) in SSP(2016b), and the fact thatmax

°°02°° ≤ ̄

by Assumption 3.2(i) and thatmax

°°°̂2°°° =  (1), we can show that  (max
1

k̂∗ k ≥ −12(log  )3) =

(−1) for any   0. By Lemma A.2(i), 1


12



k1k =  (1)  It follows that


³
k1k ≥ −12(log )312 ̄21

´
= 

¡
−1¢ 
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For2 we have k2k ≤ 
12
 ̄1k1kk1k


12




1
 2

°° 001 ̂∗°°  By Lemma A.2(i) in HJS, we can show that
 (max

1
2

°° 001 ̂∗°°   ) = 
¡
−1¢ for any   0 It follows that  (k2k ≥ 

12
 ̄1 ) =


¡
−1¢  Noting k3k ≤ 

12
 ̄1 k1k k

0
1 k


k1k

12




1

k̂∗ k  we have


³
k3k ≥ −12(log )312 ̄1

´
= 

¡
−1¢ 

Next, k4k ≤ 
12


°°1 − ( 1 2 0
1

00
1 

0
11)

−1°° k1k2 k
0
1 k


k1k

12




k 001 ̂∗k
 2

Using the fact that 1


12



k1k

=  (1) 
1
 2
 0
1

00
1 

0
11 − 1 =  (1 + −12−1 ), and  (max

1
 2

°° 001 ̂∗°°   ) =

(−1) we can show that


³
k4k ≥ 

12
 (1 + −12−1 )

´
= 

¡
−1¢ 

Noting that 1 =  (
12
 −1) by Theorem 3.2(i) and ̄1 =  (1 + −12−1 ), we have


12
 ̄1 [

−12(log  )3̄1 +  + −12(log  )3] +
³
1 + −12−1

´


= 

h

12
 ( + −12(log  )3)(1 + −12−1 )

i


Then we have 
³
max k1k  

12
 ( + −12(log )3)(1 + −12−1 )

´
= (−1)

(ii) By the proof of Lemma A.6(ii), we have 1
2
01̂1

 01 
0
1 =

−1
2
01̂1

(̂1
−1
1 −  01 )

0
1

= −1
 2
01̂1

³
̂1

−1
1 − (1 + + 11)1

´
01 ≡ 1 + + 11 As in the proof of Lemma A.6(ii),

we have

2 =
1

 2
01̂1

 01 
0
1 −

1

 2

X
=1

01̂1
 ̂1 +

1

 2

X
=1

01̂1
 = ̄1 + + ̄11

where ̄ =  for  = 1 3 4 5 6 8  11 ̄2 =
1

 2

P
=1 

0
1̂1

1 ̂1
00
2

 002 ̂1
 2

1
0
1 ̄7 =

̄71 + ̄71 ̄71 =
−1
 2

P
=1 

0
1̂1

2 ̂2 and ̄72 =
−1
 2

P
=1 

0
1̂1


00
2

 002 ̂1
 2

1
0
1 It

suffices to study ̄ for  = 1  11 For ̄1, we have k̄1k ≤ 
32
 k1k

°°01°° 1


°°°̂1°°°max1≤≤ k1k3

32


 3

× 1


P
=1

°°°̂1°°°2  Noting that max 1


32


 3
k1k3 = (1) by Lemma A.2(i),

1


°°°̂1°°° = √1
and max k01k ≤ ̄ by Assumption 3.2(i) and the Bernstein inequality, it is easy to show that

 (max
°°̄1°°  

32
 21 ) = (−1). Similarly, we can show that

 (max


°°̄2°° −11 ) = (−1)  (max


°°̄3°°   (
−11 + −1212 21 )) = (−1)

 (max


°°̄4°°  (−11 + 
12
 21 )) = (−1)  (max



°°̄5°°  
−11 ) = (−1)

 (max


°°̄6°°  (−11 + 
−12
 −2)) = (−1)

 (max


°°̄

°° −2) = (−1) for  = 7 8 9
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and  (max k̄k  
12
 −12−1) = (−1) for  = 10 11 Consequently, we have  (max k2k 


12
 2 ) = (−1)
(iii) Following the proof of Lemma A.6(iii), we have

k3k ≤ 1

 12
k1k


°°01°°°°° 01 − 
̂1

°°°°°°°( 1 Λ001 Λ01)−1
°°°°
⎧⎨⎩ 1



X
=1

01

⎫⎬⎭
12⎧⎨⎩ 1



X
=1

kk2
⎫⎬⎭
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Then 
³
max k3k  

12
 1

´
= (−1)

(iv) Write4 =
1
 2
01 01

̂∗− 1
 2

P
=1 

0
1 01

̂∗ =
1
 2
01 01

̂∗− 1
2

P
=1 

0
1̂

∗
+

1
 2

×P
=1 

0
101

̂∗  By Lemma A.7(ii), 
³
max

°°° 1
 2
01 01

̂∗
°°°  

´
= (−1) For 1

 2

P
=1


0
1̂

∗
  we have°°°°°° 1

 2

X
=1


0
1̂

∗


°°°°°° ≤ °°01°°
°°°°( 1 Λ001 Λ01)−1

°°°° 1
X
=1

°°01°°max


1

 2

°°01̂∗°° 
Following the analysis in (i), we can show that  (max

1
 2
||01̂∗ ||   ) = (−1) So



⎛⎝max


°°°°°° 1

 2

X
=1

 
0
1̂

∗


°°°°°°  

⎞⎠ = (−1)

Similarly, we can show that  (max || 1
 2

P
=1 

0
1 01

̂∗ ||   ) = (−1) Consequently we
have  (k4k   ) = (−1)

(v) By the proof of Theorem 3.2(i), we have (̂1−̂2)b̂1 = . Let  = (01×1      01×1  1  01×1 
    01×1) be a 1 ×1 selection matrix such that b̂1 = ̂1. It follows that°°°̂1°°°2 = tr(0(̂1 − ̂2)

−1∗∗0(̂1 − ̂2)
−1)

= vec(0)
µ³

̂1 − ̂2

´−1 ⊗ ³̂1 − ̂2

´−1¶
vec(0)

≤
h
min

³
̂1 − ̂2

´i−2
tr(0

∗∗0) =
h
min

³
̂1 − ̂2

´i−2 kk2 

where the second equality follows from the fact that tr(1234) =vec(1)
0(2 ⊗ 03)vec(04) for

conformable matrices 1 2 3 and 4. By Assumption 3.2(v), we have that  (min(̂1 − ̂2) ≥
min) = 1−(−1) By the proof of Theorem 3.2, we have  = 1+2−3+4−5. By Lemma
A.6(ii) and Lemma A.7(i)-(ii), we directly obtain that  (max k1 +2 −3 +4k   ) =
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(−1) For k5k we have

k5k ≤ 

2

X
=1

Y
=1 6=

°°°̂1 − ̂

°°° ≤ 

2

X
=1

¯̄̄̄
¯̄ Y
=1 6=

°°°̂1 − ̂

°°°− Y
=1 6=

°°01 − ̂
°°¯̄̄̄¯̄+ 

2

X
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Y
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°°01 − ̂
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≤  ()
°°°̂1°°°+ 

2
 () +



2

X
=1

Y
=1 6=

°°01 − ̂
°° 

where we use the fact
¯̄̄Q

=1 ||̂1 − ||−
Q

=1

°°01 − 
°°¯̄̄ ≤  ()(1 + 2||̂1||) in the proof

of Theorem 3.2(i). Noting that 
2 () + 

2

P
=1

Q
=1 6=

°°01 − ̂
°° = (), it follows that

for sufficiently large 

k̂1k2 ≤
h
min

³
̂1 − ̂2

´i−2 kk2

≤
h
min

³
̂1 − ̂2

´i−2µ
2 k1 +2 −3 +4k2 + 42 + 4 ()

222
°°°̂1°°°2¶ 

That is, k̂1k2 ≤ [min(̂1−̂2)]
−2
(2k+5k2+42)

(1−4 ()222)
 Combining the above results, we have



µ
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k̂1k2 ≥ 

¡
2 + 2(log  )

¢¶
≤ 

µ
max

k̂1k2 ≥ 

¡
2 + 2(log )

¢
 min

³
̂1 − ̂2

´
≤ min

¶
+ 

³
min

³
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´
 min

´
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³
2 k1 +2 −3 +4k2  2

2
min

´
+ 

¡
2 ≥ 2(log  )2min

¢
+ (−1)

= (−1) + 0 + (−1) = (−1)

(vi) The proof closely follows that of (i)-(v) and thus omitted.

(vii) By the definition of 2
1
 2
01̂1

 01 
0
1 = 2 +

1
 2

P
=1 

0
1̂1

1 ̂1 − 1
2

P
=1

01̂1
 We have studied 2 in (ii) and it remains to analyze the last two terms. Noting that

1

 2

°°°°°°
X
=1

01̂1
1 ̂1

°°°°°° ≤ 
max k1k2
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°°01°°
⎧⎨⎩ 1



X
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°°°̂1°°°2
⎫⎬⎭
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we can show that 
³
max

1
 2

°°°P
=1 

0
1̂1

1 ̂1

°°° ≥ 1

´
= 

¡
−1¢  Noting that

1

 2

X
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 =

1

 2

X
=1

01 01
 +

1
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X
=1
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−01

)

By (B.1), −1
 2
01̂1

 01 
0
1 =

1
 2
01(̂1 −  011

) 01 
0
1 =

1
2
01(̂1 + ̂2 + ̂3 + ̂4)

0
1 

0
1 ≡ 1 +
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2 +3 +4 Note that

k1k ≤̄21

k1k


°° 01 °°


°°01°° 
k2k ≤̄1

k1k


°° 0
1

00
1 

0
1

°°
 2

°°01°° 
k3k ≤ 1

 2

°°°(̂1 −  011)
0 01
°°° k1k



°° 011

°°


°°01°°  and
k4k ≤
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µ
1
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 0
1

00
1 

0
11

¶−1°°°°° k1k

°° 011

°°


°° 0
1

00
1 

0
1

°°
 2

°°01°° 
where ̄1 =

1


°°°̂1 −  011

°°° =  (1 + −12−1 ) by Theorem 3.1(iii) 1
2

°°°(̂1 −  011)
0 01
°°°

=  (1+
−1−1+

−54−12 ) by Lemma A.5(iii), and
°°1 − ( 1 2 0

1
00
1 

0
11)

−1°° =  (1+

−12−1 ) by the proof of Lemma A.5(i). Using the fact that max
1

 2
kk2 = (1) and

max k01k ≤ ̄ we can use the uniform bound for each of the above four terms to obtain



µ
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1
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°°°01̂1
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0
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¶
= 

¡
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Then (vii) follows.

(viii) By the proof of Theorem 3.2, we have ̂2 =
³
1
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2
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1

02̂1

¡
 +  02 

0
2

¢
+ 1


02̂1
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0
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1
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1
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¡
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0
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¢
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02 01

¡
 +  02 

0
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¢
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1

02( 01 − 

̂1
)
¡
 +  02 

0
2

¢
By Lemma S1.2 (iii) in SSP(2016b), we can show that
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1


k0201

¡
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0
2

¢ k ≥ −12(log  )3) = (−1)
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1


k02( 01 − 
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)
¡
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0
2

¢ k ≥ 
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for any   0. The proof follows closely that of (vii). We have
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Note that 1
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°°°02 01
1̂1

°°° ≤

°°°02 01 °°°


°° 01 °°
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°°°̂1°°°  and
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√

k2k√



k1k
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where 

³
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´
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³
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¡
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It follows that 
³
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k02 01
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¡
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1

||02( 01 − 

̂1
)1̂1|| ≥ 

12
  12(log  )3(1 + −12−1 )

¡
 + (log )2

¢} = (−1)
Then (viii) follows.¥

Proof of Lemma A.9. (i) By Lemma A.6(ii), we have
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 2
01̂1

 01 
0
1 =

−1
 2

01̂1
(̂1

−1
1 − 01 )

0
1 =

−1
 2

01̂1
[1 + + 11]1

0
1 = 1+ +11

Let ̄  = 1  11 be as defined in the proof of Lemma A.6(ii). Then, following the proof of
Lemma A.6(ii), we can readily show that 1



P
∈̂

(̄1+ ̄2+ + ̄72)+
1


P
∈̂

(̄8+ ̄9) =

 (
2
1 + −112 1 + −2) = 

¡
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 For ̄71, we have
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∈̂
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¡
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by Lemma A.8(viii) and the fact that max1≤≤ kk =  (1) and that

1


P
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P
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°°°01 01
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− 

̂1
as in (B.1)

and use similar arguments as used in the proof of Lemma A.9(iii) below to show that kk =
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 Then 1
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 It follows that
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X
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Next, we can show that 1


P
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P
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1 )

Λ001 Λ
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by using the fact that 1
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1
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1
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1
 2
 002 (̂1− 011) =  (

−1+−121+
−1−1 ) In
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Λ002 Λ
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1
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P
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1
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P
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× 02 02  It follows that
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(ii) Noting that 1{ ∈ ̂} = 1{ ∈ 0}+ 1{ ∈ ̂ \0}− 1{ ∈ 0 \ ̂} we have

1
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X
∈̂

01̂1
1 =

1
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X
∈0



01̂1
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X
∈̂\0
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=
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X
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1 + C1 − C2  say.

By Theorem 3.3, we have  (kC1k ≥ (−12−1)) ≤  (̂ )→ 0 and  (k C2k ≥ (−12−1))
≤  (̂ )→ 0. It follows that
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by Lemma A.5(i). Thus 1
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(iii) Using the same arguments as those in the proof of (ii), we can readily show that

1√


X
∈̂

01̂1

⎛⎝¡ +  02 
0
2

¢− 1



X
=1

¡
 +  02 

0
2

¢


⎞⎠
= +

1√


X
∈0



01
³


̂1
− 01

´⎛⎝¡ +  02 
0
2

¢− 1



X
=1

¡
 +  02 

0
2

¢


⎞⎠+  (1)
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and

k2k =
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Similarly, we have k4k =  (1) For 3 we can apply analogous arguments as used in the proof of
Lemma 5(v) to show that
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(iv) As in (ii), we can readily show that
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Using (B.1), we obtain the following decomposition
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Using arguments analogous to those in the proof of part (iii) we can readily show that ̃ =  (1) for
 = 1 2 3 4. Then 1

 2

P
∈̂

1


P
∈̂0

01̂1
1 =

1
2

P
∈0



1


P
∈0

0
01 01

1 +

 (1)

(v) As in (ii), we can readily show that 1
 2

P
∈̂

01̂1
2̂2 =

1
 2

P
∈0


01̂1

2̂2+

 (
−12
 −1) Note that 1

2

P
∈0


01̂1

2̂2 =
1

 2

P
∈0


01 01

2̂2+
1

 2

P
∈0


01

(
̂1
−01

)2̂2 The proof is close to (i) and (iii) and thus omitted here.¥
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Proof of Lemma A.10 (i) Note that  = 1 −2 , where

1 = diag

⎛⎝ 1

1 2

X
∈01

01 01
1    

1

 2

X
∈0



01 01
1

⎞⎠ 

2 =

⎛⎜⎜⎝
211 · · · 21

...
. . .

...

21 · · · 2

⎞⎟⎟⎠  and 2 =
1

 2

X
∈0



X
∈0




0
1 01

1 

It is sufficient to prove (i) by showing that 1
→ 1 and 2

→ 2 as ( ) → ∞ by the
Cramér-Wold device, where

1 =diag

⎛⎝ lim
→∞

1

1

X
∈01

EC
µZ

̃2̃
0
2

¶
     lim

→∞
1



X
∈0



EC
µZ

̃2̃
0
2

¶⎞⎠ 

2 =

⎛⎜⎜⎝
211 · · · 21
...

. . .
...

21 · · · 2

⎞⎟⎟⎠ 

2 = lim→∞ 1


P
∈0



P
∈0


EC

³R
̃2̃2

´
 C = ( 0Λ0), and EC (·) denotes expectation

conditional on C.
We first show 1

→ 1 as ( )→∞ The th block diagonal element of 1 is given by

1

 2

X
∈0



01 01
1

=
1



X
∈0



1

 2

X
=1

1
0
1 −

1



X
∈0



Ã
1

 2

X
=1

1
00
1

!Ã
1

 2

X
=1

01
00
1

!−1Ã
1

 2

X
=1

01
0
1

!

≡ 11 −22 say.

We first establish the sequential limit. Let ( )seq → ∞ denote the sequential limit by passing

 →∞ first and  →∞ later. Let ̃1 =  01
1 Denote the th column of ̃1 as ̃1 Then as

 →∞

1

 12
̃1 =

1

 12
̃1 − ̃01

0
1

¡
 001 

0
1

¢−1 1

 12
01 ⇒ 2 −

Z
2

0
3

µZ
3

0
3

¶−1
3 ≡ ̃2

and by the continuous mapping theorem (CMT) 1
 2
0101

1 =
1
 2
011 =

1


P
=1

1
 12

̃1
1

 12
̃01

⇒ R
̃2̃2 By the conditional law of large numbers with independent observations (conditional on

C), we have that as  →∞

1



X
∈0



Z
̃2̃2

→ lim
→∞

1



X
∈0



EC
∙Z

̃2̃2

¸
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It follows that 1
2
01 01

1
→ lim→∞ 1



P
∈0


EC
hR

̃2̃2

i
as ( )seq → ∞ To show the

above limit is also the joint distributional limit, we need to verify condition (3.9) in Phillips and
Moon (1999, hereafter PM). We do so by verifying the conditions in Theorem 1 of PM (1999) to
obtain that as ( )→∞

11
→ lim

→∞
1



X
∈0



EC(
Z

2
0
2) and

12
→ lim

→∞
1



X
∈0



EC

ÃZ
2

0
3

µZ
3

0
3

¶−1 Z
3

0
2

!


This implies that 1
 2

P
∈0


01 01

1
→ lim→∞ 1



P
∈0


EC
³R

̃2̃
0
2

´
as ( )→∞. We

focus on the study of 11 as 12 can be analogously studied.

It is easy to see that lim→∞ 1


P
∈0


EC(

R
2

0
2) is the sequential limit of 11 We are

left to verify the four conditions in Theorem 1 of PM (1999) that ensure their equation (3.9) holds.

Let X ≡ 1
 2

P
=1 1

0
1 and X ≡

R
2

0
2 Recall that  denotes a generic large constant.

Our conditions ensure that sup sup E kXk2 ≤  It follows that 1


P
∈0


E kXk ≤  and

1


P
∈0


E kXk1{ kXk  } = 0 for any   0 verifying conditions (i) and (iii) in PM (1999)’s

Theorem 1. In addition, kXk1+ ⇒ kXk1+ for all  ∈ [0 1] by the continuos mapping theorem.
This, in conjunction with the uniform integrability of {kXk1+} in  for all  and all  ∈ [0 1)
(implied by sup sup E kX k2 ≤ ) and the Fatou lemma, implies that E (X ) → E(X) and
E kXk1+ → E kXk1+ for all  ∈ [0 1) as  →∞ Then 1



P
∈0


E kXk1+ ≤  ∞ for some

  0 (see, e.g., Lemma 12 in PM (1999)), which implies that 1


P
∈0


E [kXk1 {kXk  }] = 0

verifying condition (iv) in PM’s Theorem 1. To verify condition (ii) in PM’s Theorem 1, we apply the

Skorohod representation theorem to construct
n
X ∗

o
and {X ∗ } in some probability space such that

X ∗ 
= X  X ∗ 

= X for all  and X ∗ → X ∗  where 
= and

→ denote equality in distribution and

almost sure convergence, respectively. Let  = X ∗ −X ∗  Then {} are uniformly integrable in
 for all  and 

→ 0. By the uniform integrability of {}  for any   0 there exists  =  ()
such that sup sup E [kk1 {k k ≥ }] ≤  By the almost sure convergence of  to zero
and the dominated convergence theorem, lim→∞ sup E [kk1 {kk  }] = 0 In addition,
notice that

1



X
∈0



kE (X )− E(X)k =
1



X
∈0



°°E ¡X ∗ ¢− E(X ∗ )°°
≤ 1



X
∈0



E
°°X ∗ − X ∗ °° = 1



X
∈0



E kk 
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It follows that

lim sup
( )→∞

1



X
∈0



kE (X )− E(X)k

≤ lim sup
( )→∞

1



X
∈0



[E k1 {kk  }k+ E k1 {kk ≥ }k] ≤ 0 +  = 

Since  is arbitrary, we conclude that lim sup( )→∞ 1


P
∈0


kE (X )− E(X)k = 0 which verifies

condition (ii) in PM (1999)’s Theorem 1.

To show 2
→ 2 as ( ) → ∞, we also establish the sequential limit first. Note that

the ( )th block element of 2 is given by 2 =
1


2

P
∈0



P
∈0




0
1 01

1  As

 →∞ 1
 12

̃1 ⇒ 2 −
R
2

0
3

¡R
3

0
3

¢−1
3 ≡ ̃2 and

1

 2
01 01

1 =
1

 2
̃01̃1 =

1



X
=1

µ
1

 12
̃1

¶µ
1

 12
̃1

¶0
⇒
Z

̃2̃2 by the CMT.

By the conditional law of large numbers for second order U-statistics with independent observations
(conditional on C),

1



X
∈0



X
∈0





Z
̃2̃2

→ lim
→∞

1



X
∈0



X
∈0



EC
µZ

̃2̃2

¶
as  →∞

It follows that

1

 2

X
∈0



X
∈0




0
101

1
→ lim

→∞
1



X
∈0



X
∈0



EC
µZ

̃2̃2

¶
as ( )seq →∞

Let X = 1
 2


0
1 01

1 and X = 
R
̃2̃2  To obtain the joint limit, we can follow the

proof of Theorem 1 in PM (1999) and find that it is sufficient to verify

(i1) lim sup( )→∞ 1


P
∈0



P
∈0


E kXk ∞

(i2) lim sup( )→∞ 1


P
∈0



P
∈0


kE(X )− E(X)k ∞

(i3) lim sup( )→∞ 1


P
∈0



P
∈0


E [kXk1 {kXk  }] = 0 ∀   0 and

(i4) lim sup( )→∞ 1


P
∈0



P
∈0


E [kXk1 {kXk  }] = 0 ∀   0

Note that {X} is uniformly integrable in  for all  and  We can follow step (1a) and verify
the above conditions analogously. As a result,

1

 2

X
∈0



X
∈0




0
1 01

1
→ lim

→∞
1



X
∈0



X
∈0



EC
µZ

̃2̃2

¶
as ( )→∞

(ii) First, we observe that

 = 
 + 

2
  (B.3)

where 
 =

1√


P
∈0



1

01 01

(− 1


P
=1 ) and 

2
 =

1√


P
∈0



1

01 01

( 02 
0
2−
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1


P
=1 

0
2 

0
2) We study 


 and 

2
 in turn.

For 
  we make the decomposition


 =

1√


X
∈0



1


01 01

 − 1√


X
=1

1



X
∈0




1


01 01



=
1√


X
∈0



1


[01 − EC

¡
01
¢
] 01



+
1√


X
=1

⎧⎨⎩ 1 EC ¡01¢1© ∈ 0
ª− 1



X
∈0




1


EC(01)

⎫⎬⎭ 01


− 1√


X
=1

1



X
∈0




1


[1 − EC (1)]0 01



≡ 
1 + 

2 − 
3  say.

We will show that 
1 contributes to both the asymptotic bias and variance, 


2 contributes

to the asymptotic variance, and 
3 is asymptotically negligible. We study these three terms in

turn.
For 

1  we make further decomposition:


1 =

1√


X
∈0



1


[1 − EC (1)]0 − 1√



X
∈0



1


[1 − EC (1)]001  ≡ 

11 − 
12

Let 
†
1 = 1−EC (1)  Let † () = ( ()   ()  2 ())  † () = (


 ()   ()  

2
 ()) 


12
 = (1 ()  2 ())  =

¡
 

0
  

20


¢0
 and 

12
 = (10  

10
 )

0 Noting that  = 
 =

 () 

 +  () 


 + 2 () 2 + 

1
 () 1 + 

2
 () 2 and by the independence of { }

and {12 } we have

 =

 ()  +  () 


 + 2 () 2 = 

†
 () 


 = 

†
 () 


 

EC () =1 () 1 + 
2
 () 2 = 

12
 () 12 

 − EC () = ()  +  () 

 + 2 () 2 = 

†
 () 


 = 

†
 () 


 

where


†
 () =

Ã

†
 ()


†
 ()

!
=

Ã
 ()  () 2 ()

 ()  () 2 ()

!
(1+1)×(1+)



 = (1 01×)  and  = (01×1 1×)  Let  
 = ( 

  
0
  

20
 )

0 =
¡P

=1 


P

=1 
0

P

=1 
20


¢0
and 

 =
¡

 

0
  

20


¢0
 Then by the panel BN decomposition,


 = 

†
 (1)


 + ̃

−1 − ̃
 and

X
=1


 = 

†
 (1)


 + ̃

0 − ̃
  (B.4)
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where ̃
 =

P∞
=0 ̃

†



− and ̃

†
 =

P∞
=+1 

†
. Let


11 =

1√


P
∈0



P∞

=0

P∞
=0 

†
+

†0


0
It follows that


11 −

11

=
1√


X
∈0



1



X
=1


†
1 −

11

=
1√


X
∈0





Ã
1



X
=1

"
X

=1


 

0
 −

∞X
=0

∞X
=0


†
+

†0


#!
0

=
1√


X
∈0





(

†
 (1)

1



X
=1

¡
 
 0 − 1+

¢

†
 (1)

0 +
1



−1X
=1

Ã

+1̃

0
 −

∞X
=0


†
+1̃

†


!

− 1



∞X
=0


†
+1̃

†
 −

1



X
=1

³
̃
 

0
 − ̃

†
0

´

†
 (1)

0 +
1



X
=1

̃
0 

0
 

†
 (1)

0

− 1


X
=1


 ̃

0
 +

1



1 ̃

0
0

)
0

=
1√


X
∈0



 { +11 +12 +13 +14 +15 +16}0

By Lemma A.7 in HJS, 1√


P
∈0


1

0 =  (1) for  = 1 2  6 It follows that


11 −

11 =
1√


X
∈0




†
 (1)

1



X
=1

¡
 
 0 − 1+1

¢

†
 (1)

00 +  (1) 

Recall that κ = 001( 001  01 )−101 and κ̄ = 1 { = }−κ Let 
12 =

1√


P
∈0


 1



P
=1P

=1 κ1 { ≤ }P∞
=0

P∞
=0 

†
+

†0


0. Then, using the BN decomposition in (B.4) and following
the proof of Lemma A.7 in HJS, we can show that


12 −

12 =
1√


X
∈0



1



X
=1

X
=1

κ†1 −
12

=
1√


X
∈0





Ã
1



X
=1

X
=1

κ

"
X

=1


 

0
 − 1 { ≤ }

∞X
=0

∞X
=0


†
+

†0


#!
0

=
1√


X
∈0




†
 (1)

1



X
=1

X
=1

κ[ 
 0 − 1 { ≤ } 1+]† (1)00 +  (1) 

where we use the fact that EC ( 
 0 ) = E ( 

 0 ) = 1+ if  ≤  and 0 if    by the
independence of  over  Then


1 −

1 = 1 +  (1) 
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where

1 =
1√


X
∈0




†
 (1)

1



X
=1

X
=1

©
κ̄

¡
 
 0

¢− [1 { = }− κ1 { ≤ }] 1+
ª

†
 (1)

00,

1 =

Ã
1



X
=1

X
=1

[1 { = }− κ1 { ≤ }]
!

1√


X
∈0



∆21

since ∆21 = 
P∞

=0

P∞
=0 

†
+

†0


0 = 2
P∞

=0

P∞
=0 +

0


0
1 by construction.

For 
2  we make further decomposition


2 =

1√


X
∈0



1


EC
¡
01
¢
01

− 1√


X
=1

1



X
∈0




1


EC(01) 01

 ≡ 
21−

22 say.

Apparently, EC
³

21

´
= EC

³

22

´
= 0 Var

³

21|C

´
=  (1) and Var

³

21|C

´
=

 (1) We now show that 

21 and 


22 are asymptotically independent of 1 conditional

on C Note that

1 =
1√


X
∈0




†
 (1)

1



X
=1

¡
 
 0 − 1+

¢

†
 (1)

00

− 1√


X
∈0




†
 (1)

1



X
=1

X
=1

κ[ 
 0 − 1 { ≤ } 1+]† (1)00 ≡ 11 − 12

Let 1 and 2 be arbitrary nonrandom × 1 vectors such that k1k = k2k = 1 Note that

Cov
¡
0111 

0
2


21|C

¢
= EC

⎡⎣ 1√


X
∈0



01

†
 (1)

1



X
=1

¡
 
 0 − 1+

¢

†
 (1)

00 1√


X
∈0



1


0 01

EC (1) 2

⎤⎦
=

1



X
∈0



01

†
 (1)

1

 2

X
=1

EC
n¡

 
 0 − 1+

¢

†
 (1)

000
o
 01

EC (1) 2

=
1



X
∈0



01

†
 (1)

1

 2

X
=1

X
=1

EC
n¡

 
 0 − 1+

¢

†
 (1)

000
o X

=1

κ̄EC (1) 2
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Using the BN decomposition, we can readily show that

1



X
∈0



01

†
 (1)

1

 2

X
=1

X
=1

EC
n¡

 
 0 − 1+

¢

†
 (1)

0 00
o X

=1

κ̄EC (1) 2

=
1



X
∈0



01

†
 (1)

1

 2

X
=1

X
=1

EC
n¡

 
 0 − 1+

¢

†
 (1)

0 0
†
 (1)




o X
=1

κ̄EC (1) 2 +  (1)

=
1



X
∈0



01

†
 (1)

1

 2

X
=1

X
=1

E
h
 
 0 

†
 (1)

0 0
†
 (1)




i X
=1

κ̄EC (1) 2 +  (1)

=
1



X
∈0



01

†
 (1)

1

 2

X
=1

E
h
 
 0 

†
 (1)

0 0
†
 (1)




i X
=1

κ̄EC (1) 2 +  (1) =  (1) 

where the first inequality follows by the BN decomposition, the second equality follows by the fact

that  ( ) = 0 the third inequality follows from [ 
 0 

†
 (1)

0 
†
 (1)


 ] = 0 for  6=  and

the last equality follows by straightforward moment calculations. Similarly, we have

Cov
¡
0112 

0
2


21|C

¢
= EC

⎡⎣ 1√


X
∈0



01

†
 (1)

1



X
=1

X
=1

κ[ 
 0 − 1 { ≤ } 1+]† (1)00 1√



X
∈0



1


0 01

EC (1) 2

⎤⎦
=

1



X
∈0



01

†
 (1)

1

 2

X
=1

X
=1

κEC
n£
 
 0 − 1 { ≤ } 1+

¤

†
 (1)

000
o
 01

EC () 2

=
1



X
∈0



01

†
 (1)

1

 2

X


κEC
n£
 
 0 − 1 { ≤ } 1+

¤

†
 (1)

00
o X

=1

κ̄EC (1) 2

=
1



X
∈0



01

†
 (1)

1

 2

X


κEC
n£
 
 0 − 1 { ≤ } 1+

¤

†
 (1)

00
†
 (1)




o X
=1

κ̄EC (1) 2

+  (1)

=
1



X
∈0



01

†
 (1)

1

 2

X


κE
h
 
 0 

†
 (1)

00
†
 (1)




i X
=1

κ̄EC (1) 2 +  (1)

=
1



X
∈0



01

†
 (1)

1

 2

X
=1

κE
h
 
 0 

†
 (1)

00
†
 (1)




i X
=1

κ̄EC (1) 2 +  (1) =  (1) 

where
P

 =
P

=1

P
=1

P
=1  It follows that Cov

³
011  

0
2


21|C

´
=  (1)  Analogously,

we can show that Cov
³
011  

0
2


22|C

´
=  (1)  Then Cov(

0
11  

0
2


2 |C) =  (1) 

For 
3  we can readily show that 


3 = ̄

3+ (1) where ̄

3 =

1√


P
=1

1


P
∈0


 6=

1

[1 − EC (1)]0 01

 By the independence of ( ) across  conditional on C, we have
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C
¡
̄
3

¢
= 0 and tr

©
Var

¡
̄
3 |C

¢ª
= 1

2 2

P
=1

P
∈0


 6=

P
1=1

P
1∈01 6=1 11 EC{

0
1

 01
[11−E (11 |C)][1−EC (1)]0 01

} = 

¡
−1¢  where we use the fact that EC{01 01

[11
−EC (11)][1 − EC (1)]0 01

} is nonzero if and only if #{  1 1} = 2 or 1. It follows that
̄
3 = 

¡
−12¢ and 

3 =  (1) 
In sum, we have


 −1 = 1 + 2 +  (1)  (B.5)

where 2 = 
2 =

1√


P
=1{ 1 EC

³
01
´
1
©
 ∈ 0

ª− 1


P
∈0




1

EC(01)} 01

 and we

have shown that 1 and 2 are asymptotically independent conditional on C.
Now, we study 

2
  We make the decomposition


2
 =

1√


X
∈0



1


01 01

 02 
0
2 −

1√


X
=1

1



X
∈0




1


01 01

 02 
0
2

=
1√


X
∈0



1


[1 − EC ()]0 01

 02 
0
2

+
1√


X
=1

1



⎡⎣EC ¡01¢1© ∈ 0
ª− 1



X
∈0




1


EC(01)

⎤⎦ 01
 02 

0
2

− 1√


X
=1

1



X
∈0




1


[1 − EC (1)]0 01

 02 
0
2 ≡ 

2
1 + 

2
2 − 

2
3 

We show that 
2
1 and 

2
2 contribute to the asymptotic variance and bias, respectively, and


2
3 is asymptotically negligible. For 

2
1  we have E[

2
1 |C] = 0 and tr

h
Var(2

1 |C)
i
=

1


P
∈0



1
 2
002002  01

EC
©
[1 − EC ()] [1 − EC ()]0

ª
 01

 02 
0
2 =  (1)  For 

2
2  we have


2
2 = 2  For 

2
3  we have EC [

2
3 ] = 0 and

tr
h
Var(2

3 |C)
i
=

1

2 2

X
=1

X
∈0




00
2

00
2  01

EC
©
[1 − EC(1)][1 − EC(1)]0

ª
 01

 02 
0
2

=
1

2 2

X
=1

X
∈0




00
2

00
2  01

EC
©
[1 − EC (1)] [1 − EC (1)]0

ª
 01

 02 
0
2

=
1

 2

X
∈0



001(
001 

0
1


)−1

001 
0
2


 002  01

EC
©
[1 − EC (1)] [1 − EC (1)]0

ª
 01

 02
002 

0
1


(
001 

0
1


)−101

≤ 1



°°°°001 0212

°°°°2 °°°°(001 01
)−1
°°°°2 1

 2

X
∈0



°°01°°2 °°° 002  01
EC
©
[1 − EC (1)][1 − EC (1)]0

ª
 01

 02

°°°
= 

¡
−1¢ 

where the second equality follows from the independence of {1} across  conditional on C, the third
equality follows the fact that  = 001

¡
001 

0
1

¢−1
01 = , and the last equality follows from
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the fact that 1
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where 3 =
1√


P
∈0



1

[1 − EC (1)]0 01

 02 
0
2

Combining (B.3), (B.5) and (B.6), we have  − 1 − 2 =  +  (1)  where
 = 1 + 2 + 3  This completes the proof of (ii).
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which is  (1) but not  (1) in general unless Cov( 1|C) = 0 or EC (1) = 0 which we do
not assume. Similarly,
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which is  (1) but not  (1) in general. It follows that

Var ( |C) =

(
3X
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Var ( |C) + Cov (2  3 |C) + Cov (2  3 |C)0
)
+  (1)

≡ Ω +  (1) 
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For any  6=  we have

Cov (   |C) =Cov (2  2 |C)

=
1

 2
Cov

⎛⎝ X
=1

1



X
∈0



EC(01) 01


X
1=1

1



X
1∈0

11EC(011) 01
1 |C

⎞⎠
=

1

2 2

X
=1

X
∈0



X
1=1

X
1∈0

11EC(01) 01
EC(01) 01

EC(011)

=
1

2 2

X
=1

X
∈0



X
1∈0

1EC(01) 01
E(0) 01

EC(011) ≡ Ω

which is not vanishing unless EC(1) = 0 Let Ω denote that 1 ×1 matrix with typical

blocks Ω (1 × 1) for   = 1  Note that  =
P

=1   where

 =
1√



†
 (1)

X
=1

X
=1

©
κ̄ 

 0 − [1 { = }− κ1 { ≤ }] 1+
ª

†
 (1)

001
©
 ∈ 0

ª
+

1√


⎧⎨⎩EC ¡01¢1© ∈ 0
ª− 1



X
∈0



EC(01)

⎫⎬⎭ 01


+
1√


[1 − EC (1)]0 01
 02 

0
21
©
 ∈ 0

ª
≡ (1) +  (2) +  (3) 

Let  = ( 01   
0
 )

0
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0
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0 Note that  are independent

across  conditional on C Let  be a nonrandom 1× 1 vector such that kk = 1 By the Cramér-
Wold device and the martingale CLT (e.g., Pollard (1984, p.171), we can show the asymptotic
normality of  by showing that
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E
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where C = 
¡C 1 ¢, the sigma-field generated from C, 1 = (11  1) and  =

(1  )  and ⊗ =Var( |C) by the previous calculation and the independence of  across
 given C

We show the first claim (B.7) by the conditional Markov inequality. Let  be a nonrandom
1 × 1 vector with kk ≤ 1. We can show that
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where is a generic constant that can vary across lines and the inequality follows from the Chebyshev
inequality. One can readily show that the first term is 

¡
−1¢  For the second term, noting that
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and the last inequality follows from the fact that E[
°°01°°4] ≤ 2 and E[k 

 k4] ≤ 2 Conse-

quently, we have shown that
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the first claim in (B.7) follows.

To show the second claim in (B.7), we first observe that EC (Z2) ≡ 0
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Proof of Lemma A.11. (i) We first study k̂1 − −1
1 01k. Noting that ̂1 = (̂ 01̂1)−1̂ 01 =

1
 2
̂ 01 with  ≡  − ̂ = ̂1
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By Lemma A.5(iii), we have 1 ≤ 1
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(ii) Given the fast convergence rate of ̂1 and ̂ and the established convergence rate of ̂2 =

 (
√


−12) and ̂1 in part (i), the result follows from standard factor analysis. We also assume
the stationary regressors are uncorrelated with the stationary common factors and factor loadings.
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=  (1). One can readily show that
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Note that 1 = −1 before bias correction, the last term may not be  (1) under our conditions
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on ( ). To obtain the tight probability bound, we make the decomposition:

√




X
=1

X
=1

(κ̂ − κ)1 { ≤ }

=

√




X
=1

X
=1

∙
1

 2
̂ 01̂1 − 001

¡
 001 

0
1

¢−1
01

¸
1 { ≤ }

=

√




X
=1

X
=1

(
1

 2
001

Ã
1

0
1 −

µ
1

 2
 001 

0
1

¶−1!
01 +

1

 2

³
̂1 − 0

1
0
1

´0
 0
1
0
1

+
1

 2
0011

³
̂1 − 0

1
0
1

´
+
1

 2

³
̂1 − 0

1
0
1

´0 ³
̂1 − 0

1
0
1

´¾
1 { ≤ }

≡31 + 32 + 33 + 34 say.
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1



X
∈0



°°°ˆ̄2 −−1
2 ̄

0
2

°°°2

≤ 2



X
∈0



°°°̂2 −−1
2 02

°°°2 + 2



X
∈0



°°°°°° 1
X
=1

³
̂2 ̂ −−1

2 02

´°°°°°°
2

≤ 2



X
∈0



°°°̂2 −−1
2 02

°°°2 + 4



X
∈0



°°°°°° 1
X
=1

̂2 (̂ − )

°°°°°°
2

+
4



X
∈0



°°°°°° 1
X
=1

(̂2 −−1
2 02)

°°°°°°
2
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Following the analysis in (iii), we can readily show that

1



X
∈0



°°°̂2 −−1
2 02

°°°2
≤ 3



X
∈0



°°°° 1 ̂ 02(
0
2 − ̂2

−1
2 )02

°°°°2 + 3



X
∈0



°°°° 1 ̂ 02̃

°°°°2 + 3



X
∈0



°°°° 1 ̂ 02̂

°°°°2
= (

−2
 ) + (

−1) + (
2
 ) =  (

−2
 )

Similarly, by the Cauchy-Schwarz inequality, 1


P
∈0



°°° 1 P
=1(̂2 −−1

2 02)

°°°2 ≤ 1


P
=1°°°̂2 −−1

2 02

°°°2 1


P
∈0



P
=1 

2
 =  (

−2
 ) In addition, we can show that

1


P
∈0



P
=1

k̂ − k2 =  (
−2
 ) which implies that

1


P
∈0



°°° 1 P
=1 ̂2 (̂ − )

°°°2 ≤ 1


P
=1

°°°̂2°°°2
× 1



P
∈0



P
=1 k̂ − k2 =  (

−2
 ) Consequently, we have

1


P
∈0



°°°ˆ̄2 −−1
2 ̄

0
2

°°°2 =
 (

−2
 ) This result, in conjunction with the result in (iv) and the Cauchy-Schwarz inequal-

ity, implies that k11k ≤
√


½
1


P
∈0



°°°∆̂24 −∆242

°°°2¾12½ 1


P
∈0



°°°ˆ̄2 −−1
2 ̄

0
2

°°°2¾12
=
√


³
12

 12
+ 1



´


¡
−1

¢
=  (1)  By arguments like those used in the proof of (ii), we can

show that 13 =  (1)  It follows that
1√


P
∈0


(∆̂24

ˆ̄2 −∆24̄02) =  (1) 

(viii) We make the decomposition

1√


X
∈0



X
=1

X
=1

h
κ̂∆̂24 ˆ̄2 − κ∆24̄02

i
1 { ≤ }

=
1



X
=1

X
=1

(κ̂ − κ)1 { ≤ } 1√


X
∈0



³
∆̂24

ˆ̄2 −∆24̄02
´

+
1



X
=1

X
=1

(κ̂ − κ)1 { ≤ } 1√


X
∈0



∆24̄
0
2

+
1



X
=1

X
=1

κ1 { ≤ } 1√


X
∈0



³
∆̂24

ˆ̄2 −∆24̄02
´
≡ 21 + 22 + 23

Note that 21 =  (1) by (v) and (vi), 22 =  (1) by (v) and the fact that
1


P
∈0


∆24̄

0
2 =

 (1)  and 23 =  (1) by (vi) and the fact that
1


P
=1

P
=1 κ1 { ≤ } =  (1)  It follows

that 1√


P
∈0



P
=1

P
=1[κ̂∆̂24

ˆ̄2 − κ∆24̄02]1 { ≤ } =  (1) 

(ix) We define the following  × 1 matrices ̃1 = 1 − EC (1)  X =  01
̃11

©
 ∈ 0

ª
+ 01

[EC (1)×1
©
 ∈ 0

ª− 1


P
∈0


EC (1)] andX = 01

11
©
 ∈ 0

ª− 1


P
∈0


 01

1 

Let X0 and X
0
 denote the th row of X and X respectively, which is a 1 × 1 vector. Let
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X = (X
0
1 X

0
)

0 and X =
³
X01 X

0


´0
. Recall that

 =
1√


X
∈0



01 01

⎛⎝¡ +  02 
0
2

¢− 1



X
=1

( +  02 
0
2)

⎞⎠
=

1√


X
=1

⎛⎝ 01
11

©
 ∈ 0

ª− 1



X
∈0



01
1

⎞⎠0 ¡ +  02 
0
2

¢

=
1√


X
=1

X0
¡
 +  02 

0
2

¢
=

X
=1

 

where  =
1√


P
=1X

¡
 + 00202

¢
 Let  =

³
 01   

0


´0
 Then

 =
1



X
=1

⎛⎜⎜⎝
1√
1
X1
...

1√

X

⎞⎟⎟⎠ ¡ + 002
0
2

¢
=

√
√


X
=1

X

¡
 + 002

0
2

¢


where  =diag( 
1

  

) ⊗ 1 , which is a 1 × 1 diagonal matrix. Now we collect all

asymptotic non-negligible components in  and define them as Z as follows

Z = 
1 + 

2 + 
2
1 + 

2
2

=
1√


X
=1

[1 − EC (1)]01
©
 ∈ 0

ª
 01



+
1√


X
=1

⎧⎨⎩EC ¡01¢1© ∈ 0
ª− 1



X
∈0



EC(01)

⎫⎬⎭ 01


+
1√


X
=1

[1 − EC (1)]0 1
©
 ∈ 0

ª
 01

 02 
0
2

+
1√


X
=1

⎡⎣EC ¡01¢1© ∈ 0
ª− 1



X
∈0




1


EC(01)

⎤⎦ 01
 02 

0
2

=
1√


X
=1

⎡⎣̃011© ∈ 0
ª
+

⎛⎝EC ¡01¢1© ∈ 0
ª− 1



X
∈0



EC(01)

⎞⎠⎤⎦ 01

¡
 +  02 

0
2

¢

=
X
=1

1√


X0
¡
 + 02

0
2

¢
=

X
=1

Z 

where Z =
1√


P
=1X

¡
 + 00202

¢
 Similarly, letting Z =

³
Z 01   Z 0

´0
 we
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have

Z =

√
√


X
=1

X

¡
 + 002

0
2

¢


By construction, we note that  = Z +  (1) and  = Z +  (
−1) Recall that

 =
P

=1  and  =  +1 +2 +  (1) Then we have

Z =  + +  (
−1)

where = 1+2 1 =
1√


³P
=1

P
=1 κ̄

´
∆211

©
 ∈ 0

ª
 and2 =

1√


³P
=1

P
=1 κ̄

´
∆24̄21

©
 ∈ 0

ª
 Define  =

³
01   

0


´0
 Note that 

are independent across  conditional on C. Similarly, we have that Z are independent across  con-

ditional on C Then we have Ω =Var( |C) =
P

=1Var( | C) =
P

=1Var(Z |C) +  (1) 

where
P

=1Var(Z |C) =
P

=1[EC (ZZ 0 )−EC (Z )EC (Z )
0] By construction, we have

EC (Z ) = EC
¡
 + ) +  (

−1¢ =  +  (
−1) and

P
=1 EC (Z )EC (Z )

0 =P
=1

0
 +  (1) Note that conditional on C the expression ZZ 0 − EC (ZZ 0 ) is

mean zero, and it is also independent across  This together with the bounded moments implies that

Var(
P

=1 (ZZ 0 − EC (ZZ 0 )) |C) =  (1)  Thus, we have

X
=1

EC
¡ZZ 0

¢
=

X
=1

ZZ 0 +  (1)

=
X
=1



 2

X
=1

X
=1

X
¡
 + 002

0
2

¢ ¡
 + 002

0
2

¢
X0 +  (1)

=


 2

X
=1

X
=1

X
=1

XX
0


¡
 + 002

0
2

¢ ¡
 + 002

0
2

¢
+  (1)

By construction, we have  = Z+  (
−1) Then we have

P
=1ZZ 0 =

P
=1 

0


+ (1) =


 2

P
=1

P
=1

P
=1XX

0


¡
 + 00202

¢ ¡
 + 00202

¢
+  (1) It follows that

Ω =


 2

X
=1

X
=1

X
=1

XX
0


¡
 + 002

0
2

¢ ¡
 + 002

0
2

¢− X
=1


0
 

Recall that Ω̂ =
̂

 2

P
=1

P
=1

P
=1 X̂X̂

0
̂

∗
̂
∗
 −

P
=1 ̂ ̂

0
  where X̂ ̂

∗
 and
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̂ are as defined in Section 3.4. We decompose Ω̂ −Ω as follows,

Ω̂ −Ω =
̂

 2

X
=1

X
=1

X
=1

X̂X̂
0


¡
̂∗̂

∗
 −

¡
 + 002

0
2

¢ ¡
 + 002

0
2

¢¢
+
³
̂ −

´ 1

 2

X
=1

X
=1

X
=1

X̂X̂
0


¡
 + 002

0
2

¢ ¡
 + 002

0
2

¢
+


 2

X
=1

X
=1

X
=1

³
X̂X̂

0
 −XX

0


´¡
 + 002

0
2

¢ ¡
 + 002

0
2

¢
−
Ã

X
=1

̂ ̂
0
 −

X
=1


0


!
≡ Ω1 +Ω2 +Ω3 +Ω4

It suffices to prove kΩk =  (1) for  = 1 2 3 4 Let 1 be an arbitrary 1 × 1 nonrandom
vector with k1k = 1. Note ̂∗ =  − ̂01 − ̂

0
22 − ̂

0
1̂1 By the triangle inequality,

¯̄
01

Ω11

¯̄
=

¯̄̄̄
¯ 1

 2

X
=1

X
=1

X
=1

01
̂X̂X̂

0
1 (̂

∗
̂
∗
 − ∗

∗
)

¯̄̄̄
¯

≤
¯̄̄̄
¯ 1

 2

X
=1

X
=1

X
=1

01
̂X̂X̂

0
1 ̂

∗
 (̂

∗
 − ∗)

¯̄̄̄
¯

+

¯̄̄̄
¯ 1

 2

X
=1

X
=1

X
=1

01
̂X̂X̂

0
1 (̂

∗
 − ∗)

¯̄̄̄
¯

≤
¯̄̄̄
¯ 1

X
=1

Ã
1



X
=1

01
̂X̂̂

∗


!Ã
1



X
=1

(̂∗ − ∗) X̂
0
1

!¯̄̄̄
¯

+

¯̄̄̄
¯ 1

X
=1

Ã
1



X
=1

01
̂X̂ (̂

∗
 − ∗)

!Ã
1



X
=1

∗X̂
0
1

!¯̄̄̄
¯

≡ 11 +12

Note that 11 ≤
µ
1


P
=1

°°° 1 P
=1 ̂X̂̂

∗


°°°2¶12µ 1


P
=1

°°° 1 P
=1 (̂

∗
 − ∗) X̂

0


°°°2¶12 =
 (1) (1) =  (1) by Lemmas A.3(ii) and A.11(i), where°°°°° 1

X
=1

(̂∗ − ∗) X̂
0


°°°°° ≤
°°°°°¡̂ − 0

¢0 1


X
=1

1X̂
0


°°°°°+
°°°°°̂02 1

X
=1

2X̂
0


°°°°°+
°°°°° 1

X
=1

³
̂
0
1̂1 − 001

0
1

´
X̂0

°°°°°
= (

−12) + (
p


−12) + (
√
1 + −1 ) =  (1)

Similarly, we can show that 12 =  (1) It follows that kΩ1k =  (1)

To prove that kΩ2k =  (1) we need to show
°°°̂ −

°°°

=  (1) By Theorem 3.3,

it directly implies that 
³
̂ = 

´
→ 1 Then it follows that kΩ2k =  (1)
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To prove that kΩ3k =  (1) we observe that

¯̄
01

Ω31

¯̄
=

¯̄̄̄
¯ 1

 2

X
=1

X
=1

X
=1

01


³
X̂X̂

0
 −XX

0


´
1

∗

∗


¯̄̄̄
¯

≤
¯̄̄̄
¯ 1

X
=1

Ã
1



X
=1

01
X̂

∗


!Ã
1



X
=1

∗
³
X̂0 −X0

´
1

!¯̄̄̄
¯

+

¯̄̄̄
¯ 1

X
=1

Ã
1



X
=1

01


³
X̂ − Xit

´
∗

!Ã
1



X
=1

∗X
0
1

!¯̄̄̄
¯ ≡ 21 +22

Note that21 ≤
µ
1


P
=1

°°° 1 P
=1X̂

∗


°°°2¶12µ 1


P
=1

°°° 1 P
=1 

∗
(X̂ −X)

0
°°°2¶12 and

1


P
=1

°°° 1 P
=1X̂

∗


°°°2 =  (1). It remains to show
1


P
=1

°°° 1 P
=1 

∗
( X̂ −X)

0
°°°2 =

 (1) by using that 1


P
=1 

∗


³
X̂ −X

´0
= 1


∗0

⎛⎜⎜⎝
X̂1 −X1

...

X̂ −X

⎞⎟⎟⎠  where 1

∗0 (X̂ −X) =

1

∗0 [̂1

11{ ∈ ̂}− 01
11

©
 ∈ 0

ª
]− 1


∗0 [

1


P
∈̂

̂̂1
1− 1



P
∈0


 01

1 ] By

similar arguments to those in the proof of Lemma A.9, we can show that 1


P
=1

°°° 1 P
=1 

∗
(X̂ −X)

0
°°°2

=  (1) Then 21 =  (1) Similarly, we can show that 22 =  (1) It follows that kΩ3k =
 (1)

By the proof of Theorem 3.5, we already show that ̂ −  =  (1) It follows that

̂ − =  (
−1) Since Ω4 =

P
=1 ̂ (̂ − ) +

P
=1(̂ − )

0
 

we have kΩ4k =  (1) It follows that Ω̂ −Ω =  (1).

The proof that Ω̂+ −Ω+ =  (1) is analogous and thus omitted. ¥

Proof of Lemma A.12. Let ̂ =  − 1̂1 − 2̂2 =  01 
0
1 + ̂∗ − 1̂1, where ̂∗ =

 +  002 
0
2 − 2̂2 with a typical element denoted as ̂

∗
 Then 1(1 ̂

1
1 ) =

1


P
=1 ̂

0
̂

1
1
̂

and 1(1 
0
1

1
1 ) =

1


P
=1 ̂

0
 011

̂ Noting that ̂
∗
 behaves like a zero mean  (0) process, ̂1

and ̂2 are 
−1- and −12-consistent, respectively, when 1 ≥ 01 the proof follows from obvious

modifications to Lemmas C.2-C.4 in Bai (2004). ¥

Proof of Lemma A.13. Note that we determine the number of unobserved stationary factors based
on the resultant residuals

̂ =  − ̂
0
11 − ̂

0
22 − ̂

0
1̂1 = 002

0
2 +  + 

where  = −(̂011+ ̂022+ ̂
0
1̂1−00101) signifies the parameter estimation error from early

stages. Given the preliminary consistency of ̂1 ̂2 and ̂
0
1̂1 and the fact that 

0
2 is stationary,

the proof of the lemma follows from that of Lemma A.10 in Su and Ju (2018) and is omitted. ¥

Proof of Lemma A.14. Here we consider the case where the model contains both stationary and
nonstationary common factors as analyses of the other cases are similar to but simpler than this

case. Let ̂ () = (̂1()  ̂ ())0 Noting that ̂ () ≡  − 1̂
0
̂()

− 2̂2 −
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̂ ()̂() =  − 1[̂


̂()
− 01] − 2[̂2 − 02] + [

00 − ̂ ()̂()] we make

the following decomposition on ̂2
̂(0)

= 1


P
=1 ̂ (0)

0 ̂ () :

̂2
̂(0)

=
1



X
=1

0 +
1



X
=1

³
 00 − ̂ (0 )̂(0 )

´0 ³
 00 − ̂ (0 )̂(0 )

´
+

1



0X
=1

X
∈̂(0)

³
̂


̂(0)
− 01

´0
011

³
̂


̂(0)
− 01

´

+
1



X
=1

³
̂2 − 02

´0
022

³
̂2 − 02

´
+

2



X
=1

³
 00 − ̂ (0 )̂(0 )

´0
 +

2



0X
=1

X
∈̂(0)

³
̂


̂(0)
− 01

´0
01

+
2



0X
=1

X
∈̂(0)

³
̂


̂(0)
− 01

´0
01

³
 0 − ̂ (0 )̂(0 )

´

+
2



X
=1

³
̂2 − 02

´0
02 +

2



X
=1

³
̂2 − 02

´0
02

³
 0 − ̂ (0 )̂(0 )

´
+

2



0X
=1

X
∈̂(0)

³
̂


̂(0)
− 01

´0
012

³
̂2 − 02

´

≡ 1



X
=1

0 +
9X
=1

1 

It is easy to show that

|11 | = 1



X
=1

°°°̂ ̂ −  00

°°°2 ≤ 2



X
=1

°°°̂1̂1 −  01 
0
1

°°°2+ 2



X
=1

°°°̂2̂2 −  02 
0
2

°°°2 =  (
−2
 )

by using arguments as in the proofs of Lemmas A.5 and A.11. Similarly,

|12 | ≤  max
1≤≤0

°°°̂
̂(0)

− 0

°°°2 1

 2

X
=1

°°011°° = 

¡
−1−2

¢
= 

¡
−1−1

¢


by Theorem 3.5. Similarly, |13 | ≤ max
1

k2k2 1



P
=1

°°°̂2(0 )− 02

°°°2 = 

¡
−1

¢


By the Cauchy-Schwarz inequality, |16 | ≤ 2 {|11 | |12 |}12 =  (
−2
 ) In addition, we

can show that 1 =  (
−2
 ) for  = 4 5 7 8 and 9 It follows that ̂

2
̂(0)

= 1


P
=1 

0
 +

 (
−2
 )

When  0, we use 1{ ∈ ̂()} = 1{ ∈ 0}+1{ ∈ ̂()\0}−1{ ∈ 0\̂()}
to obtain ̂2() =

1


P
=1

P
∈̂()

P
=1

h
 − ̂

0
̂()

1 − ̂
0
22 − ̂()0̂()

i2
=
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21 () +22 ()−23 () +24 ()  where

21 () =
1



0X
=1

X
∈0



X
=1

h
 − ̂

0
̂()

1 − ̂
0
22 − ̂()0̂()

i2


22 () =
1



0X
=1

X
∈̂()\0



X
=1

h
 − ̂

0
̂()

1 − ̂
0
22 − ̂()0̂()

i2


23 () =
1



0X
=1

X
∈0


\̂()

X
=1

h
 − ̂

0
̂()

1 − ̂
0
22 − ̂()0̂()

i2
 and

24 () =
1



X
=0+1

X
∈̂()

X
=1

h
 − ̂

0
̂()

1 − ̂
0
22 − ̂()0̂()

i2


Following the proof of Lemma A.11 in Su and Ju (2018), we can show that, after some relabeling the
indices for the group-specific parameters,

̂


̂()
− 0 = (

−12−1) for  = 1 0X
∈0




³
̂

´
= (1) and

X
∈0



 (̂) =  (1) for  = 1 

Then
P

=1 
³
 ∈ ̂() for  = 00 + 1 

´
=  (1)  which ensures that2 () =  (( )−1)

for all  = 2 3 4 Given the consistency of ̂
̂()

for  = 1 0 we can establish the consis-

tency of ̂( ) and ̂() as in the case where  = 0 With these results, we can show that

21 () =
1



P
=1 

0
+ (

−2
 ) The probability order for the remainder term in 21 ()

can be improved in some cases: (1) When there are no unobserved common factor, no stationary re-

gressors and endogeneity in 1, we can show that 21 () =
1



P
=1 

0
 +  (( )−1)

by using the fact that ̂


̂()
− 0 =  (

−12−1) for  = 1 0 when  ≥ 0; (2)

when there is stationary regressor 2 but no unobserved factor in the model, we can show that

21 () =
1



P
=1 

0
 + (

−1); (3) when there exists common nonstationary factor but no
common stationary factor or stationary regressor 2 21 () =

1


P
=1 

0
 +  (

−1 +
−2) = 1



P
=1 

0
 + (

−1) So the results in Lemma A.14 follows. ¥

C Discussion on the Identification of 01

In this appendix, we formally discuss the identification issue regarding the key parameter vector
of interest, namely, 01 Recall that β

0
1 = (011  

0
1) The major difficulty lies in the fact that

the dimensions of vec(β01) and vec
¡
 01
¢
all increase to infinity as ( ) → ∞ so that the usual

identification arguments (uniform convergence along with identification uniqueness) do not apply. In
fact, for the factor matrix  01  we are not able to identify the matrix itself but instead  01

 which

indicates the space spanned by the columns of  01 . Despite these difficulties, we argue here that the

identification of the 01’s is buried in the proof of Theorem 3.1 in the paper.

To proceed, recall that b = (b1b2), b = (1   )
0 and 1 =  − 0 for  = 1 2 and
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 = 1   As in Bai (2009, p.1264) and Su and Ju (2018, Proof of Theorem 3.1), it is easy to argue

that the objective function cannot achieve its minimum for very large value of 1

kbk2 so that there

is no loss of generality to restrict our attention on the case where 1

kbk2 ≤  and  is a large

positive constant that does not grow with  or  Recall that 

 (βα 1) =  (β1β2,1)

+ 


P
=1

Q
=1

°°1 − 
°° and  (β1 1) =

1


P
=1  (1 1) where

 (β1β2,1) =
1

 2

X
=1

¡
 − 11 − 22

¢0
1

¡
 − 11 − 22

¢
and

 (1 1) =
1

 2
(11 −  01 

0
1)
01(11 −  01 

0
1)

Apparently, if we have homogenous panels as in Bai (2009), then we can write  = −0 = 

(and similarly  =  and 0 = 0 ) to obtain

 (β1 1) = 01
1

 2

X
=1

01111 + tr

½
 011

0
1

 2
Λ001 Λ01


¾
− 201

1

 2

X
=1

011
0
1 

0
1

= 011 + 0 − 201 0 (C.1)

where = 1
 2

P
=1 

0
111  = (

Λ001 Λ
0
1


⊗ )  = 1



P
=1 

0
1⊗11 and  =vec

¡
1

0
1

¢


Note that we suppress the dependence of   and  on 1 Completing the squares, we have

 (β1 1) = 01 (1) 1 + 0 (C.2)

where  (1) = −  0−1 and  =  −−11 Then, under the key identification condition

inf
1∈F1

min( (1)) ≥  for some constant   0 (C.3)

where F1 = {1 ∈ R× : 1
 2
 011 = 1} we can follow Bai (2009) to first establish the consistency

of the estimator of the finite dimensional parameter 0 and then establish the consistency of the
estimator of  01

 As Bai (2009) remarks, the identification condition in (C.3) rules out common

regressors and time-invariant regressors. He discusses how to relax the condition in (C.3) to

min(
¡
 01
¢
) ≥  for some constant   0 (C.4)

such that both time-invariant and common regressors can be allowed in the regression provided
that they do not form collinearity with the common factors or factor loadings. The discussion
essentially hinges on the analysis of the expression of  (β1 1) in (C.2). As one can imagine,
similar relaxations would hold for our nonstationary panels if the slope coefficients were indeed
homogeneous.

Below we first outline the major challenges in the formal establishment of the identification
conditions and then explain how we establish the consistency result in Theorem 3.1 with the implicit
use of the identification conditions. Note that even in the stationary homogenous panel, Bai (2009)
only considers the latter directly.

By the proof of Theorem 3.1, we have

 (β1β2 1)− (β
0
1β

0
2 

0
1 ) =  (β1 1) + (( )

−12)
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where  (( )
−12) holds uniformly in (b1) ∈ {b ∈ R(1+2)×  1 ∈ R×1 : 1

 2
 011 = 1

and 1

kbk2 ≤ } Since we restrict our attention to the case where ©01ª form into some finite 

groups, they are be regarded as uniformly bounded. As a result, we can restrict the parameter space

for 1 and  to be bounded so that
1


P
=1

Q
=1 k1 − k =  (1) uniformly in (β1 α). Then



 (β1β2α 1)−


 (β

0
1β

0
2α

0  01 )

=
1



X
=1

[(1 2 1)−(
0
1 

0
2 

0
1 )] +





X
=1

Y
=1

k1 − k

=  (β1 1) + (( )
−12)

where we also apply the fact that  = 
¡
−12

¢
under Assumption 3.3(iv) to obtain the last equality.

Apparently,  (1 2 1) ≥ 0 and it attains its unique minimum value 0 at (1 1) =

(01 
0
1 ) Similarly,  (β1 1) attains its unique minimum value 0 at (β1 1) = (β01 

0
1 ) We

show that (β01 
0
1 ) is the unique point at which  (β1 1) achieves its minimum, where uniqueness

with respect to  01 is up to a rotation as in the stationary case. This is because  011
= 01

and

 (β
0
1 

0
11) = 0 for any nonsingular matrix 1 For ease of discussion, we assume that 

0
1 ∈ F1

(otherwise, we can always focus on its rotational version such that  011 ∈ F1). Let

(β∗1 
∗
1 ) = argmin

11∈F1
 (β1 1)

We need to show that (β∗1  ∗1 ) = (β
0
1 

0
1 ) We consider three cases: (1) 

∗
1 =  01  (2) β

∗
1 = β01 and

(3)  ∗1 6=  01 and β
∗
1 6= β01

In Case (1), we argue that if  ∗1 =  01  then we must have β
∗
1 = β01. In the case of 

∗
1 =  01  we

have

0 =  (β
∗
1 

∗
1 ) =  (β

∗
1 

0
1 ) =

1



X
=1

1

 2
(1

∗
1 −  01 

0
1)
0 01

(1
∗
1 −  01 

0
1)

=
1



X
=1

∗01

µ
1

 2
01 01

1

¶
∗1

Consequently, we must have ∗01
³
1
 2
01 01

1

´
∗1 = 0 for each  The identification condition in

Assumption 3.2(iv) is more sufficient to ensure 1
 2
01 01

1 to be uniformly asymptotically positive

definite. As a result, we must have ∗1 = ∗1 − 01 = 0 for all  That is, β
∗
1 = β01

In Case (2), we argue that if β∗1 = β01 then we must have 
∗
1 =  01  In the case of β

∗
1 = β01 we

have

0 =  (β
∗
1 

∗
1 ) =  (β

0
1 

∗
1 ) =

1



X
=1

1

 2
001

0
1
0∗1 

0
1 

0
1 = tr

µ
1

 2
 01

0∗1 
0
1

1


Λ001 Λ

0
1

¶


Assumption 3.2(i) ensures that 1

Λ001 Λ01 is asymptotically positive definite. It follows that  01 0∗1 

0
1 =

0 or equivalently ∗1 
0
1 = 0 Then we must have 

∗
1 =  01 
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Now, we consider Case (3). Suppose that  ∗1 6=  01 and β
∗
1 6= β01 Let  = 1

∗
1 −  01 

0
1 Then

0 =  (β
∗
1 

∗
1 ) =

1



X
=1

1

 2
0∗1  (C.5)

Observe that ∗1  denotes the residual vector in the least squares projection of  onto 
∗
1 :

 =  ∗1 1 + ̂ ∀

where 1 = ( ∗01  ∗1 )
−1

 ∗01  =  ∗01  2 and ̂ = ∗1  (C.5) implies that ̂ = 0 ∀ so that
1

∗
1 −  01 

0
1 =  ∗1  ∀ or equivalently

1
∗
1 = (

0
1  

∗
1 )

Ã
01

1

!
∀

But by the identification condition in Assumption 3.2(iv), the above system of equations can hold

only if ∗1 = 0 and 
∗
1 1 = − 01 01 ∀ (implying that  ∗1 =  01 and 1 = −01) Thus a contradiction

arises and we cannot have  ∗1 6=  01 and β
∗
1 6= β01

D The PPC-based Estimation Procedure

In this appendix, we provide more details on the practical implementation of the PPC-based estima-
tion procedure. It consists of five steps.

1. Obtain the initial estimates. By setting 1 = max, we obtain the initial estimates ̃1, ̃2
and ̃1 from the following set of nonlinear equations:

̃ =
³
̃
0
1 ̃

0
2

´0
=
³
0̃1



´−1
0̃1



̃1̃1 =

"
1

 2

X
=1

( − ̃)( − ̃)

#
̃1

where ̃1
=  − 1

 2
̃1̃

0
1

1
 2
̃ 01̃1 = 1  and ̃1 is a diagonal matrix.

2. Determine the number of common factors. We separately determine the number of
nonstationary factors and stationary factors.

(a) Determine the number of nonstationary common factors by choosing 1 to minimize the
following information criterion (IC)

1(1) = log 1(1 ̂
1
1 ) + 11( )

where 1(1 ̂
1
1 ) =

1


P
=1

P
=1(−̂

0
11−̂

0
22−̂

10
1 ̂

1
1 )

2, 1( ) =  2( )

and  =


4 log log .

(b) Determine the number of stationary common factors by choosing 2 to minimize the fol-
lowing IC

2() = log2(2 ̂
2
2 ) + 22( )
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where 2(2 ̂
2
2 ) =

1


P
=1

P
=1(̂ − ̂

20
2 ̂

2
2 )

2, ̂ =  − ̂
0
11 − ̂

0
22 − ̂

0
1̂1

and 2( ) = +


log
¡
2

¢
or 2( ) = +


log
¡
+


¢
as in Bai and Ng (2002).

3. Determining the number of groups. Let Λ ≡ © = 
−34  = 0

 for  = 0  
ª
for

some 0  0 and   1 Given any  ∈ {1 2 max} and  ∈ Λ compute IC3(̂() )
where ̂() = argmin1≤≤maxIC3 ()  Choose ̂ ∈ Λ such that IC3(̂ ()  ) is minimized.

Estimate the number of group by ̂ = min∈Λ ̂() as recommended by Su, Shi, and Phillips
(2016a). We find in simulations 0 = 005  = 2 and  = 3 work fairly well for all DGPs

under our investigation. If ̂ = 1 stop here and estimate a homogeneous nonstationary panel
as usual. Otherwise, move to the next step.

4. PPC-based estimation.

(a) Given  = ( ) = and ̂  1 ̂1 and ̂2, solve the following PPC criterion function to
obtain estimates of (βα) :



 (βα 1) =  (β1β2,1) +





X
=1

Y
=1

°°1 − 
°° 

where (β1β2,1) =
1

 2

P
=1

¡
 − 11 − 22

¢0
1

¡
 − 11 − 22

¢


and  = ( ) is a tuning parameter.

(b) Given C-Lasso estimates (̂ ̂1 ̂2), solve the following eigen-decomposition equation to
obtain estimates of 1

̂11 =

"
1

 2

X
=1

( − 1̂1 − 2̂2)( − 1̂1 − 2̂2)
0
#
̂1

where 1
 2
̂ 01̂1 = 1 and 1 is a diagonal matrix.

(c) Given the estimates ̂1 ̂ and ̂1 we obtain the cointegration residuals ̂ =  −
̂
0
11 − ̂

0
1̂1 The LS estimator of (̂2 ̂2) is the solution to the following set of

nonlinear equations:

̂2 =
³
02̂2

2

´−1
02̂2

̂

̂2̃2 =

"
1



X
=1

(̂ − 2̂2)(̂ − 2̂2)
0
#
̂2

where 1

̂ 02̂2 = 2 and 2 is a diagonal matrix.

(d) Iterate above steps until convergence and obtain jointly (̂1 ̂2 ̂ ̂1 ̂2). Obtain the

C-Lasso estimates {̂} for the group-specific parameters and {̂  = 1  ̂} for the
estimated group membership.

5. Post-Lasso estimator with bias correction.

(a) Given the estimated groups, {̂  = 1  ̂}, we obtain the continuous updated esti-
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mators ̂


̂

, ̂1 and ̂2 by iteratively solving the following equations:

̂


̂

=

⎛⎝X
∈̂

01̂1
1

⎞⎠−1⎧⎨⎩X
∈̂

01̂1
̂+ − 

p


³
̂+1 + ̂2

´⎫⎬⎭ 

̂11 =

⎡⎣ 1

 2

X
=1

X
∈̂

(̂ − 1̂


̂

− 2̂2)(̂ − 1̂


̂

− 2̂2)
0
⎤⎦ ̂1

̂22 =

⎡⎣ 1



X
=1

X
∈̂

(̂ − 1̂


̂

− 2̂2 − ̂1̂1)(̂ − 1̂


̂

− 2̂2 − ̂1̂1)
0

⎤⎦ ̂2
where ̂ = (̂

0
1  ̂

0
)

0 for  = 1 2 ̂1 =
1√
̂

P
∈̂

(
P

=1

P
=1

ˆ̄κ)∆̂21

̂2 =
1√
̂

P
∈̂

(
P

=1

P
=1

ˆ̄κ)∆̂24 ˆ̄2 ̂+1 =
1√
̂

P
∈̂

(
P

=1

P
=1

ˆ̄κ)∆̂+21

ˆ̄κ = 1 { = }− κ̂ κ̂ = ̂ 01(̂ 01̂1)−1̂1 = ̂ 01̂1 2
ˆ̄2 = ̂2 − 1



P
=1 ̂2 ̂ , and

̂ = ̂
0
1(

1

Λ̂01Λ̂1)−1̂1  Note that ̂1 1  ̂2 2 , and {̂1 ̂2} are also updated

continuously in the procedure to obtain ̂


̂



(b) Estimate Ω and Ω
+
 consistently by

Ω̂ =
̂

 2

X
=1

X
=1

X
=1

X̂X̂
0
̂

∗
̂
∗
 −

X
=1

̂ ̂
0
 

Ω̂+ =
̂

 2

X
=1

X
=1

X
=1

X̂X̂
0
̂

∗+
 ̂

∗+
 −

X
=1

̂+ ̂
+0
 

where X̂ = (X̂01  X̂
0
)

0 X̂0 is the th row of X̂ X̂ = 
̂1
11{ ∈ ̂} −

1


P
∈̂

̂̂1
1 , ̂ = diag (



̂1
  

̂
)⊗ ̂ = (̂

0
1   ̂

0
 )

0 ̂ =

̂1 + ̂2 ̂1 =
1√
̂

(
P

=1

P
=1

ˆ̄κ)∆̂211{ ∈ ̂} ̂2 =
1√
̂

(
P

=1

P
=1

ˆ̄κ)∆̂24 ˆ̄21{ ∈ ̂}, ̂∗ = −̂0 −̂022−̂
0
1̂1 for  ∈ ̂, ̂

+
 =

(̂+01   ̂
+0
 )

0 ̂+ = ̂+1 + ̂2 ̂
+
1 =

1√
̂

(
P

=1

P
=1

ˆ̄κ)

∆̂+211{ ∈ ̂}, and ̂∗+ = ̂+ − ̂
0
 1 − ̂

0
22 − ̂

0
1̂1 for  ∈ ̂.

E Extension: The Case of Incidental Time Trends

In the main body of the paper, we assume that there are no deterministic linear time trends in the
-equation and the nonstationary regressors and common factors are pure unit root processes without
drifts. This appendix relaxes these restrictions to incorporate the deterministic components into our
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panel latent factor cointegration model. Here we consider the following model:⎧⎪⎪⎪⎨⎪⎪⎪⎩
 =  + + 011 + 022 + 00101 + 00202 + 

1 = 1 + 1−1 + 1

1 = 1 + 1−1 + 
1
 

 (E.1)

where  = 1   ,  = 1    denotes the intercept or individual fixed effects and  denotes the
incidental linear time trends. We allow for the presence of drifts 1 in the I(1) regressors {1}
and drift 1 in the I(1) common factor {1}  The remaining variables are defined as before.

We first discuss the presence of an intercept  alone in the −equation. In this case, as discussed
in Section 3.1,  could be related to the non-zero means of the stationary regressors and stationary
common factors. For example, if (2) = 2 6= 0, we can rewritten the model (2.7) with the

inclusion of an intercept, such that  =  + 0011 + 002∗2 + 00101 + 00202 + , where

∗2 = 2 − 2 has zero mean and  = 0022. In this case, we can employ the within-group
demeaned transformation to eliminate the individual fixed effects to obtain

̃ = 01̃1 + 02̃2 + 001̃
0
1 + 002̃

0
2 + ̃

where ̃ = − 1


P
=1  and ̃1 ̃2 ̃1 ̃2 and ̃ are analogously defined. The PPC-based

estimation procedure is identical to that of Section 2.2 and implemented on the demeaned data.
Second, when we have both individual effects and incidental time trends, we can similarly employ

the within-group detrended data to eliminate both individual fixed effects and incidental time trends.
Specifically, we consider the detrended model:

̇ = 01̇1 + 02̇2 + 001̇
0
1 + 002̇

0
2 + ̇

where ̇, ̇1 ̇2 ̇1 ̇2 and ̇ are linearly detrended versions of , 1 2 1 2 and .
We can then apply the estimation procedure used in Section 2.2 with the dotted variables replacing
the original variables.

To gain a better understanding of the incidental linear time trends in (E.1), we observe that

1 = 10 + 1+
X

=1

1 = 10 + 1+ 01 (E.2)

where 01 ≡
P

=1 1 is a pure unit root process. In nonstationary time series, the reformation

in (E.2) reveals that nonstationary panel data with incidental parameters are composed of two
components: (1) stochastic trends represented by 01; and (2) incidental time trends 1. The

incidental parameters 1 can be interpreted as the individual-specific components of the linear

deterministic trend. Similarly, the nonstationary common factors 01 can be decomposed into the

stochastic trend component and the deterministic trend component, such that 01 = 10 + 1 +P
=1 

1
 

In general, the asymptotic properties of the resulting Lasso-type estimators will be modified by
changing the Brownian motion to the corresponding demeaned or detrended version in the respective
limit distributions. Specifically, for the detrended case we can define  =diag(1 

−1)  = (1 )0 
and () = (1 )0. Let  = bc the integer part of  for  ∈ [0 1]. Then as  →∞,   → ()
uniformly in  ∈ [0 1]. By the functional central limit theorem and continuous mapping theorem, we
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have

1√

̇1bc =

1√


⎡⎣1bc − X
=1

1
0


Ã
X
=1


0


!−1


⎤⎦
=

1√


⎡⎣01bc − X
=1

01
0


Ã
X
=1


0


!−1


⎤⎦
=

01bc√

− 1



X
=1

01√

 

0


Ã
1



X
=1

 
0


!−1
 

⇒ 1()−
Z 1

0
1()()

0
µZ 1

0
()()0

¶−1
() ≡ 

1()

where 1(·) is as defined above Assumption 3.2, and 
1(·) is a detrended Brownian motion obtained

by the 2 [0 1] projection residual of 1() on () Following the analysis in Sections 3.1-3.4, we can

show the demeaned or detrended residuals, such as (̇∆̇1∆̇
0
1 ̇

0
2 ̇2), satisfy Assumption

3.1-3.2 and Theorems 3.1-3.3 continue to hold with the demeaned data and detrended data. The
limiting distributions in Theorem 3.4-3.5 are modified by replacing the random processes 1 2
and 3 by the demeaned or detrended Brownian motions. The asymptotic bias and variance can be
estimated from the detrended or demeaned data. In short, the mixed normal limit theory is preserved
for the group-specific long-run estimators, which permits inference using standard test statistics.

F Some Additional Simulation Results

In this appendix, we report some additional simulation results for DGPs 1-6. In addition, we follow
the editor’s suggestion and consider two additional DGPs, namely DGPs 7-8, to closely mimic the
empirical application.

F.1 Additional simulation results for DGPs 1-6

First, we consider the performance of our classification and estimation procedure for DGPs 1-6 when
 = 200 and  = 40 Here  and  differ to a larger extent than their values in Tables 3-5 in the
paper. The results are reported in Table A.1. Comparing the results in Table A.1 with those in
Tables 3-5 suggests that our post-Lasso estimates (bias corrected or fully modified) and Cup-Lasso
estimates perform qualitatively similarly to those in Tables 3-5.

Now we consider two DGPs that mimic the data in the empirical applications where the sample
sizes, ( ) = (24 34) are relatively small. We now consider ( ) =  · (24 34) for  = 1 2 3 By
increasing the value of  from 1 to 3, we should be able to observe the improved performance of our
estimators. We generate the data as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

 = 11 + 22 + 33 + 1
0
11 + 

 = −1 + 

1 = 1−1 + 

 (F.1)

where  = 1   = 1   the dimension of 1 is 1 = 1 and  = (1 2)
0 in DGP 7 and

 = (1 2 3)
0 in DGP 8 below.
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DGP 7 (Mimicking Model (5.1) in Table 7) The observations are drawn from three groups with

1 : 2 : 3 = 7 : 7 : 10 such that  =
P3

=1 = 24 and  = 34 for  = 1 2 3. Let 3 = 0 and

1 = 05 in (F.1). The factor loadings 1 are i.i.d. 1 ∼ (01 1) and  = 01. Let  = (1 2)
0.

The long-run slope coefficients  exhibit the group structure in (2.3) for  = 3 and the true values
for the group-specific parameters are

(01 
0
2 

0
3) =

ÃÃ
0289

−0147

!


Ã
0101

0120

!


Ã
0058

0086

!!

which are as estimated for Model (5.1) from the real empirical data in our applications. The
errors  = ( 

0
∆

0
1)
0 are generated from the linear process  =

P∞
=0 −  where

 = ()Ω12, () = −35, Ω =

⎛⎜⎝025 Ω12 Ω13

Ω21 Ω22 Ω23

0 01×2 Ω33

⎞⎟⎠,  = (0  
10
  

20
 )

0,  ∼ i.i.d. (0 3),

and 
1
 ∼ i.i.d. (0 1). Let Ω12 = Ω

0
21 = Ω

0
23 =

³
02 02

´
, Ω13 = 02, Ω22 =

Ã
1 02

02 1

!
, and

Ω33 = 1.
DGP 8 (Mimicking Model (5.2) in Table 7) The observations are drawn from three groups with

1 : 2 : 3 = 7 : 7 : 10 such that  =
P3

=1 = 24 and  = 34 for  = 1 2 3. Let 1 = 05 in

(F.1). The factor loadings 1 are i.i.d. 1 ∼ (01 1). Let  = (1 2 3)
0. The long-run slope

coefficients  exhibit the group structure in (2.3) for  = 3 and the true values for the group-specific
parameters are

(01 
0
2 

0
3) =

⎛⎜⎝
⎛⎜⎝ 0464

−0413
1405

⎞⎟⎠ 

⎛⎜⎝00550022

0550

⎞⎟⎠ 

⎛⎜⎝−01040219

0567

⎞⎟⎠
⎞⎟⎠

which are as estimated for Model (5.2) from the real empirical data in our applications. The
errors  = ( 

0
∆

0
1)
0 are generated from the linear process  =

P∞
=0 −  where

 = ()Ω12, () = −35, Ω =

⎛⎜⎝025 Ω12 Ω13

Ω21 Ω22 Ω23

0 01×3 Ω33

⎞⎟⎠,  = (0  
10
  

20
 )

0,  ∼ i.i.d. (0 4),

and 
1
 ∼ i.i.d. (0 1). Let Ω12 = Ω021 = Ω023 =

³
02 02 02

´
, Ω13 = 02, Ω22 =

⎛⎜⎝ 1 02 02

02 1 02

02 02 1

⎞⎟⎠,
and Ω33 = 1.

Table A.2 reports the simulation results for DGPs 7-8. We summarize the main findings from
Table A.2. First, the classification result is not as good as those in Tables 1-5 when ( ) = (24 34)
This is as expected as on average we have only 8 individuals in each group and the large sample theory
cannot work very well in such as case. But as both and  increase, we observe that the classification
results improve quickly. Second, the Cup-Lasso estimator generally performs better than the two
post-Lasso estimators and thus it is recommended for empirical applications. In particular, as both
 and  increases, the performance of all estimators improve and the coverage of the Cup-Lasso
estimator gets closer to the oracle one.
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Table A.1 Classification and point estimation of 1 in DGPs 1-6

 0.1 0.2

  % Correct RMSE Bias % Coverage % Correct RMSE Bias % Coverage

classification classification

DGP 1

200 40 C-Lasso 99.99 0.0039 0.0001 93.20 99.98 0.0038 0.0001 94.92

post-Lasso 99.99 0.0039 0.0000 94.34 99.98 0.0039 0.0000 94.34

post-Lasso 99.99 0.0039 0.0000 94.34 99.98 0.0039 0.0000 94.34

Cup-Lasso 99.99 0.0039 0.0000 94.34 99.98 0.0039 0.0000 94.34

Oracle - 0.0039 0.0000 95.10 - 0.0039 0.0000 95.10

DGP 2

200 40 C-Lasso 99.98 0.0065 0.0052 62.66 99.97 0.0060 0.0048 67.82

post-Lasso 99.98 0.0038 0.0003 93.32 99.97 0.0038 0.0003 93.32

post-Lasso 99.98 0.0038 0.0003 94.34 99.97 0.0037 0.0003 94.16

Cup-Lasso 99.98 0.0038 0.0003 94.34 99.97 0.0037 0.0003 94.16

Oracle - 0.0037 0.0003 94.26 - 0.0037 0.0003 94.26

DGP 3

200 40 C-Lasso 98.73 0.0251 0.0144 40.40 98.58 0.0272 0.0133 42.60

post-Lasso 98.73 0.0234 0.0023 87.84 98.58 0.0233 0.0024 87.80

post-Lasso 98.73 0.0234 0.0025 87.22 98.58 0.0234 0.0026 87.36

Cup-Lasso 100.00 0.0057 0.0023 88.88 99.98 0.0057 0.0024 88.64

Oracle - 0.0057 0.0023 88.88 - 0.0057 0.0023 88.88

DGP 4

200 40 C-Lasso 98.82 0.0230 0.0124 51.02 98.67 0.0245 0.0114 52.76

post-Lasso 98.82 0.0193 0.0019 89.88 98.67 0.0190 0.0018 90.16

post-Lasso 98.82 0.0193 0.0022 89.96 98.67 0.0190 0.0021 89.92

Cup-Lasso 99.97 0.0072 0.0020 91.06 99.92 0.0071 0.0020 91.02

Oracle - 0.0071 0.0020 91.14 - 0.0071 0.0020 91.14

DGP 5

200 40 C-Lasso 98.69 0.0239 0.0143 40.52 98.59 0.0256 0.0135 42.30

post-Lasso 98.69 0.0222 0.0025 88.72 98.59 0.0215 0.0024 88.86

post-Lasso 98.69 0.0223 0.0027 88.44 98.59 0.0216 0.0026 88.46

Cup-Lasso 100.00 0.0057 0.0026 89.24 99.98 0.0057 0.0026 89.16

Oracle - 0.0057 0.0026 90.84 - 0.0057 0.0026 90.84

DGP 6

200 40 C-Lasso 99.93 0.0212 0.0191 26.56 99.92 0.0206 0.0183 28.88

post-Lasso 99.93 0.0140 -0.0102 70.66 99.92 0.0140 -0.0103 70.50

post-Lasso 99.93 0.0080 0.0009 93.10 99.92 0.0079 0.0009 93.02

Cup-Lasso 100.00 0.0075 0.0008 93.16 99.99 0.0075 0.0008 93.24

Oracle - 0.0075 0.0008 92.62 - 0.0075 0.0008 92.62
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Table A.2 Classification and point estimation of 1 in DGPs 7-8

 0.1 0.2

  % Correct RMSE Bias % Coverage % Correct RMSE Bias % Coverage

classification classification

DGP 7

24 34 C-Lasso 77.78 0.0951 0.0156 79.17 76.52 0.0929 0.0145 76.67

post-Lasso 77.78 0.0350 -0.0049 79.57 76.52 0.0427 -0.0026 78.69

post-Lasso 77.78 0.0353 -0.0056 80.74 76.52 0.0430 -0.0032 79.31

Cup-Lasso 82.78 0.0248 -0.0001 78.23 81.81 0.0254 0.0006 77.13

Oracle - 0.0151 0.0009 88.52 - 0.0151 0.0009 88.52

48 68 C-Lasso 86.97 0.0939 0.0072 72.18 87.16 0.0755 0.0069 71.33

post-Lasso 86.97 0.0192 -0.0043 82.72 87.16 0.0201 -0.0033 83.15

post-Lasso 86.97 0.0192 -0.0042 83.45 87.16 0.0202 -0.0032 83.72

Cup-Lasso 92.94 0.0062 -0.0011 87.37 93.55 0.0059 -0.0007 88.04

Oracle - 0.0048 0.0005 92.14 - 0.0048 0.0005 92.14

72 102 C-Lasso 91.57 0.0714 0.0009 67.77 92.02 0.0521 0.0017 67.36

post-Lasso 91.57 0.0147 -0.0034 85.72 92.02 0.0144 -0.0032 86.05

post-Lasso 91.57 0.0147 -0.0033 86.62 92.02 0.0144 -0.0030 86.85

Cup-Lasso 96.67 0.0030 -0.0005 91.06 97.19 0.0028 -0.0003 91.78

Oracle - 0.0025 0.0003 92.42 - 0.0025 0.0003 92.42

DGP 8

24 34 C-Lasso 82.63 0.0903 0.0136 78.22 79.82 0.0912 0.0164 76.65

post-Lasso 82.63 0.0657 -0.0177 83.58 79.82 0.0694 -0.0137 83.85

post-Lasso 82.63 0.0672 -0.0176 83.25 79.82 0.0713 -0.0131 82.25

Cup-Lasso 96.39 0.0275 0.0036 83.27 92.13 0.0355 0.0047 80.90

Oracle - 0.0241 0.0017 82.72 - 0.0241 0.0017 82.72

48 68 C-Lasso 89.24 0.0553 -0.0013 65.03 86.77 0.0567 0.0027 66.22

post-Lasso 89.24 0.0531 -0.0156 85.82 86.77 0.0515 -0.0135 83.98

post-Lasso 89.24 0.0532 -0.0155 86.52 86.77 0.0515 -0.0134 84.55

Cup-Lasso 99.56 0.0109 0.0001 90.23 98.12 0.0099 0.0003 89.37

Oracle - 0.0056 0.0002 90.47 - 0.0056 0.0002 90.47

72 102 C-Lasso 91.95 0.0379 0.0000 58.53 90.77 0.0393 0.0017 58.80

post-Lasso 91.95 0.0424 -0.0119 88.12 90.77 0.0408 -0.0112 87.90

post-Lasso 91.95 0.0421 -0.0116 87.72 90.77 0.0407 -0.0109 88.15

Cup-Lasso 99.97 0.0027 0.0003 92.33 99.71 0.0028 0.0003 92.25

Oracle - 0.0027 0.0003 92.33 - 0.0027 0.0003 92.33
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