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Inference of Intensity-Based Models for
Load-Sharing Systems With Damage Accumulation

Christine H. Müller and Renate Meyer

Abstract—To model damage accumulation for load-sharing sys-
tems, two models given by intensity functions of self-exciting point
processes are proposed: a model with additive damage accumula-
tion and a model with multiplicative damage accumulation. Both
models include the model without damage accumulation as a special
case. For both models, the likelihood functions are derived and
maximum likelihood estimators and likelihood ratio tests are given
in a scale-invariant version and a scale-dependent version. Fur-
thermore, a Bayesian approach using Markov chain Monte Carlo
methods for posterior computation is provided. The frequentist and
Bayesian methods are applied to a data set of failures of tension
wires of concrete beams where a significant damage accumulation
effect is confirmed by both additive and multiplicative damage ac-
cumulation models. This is all the more remarkable as a simulation
study indicates that the tests for an existing damage accumulation
effect are rather conservative. Moreover, prediction intervals for
the failure times of the tension wires in a new experiment are given,
which improve former prediction intervals derived without damage
accumulation. The simulation study considers a scenario with a
fixed time horizon and one with fixed numbers of failed components
of the systems.

Index Terms—Bayesian inference, confidence sets, credible sets,
deviance information criterion, Gibbs sampler, likelihood ratio test,
prediction intervals, self-exciting point process.

NOMENCLATURE

Acronyms
W Model without damage accumulation.
M Model with multiplicative damage accumulation.
A Model with additive damage accumulation.
M M = W, M = M, or M = A.
ML Maximum likelihood.

Notation
j Number of system (j = 0, 1, . . . , J).
j = 0 A new system.
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sj Initial stress in system j.
Kj Number of components in system j.
Ij Number of observed failures in system j.
τj End of observation time in system j.

τ τ = 1
J

∑J
j=1 τj or τ = τ� with given τ�.

Ic Critical number of failures.
Nj(t)t≤τj Point process of failures in system j.
Nj(t)t≤τj

Realization of Nj(t)t≤τj .
Ti,j Time of ith failure in system j, T0,j := 0.
ti,j Realization of Tij .
Wij Wij := Ti,j − Ti−1,j , i = 1, . . . , Ij .
W(Ij+1)j W(Ij+1)j := τj −WIjj .
aij Load-sharing stress at tij .
aj(t) Load-sharing stress at time t.
Cj(i) Cumulated stress at tij .
Aj(t) Cumulated stress at time t.
λj(t) Intensity function at t with λM

j (t) for model M =
W, M, A.

Λj(t) Cumulative intensity function at t with ΛM
j (t) for

model M = W, M, A.
θ Unknown parameter vector.
θ̂ Estimator of θ.
L(θ) Likelihood function at θ with LM(θ) for model M

= W, M, A.

I. INTRODUCTION

CONSIDER J systems, each with Kj , j = 1, . . . , J , par-
allel components which fail successively due to a stress

sj which may be different for the J systems. In a load-sharing
system, the stress is redistributed to the surviving components
of the system after a component of the system has failed. This
type of behavior occurs, for example, in systems of electrical
components, fiber bundles, or lumber constructions; see also [1]
for other examples. In particular, we are interested in the failure
times of concrete beams each consisting of Kj = 35 tension
wires. The tension wires break successively due to their cyclic
load. The exact time points of the breaks are determined by
acoustic measurements.

The study of load-sharing systems goes back to [2]–[5] who
derived reliability properties. These studies are ongoing; see,
e.g., [6]–[11].

Statistical inference for load-sharing systems has mainly been
developed over the last 20 years. Many authors such as [1],
[12]–[16] have studied models where the number of unknown
parameters coincides with the number of failures observed in the
system. These approaches can only be applied if the number of
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components of the system is not too high. The authors in[17]–
[19] reduce the number of unknown parameter to one or two
parameters using special link functions.

In all these models, the stress on the remaining components is
modeled as a function of the number of failed components. The
duration of the load-shared stress is not included in the models.
However, it is very likely that the failure risk of the remaining
components does not only depend on the number of remaining
components but also on how long the remaining components
were exposed to the redistributed stress. Degradation processes
will often lead to a damage accumulation which increases the
risk of failure continuously between successive failures.

There are several approaches to model and analyze dam-
age accumulation and degradation by continuously increasing
stochastic processes such as those of [20]–[25]. These degrada-
tion processes can also be linked to different stress levels for
accelerated life testing as was done, for example, by [26]. In
step-stress accelerated degradation testing as in [27] and [28],
the stress is increased stepwise during the degradation process.
Most of these approaches assume that the stepwise increase of
the stress is given by the experimenter at predefined time points
and the effect of increased stress is modeled by the cumulative
distribution function in so-called cumulative exposure models
originally proposed by [29].

It is also possible to use the cumulative exposure model when
the stepwise increase of the stress is caused by failing com-
ponents as in [16]. Then the cumulative distribution functions
are conditional cumulative distribution functions depending on
the past failure times. However, the approach of [16] results in
failure risk (hazard) functions which depend only on the number
of failed components which can be seen from the derived hazard
functions in [30] for a general class of distributions. Moreover,
the hazard functions are constant between failure time points
if the exponential distribution is used. The combination of the
cumulative exposure model with a degradation process as in [27]
and [28] also provides no failure risk depending on the history of
failures since the degradation process depends additionally only
on the cumulated time. This is similar to the approach of [1]
and [31] where a fixed failure rate function is multiplied by
load-sharing effects. Similarly, the authors of [32] add a simple
load-sharing effect to a Wiener degradation process and estimate
only the parameters of the Wiener process.

Hence, all these models for degradation and load-sharing
assume that the actual failure risk depends only on the current
number of failed components and the cumulated time, but the
failure risk is independent of the damage accumulation in the
past. This means that these models do not model the history
of damage accumulation even though this history may have an
important effect. For example, the failure risk of the remaining
components of a system after the failure of the second com-
ponent may not only depend on the failure time of the second
component but also on the time of the first failure. If the first
failure happens very early, then the remaining components are
exposed to higher stress for a longer time than in the case where
the first failure appears shortly before the second failure. Hence,
the failure risk function should depend on the time intervals
between past failures.

Here, we propose an alternative approach by considering the
failure times as realizations of a point process. The interarrival
times of the point process are the times between successive
failures in a system. For load-sharing models, many authors
such as in [12], [14], [16], and [33] assume that these interarrival
times have an exponential distribution which depends only on the
number of failures observed before. This assumption means that
the corresponding point process is a birth process as considered
in [34, pp. 95–96] and in [35, pp. 21, 95]. A birth process
has a constant intensity rate (hazard rate) between the events
(failures). To incorporate the potential damage accumulation, we
assume an increasing intensity rate between the failures where
the increase depends on all past interarrival times, i.e., the history
of damage accumulation. This yields a so-called self-exciting
point process with interarrival times that are not exponentially
distributed; see, e.g., [34, p. 287]. We present an additive and
a multiplicative model to include the past interarrival times and
consider two scenarios: systems observed up to a given finite
time horizon and systems observed up to a given number of
failures. The scenario with given number of failures is realistic
for systems with short failure times, while a fixed time horizon is
often used in experiments with long failure times. The scenario
of a fixed time horizon provides censored observations which
we incorporate in our analysis.

In Section II-A, the intensity functions of the load-sharing
models with additive and multiplicative damage accumulation
are derived. These intensity functions are given in a scale-
dependent and a scale-invariant version. Section II-B presents
the likelihood functions for these models and Section II-C
demonstrates how to simulate the damage accumulation pro-
cesses. Section III-A discusses briefly the calculation of the
maximum likelihood (ML) estimators and provides two types
of likelihood ratio tests: one for testing for an existing damage
accumulation effect and one for testing for a given parameter
vector. Thereby, the second test can be used to provide con-
fidence sets and prediction intervals as in [19]. An alternative
Bayesian approach to estimating the parameters of these models
and to calculating prediction intervals is outlined in Section III-
B. In Section IV, we apply the methods to our data from the
experiments with concrete beams. It turns out that the damage
accumulation effect is significant in both load-sharing models
with damage accumulation. This holds although the likelihood
ratio test for this effect is rather conservative for finite samples
as is shown by the simulations in Section V. This significance of
the damage accumulation effect is furthermore corroborated by
the Bayesian model comparisons. Moreover, the calculated pre-
diction intervals for a new experiment in Section IV-C improve
the results of [19] using a model without damage accumulation.
Finally, Section VI provides a discussion of the results. All
proofs are given in the Appendix.

II. LOAD-SHARING MODELS WITH AND WITHOUT DAMAGE

ACCUMULATION

Assume that there are J stochastically independent systems
where the jth system has Kj components. The systems are
exposed to different initial stresses sj and are observed up to
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different time points τj for j = 1, . . . , J . The total number of
observed failed components up to τj is denoted by Ij . Clearly,
Ij ≤ Kj . Then the failure times of the components of the jth sys-
tem 0 < t1,j < · · · < tIj ,j are realizations ofT1,j < · · · < TIj ,j

and Nj(t)t≤τj with

Nj(t) :=

Kj∑
i=1

1I(0,t](ti,j)

is the realization of the corresponding counting process
Nj(t)t≤τj over [0, τj ] with Nj(τj) = Ij . A counting process
Nj(t)t≤τj is also called a point process according to [36]. Set
T0,j := t0,j := 0. If Nj(τj) = Kj , then all of the Kj compo-
nents have failed, i.e., Ij = Kj , and we set τj := tKj ,j = tIj ,j
since it is clear that the experiment stops at tIj ,j in this case.
The point processes Nj(t)t≤τj are stochastically independent
for j = 1, . . . , J .

A. Intensity Functions

Point processesNj(t)t≤τj are completely determined by their
intensity functions λj(t)t≤τj which are stochastic processes
depending on past events. Especially, it holds that E[Nj(t)] =

E[
∫ t

0 λj(t)dt] and λj(t)dt ≈ E[Nj(dt)|Hj,t−] where Hj,t− is
the σ-algebra of events at times up to but not including t, see,
e.g., [36, p. 232, Lemma 7.2.V on p. 241] or [37, pp. 51, 66,
73]. This means that λj(t) describes the risk that a component
of the system j fails at time t if the previous failures before t are
given.

If the systems are load-sharing systems without damage ac-
cumulation, the following left-continuous conditional intensity
function for the jth system withKj components and initial stress
sj is a sensible choice

λj(t) = bθ (aj(t)) (1)

where bθ is an increasing function depending on a parameter
vector θ and aj is an increasing function of the stress sj and the

number Nj(t−) :=
∑Kj

i=1 1I(0,t)(ti,j) of failures before t. aj(t)
provides the actual stress for the components at time t. Note
that an increasing function bθ only makes sense for systems that
are weakened by component failures. There exists systems, for
example, in software reliability, where this might be not the case.

In particular, we set

aij := aj(t) if Nj(t−) = i− 1.

An example of aj(t) and aij is given by

aj(t) =
sj

Kj −Nj(t−)
and

aij =
sj

Kj −Nj(t−)
=

sj
Kj − (i− 1)

. (2)

This provides the so-called “equal load-sharing model.” It means
that for t with Nj(t−) = 0, i.e., no failure is observed before
time t, we get aj(t) =

sj
Kj

, i.e., the initial stress is distributed

equally over theKj components. Moreover, for twithNj(t−) =
Kj

2 , we get aj(t) =
2 sj
Kj

. Hence, the stress doubles for each of the
remaining components after half of the components have failed.

A reasonable link function bθ between actual stress and failure
time is given by the power law model of Basquin [38] who
provided a link between stress x and lifetime in the form

bθ(x) := exp(−θ1 + θ2 ln(x)) = exp(−θ1)x
θ2 (3)

with θ1 ∈ R and θ2 ∈ [0,∞).
In particular, model (1) implies that the conditional intensities

between events are constant. Hence, the interarrival times (wait-
ing times)Wij := Ti,j − Ti−1,j have an exponential distribution
with rate parameter bθ(aij). Using the power law of Basquin, it
holds then

ln(E(Wij)) = θ1 − θ2 ln(aij)

so that the time between successive failures decreases with
increased actual stress aij . In the following, we exclusively use
the Basquin link (3) so that the intensity function of a model
without damage accumulation is given by

λ̃W
j (t) := exp(−θ1)aj(t)

θ2 .

Since the main aim is to extend this model to a model
with damage accumulation, the cumulative risk Λj(t) :=∫ t

0 λj(x) dx is of high importance. To get a cumulative risk that
does not depend on the time scale of t (measured, e.g., in seconds,
minutes, hours, days, and years), it is appropriate to consider

λW
j (t) :=

1

τ
exp(−θ1)aj(t)

θ2 (4)

for the model without damage accumulation (also called model
W here).

The value τ can be chosen automatically as mean time horizon

1

J

J∑
j=1

τj

or manually as a given value τ�. The use of τ = 1
J

∑J
j=1 τj

leads automatically to time scale-invariant estimators and cu-
mulative risks. However, simulation studies for this choice of τ
are more difficult as will become apparent later. Moreover, this
choice is only possible when the time horizons are specified in
advance by the experimenter. However, time horizons are not
fixed if the experiment is allowed to continue until a certain
amount of failures have occurred. Then 1

J

∑J
j=1 τj depends on

the stochastic processes and will influence the behavior of the
statistical methods. To accommodate this sampling situation,
we introduced the option of choosing a fixed value τ∗ for τ
where τ∗ should be in accordance with the respective unit of
time measurements. Then the cumulative risks and estimates
depend on this τ�. However, if the time scale and τ� are changed
concordantly (e.g., the time scale is changed from seconds to
minutes and τ� is changed to τ�/60), then the cumulative risks
and the estimates remain unchanged.

To extend this model without damage accumulation to a load-
sharing model with damage accumulation, first note that

Aj(t) :=

∫ t

0

aj(x)dx
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=

⎛⎝aj(t)

⎛⎝t−
Nj(t−)∑
k=1

Wkj

⎞⎠+

Nj(t−)∑
k=1

akjWkj

⎞⎠
accumulates the stress aj(x) until time t in the sense of load
sharing. In particular, Aj(t) takes into account how long the
stress was distributed over the remaining components. Again, it
is reasonable to divide Aj(t) by τ to adjust for the time scaling.

One could use Aj(t) inside the Basquin link. However, then
the pure load-sharing model given by (4) would not be a special
case. Therefore, the following two models are considered as
genuine extensions of the load-sharing model (4).

Model M: load sharing with multiplicative damage accumu-
lation given by

λM
j (t) :=

1

τ
exp(−θ1)aj(t)

θ2

(
1

τ
Aj(t)

)θ3

(5)

and
Model A: load sharing with additive damage accumulation

given by

λA
j (t) :=

1

τ
exp(−θ1)

(
aj(t) + θ3

1

τ
Aj(t)

)θ2

. (6)

In both models, the pure load-sharing model (4) is obtained
by setting θ3 = 0. Note also that the second τ in (5) and (6)
especially allows to avoid too small or too large effects of Aj(t)
for some time scales and thus can avoid numerical problems.
As is shown later, these numerical problems can be serious, in
particular, for model A if τ is chosen inappropriately for the time
scale.

B. Likelihood Functions

Although not a proper waiting/interarrival time, setting
W(Ij+1)j := τj − tIj ,j , j = 1, . . . , J , allows to define the cu-
mulative stress

Cj(0) := 0, Cj(i) :=

i∑
k=1

akjWkj , i = 1, . . . , Ij + 1 (7)

for j = 1, . . . , J . In particular, we set a(Kj+1)j := 0 if Ij = Kj ,
i.e., if all components have failed.

Theorem II.1: Let LM and LA denote the likelihood function
for the load-sharing model with multiplicative and additive
damage accumulation given by (5) and (6), respectively. Then
the log-likelihood functions are given by

ln(LM ((θ1, θ2, θ3)
�))

=

J∑
j=1

⎧⎨⎩
Ij∑
i=1

[−θ1 + θ2 ln(aij)

+ θ3 ln

(
1

τ
Cj(i)

)
− ln(τ)

]

− exp(−θ1)

θ3 + 1

⎡⎣Ij+1∑
i=1

aθ2−1
ij

((
1

τ
Cj(i)

)θ3+1

−
(
1

τ
Cj(i− 1)

)θ3+1
)]}

(8)

and

ln(LA((θ1, θ2, θ3)
�))

=
J∑

j=1

⎧⎨⎩
Ij∑
i=1

[
−θ1 + θ2 ln

(
aij + θ3

1

τ
Cj(i)

)
− ln(τ)

]

− exp(−θ1)

θ3(θ2 + 1)

⎡⎣Ij+1∑
i=1

1

aij

((
aij + θ3

1

τ
Cj(i)

)θ2+1

−
(
aij + θ3

1

τ
Cj(i− 1)

)θ2+1
)]}

. (9)

Let LW be the likelihood function of the load-sharing model
without damage accumulation given by (4). Then, LW can be
obtained from the likelihood function of the load-sharing model
with multiplicative damage accumulation by setting θ3 = 0.
Setting θ3 = 0 is not possible for the likelihood function of the
load-sharing model with additive damage accumulation. How-
ever, ln(LW ((θ1, θ2)

�)) is the limit of ln(LA((θ1, θ2, θ3)
�)) if

θ3 goes to zero. Hence, we have the following corollary.
Corollary II.2: The likelihood function LW of the load-

sharing model without damage accumulation satisfies

ln(LW ((θ1, θ2)
�)) = ln(LM ((θ1, θ2, 0)

�))

= lim
θ3→0

ln(LA((θ1, θ2, θ3)
�))

=

J∑
j=1

⎧⎨⎩
Ij∑
i=1

[−θ1 + θ2 ln(aij)− ln(τ)]

− exp(−θ1)

τ

⎡⎣Ij+1∑
i=1

aθ2ij Wij

⎤⎦⎫⎬⎭ . (10)

Note that the likelihood function in (10) would also be
obtained if one uses the fact that the waiting times Wij in
the pure load-sharing system are independent with exponential
distribution with parameter 1

τ exp(−θ1)a
θ2
ij .

C. Simulating the Processes

For calculating the proposed prediction intervals and for
conducting a simulation study, the damage accumulation point
processes must be simulated.

Observations from the load-sharing model without dam-
age accumulation can be easily simulated since the interar-
rival times Wij have exponential distributions with parameters
1
τ exp(−θ1)a

θ2
ij . The simulation of a load-sharing model with

damage accumulation is more complicated. We adopt here a
method which is used for the generation of a nonhomogeneous
Poisson process; see, e.g., [39]. Therefore, note that the intensity
function λj can be interpreted as a conditional hazard rate given
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by [36]

λj(t) = hij(t|t1,j , . . . , ti−1,j) :=
fi,j(t|t1,j , . . . , ti−1,j)

Sij(t|t1,j , . . . , ti−1,j)

for ti−1,j < t ≤ ti,j where fi,j(t|t1,j , . . . , ti−1,j) is the condi-
tional density of Ti,j given T1,j = t1,j , . . . , Ti−1,j = ti−1,j and

Sij(t|t1,j , . . . , ti−1,j) := 1−
∫ t

ti−1,j

fij(u|t1,j , . . . , ti−1,j)du

is the associated survival function with
Sij(ti−1,j |t1,j , . . . , ti−1,j) = 1. Let

Hij(t|t1,j , . . . , ti−1,j)

:=

∫ t

ti−1,j

hij(u|t1,j , . . . , ti−1,j)du =

∫ t

ti−1,j

λj(u)du

be the cumulative conditional hazard function.
Lemma II.3: The conditional distribution of Hij(Ti,j |T1,j ,

. . . , Ti−1,j) given T1,j = t1,j , . . . , Ti−1,j = ti−1,j is an expo-
nential distribution with parameter 1.

To simulate the random variables Ti,j for i = 1, . . . , Ij , j =
1, . . . , J , one can now simulate independent random variables
Yi,j with exponential distribution with parameter 1 for i =
1, . . . , Ij , j = 1, . . . , J and then apply the inverse cumulative
conditional hazard function on these variables. Hence, set the
cumulative conditional hazard functions of the Models M, A,
and W, respectively, to

ΛM
ij (t) := HM

ij (t|t1,j , . . . , ti−1,j) :=

∫ t

ti−1,j

λM
j (u)du,

ΛA
ij(t) := HA

ij (t|t1,j , . . . , ti−1,j) :=

∫ t

ti−1,j

λA
j (u)du,

ΛW
ij (t) := HW

ij (t|t1,j , . . . , ti−1,j) :=

∫ t

ti−1,j

λW
j (u)du

where ti−1,j < t ≤ ti,j . Then (ΛM
ij )

−1(Yi,j), (ΛA
ij)

−1(Yi,j), and
(ΛW

ij )
−1(Yi,j) have the same distributions as the observations

TM
i,j , TA

i,j , and TW
i,j of the Models M, A, and W, respectively.

This holds for i = 1, . . . , Ij , j = 1, . . . , J .
Theorem II.4: The cumulative conditional hazard functions

of the load-sharing models with multiplicative damage accumu-
lation and with additive damage accumulation and their inverses
are given by

ΛM
ij (t)

=
exp(−θ1) a

θ2−1
ij

τθ3+1 (θ3 + 1)

[
(aijt− aijti−1,j + Cj(i− 1))θ3+1

− Cj(i− 1)θ3+1
]
,

(ΛM
ij )

−1(y)

=
1

aij

⎡⎣( τθ3+1 (θ3 + 1)

exp(−θ1) a
θ2−1
ij

y + Cj(i− 1)θ3+1

) 1
θ3+1

+ aijti−1,j − Cj(i− 1)] ,

ΛA
ij(t)

=
exp(−θ1)

θ3(θ2 + 1)aij

[(
θ3aij
τ

t+ aij

− θ3
τ

[aijti−1,j − Cj(i− 1)]

)θ2+1

−
(
aij + θ3

1

τ
Cj(i− 1)

)θ2+1
]
,

(ΛA
ij)

−1(y)

=
τ

θ3aij

[(
θ3(θ2 + 1)aij
exp(−θ1)

y

+

(
aij + θ3

1

τ
Cj(i− 1)

)θ2+1
) 1

θ2+1

− aij +
θ3
τ

[aijti−1,j − Cj(i− 1)]

]
.

Note that we obtain (ΛM
ij )

−1(0) = ti−1,j and (ΛA
ij)

−1(0) =
ti−1,j for both models. Moreover, it holds for θ3 = 0

ΛM
ij (t) =

exp(−θ1)

τ
aθ2ij (t− ti−1,j) = ΛW

ij (t)

and

(ΛM
ij )

−1(y) =
τ

exp(−θ1) a
θ2
ij

y + ti−1,j = (ΛW
ij )

−1(y)

so that (ΛM
ij )

−1(Yij)− ti−1,j =
τ

exp(−θ1)a
θ2
ij

Yij has an expo-

nential distribution with parameter exp(−θ1)
τ aθ2ij if Yij has an

exponential distribution with parameter 1. For the load-sharing
model with additive damage accumulation, we get

lim
θ3→0

ΛA
ij(t) =

exp(−θ1)

τ
aθ2ij (t− ti−1,j) = ΛW

ij (t) (11)

and

lim
θ3→0

(ΛA
ij)

−1(y) =
τ

exp(−θ1) a
θ2
ij

y + ti−1,j = (ΛW
ij )

−1(y).

(12)

The proofs of (11) and (12) are similar to that of Corollary II.2
concerning the model with additive damage accumulation.

III. STATISTICAL METHODS

In this section, both a frequentist and a Bayesian approach
to parameter estimation, model comparison, and prediction of
the load-sharing models with and without damage accumulation
will be detailed. Both approaches make use of the likelihood
functions given in Section II-B.

A. Frequentist Estimators, Tests, and Prediction Intervals

For calculating the ML estimators, note that both log-
likelihood functions for the load-sharing models with damage
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accumulation given by (8) and (9) can be written as

ln(L(θ)) = −θ1

J∑
j=1

Ij +B1(θ2, θ3)− exp(−θ1)B2(θ2, θ3)

where B1 and B2 are functions of θ2 and θ3 which do not
depend on θ1. For the load-sharing models without damage
accumulation, we also get this form by dropping θ3 so that B1

and B2 depend only on θ2. Hence, for the load-sharing models
with damage accumulation, we have

∂

∂θ1
ln(L(θ)) = −

J∑
j=1

Ij + exp(−θ1)B2(θ2, θ3) = 0

⇐⇒ exp(−θ1) =

∑J
j=1 Ij

B2(θ2, θ3)

⇐⇒ θ1 = θ̂1(θ2, θ3) := − ln

( ∑J
j=1 Ij

B2(θ2, θ3)

)
.

Thus, the log-likelihood

ln(L((θ̂1(θ2, θ3), θ2, θ3)))

= ln

( ∑J
j=1 Ij

B2(θ2, θ3)

)
J∑

j=1

Ij +B1(θ2, θ3)−
J∑

j=1

Ij

becomes effectively a function of just two parameters, facilitat-
ing its maximization. For the load-sharing models without dam-
age accumulation, the optimization is even simpler since then
only a function of one parameter needs to be maximized. The
optimization can be implemented with the R function optim
of [40].

The hypothesis H0 : θ3 = 0 of no damage accumulation can
be tested by a likelihood ratio test using the log-likelihood
functions evaluated at the ML estimates. Let LM = LM or
LM = LA, respectively, be the likelihood function for the load-
sharing model with multiplicative or additive damage accumula-
tion and θ̂M ∈ R3 the corresponding ML estimate, letLW be the
likelihood function for the load-sharing model without damage
accumulation and θ̂W ∈ R2 the corresponding ML estimate,
and let χ2

1,1−α be the (1− α)-quantile of the χ2-distribution
with one degree of freedom. Then an asymptotic α-level test for
H0 : θ3 = 0 in model M is given by

reject H0 : θ3 = 0 if

− 2
(
ln(LW (θ̂W ))− ln(LM(θ̂M))

)
> χ2

1,1−α. (13)

Similarly, to test the hypothesisH0 : θ = θ∗ for a given parame-
ter vector θ∗, also a likelihood ratio test using the log-likelihood
functions at the ML estimates can be used. For this test, let
LM = LM , LM = LA, or LM = LW , respectively, be the like-
lihood function for the load-sharing model with multiplicative or
additive damage accumulation or without damage accumulation
and θ̂M the corresponding ML estimate, and let χ2

r,1−α be the
(1− α)-quantile of theχ2-distribution with r degree of freedom
where r = 3 for the models with damage accumulation and
r = 2 for the model without damage accumulation is used. Then

an asymptotic α-level test for H0 : θ = θ∗ in model M is given
by

reject H0 : θ = θ∗ if

− 2
(
ln(LM(θ∗))− ln(LM(θ̂M))

)
> χ2

r,1−α. (14)

To obtain the asymptotic distributions of both tests, it is
necessary to assume that the different processes Nj(t)t≤τj ,
j = 1, . . . , J , are independent and that J converges to∞. More-
over, some assumptions on the stress levels s1, . . . , sJ and the
time horizons τ1, . . . , τJ are needed; see, e.g., [41] and [42,
pp. 458]. A simple assumption is that (s1, τ1), . . . , (sJ , τJ ) are
realizations of independent and identically distributed (i.i.d.)
variables (S1, T1), . . . , (SJ , TJ ) so that the processes are i.i.d.
Moreover, the distribution of (Sj , Tj) should ensure that enough
failures in a process can be observed. In particular, Sj and Tj
should be negatively correlated. Nevertheless, the question is
whether these tests keep the level α for finite samples. This will
be answered by the simulation study in Section V.

Hereinafter, M = M,A,W denotes the model with multi-
plicative, additive, and without damage accumulation, respec-
tively. By the duality between tests and confidence sets, an
asymptotic frequentist (1− α)-confidence set CF

M,1−α for θ is
given by

CF
M,1−α

:=
{
θ; −2

(
ln(LM(θ))− ln(LM(θ̂M))

)
≤ χ2

r,1−α

}
.

The confidence sets can be calculated by grid search; see
Section IV-C.

If a new point process N0(t)t≤τ0 with initial stress s0 is
observed until τ0 with I0 failures, then all available observations
for predicting the time TIc,0 of a future Icth failure in the
new process with Ic > I0 is given by N0 := {Nj(t)t≤τj ; j =
0, 1, . . . , J} which is a realization of N 0 := {Nj(t)t≤τj ; j =
0, 1, . . . , J}. If qMα (θ) is theα-quantile of the predictive distribu-
tion of the Icth failure time TIc,0, given N0(t)t≤τ0 in model M,
then an asymptotic (1− α)-prediction interval PF

M,1−α(N0) for
the future failure time TIc,0 is given by

PF
M,1−α(N0) :=

⋃
θ∈CF

M,1−α/2

[
qMα/4(θ), q

M
1−α/4(θ)

]
. (15)

To facilitate the calculation of PF
M,1−α(N0), one can use a

slightly larger prediction interval by calculating[
min

θ∈CF
M,1−α/2

qMα/4(θ), max
θ∈CF

M,1−α/2

qM1−α/4(θ)

]
.

Note that CF
M,1−α/2 may depend on N0 or N :=

{Nj(t)t≤τj ; j = 1, . . . , J}.
Lemma III.1: The prediction interval given by (15) satisfies

lim
J→∞

Pr θ(TIc,0 ∈ PF
M,1−α(N 0)) ≥ 1− α

for all θ of model M.
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In the model without damage accumulation, the predictive dis-
tribution is the hypoexponential distribution so that the quantiles
qWα (θ) can be calculated from this distribution as in [19]. How-
ever, for the models with damage accumulation, the quantiles
can be determined only by simulating the process N0 starting at
τ0. For simulating N0 with M = M,A, see Section II-C.

B. Bayesian Estimators and Prediction Intervals

The Bayesian approach to statistical inference treats the pa-
rameters θ = (θ1, θ2, θ3) as unknown random variables with a
joint prior probability distribution. Inference is based on their
posterior distribution, given the observed point processes N =
{Nj(t)t≤τj ; j = 1, . . . , J}. According to Bayes’ theorem, the
joint posterior distribution is proportional to prior × likelihood,
i.e.,

p(θ|N) ∝ p(θ)L(N|θ)

with L(N|θ) = LW (θ), LM (θ), or LA(θ), respectively, as de-
fined in Section II-B. The Bayesian approach allows prior infor-
mation to be taken into account by eliciting informative prior dis-
tributions. However, here, we use noninformative location- and
scale-invariant priors, respectively, i.e., p(θ1) ∝ 1 and p(θi) ∝
1
θi

for i = 2, 3.
As the posterior distribution is fairly complex, it precludes an

analytic marginalization in closed form. Posterior computation
is, therefore, based on Markov chain Monte Carlo (MCMC)
simulations. More specifically, Gibbs sampling is employed us-
ing the implementation in the Bayesian software package JAGS;
see [43]. We have already calculated the log-likelihood functions
for each model in Section II-B. In order to specify a likelihood in
JAGS that is not included in its list of standard distributions, we
make use of the so-called “zeros trick” described in [44]. Each
of the J systems contributes a likelihood term L[j] given by the
sum in curly brackets in (8), (9), and (10) to LM , LA, and LW ,
respectively. If we specify J independent pseudo-observations
all with the value of 0 and assign these a Poisson distribution with
mean μj = − ln(L[j]) + c, the correct likelihood function will
be constructed in JAGS. An arbitrary constant c can be added
to μj to ensure that the means are positive. Any multiplicative
constant in the likelihood function will not affect the posterior
distribution because it cancels when applying Bayes’ theorem
as it is included in both numerator and denominator.

To compare the relative fit of the three Bayesian models, we
use the deviance information criterion (DIC) [45] which com-
bines a measure of goodness-of-fit and a measure of complexity,
both based on the deviance. The goodness-of-fit measure is the
posterior mean of the deviance D(θ) = −2 logL(N|θ). The
number of independent parameters is often not well-defined in
Bayesian models when using informative priors and hierarchical
structures because the prior restricts the parameter space. As
an estimate of the so-called effective number of parameters,
the difference of the posterior mean of the deviance and the
deviance evaluated at the posterior mean was suggested, i.e.,
pD = D̄(θ)−D(θ̄). The DIC is then defined as

DIC = D̄(θ) + pD

and thus trades off the fit of a model against its effective number
of parameters.

In Bayes analysis, prediction is based on the posterior predic-
tive distribution. However, the posterior predictive distribution
is complicated for load-sharing models with damage accumula-
tion. Therefore, prediction intervals here are obtained similarly
to the frequentist approach in (15) by using

PB
M,1−α(N0) :=

⋃
θ∈CB

M,1−α/2

[
qMα/4(θ), q

M
1−α/4(θ)

]
(16)

where only the confidence set CF
M,1−α/2 is replaced by the cred-

ible set CB
M,1−α/2 and M = M,A,W again denotes the model

with multiplicative, additive, and without damage accumulation,
respectively. The (1− α)-credible set CB

M,1−α is a set which has
a posterior probability of 1− α. As in the frequentist case, it may
only depend on the past processes given by N or on all available
observations up to τ0 given by N0.

Lemma III.2: The prediction interval for model M given by
(16) satisfies

Pr(TIc,0 ∈ PB
M,1−α(N 0))

=

∫
Pr(TIc,0 ∈ PB

M,1−α(N 0)|θ) p(θ) d(θ) ≥ 1− α.

The (1− α)-credible set CB
M,1−α can be obtained by a pro-

portion of 1− α of all parameters of the Markov chain after
the burn-in phase and after thinning. To obtain a narrow set that
contains a proportion of 1− α of these posterior parameters, we
use the half space depth of Tukey [46]. Tukey’s half space depth
provides a ranking of multidimensional data points from the
most central data points to least central points. The centrality
of a data point is given by the minimum relative number of
data points which must be removed so that there is a half space
containing only the considered data point. An extremal point of
the data cloud has the smallest depth since a half space exists
which includes only this extremal point. The highest depths are
obtained by data points in the center of the data cloud. Here,
we calculate the half space depth via the R package ddalpha
of [47] and determine the smallest set with a proportion of 1− α
by the empirical α-quantile of the depth values.

IV. APPLICATION TO DATA FROM EXPERIMENTS WITH

CONCRETE BEAMS

In this lab experiment, J = 10 prestressed concrete beams
were exposed to cyclic loads where time is measured in number
of load cycles. The cyclic load means that an external stress
varies between a minimum stress smin and a maximum stress smax

so that the stress range smax − smin is the initial stress sj here.
Each beam consisted of Kj = 35 tension wires which broke
successively. Because each break of a tension wire provides a
loud noise, the exact time points where each of the single tension
wires broke were determined with a microphone. For the ten
experiments, Table I provides the different stress levels given by
the initial stress ranges sj , the number of observed breaks Ij , and
the number of load cycles until the last observed failure tIj ,j and
the end of the experiment τj , while Fig. 1 shows all time points
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TABLE I
EXPERIMENTS WITH THE STRESS LEVELS sj GIVEN BY STRESS RANGES, THE

OBSERVED NUMBER OF BREAKS, LOAD CYCLES UNTIL LAST FAILURE, AND

THE LAST TIME POINTS OF THE EXPERIMENTS

Fig. 1. Time points of successive fractures of tension wires.

of successive fractures of tension wires for all experiments. In
most cases, the end point of the experiment coincides with the
time point of the last observed break since this is the critical one
where the whole beam failed. The experiments denoted by TR
and SB differ in the frequency of load cycles. In the experiments
denoted by SB, the frequency of load cycles was increased so
that up to 108 000 million load cycles could be observed and
thereby also failures of tension wires at low stress levels.

We assume here that each tension wire carries the same load
so that an equal load-sharing system where aj(t) is given by
(2) is appropriate. The authors in [19] showed that the equal
load-sharing model without damage accumulation fits the data
quite well. This was shown by a Q-Q plot with a confidence
band, a leave-one-out analysis, and by a prediction interval for
a stress level lower than the observed stress levels that indeed
included the future observation. However, the question remained
whether there is really no damage accumulation between the
breaks. Now, the answer to this question can be given.

TABLE II
SCALE-INVARIANT ML ESTIMATES AND CORRESPONDING 95% CONFIDENCE

INTERVALS FOR THE LOAD-SHARING MODELS WITHOUT DAMAGE

ACCUMULATION (W), WITH MULTIPLICATIVE DAMAGE ACCUMULATION (M),
AND WITH ADDITIVE DAMAGE ACCUMULATION (A)

TABLE III
LOG-LIKELIHOOD FUNCTIONS FOR THE SCALE-INVARIANT ML ESTIMATES OF

TABLE II IN THE LOAD-SHARING MODELS WITHOUT DAMAGE ACCUMULATION

(W), WITH MULTIPLICATIVE DAMAGE ACCUMULATION (M), AND WITH

ADDITIVE DAMAGE ACCUMULATION (A), WHERE fac DENOTES THE FACTOR

BY WHICH THE TIME VARIABLE IS DIVIDED

TABLE IV
SCALE-DEPENDENT ML ESTIMATES WITH FIXED τ� FOR THE LOAD-SHARING

MODELS WITH MULTIPLICATIVE DAMAGE ACCUMULATION (M), WITH

ADDITIVE DAMAGE ACCUMULATION (A), AND THE CORRESPONDING

LOG-LIKELIHOOD FUNCTIONS, WHERE fac DENOTES THE FACTOR BY

WHICH THE TIME VARIABLE IS DIVIDED

A. Frequentist Estimators and Tests

Tables II, III, and IV provide the ML estimates, 95% con-
fidence intervals, and the log-likelihoods for the load-sharing
models without and with multiplicative and with additive dam-
age accumulation. Numerical optimization was implemented
using the R function optim with the method L-BFGS-B.
Starting values were set to (θ2, θ3)

� = (3, 2)� for the models
with damage accumulation and θ2 = 3 for the models without
damage accumulation. Almost the same results were obtained
with different choices of starting values. The search area was
[0, 105]× [0, 105] for the model with multiplicative damage
accumulation, [0, 105]× [10−5, 105] for the model with addi-
tive damage accumulation, and [0, 105] for the model without
damage accumulation.
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TABLE V
P-VALUES OF THE LIKELIHOOD RATIO TESTS GIVEN BY (13) BASED ON THE

SCALE-DEPENDENT ML ESTIMATORS AND THE SCALE-INVARIANT ML
ESTIMATORS USING fac = 1

Tables II and III show ML estimates and log-likelihood values
for the scale-invariant case where τ is the mean time horizon
1
J

∑J
j=1 τj , while Table IV provides the corresponding results

for the scale-dependent versions where τ is the manually given
value τ�. To study the influence of time scaling, the number of
load cycles is divided by factors fac = 1, 103, and 106. For
all of these three time scales, the results of Table II remain the
same. This is in contrast to Table IV. Here, the parameter θ1 is
influenced by the time scale in all three models. Additionally, the
parameter θ3 of the model with additive damage accumulation
changes with different scale factors. However, all estimates are
the same when the time and τ� are changed concordantly, i.e., the
estimates are the same for fac = 1, τ� = 106 and fac = 103,
τ� = 103, as well as for fac = 103, τ� = 106, and fac = 106,
τ� = 103. Moreover, the strange results in the last column of
Table IV for fac = 1 demonstrate that the model with additive
damage accumulation has a severe problem if the scale adjust-
ment parameter τ� is chosen too small which is the case here for
τ� = 103 and fac = 1.

Tables III and IV show that the model with multiplicative
damage accumulation always has the largest likelihood values
followed by the model with additive damage accumulation and
then the model without damage accumulation. The effect of θ3
for damage accumulation is indeed significant according to the
p-values given in Table V. However, Table V also demonstrates
that a too small scale adjustment parameter τ� can lead to
completely opposite results.

Nevertheless, we can conclude here that damage accumula-
tion has a significant influence on the data from the experiments
with concrete beams. This is the case although the likelihood
ratio test in its present implementation is too conservative which
is shown by the simulation study in Section V.

B. Bayesian Estimation

Samples from the posterior distribution of the parameters
of the three models without and with multiplicative and with
additive damage accumulation in the scale-invariant version
were obtained using JAGS and the R-package rjags. We
used a burn-in period of 10 000 iterations and ran the Gibbs
sampler for a further 40 000 iterations from two different starting
values. Convergence of the Markov chain was checked using the
R-package coda. All chains for the model without and with
multiplicative damage accumulation passed the convergence
tests. The posterior distribution of the model with additive
damage accumulation, however, has many local maxima and
the MCMC chains often get stuck in local maxima, depending
on the starting value. For posterior inference in the model with

TABLE VI
POSTERIOR MEAN, POSTERIOR STANDARD DEVIATION, AND 95% CENTRAL

POSTERIOR CREDIBLE INTERVALS IN THE SCALE-INVARIANT VERSION FOR THE

LOAD-SHARING MODELS WITHOUT (W) AND WITH MULTIPLICATIVE (M) AND

WITH ADDITIVE (A) DAMAGE ACCUMULATION

TABLE VII
POSTERIOR MEAN OF THE DEVIANCE, THE EFFECTIVE NUMBER OF

PARAMETERS, AND THE DIC FOR LOAD-SHARING MODELS

additive damage accumulation, we discard the samples of the
chain that got stuck in a local maxima and use only the samples
of the chain that converged to the global maximum where the
ML estimates were used as starting values. Note that discarding
some samples may lead to a small bias of the estimates. These
convergence problems are most likely due to the large posterior
correlations between the parameters. A reparametrization might
yield faster mixing chains.

Table VI gives estimates of the posterior mean and standard
deviation of the marginal posterior distributions for each model
parameter as well as 95% central posterior credible intervals.
These are comparable to the ML estimates of the corresponding
models as we are using noninformative prior distributions. Tra-
ceplots and kernel density estimates of the marginal posterior
distributions of each parameter for each of the three models are
given in the supplementary material.

Table VII gives the values of the deviance, the effective
number of parameters, and the DIC value for each of the
three load-sharing models. The smaller the DIC, the better the
model fit. As we do not have a hierarchical structure and use
independent priors for the parameters, a penalty term similar to
the Akaike information criterion (AIC), i.e., 2× the number of
parameters, is also reasonable. The authors in [48] have explored
the difficulty of assessing the Monte Carlo error on DIC. As a
rule of thumb, a difference of less than 5 is not definitive and a
difference of 10 or more in DIC values is deemed a significant
difference. Therefore, models with damage accumulation clearly
yield a better fit than the model without damage accumulation,
confirming the conclusion of the frequentist analysis.

C. Frequentist and Bayesian Prediction Intervals

The authors of [19] provide 90%-prediction intervals for the
model without damage accumulation for a new experiment,
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Fig. 2. Two-dimensional projections of the whole set of simulated parameters
of the posterior distribution (black), the frequentist 95%-confidence sets (green),
and the Bayesian 95%-credible sets (red) for the model with additive damage
accumulation in the scale-dependent version with τ� = 106.

SB06, with an initial stress range of 50 MPa. This stress level is
lower than the stress levels of the experiments given in Table I
used for estimation and for calculating the prediction intervals.
Nevertheless, the calculated prediction interval for the first break
included the realized first break. After 108.274 millions of load
cycles, i.e., after approximate six months, Experiment SB06
was stopped without showing a second break. The time point
of 108.274 millions of load cycles was also included in the
prediction interval for the second break. The experiment was
restarted as Experiment SB06a with an increased stress range
of 120 MPa. Now, the prediction intervals of [19] no longer
included the realized time points for the next 17 breaks even
though the first tension wire break was taken into account. The
explanation provided in [19] was that the first experiment with an
initial stress of 50 MPa caused a damage which accumulated up
to the 108.274 millions of load cycles where experiment SB06
was stopped.

To calculate the 90%-prediction intervals in the case of the
models with multiplicative and additive damage accumulation,
95%-confidence sets were calculated via grids with 1013 points
and 95%-credible sets were calculated via the posterior distribu-
tion given by 40 000 (without, multiplicative model) and 8500
(additive model) simulated points. Fig. 2 shows two-dimensional
projections of the three-dimensional sets for the model with
additive damage accumulation. The projections for the model
with multiplicative damage accumulation and the sets for the
model without damage accumulation are given in the supple-
mentary material. In particular, only the model with additive
damage accumulation provides some problems for the simulated
posterior distribution visible by several outliers for θ3 close to
zero as can be seen from Fig. 2. However, the 95%-confidence set
and the 95%-credible set are rather similar in the projections on
θ1 and θ2. This similarity appears in all projections for the model
with multiplicative damage accumulation and for the sets for the
model without damage accumulation, which once again demon-
strates that the model with multiplicative damage accumulation
provides more stable results. The only difference between the
frequentist confidence sets and the Bayesian credible sets is a
small shift of Bayesian credible sets toward zero as visible in
the left-hand side of Fig. 2.

For calculating the 90%-prediction intervals, each of the
95%-confidence sets and 95%-credible sets were thinned to
approximately 2000 parameters and then the damage accumu-
lation point process was simulated 10 000 times for each of
these parameters θ. The quantiles qM0.025(θ) and qM0.975(θ) of the

Fig. 3. Frequentist 90%-prediction intervals (first row) and Bayesian 90%-
prediction intervals (second row) for the 1st and 2nd breaks for the experiment
SB06 exposed to 50 MPa (left-hand side) and the 1st to 17th break for the
restarted experiment SB06a exposed to 120 MPa (right-hand side). The red
arrow indicates the end of the experiment SB06.

distribution of the Icth failure time are then approximated by the
empirical quantiles of the 10 000 time points of the Icth event in
these 10 000 point processes. To calculate the lower and upper
bounds of the prediction interval for the Icth break, we simply
used the minimum of all of the 0.025-quantiles and the maximum
of all of the 0.975-quantiles obtained for the parameters θ in the
thinned confidence sets and credible sets, respectively. Note that
the thinning of the confidence sets and credible sets may shorten
the prediction intervals.

The left-hand side of Fig. 3 shows the frequentist and Bayesian
prediction intervals for Experiment SB06 based on the three
models. All three prediction intervals for the first break include
the true time point of the first break. Moreover, the time point of
108.274 millions of load cycles, where Experiment SB06 was
stopped, is covered by all prediction intervals for the second
break. However, it is very close to the upper bound of the
prediction interval for the additive model in the frequentist
approach.

The frequentist and Bayesian prediction intervals for the 1st
to 17th break of the restarted Experiment SB06a are shown
on the right-hand side of Fig. 3. As in [19], the prediction
intervals for the model without damage accumulation do not
include the failure times of this restarted experiment although the
calculation is based on 34 instead of 35 tension wires since one
was broken in Experiment SB06. To include the damage caused
by Experiment SB06, the damage accumulation of 28 616 915 ∗
50/35 + (108 273 608− 28 616 915) ∗ 50/34 was added to the
Cj(i) (j = 0) in (7) since the first break in Experiment SB06
happens at 28 616 915 load cycles. Now the prediction in-
tervals for the model with multiplicative and additive damage
accumulation include the failure times of Experiment SB06a.
However, this is not always the case. The reason could lie
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TABLE VIII
INITIAL (EXTERNAL) STRESS LEVELS sj , MAXIMAL TEST DURATION τj , AND

NUMBER Kj OF COMPONENTS WHICH ARE K TIMES REPEATED IN THE

SIMULATION STUDY

TABLE IX
PARAMETER VECTOR θ USED IN THE SIMULATION STUDY

in the computation or in the model specification for damage
accumulation.

Comparing the frequentist and Bayesian prediction intervals,
we see that they are very similar for the models without and
with multiplicative damage accumulation. However, the upper
bounds for the Bayesian prediction intervals for the model with
additive damage accumulation are much larger than that of the
frequentist prediction intervals. In particular, these upper bounds
are very similar to the upper bounds obtained for the model
without damage accumulation. This is caused by the shift of the
credible set in the direction of a value of θ3 close to zero as can
be seen in Fig. 2.

V. SIMULATION STUDY

A. Setup of the Simulation Study

To mimic the real experiments as closely as possible, we re-
peatedly (K times) simulated the point processes with the initial
stress levels sj , maximal test duration τj , and numberKj of com-
ponents given by Table VIII. This means that one experiment had
J = 3 K runs resulting in J = 3 K point processes. For the
scale-dependent estimators, we used τ� = 16 for simulating the
data as well as for estimation. For the scale-invariant estimators,
τ� = 16 was also used for the simulating the data, but a data
dependent τ was used for estimation.

Additionally, we simulated experiments with a given number
Ij of failures instead of the fixed time horizon τj . The specifica-
tion for these simulations can also be seen in Table VIII. In this
scenario, only the scale-dependent version with fixed τ� makes
sense.

The parameter vector θ was chosen close to the values esti-
mated in the real data set with the scale-invariant estimator and
are given by Table IX.

The experiments for the ML estimates were repeated 500
times. Note that already 100 repetitions led to accurate results.
However, for the likelihood ratio tests, we used 5000 repetitions.

B. Simulation Results for Estimators

Fig. 4 shows the ML estimators for simulated experiments
of the model with additive damage accumulation where each
experiment included J = 3 K simulated point processes and

Fig. 4. Boxplots of the estimates for θ = (θ1, θ2, θ3)
� for the simulated load-

sharing model with additive damage accumulation. First column: scale-invariant
estimator in the scenario with fixed horizon. Second column: correction of
the scale-invariant estimator. Third column: scale-dependent estimator in the
scenario with fixed horizon. Fourth column: scale-dependent estimator in the
scenario with fixed number of failures. The red line marks the true parameter.

K = 3, 10, 30, 100 was used. The first column of these figures
shows a bias for the scale-invariant estimators of θ1 and θ3. The
results for the models with multiplicative damage accumulation
and without damage accumulation are similar although the bias
appears only for θ1. The bias is caused by the fact that often
the maximal test durations τj are not reached because Kj = 35
failures happen before τj . This means that the simulated data
may consist of τData

j which are smaller than the maximal test
durations τj used for simulating the data via Λ−1

ij given by
Theorem II.4. However, the estimates can be corrected by using
the following properties of the intensity functions:

λM
j (t)

= exp(−θ1 − ln(τ)) aj(t)
θ2

(
1

τ
Aj(t)

)θ3

= exp(−[θ1 + ln(τ)(1 + θ3)]) aj(t)
θ2Aj(t)

θ3

= exp
(
−
[
θ1 + ln

( τ

τData

)
(1 + θ3)

+ ln(τData)(1 + θ3)
])

aj(t)
θ2Aj(t)

θ3

for the model with multiplicative damage accumulation and

λA
j (t)

= exp(−θ1 − ln(τ))

(
aj(t) + θ3

1

τ
Aj(t)

)θ2
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Fig. 5. Rejection rates of the likelihood ratio test for testing the null hypothesis
H0 : θ = θ∗ in the models with multiplicative damage accumulation, additive
damage accumulation, and without damage accumulation. On the left: scenario
with fixed horizon. On the right: scenario with fixed number of failures. The red
line marks the test level of 0.05.

= exp
(
−
[
θ1 + ln

( τ

τData

)
+ ln(τData)

])
·
(
aj(t) + θ3

τData

τ

1

τData
Aj(t)

)θ2

for the model with additive damage accumulation, where

τ =
1

J

J∑
j

τj , τData =
1

J

J∑
j

τData
j .

Since the model with multiplicative damage accumulation co-
incides with the model without damage accumulation if θ3 = 0,
the following corrections provide unbiased scale-invariant esti-
mators (see the second column of Fig. 4):

θ̂Corr
1 := θ̂1 − ln

( τ

τData

)
(1 + θ̂3) for model M,

θ̂Corr
1 := θ̂1 − ln

( τ

τData

)
for models A and W,

θ̂Corr
3 := θ̂3

τ

τData
for model A.

The third column of Fig. 4 provides the results for the scale-
dependent estimators. Since the same data were used, these
results match those for the corrected scale-invariant estimators.
Different results are only obtained in the fourth column where
the estimators are applied to the scenario with fixed numbers
of failure since the data generation is different. Here, we see a
slightly higher variability in all models. This is due to the fact
that in the scenario of fixed time horizon, often the maximal
number Kj = 35 of possible failures are reached. Hence, more
information is available than in the scenario where the maximum
number of failures is fixed by Ij = 20.

C. Simulation Results for Tests

Fig. 5 provides the rejection rates of the likelihood ratio test for
H0 : θ = θ∗ given by (14) for the scenarios with fixed time hori-
zon (left column) and fixed number of failures (right column).
Here, we obtain exactly the same results for the scale-invariant
and the scale-dependent version. With 5000 simulations, the
variability of the rejection rates is still high. However, it seems

Fig. 6. Rejection rates of the likelihood ratio test at different values of
parameter θ3 for testing the null hypothesis H0 : θ3 = 0 in the models with
multiplicative damage accumulation and additive damage accumulation. On the
left: scenario with fixed horizon. On the right: scenario with fixed number of
failures. The red line marks the test level of 0.05.

that the tests retain the test level of 0.05 for observation numbers
of J = 3 K with K = 3, 5, 10, 20, 30, 50, 100 in all models.

Fig. 6 provides the rejection rates under the null hypothesis
and alternatives of the likelihood ratio test given by (13) for
testing the null hypothesis of no multiplicative damage accu-
mulation and no additive damage accumulation, respectively, if
the data were simulated in the scenario of fixed horizon (left
column) and fixed number of failures (right column). Again the
results for the scale-invariant and the scale-dependent version
are in agreement. Both simulation studies show that both tests
are too conservative for observation numbers of J = 3 K with
K ≤ 30. Nevertheless, the power is quite good. Surprisingly,
the power functions are similar although the parameter θ3 has
different meaning in the models with multiplicative and additive
damage accumulation.

VI. CONCLUSION

This article provided the likelihood functions of two mod-
els for load-sharing systems with damage accumulation: a
model with additive damage accumulation and a model with
multiplicative damage accumulation. Both models include the
model without damage accumulation as special case so that
likelihood ratio tests can be applied to check for a significant
damage accumulation effect. The models are given by intensity
functions of self-exciting point processes in a scale-invariant
and in a scale-dependent version leading to scale-invariant and
scale-dependent ML estimators and tests. It was shown that the
estimators and tests in the model with additive damage accumu-
lation in the scale-dependent version are very sensitive to the
correct scaling of the time scale since the damage accumulation
term given by time is added to the load-sharing term which is
independent of time. However, the simulation study showed that
the scale-invariant estimators have the disadvantage that they
must be corrected to obtain unbiased estimators.

For simulating the self-exciting point processes, the cumula-
tive conditional intensity functions and their inverses were calcu-
lated explicitly. While the simulation study with 100 repetitions
provides sufficient accuracy for the estimators, the variability of
the rejection rates of the likelihood ratio tests was still quite high
with 5000 simulations. Nevertheless, these simulation results

Authorized licensed use limited to: University of Auckland. Downloaded on February 21,2022 at 21:38:55 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MÜLLER AND MEYER: INFERENCE OF INTENSITY-BASED MODELS FOR LOAD-SHARING SYSTEMS WITH DAMAGE ACCUMULATION 13

indicated that the levels of tests for a damage accumulation effect
are too conservative in the present implementation. This is po-
tentially due to a problem of finding the global maximum of the
likelihood function. We simply used the R function optimwith
the methodL-BFGS-B for optimization. Maybe other optimiza-
tion methods will improve the power of the tests. Nevertheless,
applying these tests to real failures of tension wires of concrete
beams leads to significant damage accumulation effects in both
models. This holds although Leckey et al. [19], who analyzed
the same data, came to the conclusion that a load-sharing model
without damage accumulation already provides an adequate fit.

In contrast to testing for a damage accumulation effect, the
simulations indicated that the test level is retained by testing
for a given parameter vector. Hence, these tests can be used to
get reasonable small confidence sets for the parameter vectors.
These confidence sets were used to obtain prediction intervals for
future failures. Applying these prediction intervals to the failures
of tension wires of a new concrete beam leads to better results in
a restarted experiment than in [19] where a load-sharing model
without damage accumulation was considered.

Bayesian parameter estimates and prediction intervals under
noninformative priors yielded comparable results to frequentist
analysis. Bayesian model selection via DIC confirmed the better
fit of the two load-sharing models with damage accumulation
compared to the model without damage accumulation. However,
as in the frequentist case, the model with additive damage
accumulation has more numerical problems. Here, we used the
implementation of the Bayesian models in JAGS using the zeros
trick.

As an alternative, for the model without damage accumula-
tion, independent exponential waiting times could have been
specified and censoring been taken into account as in the ap-
proach by [49] for analyzing recurrent event times. This ap-
proach also provides a straightforward generalization to more
realistic parametric failure time distributions such as the Weibull
distribution or even nonparametric failure time distributions
within the Bayesian framework. Furthermore, it demonstrates
how correlations between subsequent failure times can be taken
into account using copulas.

Moreover, other degradation aspects like corrosion may be
included in the load-sharing models with damage accumulation
as considered for a load-sharing model without damage accumu-
lation in [50]. However, all these avenues are beyond the scope
of the current article but could be investigated in future research.

APPENDIX

Proof of Theorem II.1: According to [36, Prop. 7.2.III, p.
232], the likelihood function of realizations t1, . . . , tN(τ) of
a point process N on [0, τ ] with left-continuous conditional
intensity function λ : [0, T ] → R is given by

L =

⎡⎣N(τ)∏
i=1

λ(ti)

⎤⎦ exp

(
−
∫ τ

0

λ(t)dt

)
. (17)

At first, we calculate the term
∫ τ

0 λ(t)dt for the intensity func-
tions of the two load-sharing models with damage accumulation.

For this, note that it holds for c > 0 and v ≥ 0∫ b

a

(ct+ d)vdt =
1

c(v + 1)
(ct+ d)v+1

∣∣∣b
a
.

Set t0,j = 0 for j = 1, . . . , J and recall Nj(τj) = Ij .
For the load-sharing model with multiplicative damage accu-

mulation, we get∫ τj

0

λM
j (t)dt =

∫ τj

0

1

τ
exp(−θ1)aj(t)

θ2

(
1

τ
Aj(t)

)θ3

dt

=

Ij∑
i=1

∫ ti,j

ti−1,j

exp(−θ1)

τθ3+1
aθ2ijAj(t)

θ3 dt

+

∫ τj

tIj ,j

exp(−θ1)

τθ3+1
aθ2(Ij+1)jAj(t)

θ3 dt

=
exp(−θ1)

τθ3+1

⎡⎣ Ij∑
i=1

aθ2ij

∫ ti,j

ti−1,j

(
aij

(
t−

i−1∑
k=1

Wkj

)

+

i−1∑
k=1

akjWkj

)θ3

dt

+ aθ2(Ij+1)j

∫ τj

tIj ,j

⎛⎝a(Ij+1)j

⎛⎝t−
Ij∑

k=1

Wkj

⎞⎠

+

Ij∑
k=1

akjWkj

⎞⎠θ3

dt

⎤⎥⎦
=

exp(−θ1)

τθ3+1

⎡⎣ Ij∑
i=1

aθ2ij
1

aij(θ3 + 1)

(
aij

(
t−

i−1∑
k=1

Wkj

)

+

i−1∑
k=1

akjWkj

)θ3+1
∣∣∣∣∣∣
ti,j

ti−1,j

+ aθ2(Ij+1)j

1

a(Ij+1)j(θ3 + 1)

⎛⎝a(Ij+1)j

⎛⎝t−
Ij∑

k=1

Wkj

⎞⎠

+

Ij∑
k=1

akjWkj

⎞⎠θ3+1
∣∣∣∣∣∣∣
τj

tIj ,j

⎤⎥⎥⎦
=

exp(−θ1)

τθ3+1(θ3 + 1)

⎡⎣ Ij∑
i=1

aθ2−1
ij

⎛⎝( i∑
k=1

akjWkj

)θ3+1

−
(

i−1∑
k=1

akjWkj

)θ3+1
⎞⎠
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+ aθ2−1
(Ij+1)j

⎛⎝⎛⎝a(Ij+1)j

⎛⎝τj −
Ij∑

k=1

Wkj

⎞⎠

+

Ij∑
k=1

akjWkj

⎞⎠θ3+1

−

⎛⎝ Ij∑
k=1

akjWkj

⎞⎠θ3+1
⎞⎟⎠
⎤⎥⎦

=
exp(−θ1)

τθ3+1(θ3 + 1)

·

⎡⎣Ij+1∑
i=1

aθ2−1
ij

(
Cj(i)

θ3+1 − Cj(i− 1)θ3+1
)⎤⎦ .

The assertion for the load-sharing model with additive damage
accumulation follows similarly using∫ τj

0

λA
j (t)dt =

∫ τj

0

1

τ
exp(−θ1)

(
aj(t) + θ3

1

τ
Aj(t)

)θ2

dt

=

Ij∑
i=1

∫ ti,j

ti−1,j

exp(−θ1)

τ

(
aij + θ3

1

τ
Aj(t)

)θ2

dt

+

∫ τj

tIj ,j

exp(−θ1)

τ

(
a(Ij+1)j + θ3

1

τ
Aj(t)

)θ2

dt.

To calculate the likelihood function, note that Aj(ti,j) = Cj(i)
holds for i = 1, . . . , Ij . Hence, for the load-sharing model with
multiplicative damage accumulation, we get

λM
j (ti,j) =

1

τ
exp(−θ1)a

θ2
ij

(
1

τ
Cj(i)

)θ3

and for the load-sharing model with additive damage accumu-
lation, we have

λA
j (ti,j) =

1

τ
exp(−θ1)

(
aij + θ3

1

τ
Cj(i)

)θ2

.

This completes the proof using form (17) for a likelihood func-
tion of a point process and using the fact that the point processes
from the J systems are stochastically independent. �

Proof of Corollary II.2: The intensity function λW
j of a load-

sharing model without damage accumulation satisfies∫ τj

0

λW
j (t)dt =

∫ τj

0

1

τ
exp(−θ1)aj(t)

θ2 dt

=
exp(−θ1)

τ

⎡⎣Ij+1∑
i=1

aθ2ij Wij

⎤⎦
so that with λW

j (ti,j) =
1
τ exp(−θ1)a

θ2
ij the form of the like-

lihood function follows from formula (17) for the likelihood
function of a general point process.

Hence, Cj(i)− Cj(i− 1) = aijWij for i = 1, . . . , Ij + 1,
j = 1, . . . , J , at once implies the equality ln(LW ((θ1, θ2)

�)) =
ln(LM ((θ1, θ2, 0)

�)). The assertion ln(LW ((θ1, θ2)
�)) =

limθ3→0 ln(LA((θ1, θ2, θ3)
�)) follows with L’Hospital’s

rule. �
Proof of Lemma II.3: The assertion follows from

Hij(t|t1,j , . . . , ti−1,j) = − ln(Sij(t|t1,j , . . . , ti−1,j))

and the fact that the conditional distribution of
Sij(Ti,j |T1,j , . . . , Ti−1,j) given T1,j = t1,j , . . . , Ti−1,j =
ti−1,j is a uniform distribution on [0,1]. �

Proof of Theorem II.4: Similarly as in the proof of Theorem
II.1, we get for the load-sharing model with multiplicative
damage accumulation

ΛM
ij (t) =

∫ t

ti−1,j

λM
j (u)du =

exp(−θ1) a
θ2−1
ij

τθ3+1 (θ3 + 1)

·
[
(aijt− aijti−1,j + Cj(i− 1))θ3+1

−Cj(i− 1)θ3+1
]
.

This is of the form

K(t) := c [(at+ b)v − d] (18)

which has the following inverse:

K−t(y) =
1

a

[(y
c
+ d

) 1
v − b

]
. (19)

This implies the form of (ΛM
ij )

−1(y). The cumulative intensity
ΛA
ij(t) also is of form (18) so that (ΛA

ij)
−1(y) is given by (19)

as well. �
Proof of Lemmas III.1 and III.2: Since we combine the

proofs for the frequentist case and the Bayesian case, we write
Prθ(A) = Pr(A|Θ = θ) for any set A where Θ is a random
variable with realization θ. Set T := TIc,0 with realization t,
N 0 := {Nj(t)t≤τj ; j = 0, 1, . . . , J} with realization N0, and
P (θ,N 0) := [qMα/4(θ), q

M
1−α/4(θ)] the interval of the predictive

distribution satisfying

Pr(T ∈ P (Θ,N 0)|Θ = θ,N 0 = N0)

=

∫
1IP(θ,N0)(t) p(t|θ,N0) dt ≥ 1− α

2
. (20)

Both prediction intervals PF
M,1−α(N 0) and PB

M,1−α(N 0) are

of the form P (N 0) :=
⋃

θ̃∈C(N 0)
P (θ̃,N 0) with C(N 0) :=

CF
M,1−α/2 in the frequentist case and C(N 0) := CB

M,1−α/2 in
the Bayesian case. Then (20) implies

Pr(T /∈ P (N 0)|Θ = θ)

= Pr

⎛⎝T /∈
⋃

θ̃∈C(N 0)

P (θ̃,N 0)

∣∣∣∣∣∣Θ = θ

⎞⎠
= Pr

⎛⎝T /∈
⋃

θ̃∈C(N 0)

P (θ̃,N 0), θ ∈ C(N 0)

∣∣∣∣∣∣Θ = θ

⎞⎠
+ Pr

⎛⎝T /∈
⋃

θ̃∈C(N 0)

P (θ̃,N 0), θ /∈ C(N 0)

∣∣∣∣∣∣Θ = θ

⎞⎠
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≤Pr (T /∈ P (θ,N 0)|Θ = θ) + Pr (θ /∈ C(N 0)|Θ = θ)

=

∫
Pr (T /∈ P (θ,N0)|Θ = θ,N 0 = N0) p(N0|θ) dN0

+ Pr (θ /∈ C(N 0)|Θ = θ)

≤ α

2
+ Pr (θ /∈ C(N 0)|Θ = θ) . (21)

In the frequentist case, C(N 0) is an asymptotic (1− α
2 )-

confidence set satisfying limJ→∞ Pr(θ /∈ C(N 0)|Θ = θ) ≤ α
2

so that the assertion of Lemma III.1 follows.
In the Bayesian case, C(N 0) is a (1− α

2 ) credible set satis-
fying ∫

1IC(N0)(θ) p(θ|N0) dθ ≥ 1− α

2

so that (21) implies

Pr(T /∈ P (N 0)) =

∫
Pr(T /∈ P (N 0)|Θ = θ) p(θ) dθ

≤ α

2
+ 1−

∫
Pr (θ ∈ C(N 0)|Θ = θ) p(θ) dθ

=
α

2
+ 1−

∫ ∫
1IC(N0)(θ) p(N0|θ) dN0 p(θ) dθ

=
α

2
+ 1−

∫ ∫
1IC(N0)(θ) p(θ|N0) dθ p(N0) dN0.

Hence, the assertion of Lemma III.2 follows as well. �
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