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Abstract: We discuss some conceptual and practical issues that arise from the presence of global
energy balance effects on station level adjustment mechanisms in dynamic panel regressions with
climate data. The paper provides asymptotic analyses, observational data computations, and Monte
Carlo simulations to assess the use of various estimation methodologies, including standard
dynamic panel regression and cointegration techniques that have been used in earlier research.
The findings reveal massive bias in system GMM estimation of the dynamic panel regression
parameters, which arise from fixed effect heterogeneity across individual station level observations.
Difference GMM and Within Group (WG) estimation have little bias and WG estimation is
recommended for practical implementation of dynamic panel regression with highly disaggregated
climate data. Intriguingly, from an econometric perspective and importantly for global policy
analysis, it is shown that in this model despite the substantial differences between the estimates of
the regression model parameters, estimates of global transient climate sensitivity (of temperature to
a doubling of atmospheric CO2) are robust to the estimation method employed and to the specific
nature of the trending mechanism in global temperature, radiation, and CO2.

Keywords: climate modeling; cointegration; difference GMM; dynamic panel; spatio-temporal
modeling; system GMM; transient climate sensitivity; within group estimation

JEL Classification: C32; C33

1. Introduction

A natural and near universal condition in modeling climate is the use of an energy balance
relationship that links average global temperature to average global downwelling radiation and
greenhouse gas influences. This balance suggests the existence of a long run cointegrating econometric
relation among these variables, a relation that is now supported by considerable empirical evidence
(Kaufmann et al. 2011, 2013; Storelvmo et al. 2016, 2018). While such global balancing relations are of
considerable interest in themselves, they are also useful in the specification of more detailed models
that relate to station level behavior and adjustments that must necessarily take global influences into
account. Panel models of this type have been used recently in climate studies by Magnus et al. (2011)
and Storelvmo et al. (2016). These studies help to assess, inter alia, the impact that atmospheric
aerosols have on measurements of greenhouse gas (GHG) effects on global warming and thereby the
measurement of transient climate sensitivity (TCS) to CO2, which is arguably the ‘holy grail’ of modern
climate science. These econometric models are now also being employed as a window through which
global climate models can be calibrated against observational data (Phillips et al. 2020).

The present contribution raises some conceptual issues and provides analyses that are useful in
understanding the manner in which the Earth’s mechanism of global energy balance (or imbalance)
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affects the dynamic mechanism of local station level adjustments in temperature. As shown in
Phillips et al. (2020) and discussed below, station level dynamic adjustments that are impacted by the
time path of the equilibrium energy balance can, under the seemingly natural condition of a stationary
error correction formulation, imply a further long run cointegrating relationship between average
global temperature and radiation. That relation in turn implies a long run relationship between
downwelling radiation and CO2.

A second objective of this paper is to report simulations that compare the use of standard panel
econometric methods for estimating dynamic panel regressions with disaggregated station level
data. The methods examined are Within Group (WG) least squares, difference GMM (diff-GMM;
Arellano and Bond 1991), and system GMM (sys-GMM; Blundell and Bond 1998). The simulation
design is based on the empirical model used in Magnus et al. (2011) and Storelvmo et al. (2016)
with observational data on both CO2 and downwelling radiation employed in the data generating
mechanism and with sample sizes that correspondingly match the observed data.

The simulation findings show substantial bias in system GMM estimation, particularly in the
panel autoregressive coefficient estimates, which are biased upwards almost sixfold and thereby
provide a hugely distorted picture of station level temperature dynamics and the manner in which
these are impacted by trends in global averages in radiation and CO2. These biases correspond closely
to the empirical differences between the estimates using the data of Storelvmo et al. (2016) and
Phillips et al. (2020). They are also predicted by earlier simulations and by stationary panel asymptotic
theory (Bun and Windmeijer 2010; Hayakawa 2007, 2015), which show how system GMM limit theory
is affected by the magnitude of the ratio of the variance of individual station level fixed effects to
the equation error variance. Global climate data naturally display substantial heterogeneity across
station location, so that fixed effect heterogeneity is a prominent characteristic in modeling this data.
As a result, sys-GMM estimation is deemed unreliable in parametric dynamic panel regressions with
climate data of this highly disaggregated type. For the cross section and time series sample sizes
that are presently available, WG and diff-GMM methods both perform well although diff-GMM
manifests some bias and has greater variance than WG estimation. The findings therefore indicate
a preference for WG estimation of dynamic panels with substantially disaggregated climate data.
The present paper gives a complete asymptotic theory for WG estimation of such models in the
presence of potentially cointegrated nonstationary climate data. This limit theory enables inference
about individual parameters in the panel regression model and assists in forecasting exercises.

A third objective of the paper is to investigate the estimation of TCS. This parameter measures the
effect on temperature of a doubling of atmospheric CO2 levels from pre-industrial time levels. It is
therefore a global parameter that is expressed as a function of both dynamic adjustment parameters in
the panel regression and the parameters of the global energy balance relationship. Estimation of TCS
may be conducted based on full system estimation of the dynamic panel model. Despite the substantial
differences between WG, diff-GMM and sys-GMM estimates of the regression model parameters,
estimates of global TCS are shown to be identical, and therefore completely robust to the estimation
method employed as well as the specific nature of the trending mechanism that is present in the
key variables of the system: global temperature, radiation, and CO2. The robustness extends to the
asymptotic theory of the TCS estimates and therefore provides some measure of assurance of reliability
concerning both the TCS estimate and its associated asymptotic confidence intervals for this important
parameter. This reassurance is important to policy makers in the consideration of GHG abatement
measures designed to control the effects of anthropogenic-driven climate forcing.

A second method of estimation of TCS is to conduct a simple single equation cointegrating
regression to capture the long-run impact of atmospheric CO2 levels on global temperature.
This procedure was explored in Phillips et al. (2020) and shown to allow for energy imbalance, so that
sustained rises in atmospheric CO2 may impact station level temperature while continuing to influence
rising global temperature, a situation that approximates prevailing climate conditions and accords
with earlier empirical studies with aggregate data (Kaufmann et al. 2011, 2013). The cointegration
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approach allows for the use of standard methods of estimation, such as fully-modified least squares
(FM-OLS) and dynamic ordinary least squares, accounts for the presence of both deterministic and
stochastic trends in the global variables as well as the cointegrating link, and is convenient to apply
in practical work. A further advantage of working with the global time series data is that methods
such as FM-OLS allow for endogenous regressors and weakly dependent errors as normal components
within potential cointegrating linkages.

The present paper is organized as follows. The dynamic panel model employed and the
assumptions on its various components are given in Section 2. Section 3 shows invariance of the
estimate of the TCS parameter to the specific method employed in estimation of the panel regression.
Asymptotic theory for the panel regression coefficient estimates and the TCS parameter are given in
Section 4. Simulations are reported in Sections 5 and 6 concludes. Proofs are given in Appendix B and
additional figures in Appendix A.

2. Model and Assumptions

Throughout the paper we use the following dynamic panel model from Magnus et al. (2011) and
Storelvmo et al. (2016), which relates station-level temperature (Tit+1) at time t + 1 to local temperature
(Tit), local downwelling surface radiation (Rit), and global factors (λt), all at time t. The base model
has the following two equations

Ti,t+1 = αi + β1Ti,t + β2Ri,t + λt + uit+1, i = 1, . . . , N and t = 1, . . . , n, (1)

where the αi are station-level effects, β1 and β2 are parameters, and uit+1 is a disturbance. The time
specific quantity λt in (1) is specified by the equation

λt = γ0 + γ1Tt + γ2Rt + γ3 ln(CO2,t), (2)

which relates the spatial aggregates (Tt, Rt) =
(

N−1 ∑N
i=1 Tit, N−1 ∑N

i=1 Rit

)
and the logarithm of

the CO2 equivalent series, ln(CO2,t). Phillips et al. (2020) added the following mechanisms for the
generation of local radiation effects Rit and global CO2

Rit = R0
it + δ′riGt + Pit, Pit = Pi0 + UP

it , (3)

ln(CO2,t) = δc0 + δc1t + δ′cGt + uct, (4)

Gt =
t

∑
s=1

ugs, UP
it =

t

∑
k=1

uP
ik, (5)

which provide for both global (δ′riGt) and local (Pit) stochastic trend determinants of Rit and a
deterministic drift (δc1t) in conjunction with global stochastic trend components (δ′cGt) as the primary
drivers of the logarithm of global CO2.

Equation (2) may be interpreted as a form of energy balance relationship that captures the global
linkage between temperature, radiation and greenhouse gas atmospheric influences, allowing for the
presence of stochastic and deterministic trend effects. The balance in these global elements is measured
by λt and is assumed to be one of the drivers impacting local temperature in the subsequent time period.
The dynamic panel regression Equation (1) therefore characterizes the dynamic adjustment mechanism
of station level temperature Tit+1 as an autoregression on past temperature Tit, radiation Rit, and global
energy balancing effects λt. Equation (2) is specified without error, so that the observed aggregate
variables (Tt, Rt, ln(CO2,t)) are assumed to impact station-level temperature in (1) directly without
noise. The possibility of including unobserved noise in the specification of λt and the impact on
the asymptotic theory of this inclusion of measurement error in (2) is considered later in the paper.
Phillips et al. (2020) provide a detailed discussion of the specification of (1)–(5) and the justification
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for these equations in terms of relevant atmospheric considerations and empirical assessments using
observed data. The global variables are shown in Figure 1 over the time period 1964–2005.
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Figure 1. (Phillips et al. 2020): Global temperature (T̄t, green, solid), downwelling radiation (Rt, orange,
dotted), and CO2 equivalent (ln (CO2t), blue, dashed) over 1964–2005.

The following Assumptions 1(i)–(vi) concern various components of the panel system (1)–(5).
They are related to but stronger than the conditions used in Phillips et al. (2020). More specifically,
the assumption of independent and identically distributed (iid) equation errors in Assumption 1(i),
(iii) and (iv) and the assumption of independence of the errors across equations in Assumption
1(i) are useful and commonly employed to establish limit theory for panel regression estimation
procedures such as WG, diff-GMM and sys-GMM for which endogenous regressors and equation
error serial dependence typically produce bias and inconsistencies. These stronger conditions are not
needed for the aggregate time series approach in Phillips et al. (2020) where estimation by FM-OLS
cointegrating regression was used. Readers are referred to that work for a detailed discussion of the
more relaxed conditions used with that methodology. Specific implications of the present assumptions
on convergence rates and asymptotic bias and efficiency are discussed later in the paper.

Assumption 1.

(i) The panel regression errors {uit} ∼iid
(
0, σ2

u
)

over i and t and are independent of the random sequences{
uP

it
}

, {δri} , {uct} for all (i, t) . The idiosyncratic loading factors {δri} ∼iid (δr, Σr) and station-level
effects αi ∼iid

(
α, σ2

α

)
are independent and both are independent of

{
uP

it
}

, {uct} for all (i, t) , where the{
uP

it
}

are defined in A(iii) and the {uct} in A(iv).
(ii) R̄0

t = N−1 ∑N
i=1 R0

it →a.s. R0 = limN→∞

{
N−1 ∑N

i=1 E
(

R0
it
)}

.

(iii) Pit = Pi0 + ∑t
k=1 uP

ik =: Pi0 + UP
it where uP

ik ∼iid

(
0, σ2

p

)
with finite fourth moments over i and t,

P̄0 = N−1
N

∑
i=1

Pi0 →a.s. P0 = lim
N→∞

{
N−1

N

∑
i=1

E
(

P0
it

)}
,
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N−1/2 ∑N
i=1
(

Pi0 −E
(

P0
it
))

= Op (1) and the partial sums UP
it satisfy the invariance principle

n−1/2UP
it ⇒ UP

i (r) ≡ BM
(
σ2

P
)

for all i.
(iv) ugt ∼iid

(
0, Σg

)
with finite fourth moments has partial sums Ugt = ∑t

k=1 ugk that satisfy the invariance
principle n−1/2Ugbnrc ⇒ Ug (r) ≡ BM

(
Σg
)

, vector Brownian motion with covariance matrix Σg > 0;
and uct ∼iid

(
0, σ2

c
)

with finite fourth moments has partial sums Uct = ∑t
k=1 uck which satisfy the

invariance principle n−1/2Ucbnrc ⇒ Uc (r) ≡ BM
(
σ2

c
)

, with σ2
c > 0.

(v) |β1| < 1, |β1 + γ1| < 1.
(vi) (n, N)→ ∞ with n

N + N
n3 → 0.

An important feature of the model (1) and (2) is that it can be used to measure transient climate
sensitivity (TCS) to CO2 emissions. This parameter plays a major role in discussions about the
potential impact of greenhouse gas emissions on Earth’s climate. TCS is defined as the expected
global temperature after a doubling of CO2 and has the following analytic form (Magnus et al. 2011;
Storelvmo et al. 2016)

TCS =
γ3

1− β1 − γ1
× ln(2). (6)

Phillips et al. (2020) developed a simple and direct cointegration regression approach to the estimation
of the parameter TCS using the long run relationship among the variables (Tt, Rt, ln(CO2,t)) that is
implied by (1) and (2). A different, station-level approach is to estimate the parameters of the dynamic
panel regression model (1) combined with the parameters that appear in the aggregate balancing
relation (2) and to use these estimates in conjunction with Formula (6) to obtain an estimate of TCS
and an associated confidence interval.

The present contribution is concerned primarily with studying this station-level approach to
estimation. As expected, the limit theory of TCS estimates obtained in this way from estimates of
the complete model differ from those obtained by fitting the long-run relationship alone. Full panel
regression estimation of the system (1) and (2) can be performed in various ways, for instance, by WG,
diff-GMM, and sys-GMM techniques, with many additional variations depending on the precise
selection of instrumental variables in the use of diff-GMM and sys-GMM techniques. Intriguingly,
as we show in Theorem 1 below, the resulting estimates of (6) obtained in this way turn out to be
invariant to the method employed in the panel regression estimation of (1) and (2). This invariance
holds even though the individual parameter estimates of (β1, β2, γ1, γ2) obtained by WG, diff-GMM,
and sys-GMM differ. In some cases, particularly sys-GMM, the differences are huge—see Table 1
below and the attendant discussion. These differences arise primarily because of the substantial
heterogeneity in the fixed effects αi in the climate panel regression Equation (1), which capture the
large local variation in station temperature levels.

Table 1. Dynamic panel regression and transient climate sensitivity estimates.

Estimation Method

WG diff-GMM sys-GMM

Parameter

β1 0.1346 0.1125 0.8665
β2 −0.0001 −0.0048 0.0098
γ1 −0.0230 −0.0010 −0.7549
γ2 0.0262 0.0309 0.0162
γ3 3.6400 3.6400 3.6400
β1 + γ1 0.1116 0.1116 0.1116
β2 + γ2 0.0261 0.0261 0.0260
rα = σα

σu
15.043 12.825 1.4769

TCS 2.8399 2.8399 2.8399

Notes: rα = σα
σu

=
(

V(αi)
V(uit)

)1/2
.
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3. Estimation by Dynamic Panel Regression

3.1. Common Trends and Global Cointegration

The system (1) and (2) involves the station-level panel adjustment mechanism (1) with global
effects imparted by the time specific effects λt, which in turn depend on global averages over stations.
To reconcile these two components, aggregation of (1) gives

Tt+1 = ᾱ + β1Tt + β2Rt + λt +
1
N

N

∑
i=1

uit+1 = ᾱ + β1Tt + β2Rt + λt + ū·t+1,

where ᾱ = N−1 ∑N
i=1 αi and ū·t+1 = N−1 ∑N

i=1 uit+1. Following standard practice for identification
purposes in the presence of fixed individual and time effects, we set ᾱ = 0. Substituting (2) gives the
global equation

Tt+1 = γ0 + (β1 + γ1) Tt + (β2 + γ2) Rt + γ3 ln(CO2,t) + ū·t+1. (7)

Setting θ1 = β1 + γ1 and θ2 = β2 + γ2, it is convenient to write (7) as

Tt+1 = γ0 + θ1Tt + θ2Rt + γ3 ln(CO2,t) + ū·t+1, (8)

and solving by back substitution gives the stochastic trend representation of Tt, in conjunction that of
with (Rt, ln(CO2,t)) , which is given in Phillips et al. (2020, Theorem 1), viz.,

Wt =

 Tt

Rt

ln(CO2,t)

 =

 δT0 + δT1t + δ′TUgt + u+
Tt

δr0 + δ′rUgt + Op

(√
n
N

)
δc0 + δc1t + δ′cUgt + uct

 =: δw0 + δw1t + DwUgt + u+
wt, (9)

where

δT1 =
γ3δc1

1− θ1
, δT =

θ2δr + γ3δc

1− θ1
, (10)

uTt = γ3

∞

∑
j=0

θ
j
1uct−1−j −

θ1

1− θ1

∞

∑
k=0

θk
1 [θ2δr + γ3δc]

′ ugt−1−k − δ′Tugt, (11)

u+
Tt = uTt + Op

(
1√
N

+

√
n
N

+ t |θ1|t
)

, (12)

where D′w = [δT , δr, δc] , δw0 = [δT0, δr0, δc0]
′ , δw1 = [δT1, 0, δc1]

′ , u+
wt = uwt + Op

(
1√
N
+
√

n
N + t |θ1|t

)
and uwt = [uTt, 0, uct]

′ .
From the trend representation (9), the following long run cointegrating relationship among the

global variables (Tt, Rt, ln(CO2,t)) is obtained

Tt =
θ2

1− θ1
Rt +

γ3

1− θ1
ln(CO2,t) +

µ

1− θ1
+

1
1− θ1

ζt, (13)

using: (i) the fact that δT = θ2δr+γ3δc
1−θ1

, which delivers cointegration among the stochastic trend

components of (Tt, Rt, ln(CO2,t)); and (ii) the linkage δT1 = γ3δc1
1−θ1

, which ensures deterministic
co-movement of the linear trends in Tt and ln(CO2,t). The equation error (or equilibrium error
correction) in (13) is

1
1− θ1

ζt = uTt −
γ3

1− θ1
uct + Op

(
1√
N

+

√
n
N

+ t |θ1|t
)

, (14)
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which is a stationary, weakly dependent time series up to an asymptotically negligible component.
Importantly, the cointegrating relation (13) is distinct from the time specific effect λt. In fact,

(13) represents the ultimate global linkage in these variables that results from integrating the time
specific effects λt with the station-level adjustment mechanism and the global aggregation process
that leads to (Tt, Rt, ln(CO2,t)) . Moreover, the coefficient of ln(CO2,t) in the relationship (13) gives the
transient climate sensitivity parameter (6) upon scaling by ln(2)

TCS =
γ3

1− θ1
× ln(2) =

γ3

1− β1 − γ1
× ln(2), (15)

which means that the TCS parameter can be estimated directly from appropriate econometric
estimation (such as fully-modified least squares (FM-OLS)) of the long run cointegrating relation (13)
without regard to the dynamic adjustment mechanism (1). That approach was followed in
Phillips et al. (2020) where an asymptotic theory of inference was developed for the methodology.
The present work instead pursues a panel regression approach although we do discuss later a key
difference between the asymptotic theory of the resulting FM-OLS of TCS and the asymptotic theory
of estimates of TCS based on panel regression estimates such as WG, diff-GMM, and sys-GMM.

3.2. Dynamic Panel Estimation and Invariance Properties

The alternative station-level approach uses panel regression methods to estimate both (1) and (2).
This approach was used in Magnus et al. (2011) and Storelvmo et al. (2016). Specifically, sys-GMM
methods were employed by Magnus et al. (2011) and Storelvmo et al. (2016) because their estimates of
the panel autoregressive coefficient β1 exceeded 0.9 and dynamic panel regressions with autoregressive
coefficients close to unity are known to lead to weak instrumentation in diff-GMM methods, thereby
reducing efficiency but retaining consistency (Kruiniger 2009; Phillips 2018). In the present application,
as might be expected given the global coverage of the station-level observations, there is considerable
heterogeneity in the fixed effects αi of the dynamic panel regression (1), a feature that is known to
produce sys-GMM estimates of the coefficients in dynamic panel regression that can be substantially
biased (Hayakawa 2007, 2015). For this reason, we might expect some large differences in the coefficient
estimates among these three panel regression procedures.

For the observational data used in Storelvmo et al. (2016) and Phillips et al. (2020), the differences
are substantial, particularly between sys-GMM and the other two approaches. Table 1 below provides
estimates of the parameters of the system defined in (1) and (2). The massive difference between the
sys-GMM estimate of the parameter β1 (0.8665) and the estimates obtained by diff-GMM (0.1125) and
WG (0.1346) is striking—the sys-GMM estimate is more than six times greater than the WG estimate
and nearly eight times greater than the diff-GMM estimate. The implications of these differences
for the station-level dynamic adjustment mechanism of temperature are enormous. Similar major
differences occur in the estimation of the parameter γ1 in the aggregate relation for λt. Table 1 also
reports the ratio rα = σ̂α/σ̂u of the estimated standard deviation σ̂α of the fitted fixed effects αi to
the standard deviation of the fitted equation errors ui,t+1. For the WG estimates, this ratio is 15.043,
which is ten times greater than the corresponding value from sys-GMM, showing the major differences
in how the two methods capture and represent the observed variation in the data at the local level.

Even more striking is that, in spite of the differences in the estimates of the individual coefficients,
estimates of the composite parameters β1 + γ1, β2 + γ2, and the transient climate sensitivity parameter
TCS are all invariant to the method of estimation of the dynamic panel regression equation.
This equivalence is established analytically in Theorem 1 below. An important implication of this
analytic invariance is that the TCS estimate has the same asymptotic theory for the different panel
regression methods and thus the same induced asymptotic confidence interval.
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To proceed, it is convenient to write the model (1) and (2) in the form:

Ti,t+1 = αi + β1Ti,t + β2Ri,t + λt + uit+1 =: αi + β′Xit + λt + uit+1 (16)

λt = γ0 + γ1Tt + γ2Rt + γ3 ln(CO2,t) =: γ0 + γ′Wt, (17)

with notation Xit = (Ti,t, Ri,t)
′ and Wt = (Tt, Rt, ln(CO2,t))

′ . It follows by aggregation and the
normalization condition ᾱ = 0 that

Tt+1 = β′Xt + λt + ū·t+1 =
(

β′, 0
)

Wt + λt + ū·t+1.

The model (16) and (17) can also be written in the combined factor augmented form

Ti,t+1 = γ0 + αi + β′Xi,t + γ′Wt + uit+1, (18)

which is a dynamic panel model with a common factor given by the component γ′Wt with observable
Wt. The technical complications involved in the analysis of (18) arise because: (i) the common factor
aggregate Wt = (X̄′·t, ln(CO2,t))

′ relates to the observable station level variables Xit that appear
as regressors in (18), as well as the exogenous variable CO2,t; (ii) the regressors (Xi,t, Wt) have
deterministic and stochastic trend components; and (iii) there is cointegration (both deterministic
and stochastic) among the elements of the global aggregate Wt. Aggregating (18) and using the
identification condition ᾱ = 0 gives (8). Setting

θ = (θ1, θ2, θ3)
′ = (β1 + γ1, β2 + γ2, γ3)

′ ,

the global dynamic regression is

Tt+1 = γ0 + θ1Tt + θ2Rt + γ3 ln (CO2t) + ū·t+1 = γ0 + θ′Wt + ū·t+1, (19)

which it is convenient to write in observation form as

T+ = γ0ιn−1 + Wθ + Ū+ = (T2, T3, . . . , Tn)
′ (20)

where T+ = (T2, T3, . . . , Tn)
′ , Ū+ = [ū·2, . . . , ū·n]

′ , and ιn−1 is an (n− 1) vector of ones.
We now proceed to analyze the estimation of this station-level system and to develop asymptotic

theory for the resulting coefficient estimates and the associated TCS parameter. For the purpose of the
discussion below it is convenient to work with the WG estimator. However, as will be demonstrated,
the results obtained for the TCS parameter estimates (and for certain linear contrasts of the other
coefficients, notably β1 + γ1 and β2 + γ2) apply also to diff-GMM and sys-GMM procedures.

The WG procedure involves the following steps.

Step 1. Estimate the dynamic panel model by least squares, which involves estimating the time specific
effect λt as the time specific intercept in the regression (1). That is, applying least squares with
intercept standardized so that ᾱ = 0, we obtain

λ̂t = Tt+1 − β̂′Xt = Tt+1 − β̂1Tt − β̂2Rt = Tt+1 −
(

β̂′, 0
)

Wt, (21)

with

β̂ =

(
n−1

∑
t=1

N

∑
i=1

X̃i,tX̃′i,t

)−1(n−1

∑
t=1

N

∑
i=1

X̃i,tT̃i,t+1

)
, (22)

where we use the notation Ãit = Ait − Āi· − Āt. + Ā·· with Āi· = (n− 1)−1 ∑n−1
t=1 Ait, Āt. =

N−1 ∑N
i=1 Ait, and Ā·· = (n− 1)−1 N−1 ∑n−1

t=1 ∑N
i=1 Ait. This means that the time specific and
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station specific effects are estimated by regression elimination and the slope coefficients β are
estimated using pooled least squares regression after elimination of these effects.

Step 2. Regress the fitted λ̂t on (1, Tt, Rt, ln(CO2,t)) by least squares giving

λ̂t = γ̂0 + γ̂1Tt + γ̂2Rt + γ̂3 ln(CO2,t) = γ̂0 + γ̂′Wt, (23)

and the corresponding vector of coefficient estimates (γ̂0, γ̂′) = (γ̂0, γ̂1, γ̂2, γ̂3) .
Step 3. Estimate the TCS parameter using the coefficient estimates

(
β̂1, γ̂1, γ̂3

)
giving

T̂CS =
γ̂3

1− β̂1 − γ̂1
× ln (2) . (24)

Steps 1 and 2 may be amalgamated in a combined least squares regression that minimizes the
following objective function with respect to (αi, β′, γ0, γ′) subject to the identification condition that
ᾱ = ∑N

i=1 αi = 0
n−1

∑
t=1

N

∑
i=1

{
Ti,t+1 − αi − β′Xi,t − γ0 − γ′Wt

}2 , (25)

which leads to the same estimates of the coefficients
(

β̂, γ̂
)

as those obtained by following Steps 1
and 2 above. Writing the vector of estimated time effects obtained in Step 1 as λ̂ =

(
λ̂t
)

, it is apparent
from (23) that the slope coefficient estimates of γ in the regression (23) take the form

γ̂ =
(
W̃ ′W̃

)−1 (W̃ ′λ̂) . (26)

where W̃ = W − W̄ is the matrix of deviations from time series means W̃t = Wt − W̄.
The estimates

(
β̂, γ̂

)
and implied estimate T̂CS of the TCS parameter above are all obtained using

WG estimation of the panel regression system (16) and (17). Somewhat remarkably, as the following
result shows, the resulting estimate T̂CS as well as the corresponding estimates of the linear contrasts
θ̂i = β̂i + γ̂i, (i = 1, 2) , are invariant to the method of estimation of the panel regression equation
estimates

(
β̂, γ̂

)
, whether by WG, diff-GMM or sys-GMM.

Theorem 1. Station-level estimation of the dynamic panel regression model (16) and (17) by the methods WG,
diff-GMM, and sys-GMM all lead to the same common estimate θ̂ =

(
W̃ ′W̃

)−1 W̃ ′T+ of the slope coefficient θ

in (19) and the common estimate of the TCS parameter

T̂CS =
γ̂3

1− θ̂1
× ln (2) .

Remark 1. Given the substantial differences among the methods WG, diff-GMM and sys-GMM, it may seem
remarkable that the composite estimates

(
β̂1 + γ̂1

)
and

(
β̂2 + γ̂2

)
are invariant to the panel regression method

employed. The individual estimates
(

β̂1, β̂2, γ̂1, γ̂2
)

obtained by the methods WG, diff-GMM and sys-GMM are
not invariant but the estimated coefficients β̂i and γ̂i involve compensatory adjustments that ensure invariance
of the contrasts

(
β̂1 + γ̂1

)
and

(
β̂2 + γ̂2

)
. As shown in the proof of Theorem 1 these adjustments ensure that

the estimation error for the composite estimate θ̂ of θ in (20) satisfy the system

θ̂ − θ =
(
W̃ ′W̃

)−1 W̃ ′T+ − θ =


(

β̂1 + γ̂1
)
− (β1 + γ1)(

β̂2 + γ̂2
)
− (β2 + γ2)

(γ̂3 − γ3)

 , (27)

which is determined solely by least squares regression of (the aggregate time series matrices) T+ on W̃, making the
estimation error θ̂ − θ of the composite parameters invariant to the method of estimation of the panel regression
Equation (16).
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Remark 2. The intuitive explanation for this invariance is that the individual estimated coefficients β̂i in (16)
depend on data (Ti,t+1, Xi,t) that upon aggregation necessarily satisfy the global dynamic relationship (19),
which upon time series demeaning is just T̃t+1 = θ′W̃t + ˜̄u·t+1, where T̃t+1 = Tt+1 − T̄ and W̃t = Wt − W̄.
The temporally demeaned linear time series relationship T̃t+1 = θ′W̃t + ˜̄u·t+1 involves only the composite
vector θ in its systematic part. Thus, the parameter θ may be interpreted as a global composite parameter and
this aggregate relationship may be interpreted as a reduced form dynamic equation for the global variables.
The estimates

(
β̂1, β̂2

)
of the system parameters (β1, β2) are used to estimate the time specific effects λt by

cross section aggregation giving λ̂t as shown in (21) with λ̂t = Tt+1 −
(

β̂′, 0
)

Wt. Correspondingly, when the

parameter γ is estimated in (23) using these specific fitted values λ̂t, we have γ̂ =
(
W̃ ′W̃

)−1 (W̃ ′λ̂), so that
the resulting estimates satisfy

γ̂ =
(
W̃ ′W̃

)−1 W̃ ′
{

T+ −W

[
β̂

0

]}
=
(
W̃ ′W̃

)−1 W̃ ′T+ −
[

β̂

0

]
(28)

and transposition gives

θ̂ =
(
W̃ ′W̃

)−1 (W̃ ′T+
)
=

 β̂1 + γ̂1

β̂2 + γ̂2

γ̂3

 , (29)

showing invariance and the manner in which the compensatory adjustments in the composite estimates are
automatically embodied by virtue of the cross section aggregation and the regression (23). In effect, the estimate
γ̂ adjusts to whichever specific fitted values λ̂t are obtained from the particular panel regression method
of estimation that produces the estimates

(
β̂1, β̂2

)
. Thus, the estimates

(
β̂1 + γ̂1

)
,
(

β̂2 + γ̂2
)

, and γ̂3 of
(β1 + γ1) , (β2 + γ2) , and γ3 are each invariant to the choice of estimation procedure for the coefficients β in
the panel regression (16). In every case, the estimate θ̂ of the composite parameter θ ends up taking the same
value and is invariant to the panel regression method.

4. Asymptotic Theory

In view of the invariance properties established in Theorem 1, it is convenient to do the analysis
with the (invariant) composite parameter estimate θ̂ and the implied estimate T̂CS. It is also convenient
to fix ideas by working with the WG estimates of the parameters (β, γ) and, hence, θ and TCS.

We start by writing the common trend representation (9) as

Wt = δw0 + δwt + Vt + u+
wt, (30)

where Vt = DwUgt =: [VTt, Vrt, Vct]
′ , and δw = (δT1, 0, δc1)

′ . Subtracting time series means gives
W̃t = δw t̃ + Ṽt + ũ+

wt, with Ṽt = Vt − V̄. Then

θ̂ − θ =
(
W̃ ′W̃

)−1 (W̃ ′Ū+
)

, (31)

and the limit theory needs to take account of degeneracy in the asymptotic form of the sample
moment matrix W̃ ′W̃ = ∑n

t=1 W̃tW̃ ′t arising from the presence of both linear and stochastic trends
in Wt. We remark also that asymptotics for the second component of (31), W̃ ′Ū+ = ∑n

t=1 W̃tū·t+1,
depends on the behavior of the cross section averaged elements ū·t+1 = N−1 ∑N

i=1 ui,t+1. Under
Assumption 1(i) and using to denote weak convergence, these elements satisfy a CLT

√
Nū·t+1  

ξt+1, say, and are therefore of order Op

(
N−1/2

)
. Further, in view of Assumptions 1(i)–(iv), we have

the functional laws n−1/2Vbnrc  V (r) , n−1/2Ṽbnrc  Ṽ (r) = V (r)−
∫ 1

0 V (s) ds, and an implied

functional law for partial sums of the limit variates ξt+1, viz., n−1/2 ∑
bnrc
t=1 ξt  Bξ (r) ≡ BM

(
σ2

ξ

)
,

where σ2
ξ = E

(
ξ2

t
)
= σ2

u .
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To handle the asymptotic degeneracy of the sample moment matrix, we proceed in the usual
fashion by rotation of the coordinate system of the regressors to isolate directions of different
magnitudes (Park and Phillips 1988, 1989). Define the deterministic trend direction h = δw/ (δ′wδw)

1/2

in (30) and let H⊥ be an orthogonal complement of h so that the matrix

H = [h, H⊥] =
1

(δ′wδw)
1/2


δc1γ3
1−θ1

0 −δc1

0 (δ′wδw)
1/2 0

δc1 0 δc1γ3
1−θ1

 , (32)

is orthogonal and δ′wδw =
(

δc1
1−θ1

)2 {
(1− θ1)

2 + γ2
3

}
. Rotating the system by H gives

H′W̃t =

{
at̃ + h′Ṽt + Op (1)

V⊥t + Op (1)
, with a =

(
δ′wδw

)1/2 , (33)

which isolates the deterministic trend in the leading coordinate and the stochastic trend in the
remaining coordinates, which we have written as V⊥t = H′⊥Vt. Corresponding to these coordinates,

define the scaling matrix Dn = diag
(

n3/2, nI2

)
.

With these preliminaries, we are able to state the following asymptotic result concerning the
composite parameter estimate θ̂ in (31) and its mixed normal (MN ) limit theory corresponding to the
different directions of deterministic and stochastic trends in the component variables. The presence of
mixed normality may appear unusual in panel regression setting where sequential cross section
and time series asymptotics commonly lead to standard normal limit theory. In the present
case, the key parameters (including the TCS parameter) rely on the coefficient of λt in what is
effectively an aggregate time series regression among global variables that have deterministically and
stochastically nonstationary characteristics. Thus, in (26) we have γ̂ =

(
W̃ ′W̃

)−1 (W̃ ′λ̂) and in (29)

θ̂ =
(
W̃ ′W̃

)−1 (W̃ ′T+
)

, both involving the nonstationary components of W̃. These features of the
regression leading to the estimate θ̂ produce mixed normal limit theory in the same way that they do for
conventional cointegrating regressions among nonstationary variables. Additional complications arise
in the present case because the signal matrix W̃ ′W̃ in this regression is asymptotically degenerate due
to the presence of nonstationary components of different orders of magnitude. These complications
are discussed in the remarks following Theorem 2.

In addition to θ̂, Theorem 2 provides limit theory for the estimate of TCS = θ3
1−θ1
× ln(2) =: g (θa) ,

where θa = (θ1, θ3) , based on the panel regression estimate θ̂a.

Theorem 2. Under Assumption 1 and as (n, N)→ ∞ :

(i) n
√

N
(
θ̂ − θ

)
 H⊥

(∫ 1
0 Ṽ⊥,r̃Ṽ′⊥,r̃

)−1 ∫ 1
0 Ṽ⊥,r̃dBξ ≡MN

(
0, σ2

ξ H⊥
(∫ 1

0 Ṽ⊥,r̃Ṽ′⊥,r̃

)−1
H′⊥

)
;

(ii) n3/2
√

Nh′
(
θ̂ − θ

)
 
(

a
∫ 1

0 r̃2
Ṽ⊥

)−1 (∫ 1
0 r̃Ṽ⊥

dBξ

)
≡MN

(
0,

σ2
ξ

a2

(∫ 1
0 r̃2

Ṽ⊥

)−1
)

;

(iii) n3/2
√

N
(

T̂CS− TCS
)
 1

δc1(1−θ1)

∫ 1
0 r̃Ṽ⊥

dBξ∫ 1
0 r̃2

Ṽ⊥

≡MN
(

0,
σ2

ξ

δ2
c1(1−θ1)

2

(∫ 1
0 r̃2

Ṽ⊥

)−1
)

;

where r̃(r) = r −
∫ 1

0 sds, r̃Ṽ⊥
= r̃ −

(∫ 1
0 r̃Ṽ⊥

) (∫ 1
0 Ṽ⊥Ṽ′⊥

)−1
Ṽ⊥, Ṽ (r) = V (r) −

∫ 1
0 V (s) ds, and

Ṽ⊥,r (r) = Ṽ⊥ (r)−
(∫ 1

0 Ṽ⊥ r̃
) (∫ 1

0 r̃2
)−1

r̃, Ṽ⊥(r) = H′⊥Ṽ (r).

Remark 3. In (i) and (ii), Ṽ⊥,r̃ (r) is the L2 projection residual of Ṽ⊥ = H′⊥Ṽ on r̃, and r̃Ṽ⊥
is the L2 projection

residual of r̃ on Ṽ⊥. These projections are simply the equivalent in the limit theory of the projections that take place
in finite samples. As is now familiar in nonstationary regression, transformations that occur in finite samples in
Euclidean space are commonly reflected in the limit theory by projections in the corresponding L2 space where the
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limiting stochastic processes lie, such as the projection residuals Ṽ⊥,r (r) = Ṽ⊥ (r)−
(∫ 1

0 Ṽ⊥ r̃
) (∫ 1

0 r̃2
)−1

r̃

and r̃Ṽ⊥
= r̃−

(∫ 1
0 r̃Ṽ⊥

) (∫ 1
0 Ṽ⊥Ṽ′⊥

)−1
Ṽ⊥.

Remark 4. In the deterministic trend direction h, (ii) shows that h′ θ̂ has the faster convergence rate
O
(

n3/2
√

N
)

consonant with both a deterministic linear trend and cross section aggregation effects. In the

alternate direction H⊥, the stochastic trend dominates and the convergence rate is O
(

n
√

N
)

, combining the
influence of the stochastic trend and cross section aggregation, giving

n
√

NH′⊥
(
θ̂ − θ

)
 

(∫ 1

0
Ṽ⊥,r̃Ṽ′⊥,r̃

)−1 ∫ 1

0
Ṽ⊥,r̃dBξ

≡ MN
(

0, σ2
ξ

(∫ 1

0
Ṽ⊥,r̃Ṽ′⊥,r̃

)−1
)

. (34)

This slower rate of convergence also dominates the limit distribution theory for the full vector θ̂, which is a
singular mixed normal distribution with support determined by the range space of H⊥, as given by (i).

Remark 5. As shown in Appendix B

n2 (W̃ ′W̃)−1
 H⊥

(∫ 1

0
Ṽ⊥r̃Ṽ′⊥r̃

)−1

H′⊥, (35)

so that the usual formula σ̂2
u
(
W̃ ′W̃

)−1 , employing a consistent estimate σ̂2
u of panel regression equation error

variance σ2
u , suffices for the asymptotic variance matrix in (i). This formula holds in spite of the degenerate

asymptotic rank of the signal matrix W̃ ′W̃ and the scaling by
√

N of the estimation error in (i). The reason
for the latter is that the estimation error θ̂ − θ =

(
W̃ ′W̃

)−1 (W̃ ′Ū+
)

from (31), and the moment matrix
W̃ ′Ū+ = ∑n

t=1 W̃tū·t+1 involves the cross section sample mean ū·t+1 = N−1 ∑N
i=1 ui,t+1 in which variance is

σ2
u/N, so cross section sample size scaling is already implicitly incorporated in σ̂2

u
N
(
W̃ ′W̃

)−1 and the estimated

variance matrix of n
√

N
(
θ̂ − θ

)
is then σ̂2

un2 (W̃ ′W̃)−1
 σ2

ξ H⊥
(∫ 1

0 Ṽ⊥r̃Ṽ′⊥r̃

)−1
H′⊥, as required.

Remark 6. The n
√

N convergence rate of θ̂ is explained by the use of cross section averaging in conjunction
with time series averaging in the presence of nonstationary data with stochastic trends in the direction H⊥.
As discussed in Remark 2, estimation of θ by panel regression techniques essentially involves, after cross section
aggregation, estimation of the global dynamic relationship (19), or Tt+1 = γ0 + θ′Wt + ū·t+1. Upon time series
demeaning, the global dynamics follow the equation

T̃t+1 = θ′W̃t + ˜̄u·t+1 (36)

which, in turn, depends only on the composite vector θ. Thus, the parameter θ may be interpreted as a global
composite parameter and this aggregate relationship may be interpreted as a reduced form dynamic equation for
the global variables. The error in (36) is

˜̄u·t+1 = ū·t+1 −
1
n

n−1

∑
t=1

u·t+1 =
1
N

N

∑
i=1

ui,t+1 −
1

nN

n−1

∑
t=1

N

∑
i=1

ui,t+1 = Op

(
1√
N

)
, (37)

where the Op

(
N−1/2

)
order holds under Assumption A(i) in which the dynamic panel regression errors

of (1) are assumed to satisfy {uit} ∼iid
(
0, σ2

u
)

over i and t. WG, diff-GMM, and sys-GMM estimation of the
components of θ all lead, as shown by the invariance result of Theorem 1, to least squares regression on (36),
the error of which is Op

(
N−1/2

)
, which in turn affects the convergence rate of all the respective coefficient
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estimates by
√

N scaling. In consequence, the deterministic and stochastic trends in the global vector variable
Wt lead to the dual convergence rates of n

√
N and n3/2

√
N for θ̂ in the respective directions H⊥ and h (in (34)

and (ii)) where each rate is scaled by the
√

N factor in view of (37)1.

Remark 7. When N → ∞ and Assumption 1 holds, the convergence rate n3/2
√

N of T̂CS exceeds the
convergence rate n3/2 of the FM-OLS estimator of TCS studied in Phillips et al. 2020. This divergence is
explained as follows. The FM-OLS estimator of TCS is based on a cointegrating regression estimation of
Equation (13) among the elements of Wt in which the TCS parameter appears directly as the coefficient of the
ln (CO2t) variable scaled by ln (2). Upon time series demeaning, this cointegrating equation has the form

T̃t =
θ2

1− θ1
R̃t +

γ3

1− θ1

˜ln(CO2,t) +
1

1− θ1
ζ̃t, (38)

where ζt, which is given by (14), is a stationary, weakly dependent equilibrium error term up to an asymptotically
negligible residual component. In (38) the panel regression errors uit have been eliminated up to an asymptotically
negligible term by cross section averaging. The dominant Op (1) component of ζt in (14) is the composite
stationary error

uTt −
γ3

1− θ1
uct = γ3

∞

∑
j=0

θ
j
1uct−1−j −

θ1

1− θ1

∞

∑
k=0

θk
1 [θ2δr + γ3δc]

′ ugt−1−k

−δ′Tugt −
γ3

1− θ1
uct,

which is a serially dependent linear process of the innovations
(
uct, ugt

)
. Thus, (38) is a cointegrating regression

equation with asymptotically stationary errors. The use of FM-OLS regression and other efficient methods
of cointegrating equation estimation therefore produces asymptotically unbiased and asymptotically efficient
estimates of the coefficients in (38) in which the rates of convergence are determined by the trend behavior of
the component regressors. Since ln(CO2,t) has a linear deterministic drift, the coefficient of this variable in
(38) and hence the implied estimate of the TCS parameter have a convergence rate of O

(
n3/2

)
, as shown in

Phillips et al. 2020. By contrast, under Assumption 1(i) and specifically the requirements that: (a) {uit} ∼iid(
0, σ2

u
)

over i and t; and (b) that the energy balance (time specific effect) variable λt is not subject to measurement
error, the convergence rate of panel dynamic regression estimation of TCS by WG (or the GMM methods)
is O

(
n3/2
√

N
)

. Violations of condition (a) that introduce serial dependence in uit lead to endogeneity in
the dynamic panel regression with consequent effects (including inconsistency) on the asymptotics of these
panel regression estimates. Violations of (b) induce a time series measurement error (uλt, say) into the factor
augmented form of the global dynamic regression Equation (18). The presence of such time series measurement
errors in λt mean that the global dynamic regression Equation (36) now has a residual ũλt of order Op (1) ,

rather than a residual of order Op

(
N−1/2

)
as in (37). This affects the rate of convergence, which becomes at

most O
(

n3/2
)

—like that of FM-OLS— and introduces the possibility of endogeneity and serial correlation
bias induced by the properties of uλt. In consequence, Theorem 2 only holds under the strict environment of
Assumption A(i) or analogous stationary and ergodic martingale difference assumptions. Accordingly, the use of

1 The n
√

N and n3/2
√

N rates of convergence apply under (37) and ū·t+1 = 1
N ∑N

i=1 ui,t=1 →p 0. More generally by the
ergodic theorem under cross section stationarity, ū·t+1 = 1

N ∑N
i=1 ui,t=1 →a.s. E (ui,t+1|Ct+1) =: ζt+1 where Ct+1 is a filtration

on the probability space of the aggregate variables that is generated by time series common global shocks. In such

cases, the convergence rate is O (n) and O
(
n3/2) rather than O

(
n
√

N
)

and O
(

n3/2
√

N
)

; and the corresponding limit
distributions are affected by the time series properties of the global common shock process ζt. The FM-OLS estimator used
in Phillips et al. (2020) is robust to this extension under general weak dependence conditions on ζt because endogeneity and
serial dependence are accounted for in FM-OLS regression. Panel regression estimators based on WG and GMM methods
do not take such effects into account and are generally inconsistent, as would be expected in dynamic models with serially
dependent disturbances.
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the long-run cointegrating regression Equation (38) to estimate the parameter TCS by methods such as FM-OLS
that take weak dependence and possible endogeneity of the composite errors into account provides a more robust
approach to the estimation of transient climate sensitivity and, as a result, seems preferable to the use of direct
panel regression methods such as WG, diff-GMM, and sys-GMM, at least without further modification of
those techniques.

Remark 8. From (iii) the (conditional) variance of the limit distribution of T̂CS is
σ2

ξ

δ2
c1(1−θ1)

2

(∫ 1
0 r̃2

Ṽ⊥

)−1
,

which is seen to diverge when δc1 → 0 or θ1 = β1 +γ1 → 1. The reason for divergence is that when δc1 = 0 there
is no deterministic trend in ln (CO2t) and hence no deterministic trend in Tt or the common trend representation
given in Theorem 1. In this case, the rate of convergence is O

(
n
√

N
)

not O
(

n3/2
√

N
)

, explaining the
divergence in the result (iii). When θ1 = 1, there is a second unit root in the global dynamic regression
Equation (19), implying that Tt now has a quadratic deterministic trend and does not (deterministically) co-move
or cointegrate with ln (CO2t) and Rt. In this case, the joint limit distribution of θ̂ is again singular but is
now dominated by the stochastic trend component (which has the lowest order in the signal moment matrix),
so the rate of convergence is again O

(
n
√

N
)

rather than O
(

n3/2
√

N
)

, explaining the divergence of the limit
variance in (iii) when θ1 → 1.

Remark 9. Under Assumption 1, it follows from Theorem 2 and is shown in Appendix B.3 that, using (iii),
we can construct by dynamic panel regression an asymptotically valid 100 (1− α)% confidence interval for the
TCS parameter. This interval has the form

T̂CS± zα

{
σ̂2

u ĝ′aEa
(
W̃ ′W̃

)−1 E′a ĝa

}1/2
, (39)

where σ̂2
u is a consistent estimate of σ2

u , Ea is the selector matrix

Ea =

[
1 0 0
0 0 1

]
,

and

ĝ′a = g′a
(
θ̂1, θ̂3

)
= ln (2)

(
θ̂3(

1− θ̂1
)2 ,

1
1− θ̂1

)
,

is the estimated gradient vector of the function TCS = g (θa) =
θ3

1−θ1
ln(2) evaluated at θ̂a =

(
θ̂1, θ̂3

)′
, and

zα is the 100 (1− α/2) percentile of the standard normal distribution. The asymptotic variance element that
appears in the confidence interval Formula (39), σ̂2

u ĝ′aEa
(
W̃ ′W̃

)−1 E′a ĝa, has four components: (i) σ̂2
u is the

usual consistent estimate of the equation error variance σ2
u ; (ii) the estimate of the first derivative function ĝa

associated with the linearization of the functional formula for the TCS parameter; (iii) the selector matrix Ea that
identifies the two components

(
θ̂1, θ̂3

)
of θ̂ that are relevant in determining T̂CS; and (iv) the signal matrix W̃ ′W̃

in the regression that delivers the estimate θ̂ =
(
W̃ ′W̃

)−1 (W̃ ′T+
)

. As explained in Remark 5 above, the inverse
of the signal matrix W̃ ′W̃ may be used in (39) in spite of its asymptotic singularity, which after normalization

has the well defined form H⊥
(∫ 1

0 Ṽ⊥r̃Ṽ′⊥r̃

)−1
H′⊥ given in (35), because the relevant directions for the variation

of T̂CS are identified and consistently estimated in the asymptotic variance element σ̂2
u ĝ′aEa

(
W̃ ′W̃

)−1 E′a ĝa,
as shown in the derivations given in Appendix B.
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5. Simulation Evidence

We report below results of a small simulation exercise with panel WG (within group least
squares), diff-GMM (Difference GMM), and (non-optimal) sys-GMM (System GMM) estimation
of the parameters in the following panel ARX(1) model (Storelvmo et al. 2016):

Tit = αi + β1Tit−1 + β2Rit−1 + λt−1 + uit, t = 1, .., n; i = 1, . . . , N (40)

λt = γ0 + γ1T̄·t + γ2R̄·t + γ3 log (CO2t) (41)

with uit ∼iid N
(
0, σ2

u
)

and αi ∼iid N
(
0, σ2

α

)
and parameter settings based on the WG estimates

obtained using the observed climate data with n = 42, N = 963, viz.,

β1 = 0.1346, β2 = −0.0001, (42)

γ0 = −14.915, γ1 = −0.023, γ2 = 0.0262, γ3 = 3.640, (43)

σα = 7.4147, σu = 0.4929. (44)

The simulations utilize the observed exogenous data on (Rit, CO2t)
n,N
t=1,i=1 and use (40) and (41) to

generate simulated data for (Tit, λt)
n,N
t=1,i=1 recursively based on the parameter settings (42) and (43).

The exercise is designed to shed light on the finite sample properties of various dynamic panel
regression procedures in the context of the climate model (40) and (41) with data that relates closely to
what was used in the empirical study.

Figures A1–A4 collected in Appendix A show densities of the WG, diff-GMM, and sys-GMM
estimates of the first Equation (40) of this model based on R = 1500 replications with sample sizes
n = 42, N = 50, using only the first 50 cross section observations of (Rit, CO2t)

n,N
t=1,i=1 and therefore

much smaller than the observational cross section sample size N = 963. The data were generated
as described above with true parameter settings (42) and (43) and observed data for radiation Rit
and CO2 equivalent CO2t. Simulation results based on the full cross section sample size N = 963 are
reported in the subsequent Figures A5–A8.

The WG densities show little bias (as might be expected with time series sample size n = 42) and
seem to conform well with asymptotic normality for both β1 and β2. The Diff_GMM estimates show
little bias in the estimation of β2 but show downward bias in the estimation of β1, and have much
greater variance than the WG estimates, for both β1 and β2. By contrast the sys-GMM estimates are
biased for both parameters. The sys-GMM estimates of β1 are particularly heavily biased upwards
from a true value of β1 = 0.135 to a value around unity. The reason is the large ratio

rα =
σα

σu
=

7.4147
0.4929

= 15.043,

of the standard deviation of the individual effects relative to the equation error. System GMM (both
optimal and non-optimal versions) is known to be very sensitive to heterogeneity in the fixed effects αi
and, in particular, to the magnitude of r2

α (Hayakawa 2015; Bun and Windmeijer 2010), which in the
present case is r2

α = 226.29. For a simple panel AR(1) model with fixed effects, for instance, Hayakawa
shows that non-efficient system GMM is actually inconsistent when n/N → c > 0 and the probability
limit of the system GMM estimate of β1 tends to unity when r2

α → ∞. This analytic finding corresponds
closely with the simulation results obtained here for the more complex model (40) and (41) with its
multiple sources of nonstationarity.

These simulations confirm the existence of substantial bias in system GMM estimation in the
present context. The findings are very similar for the data-realistic sample size setting N = 963,
although the distributions are much tighter in view of the larger value of the cross section sample
size N. Interestingly, the system GMM estimates of β1 in this case are centered around 0.8 rather than
unity, which corresponds closely to the sys-GMM estimate obtained with the observed data where
β̂1 = 0.864 (see Table 1). Moreover, since the ratio n

N = 42
963 = 0.0436 is close to zero in this case,
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Hayakawa’s (2015) expression for the bias in his Theorem 4(a) indicates that the bias will be smaller
for N = 963 than when N = 50 and this analytic result for the bias matches the simulation findings for
the temperature data.

6. Concluding Remarks

Panel data econometric methods seem well suited to assess the impact on global temperature
of rising greenhouse gas (GHG) concentrations in Earth’s atmosphere. They have the advantage of
modeling the aggregate impact of GHG on temperature while also incorporating the effects of changes
in downwelling surface radiation at the station level. In this way, panel models may account for some
of the observed ‘local dimming’ that has occurred during the past half century due to rising levels of
local pollution. Recent work by Magnus et al. (2011) and Storelvmo et al. (2016) sought to model these
effects through system estimation of a dynamic panel regression framework, finding that the dimming
influence of aerosols on surface radiation masked more than 30% of the aggregate effect of rising CO2

levels on Earth’s average temperature.
The analytic and simulation results of the present paper show that these local dimming effects

are surprisingly robust to the econometric methodology used to estimate Earth’s transient climate
sensitivity. Estimates of this aggregate-level parameter are found to be invariant to the dynamic panel
regression method employed. However, estimates of some of the individual parameters in the dynamic
panel regression system can differ substantially. In particular, system GMM methods are found to
be unreliable in estimating the panel autoregressive coefficient and certain aggregate parameters,
suffering from considerable bias. Both the simulation and analytic results favor within group methods
for time series and cross section sample sizes of the order now available in observed spatio-temporal
datasets. Within group panel estimation also gives results that are broadly in line with findings from
direct time series cointegrating regressions of the aggregate data. This correspondence between the
results of methods that employ disaggregate and aggregate data gives some assurance of the reliability
of the estimates of climate sensitivity to CO2 levels. Some further computations that reinforce some of
the present findings about the finite sample performance of dynamic panel regression methods and
provide R programs for estimating models of this type are given in Phillips and Han (2019).
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Appendix A. Additional Figures

Figure A1. Kernel estimates of the densities of Within Group (WG) and system GMM (sys-GMM)
estimates of β1 based on R = 1500 replications with n = 42, N = 50, and true value β1 = 0.135.

Figure A2. Kernel estimates of the densities of WG and sys-GMM estimates of β2 based on R = 1500
replications with n = 42, N = 50, and true value β2 = −0.0001.
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Figure A3. Kernel estimates of the densities of WG and diff-GMM estimates of β1 based on R = 1500
replications with n = 42, N = 50, and true value β1 = 0.135.

Figure A4. Kernel estimates of the densities of WG and diff-GMM estimates of β2 based on R = 1500
replications with n = 42, N = 50, and true value β2 = −0.0001.
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Figure A5. Kernel estimates of the densities of WG and sys-GMM estimates of β1 based on R = 1500
replications with n = 42, N = 963, and true value β1 = 0.135.

Figure A6. Kernel estimates of the densities of WG and sys-GMM estimates of β2 based on R = 1500
replications with n = 42, N = 963, and true value β2 = −0.001.
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Figure A7. Kernel estimates of the densities of WG and diff-GMM estimates of β1 based on R = 1500
replications with n = 42, N = 963, and true value β1 = 0.135.

Figure A8. Kernel estimates of the densities of WG and diff-GMM estimates of β2 based on R = 1500
replications with n = 42, N = 963, and true value β2 = −0.0001.
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Appendix B. Proofs

Appendix B.1. Proof of Theorem 1

Proof. The proof follows by simple algebraic manipulation, as shown in the remarks leading to (28)
and (29). In what follows, we provide a more explicit demonstration and establish the explicit form of
the estimation error θ̂ − θ given in (27), which is useful in the development of asymptotics.

To proceed we use the implied form of the aggregate dynamic relation (19), viz.,

Tt+1 = γ0 + θ′Wt + ū·t+1, with θ = (θ1, θ2, γ3)
′ , and θi = βi + γi for i = 1, 2 (A1)

which in matrix observation form is

T+ = γ0ιn−1 + Wθ + Ū = (T2, T3, . . . , Tn)
′ (A2)

where T+ = (T2, T3, . . . , Tn)
′ , Ū+ = [ū·2, . . . , ū·n]

′ , and ιn−1 = (1, . . . , 1)′ is (n− 1)× 1. Using (29) we
then have

θ̂ =

 β̂1 + γ̂1

β̂2 + γ̂2

γ̂3

 =
(
W̃ ′W̃

)−1 (W̃ ′T+
)
= θ +

(
W̃ ′W̃

)−1 (W̃ ′Ū+
)

, (A3)

which gives (27). We note that the time specific intercept λt in the regression is estimated by the
regression residuals

λ̂t = Tt+1 − β̂′Xt = Tt+1 − β̂1Tt − β̂2Rt = Tt+1 −
(

β̂′, 0
)

Wt (A4)

using the identification condition that ᾱ = 0, as in Step 1 of the WG estimation. However, Equation (A4)
applies not only for the WG estimate β̂ but also when the panel regression Equation (1) is estimated
by diff-GMM and sys-GMM, in which case the residuals λ̂t themselves depend on the method of
estimation and we may write these as λ̂GMM

t . In particular, if β̂GMM denotes either of these panel
GMM estimates of β, then analogous to (A4) we have

λ̂GMM
t = Tt+1 − β̂′Xt = Tt+1 − β̂1Tt − β̂2Rt = Tt+1 −

(
β̂′GMM, 0

)
Wt. (A5)

Using the vector of these residuals λ̂GMM =
(
λ̂GMM

t
)

, the slope coefficients γ in Equation (2)

are estimated by least squares regression giving γ̂GMM =
(
W̃ ′W̃

)−1 (W̃ ′λ̂GMM) , just as in the case of
WG estimation. The coefficient estimates γ̂GMM, just as λ̂GMM, then also depend on the method of
estimation of the slope coefficients β̂ in (1). Specifically, as in (28) we have

γ̂GMM =
(
W̃ ′W̃

)−1 W̃ ′
{

T+ −W

[
β̂GMM

0

]}
=
(
W̃ ′W̃

)−1 W̃ ′T+ −
[

β̂GMM
0

]
,

which reveals the compensatory adjustments between the estimated panel regression coefficients β̂ and
the estimated coefficients γ̂ in the aggregate relation. In the same way, when WG is used to estimate β

we have

γ̂WG =
(
W̃ ′W̃

)−1 W̃ ′
{

T+ −W

[
β̂WG

0

]}
=
(
W̃ ′W̃

)−1 W̃ ′T+ −
[

β̂WG
0

]
.

Upon transposition and therefore irrespective of whether GMM or WG estimation of β is employed
in the panel regression, we have
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θ̂ − θ =


(

β̂1 + γ̂1
)
− (β1 + γ1)(

β̂2 + γ̂2
)
− (β2 + γ2)

(γ̂3 − γ3)

 =
(
W̃ ′W̃

)−1 W̃ ′T+ − θ, (A6)

which shows that the estimates
(

β̂1 + γ̂1
)

,
(

β̂2 + γ̂2
)

, and γ̂3 of (β1 + γ1) , (β2 + γ2) , and γ3 are
each invariant to the choice of estimation procedure for the coefficients β in the panel regression (16).
We deduce that the same is true for the implied estimate of the parameter TCS, viz.,

T̂CS =
γ̂3

1−
(

β̂1 + γ̂1
) × ln (2) =: g

(
θ̂1, γ̂3

)
, with θ̂1 = β̂1 + γ̂1 and θ1 = β1 + γ1,

thereby establishing the stated invariance result.

Appendix B.2. Proof of Theorem 2

Proof. (i) Define the scaling matrix Dn = diag
(

n3/2, nI2

)
conformably with the rotation matrix

H = [h, H⊥] given by (33). Then, by standard weak convergence methods, we have

D−1
n H′W̃ ′W̃HD−1

n = D−1
n H′

n

∑
t=1

W̃tW̃ ′t HD−1
n

=

[
1

n3 ∑n
t=1
(
at̃ + h′Ṽt + Op (1)

)2 1
n5/2 ∑n

t=1
(
at̃ + h′Ṽt + Op (1)

) (
V′⊥t + Op (1)

)
1

n5/2 ∑n
t=1
(
Ṽ⊥t + Op (1)

) (
at̃ + h′Ṽt + Op (1)

) 1
n2 ∑n

t=1
(
Ṽ⊥t + Op (1)

) (
Ṽ′⊥t + Op (1)

) ]

 

[
a2
∫ 1

0 r̃2 a
∫ 1

0 r̃Ṽ′⊥
a
∫ 1

0 Ṽ⊥ r̃
∫ 1

0 Ṽ⊥Ṽ′⊥

]
, (A7)

where a = (δ′wδw)
1/2 . Inverting and by joint convergence and continuous mapping we have

DnH′
(
W̃ ′W̃

)−1 HDn = Dn
(

H′W̃ ′W̃H
)−1 Dn  

[
a2
∫ 1

0 r̃2 a
∫ 1

0 r̃Ṽ′⊥
a
∫ 1

0 Ṽ⊥ r̃
∫ 1

0 Ṽ⊥Ṽ′⊥

]−1

. (A8)

It follows that

Dn H′
(
θ̂ − θ

)
= DnH′

(
W̃ ′W̃

)−1 W̃ ′Ū = Dn H′
(
W̃ ′W̃

)−1 HDnD−1
n H′W̃ ′Ū

=
{

Dn
(

H′W̃ ′W̃H
)−1 Dn

}{
D−1

n H′W̃ ′Ū
}

=
{

Dn
(

H′W̃ ′W̃H
)−1 Dn

}{ 1√
N

[
n

∑
t=1

D−1
n H′W̃tξt+1 + op (1)

]}
.

Then
√

NDn H′
(
θ̂ − θ

)
 

[
a2
∫ 1

0 r̃2 a
∫ 1

0 r̃Ṽ′⊥
a
∫ 1

0 Ṽ⊥ r̃
∫ 1

0 Ṽ⊥Ṽ′⊥

]−1 [
a
∫ 1

0 r̃ṼhdBξ∫ 1
0 Ṽ⊥dBξ

]
, (A9)

using the fact that

n

∑
t=1

D−1
n H′W̃tξt+1 =

[
1

n3/2 ∑n
t=1 h′W̃tξt+1

1
n ∑n

t=1 H′⊥W̃tξt+1

]
=

[
1

n3/2 ∑n
t=1
(
at̃ + h′Ṽt + Op (1)

)
ξt+1

1
n ∑n

t=1
(
Ṽ⊥t + Op (1)

)
ξt+1

]

 

[
a
∫ 1

0 r̃dBξ∫ 1
0 Ṽ⊥dBξ

]
.

Thus [ √
Nn3/2h′

(
θ̂ − θ

)
√

NnH′⊥
(
θ̂ − θ

) ]
 

[
a2
∫ 1

0 r̃2 a
∫ 1

0 r̃Ṽ′⊥
a
∫ 1

0 Ṽ⊥ r̃
∫ 1

0 Ṽ⊥Ṽ′⊥

]−1
a
∫ 1

0 r̃dBξ∫ 1
0 Ṽ⊥dBξ

. (A10)
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The partitioned inverse in (A9) can be written explicitly as follows. For notational convenience define
the projection residuals

r̃Ṽ⊥
= r̃−

(∫ 1

0
r̃Ṽ⊥

)(∫ 1

0
Ṽ⊥Ṽ′⊥

)−1

Ṽ⊥,

Ṽ⊥,r (r) = Ṽ⊥ (r)−
(

a
∫ 1

0
Ṽ⊥ r̃

)(
a2
∫ 1

0
r̃2
)−1

ar̃ = Ṽ⊥ (r)−
(∫ 1

0
Ṽ⊥ r̃

)(∫ 1

0
r̃2
)−1

r̃,

and then the inverse limit signal matrix has the following explicit form

[
a2
∫ 1

0 r̃2 a
∫ 1

0 r̃Ṽ′⊥
a
∫ 1

0 Ṽ⊥ r̃
∫ 1

0 Ṽ⊥Ṽ′⊥

]−1

(A11)

=


(

a2
∫ 1

0 r̃2
Ṽ⊥

)−1
−
(

a2
∫ 1

0 r̃2
Ṽ⊥

)−1 (
a
∫ 1

0 r̃Ṽ′⊥
) (∫ 1

0 Ṽ⊥Ṽ′⊥
)−1

−
(∫ 1

0 Ṽ⊥,rṼ′⊥,r

)−1 (
a
∫ 1

0 Ṽ⊥ r̃
) (

a2
∫ 1

0 r̃2
)−1 (∫ 1

0 Ṽ⊥,rṼ′⊥,r

)−1

 .

These results lead to the required limit theory for n
√

N
(
θ̂− θ

)
. We use (A9) and the decomposition

n
√

N
(
θ̂ − θ

)
= n
√

N
[
hh′ + H⊥H′⊥

] (
ψ̂− ψ

)
= h

[√
Nnh′

(
θ̂ − θ

)]
+ H⊥

[√
NnH′⊥

(
θ̂ − θ

)]
= H⊥

[√
NnH′⊥

(
θ̂ − θ

)]
+ op (1)

 H⊥ [0, I2]

[
a2
∫ 1

0 r̃2 a
∫ 1

0 r̃Ṽ′H⊥
a
∫ 1

0 H′⊥Ṽr̃
∫ 1

0 H′⊥ṼṼ′H⊥

]−1 [
a
∫ 1

0 r̃dBξ∫ 1
0 Ṽ⊥dBξ

]

= H⊥

[
−
(∫ 1

0 Ṽ⊥,r̃Ṽ′⊥,r̃

)−1 (
a
∫ 1

0 Ṽ⊥ r̃
) (

a2
∫ 1

0 r̃2
)−1 (∫ 1

0 Ṽ⊥,r̃Ṽ′⊥,r̃

)−1
] [

a
∫ 1

0 r̃dBξ∫ 1
0 Ṽ⊥dBξ

]

= H⊥

(∫ 1

0
Ṽ⊥,r̃Ṽ′⊥,r̃

)−1
{∫ 1

0
Ṽ⊥dBξ −

(∫ 1

0
Ṽ⊥ r̃

)(∫ 1

0
r̃2
)−1 ∫ 1

0
r̃dBξ

}

= H⊥

(∫ 1

0
Ṽ⊥,r̃Ṽ′⊥,r̃

)−1 ∫ 1

0
Ṽ⊥,r̃dBξ

≡ MN
(

0, σ2
ξ H⊥

(∫ 1

0
Ṽ⊥,r̃Ṽ′⊥,r̃

)−1

H′⊥

)
, (A12)

with Ṽ⊥,r̃ (r) = Ṽ⊥ (r)−
(∫ 1

0 Ṽ⊥ r̃
) (∫ 1

0 r̃2
)−1

r̃, the L2 projection residual of Ṽ⊥ on r̃. This result gives

the limit theory for the vector n
√

N
(
θ̂ − θ

)
, and hence its individual elements, showing that the

limit distribution is singular because of the presence of a multivariate deterministic time trend in
the regressors.

(ii) The explicit inverse given in (A11) also enables us to find the limit distribution of the coefficient
estimates in the linear trend direction. In particular, we have from (A10) and (A11) that
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√
Nn3/2h′

(
θ̂ − θ

)
 [1, 0]

[
a2
∫ 1

0 r̃2 a
∫ 1

0 r̃Ṽ′⊥
a
∫ 1

0 Ṽ⊥ r̃
∫ 1

0 Ṽ⊥Ṽ′⊥

]−1 [
a
∫ 1

0 r̃dBξ∫ 1
0 Ṽ⊥dBξ

]

=

[ (
a2
∫ 1

0 r̃2
Ṽ⊥

)−1
−
(

a2
∫ 1

0 r̃2
Ṽ⊥

)−1 (
a
∫ 1

0 r̃Ṽ′⊥
) (∫ 1

0 Ṽ⊥Ṽ′⊥
)−1

] [
a
∫ 1

0 r̃dBξ∫ 1
0 Ṽ⊥dBξ

]

=

(
a2
∫ 1

0
r̃2

Ṽ⊥

)−1 (
a
∫ 1

0
r̃dBξ

)
−
(

a2
∫ 1

0
r̃2

Ṽ⊥

)−1 (
a
∫ 1

0
r̃Ṽ′⊥

)(∫ 1

0
Ṽ⊥Ṽ′⊥

)−1 ∫ 1

0
Ṽ⊥dBξ

=

(
a2
∫ 1

0
r̃2

Ṽ⊥

)−1
(

a
∫ 1

0

[
r̃−

(∫ 1

0
r̃Ṽ′⊥

)(∫ 1

0
Ṽ⊥Ṽ′⊥

)−1

Ṽ⊥

]
dBξ

)

=

(
a
∫ 1

0
r̃2

Ṽ⊥

)−1 (∫ 1

0
r̃Ṽ⊥

dBξ

)
≡MN

(
0,

σ2
ξ

a2

(∫ 1

0
r̃2

Ṽ⊥

)−1
)

, (A13)

giving the stated result.
(iii) We next proceed to examine the TCS estimate T̂CS and develop its asymptotic theory.

Some care is needed in application of the usual delta method because of the singularity of the limit
theory for θ̂ and its effects on the limit distribution of T̂CS. Set θa = (θ1, θ3) = (θ1, γ3) , write TCS and
T̂CS as

TCS = g (θa) =
θ3

1− θ1
× ln (2) , T̂CS = g

(
θ̂a
)
=

θ̂3

1− θ̂1
× ln (2) , (A14)

and define the gradient vector

ga (θa) = ln (2)

(
θ3

(1− θ1)
2 ,

1
1− θ1

)′
. (A15)

Observe that the leading column of the orthogonal matrix H in (32) is

h =

(
δc1γ3

1− θ1
, 0, δc1

)′
/

[(
δc1

1− θ1

)2 {
(1− θ1)

2 + γ2
3

}]1/2

and so

g′aEa = ln (2)

(
θ3

(1− θ1)
2 , 0,

1
1− θ1

)
. (A16)

Then

g′aEa H⊥ = g′a

[
0 −δc1

0 δc1γ3
1−θ1

]
=
[

0 −δc1
θ3

(1−θ1)
2 +

δc1γ3
(1−θ1)

2

]
= [0, 0] , (A17)

since θ3 = γ3. Since θ̂a − θa = Op

(
n−1N−1/2

)
by (A12), it follows by application of the delta method

and use of (A12) and (A17) that n
√

Ng′a
(
θ̂ − θ

)
→p 0 and, hence,

n
√

N
(

T̂CS− TCS
)
= n
√

Ng′a
(
θ̂ − θ

)
+ op (1) = op (1) .

The limit distribution of T̂CS is then obtained by using the limit distribution of the coefficient
estimates θ̂ in the linear trend direction. To do so, we proceed as follows. First note that

H = [h, H⊥] =
1

(δ′wδw)
1/2


δc1γ3
1−θ1

0 −δc1

0 (δ′wδw)
1/2 0

δc1 0 δc1γ3
1−θ1

 ,
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with δ′wδw =
(

δc1
1−θ1

)2 {
(1− θ1)

2 + γ2
3

}
=: a2. Write the product

g′aEa = ln (2)

(
θ3

(1− θ1)
2 , 0,

1
1− θ1

)
=

(δ′wδw)
1/2

δc1 (1− θ1)
h′. (A18)

Proceeding in the same way as (A13), it follows that

n3/2
√

N
(

T̂CS− TCS
)
= n
√

Ng′a
(
θ̂ − θ

)
+ op (1) =

(δ′wδw)
1/2

δc1 (1− θ1)
n3/2
√

Nh′
(
θ̂ − θ

)
 

(δ′wδw)
1/2

δc1 (1− θ1)
[1, 0]

[
a2 ∫ 1

0 r̃2 a
∫ 1

0 r̃Ṽ′⊥
a
∫ 1

0 Ṽ⊥ r̃
∫ 1

0 Ṽ⊥Ṽ′⊥

]−1 [
a
∫ 1

0 r̃dBξ∫ 1
0 Ṽ⊥dBξ

]

=
(δ′wδw)

1/2

δc1 (1− θ1)

(
a
∫ 1

0
r̃2

Ṽ⊥

)−1 (∫ 1

0
r̃Ṽ⊥dBξ

)
≡ (δ′wδw)

1/2

δc1 (1− θ1)
MN

(
0,

σ2
ξ

a2

(∫ 1

0
r̃2

Ṽ⊥

)−1
)

= MN
(

0,
σ2

ξ

δ2
c1 (1− θ1)

2

(∫ 1

0
r̃2

Ṽ⊥

)−1
)

, (A19)

as required.

Appendix B.3. Estimating the Asymptotic Variance Matrix of θ̂

The asymptotic variance matrix of θ̂ may be estimated in the usual way. To show this, note that
standard partitioned matrix inversion gives

n2 (W̃ ′W̃)−1
= n2 (HH′W̃ ′W̃HH′

)−1
= n2H

(
H′W̃ ′W̃H

)−1 H′

= n2H

[
a2 ∑n

t=1 t̃2 a ∑n
t=1 t̃Ṽ′t H⊥

a ∑n
t=1 H′⊥Ṽt t̃ ∑n

t=1 H′⊥ṼtṼ′t H⊥

]−1

H′
{

1 + op (1)
}

= : n2H

[
a11 a12

a21 A22

]−1

H′
{

1 + op (1)
}

(A20)

= n2H

[
a−1

11.2 −a−1
11.2a12 A−1

22
−A−1

22.1a21a−1
11 A−1

22.1

]
H′
{

1 + op (1)
}

= H

 Op
(
n−1) Op

(
n−1/2

)
Op

(
n−1/2

) (
A22.1

n2

)−1

H′
{

1 + op (1)
}

 H

 0 0

0
{∫ 1

0 H′⊥ṼṼ′H⊥ −
(∫ 1

0 H′⊥Ṽr̃
) (∫ 1

0 r̃2
)−1 (∫ 1

0 r̃Ṽ′H⊥
)}−1

H′

= H⊥

(∫ 1

0
Ṽ⊥r̃Ṽ′⊥r̃

)−1

H′⊥
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because

n2a−1
11.2 =

n2

n3

 a2 ∑n
t=1 t̃2

n3 −
(

a ∑n
t=1 t̃Ṽ′t H⊥

n5/2

)(
∑n

t=1 H′⊥ṼtṼ′t H⊥
n2

)−1(
a ∑n

t=1 H′⊥Ṽt t̃
n5/2

)
−1

= Op

(
n−1

)
,

n2 A−1
22.1 =

 1
n2

n

∑
t=1

H′⊥ṼtṼ′t H⊥ −
(

a ∑n
t=1 H′⊥Ṽt t̃

n5/2

)(
a2 ∑n

t=1 t̃2

n3

)−1 (
a ∑n

t=1 t̃Ṽ′t H⊥
n5/2

)
−1

,

 

{∫ 1

0
H′⊥ṼṼ′H⊥ −

(∫ 1

0
H′⊥Ṽr̃

)(∫ 1

0
r̃2
)−1 (∫ 1

0
r̃Ṽ′H⊥

)}−1

=

(∫ 1

0
Ṽ⊥r̃Ṽ′⊥r̃

)−1

,

n2 A−1
22.1a21a−1

11 =
n2

n5/2

{(
A22.1

n2

)−1 a21

n5/2

( a11
n3

)−1
}

= Op

(
n−1′2

)
.

Next the (cross section asymptotic) panel regression error variance σ2
ξ is to be estimated.

Under Assumption 1(i) σ2
ξ = σ2

u and σ2
u may be estimated from the residual of the combined panel

regression (25), viz

σ̂2
u =

1
Nn

n

∑
i=1

n−1

∑
t=1

û2
it+1 =

1
Nn

n

∑
i=1

n−1

∑
t=1

(
T̃i,t+1 − β̂1T̃i,t − β̂2R̃i,t − γ̂′W̃t

)2
,

which is consistent for σ2
u under Assumption 1, where

ûit+1 = Ti,t+1 − α̂i − β̂1Ti,t − β̂2Ri,t − γ̂0 − γ̂′Wt = T̃i,t+1 − β̂1T̃i,t − β̂2R̃i,t − γ̂′W̃t.

With these results in hand, we can construct the following consistent estimate of the conditional
variance matrix of n

√
N
(
θ̂ − θ

)
in Theorem 2, viz.,

n2N
(

σ̂2
u

N

) (
W̃ ′W̃

)−1
= σ̂2

un2 (W̃ ′W̃)−1
 σ2

ξ H⊥

(∫ 1

0
Ṽ⊥,r̃Ṽ′⊥,r̃

)−1

H′⊥. (A21)

So, the asymptotic variance is given by the usual formula σ̂2
u
(
W̃ ′W̃

)−1 . Note that the effective sample
size scaling involved in (A21) is n2, corresponding to the presence of stochastic trends in the signal
matrix W̃ ′W̃. The scaling by

√
N in the standardized estimation error n

√
N
(
θ̂ − θ

)
arises because of

the estimation error θ̂ − θ =
(
W̃ ′W̃

)−1 (W̃ ′Ū) from (31), and the moment matrix W̃ ′Ū = ∑n
t=1 W̃tū·t+1

involves the cross section sample mean ū·t+1 = N−1 ∑N
i=1 ui,t+1 in which the variance is σ2

u/N, so

cross section sample size scaling is already implicitly incorporated in σ̂2
u

N
(
W̃ ′W̃

)−1 and the estimated

variance matrix of n
√

N
(
θ̂ − θ

)
is then σ̂2

un2 (W̃ ′W̃)−1
 σ2

ξ H⊥
(∫ 1

0 Ṽ⊥r̃Ṽ′⊥r̃

)−1
H′⊥, as required.

Proceeding in a related way we can estimate the conditional variance of the estimate T̂CS of the
TCS parameter and, using this, a 100 (1− α)% confidence interval for TCS. Using the same notation
as in (A20) and the definitions

g′a = g′a (θ1, θ3) = ln (2)

(
θ3

(1− θ1)
2 ,

1
1− θ1

)
,

Ea =

[
1 0 0
0 0 1

]
,

so that g′aEa =
(δ′wδw)

1/2

δc1(1−θ1)
h′, as in (A18), we obtain
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n3g′aEa
(
W̃ ′W̃

)−1 E′aga = g′aEaH
(

H′W̃ ′W̃H
)−1 H′E′aga

=
δ′wδw

δ2
c1 (1− θ1)

2 n3 [1, 0]

[
a−1

11.2 −a−1
11.2a12 A−1

22
−A−1

22.1a21a−1
11 A−1

22.1

] [
1
0

] {
1 + op (1)

}
=

δ′wδw

δ2
c1 (1− θ1)

2

( a11.2

n3

)−1 {
1 + op (1)

}
 

δ′wδw

δ2
c1 (1− θ1)

2

(
a2
∫ 1

0
r̃2

Ṽ⊥

)−1

=
1

δ2
c1 (1− θ1)

2

(∫ 1

0
r̃2

Ṽ⊥

)−1

,

since

a11.2

n3 =
a2 ∑n

t=1 t̃2

n3 −
(

a ∑n
t=1 t̃Ṽ′t H⊥

n5/2

)(
∑n

t=1 H′⊥ṼtṼ′t H⊥
n2

)−1(
a ∑n

t=1 H′⊥Ṽt t̃
n5/2

)
 a2

∫ 1

0
r̃2

Ṽ⊥
,

and a2 = δ′wδw. Thus,

n3σ̂2
u g′aEa

(
W̃ ′W̃

)−1 E′aga  
σ2

u

δ2
c1 (1− θ1)

2

(∫ 1

0
r̃2

Ṽ⊥

)−1

.

Next, since θ̂ and σ̂2
u are consistent for θ and σ2

u , we have

ĝ′a = g′a
(
θ̂1, θ̂3

)
= ln (2)

(
θ̂3(

1− θ̂1
)2 ,

1
1− θ̂1

)
→p ga (θ1, θ2) ,

and

n3σ̂2
u ĝ′aEa

(
W̃ ′W̃

)−1 E′a ĝa  
σ2

u

δ2
c1 (1− θ1)

2

(∫ 1

0
r̃2

Ṽ⊥

)−1

,

giving a consistent estimate of the asymptotic conditional covariance matrix (A19) of the limit
distribution of n3/2

√
N
(

T̂CS− TCS
)

. It follows that a 100 (1− α)% confidence interval for TCS
may be constructed as

T̂CS± zα

{
σ̂2

u ĝ′aEa
(
W̃ ′W̃

)−1 E′a ĝa

}1/2
.
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