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Abstract

Abstract

Conducting polymer micro/nanostructures have recently received great attention because of
their long conjugation length, high surface area and promising applications in a variety of
fields. At the same time, fabrication of micro/nanostructures of conducting polymers with
controlled morphology and size remains a challenge for Chemists and Materials Scientists.
The focus of this thesis, therefore, is to develop novel conducting polymer
micro/nanostructures with a well defined morphology and to consider their potential for
applications as sensor and actuating elements. In each case, the structure, conductivity and
electrochemical properties of the conducting polymer nanostructures have been characterized
using FTIR, Raman, UV-vis, XPS and elemental analyses, conductivity measurements and

cyclic voltammetry.

Hollow nanospheres of substituted polyanilines (PANI) were fabricated chemically using
ammonium persulfate as the oxidant in the presence of a polymeric acid poly(methyl vinyl
ether-alt-maleic acid) (PMVEA). The effects of chemical reaction conditions, including the
weight ratio of monomer to PMVEA, concentration of monomer, the molar ratio of monomer
to oxidant, the reaction temperature and the type of the monomer, on the formation of hollow
nanospheres were systematically studied. The weight fraction of PMVEA to monomer is
particularly important for determining the size and uniform shape of the substituted PANI
hollow spheres. The formation mechanism for the hollow nanospheres was studied in detail
for the case of poly (o-methoxyaniline). The hollow nanospheres were used to construct a
simple electrochemical oligonucleotide (ODN) sensor, where ODN probes were covalently

grafted onto the residual carboxylic acid functionalities of the hollow nanospheres.



Abstract

Poly(3,4-ethylenedioxythiophene) (PEDOT) hollow microspheres ranging from 0.5 to 10 um
in diameter were synthesized by chemical oxidative polymerisation of EDOT using
ammonium persulfate in a catanionic surfactant solution, obtained by mixing
cetyltrimethylammonium bromide (CTAB) and sodium dodecylbenzenesulfonate (SDBS).
The effects of chemical reaction conditions, including the molar ratio of CTAB to SDBS, the
concentration of total surfactants, the type of oxidant and magnetic stirring, on the formation
of the PEDOT hollow microspheres were investigated systematically. The formation of
PEDOT hollow spheres is presented as following a vesicle-templating mechanism, supported
by Freeze Fracture TEM results. Moreover, the PEDOT hollow spheres showed a more
effective electrocatalytic activity for the oxidation of ascorbic acid, compared to conventional
PEDOT granular particles, which were also effective in lowering the ascorbic acid oxidation

overpotential.

By extending vesicle-template method into the electropolymerisation of polypyrrole (PPy)
films with para-toluene sulfonate (pTS) as the main dopant, a novel micro ring structured
surface morphology was prepared by using CTAB/SDBS vesicles as templates.
Spectroscopic characterisations confirmed that the micro ring structured PPy/pTS films
showed similar molecular structure and doping degree to conventional PPy/pTS films, while
the incorporation of some DBS anions had a minor effect on lowering film conductivity. The
actuation behaviour of micro ring structured PPy/pTS films was investigated under
electrochemical stimulation. The micro ring structured PPy/pTS films showed superior

actuation stability compared to conventional PPy/pTS films.
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ABBREVIATIONS

A anion

AAO anodic aluminium oxide

AC alternating current

Ag silver

AgCl silver chloride

AOT sodium bis(2-ethyhexyl) sulfosuccinate
APS ammonium persulfate

aq. aqueous

C coulomb

CA chronoamperometry

ca. approximately

Ca®" calcium ion

CB conduction band

CdS cadmium sulfide

CdSe cadmium selenide

Ce(S04), cerium sulfate

CHCl;4 chloroform

CH;0OH methanol

ClO4 perchlorate

cm centimetre

cme critical micelle concentration
Cp chronopotentiometry or conducting polymer
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Abbreviations

CPE carbon paste electrode

CPE, space charge capacitance

CTAB cetyltrimethyl ammonium bromide

c/s core/shell

CSA camphorsulfonic acid

Cu,O cuprous oxide

Ccv cyclic voltammetry

d thickness

D dimension

DBS docecyl benzene sulfonate

DBSA dodecylbenzene sulphonic acid

DC direct current

def. deformation

DOCES 1,2-bis(decyloxycarbonyl) ethane-1-sulphonate
DMSO dimethyl sulfoxide

EB emeraldine base

EDOT 3,4-ethylenedioxylthiophene

EDAC 1-ethyl-3-(3-dimethylaminpropyl)carbodiimide
EIS electrochemical impedance spectroscopy

ES emeraldine salt

Epy, anodic peak potential

Epe cathodic peak potential

AE, potential difference between anodic peak and cathodic peak
FeCls ferric chloride

Fe, 05 iron oxide
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FFTEM

FTIR

H>A
HCI
H,0O,
H;POy4
H,S04
HSO4

ITO

KCN

KE
K4[Fe(CNys]
K,Cr,0O4
KIOs
LiClOg4

e

Al/ly

Li

pL

Abbreviations

freeze fracture transmission electron microscopy
fourier transform infrared spectroscopy
hour

hydrogen cation

ascorbic acid

hydrochloric acid

hydrogen peroxide

phosphoric acid

sulfuric acid

bisulfate

indium-tin oxide

current

anodic current peak

cathodic current peak

potassium ion

potassium cyanide

kinetic energy

potassium ferrocyanide

potassium dichromate

potassium iodate

lithium perchlorate

chain length of hydrophobic group in surfactants
strain (displacement length/original length)
lithium

microlitre
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Abbreviations

M moles per litre

mA milliampere

M, number average molar mass
M,, weight average molar mass
mL millilitre

mg milligram

mm millimeter

mV millivolt

mM milli moles per litre

um micrometer

uM micro molar per litre
m-MA meta-methylaniline

o-MA othor-methylaniline
m-MOA meta-methoxyaniline
o-MOA ortho-methoxyaniline

MPa mega pascal

NapTS para-toluene sulphonate sodium salt
Na,S,054 sodium persulfate
Na,HPO4 dibasic sodium phosphate
N» nitrogen

NH; ammonium

N,H4 hydrazine

(NH4),Ce(NOs)6 ceric ammonium nitrate
(NH4),S,05 ammonium persulfate

nm nano meter
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Abbreviations

pm
NO5
B-NSA

ODN

PA
PANI
PADPA
PBS

PC

PD

PdS
PEDOT
PMVEA
PmMA
PoMA
PmMOA

PoMOA

PT
PP
PPP
PPV
PS

PS

micrometer

nitrate

B-naphthalenesulfonic acid
oligonucleotide

packing parameters for surfactants aggregates
polyacetylene

polyaniline
p-amino-diphenylamine
phosphate buffer solution
propylene carbonate
polydispersity

palladium sulfide
poly(3,4-ethylenedioxythiophene)
poly(methyl vinyl ether-alt-maleic acid)
poly(m-methylaniline)
poly(o-methylaniline)
poly(m-methoxyaniline)
poly(o-methoxyaniline)
polypyrrole

polythiophene

polyphenylene
polyparaphenylene
polyparaphenylene vinylene
pernigraniline salt

polystyrene
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Abbreviations

Pt
PTSA
PSA
PSS
p-TSA

pTS

QCM

SA
SCE
SDBS
SDS
SHE
SEM
S10,
SO4

str.

Ti0,

TS

platinum
pyrene-1,3,6,8-tetrasulphonate
pyrenesulphonate
poly(styrene sulphonic acid)
para-toluenesulphonic acid
para-toluenesulphonate
charge

quartz crystal microbalance
charge transfer resistance
second

siemen

sulfide

salicylic acid

saturated calomel electrode
sodium docecyl benzene sulfonate
sodium dodecylsulfate
standard hydrogen electrode
scanning electron microscopy
silicon dioxide

sulfate

stretching

temperature

time

titanium oxide

toluene sulphonate
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Abbreviations

TEM
TPB
TX-100

Uv-vis

VB
Wi
wag.

wt

XPS

G

transmission electron microscopy
tetraphenylborate

polyoxyethylene isooctylcyclohexyl ether
ultraviolet-visible

volt

volume of hydrophobic head in surfactants
valence band

Warburg impedance

waging

weight

cation

X-ray photoelectron spectroscopy
resistivity

conductivity

ohm

cross section area of hydrophilic head group in surfactants
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