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Abstract: In New Zealand (NZ), leptospirosis is a mostly occupational zoonosis, with >66% of the
recently notified cases being farm or abattoir workers. Livestock species independently maintain
Leptospira borgpetersenii serovar Hardjo and L. interrogans serovar Pomona, and both are included in
livestock vaccines. The increasing importance in human cases of Ballum, a serovar associated with
wildlife, suggests that wildlife may be an overlooked source of infection. Livestock could also act as
bridge hosts for humans. Drawing from disease ecology frameworks, we chose five barriers to include
in this review based on the hypothesis that cattle act as bridge hosts for Ballum. Using a narrative
methodology, we collated published studies pertaining to (a) the distribution and abundance of
potential wild maintenance hosts of Ballum, (b) the infection dynamics (prevalence and pathogenesis)
in those same hosts, (c) Ballum shedding and survival in the environment, (d) the exposure and
competency of cattle as a potential bridge host, and (e) exposure for humans as a target host of
Ballum. Mice (Mus musculus), rats (Rattus rattus, R. norvegicus) and hedgehogs (Erinaceus europaeus)
were suspected as maintenance hosts of Ballum in NZ in studies conducted in the 1970s–1980s. These
introduced species are distributed throughout NZ, and are present on pastures. The role of other
wildlife in Ballum (and more broadly Leptospira) transmission remains poorly defined, and has not
been thoroughly investigated in NZ. The experimental and natural Ballum infection of cattle suggest
a low pathogenicity and the possibility of shedding. The seroprevalence in cattle appears higher in
recent serosurveys (3 to 14%) compared with studies from the 1970s (0 to 3%). This review identifies
gaps in the knowledge of Ballum, and highlights cattle as a potential spillover host. Further studies
are required to ascertain the role that wild and domestic species may play in the eco-epidemiology of
Ballum in order to understand its survival in the environment, and to inform control strategies.

Keywords: disease ecology; emerging infectious diseases; infectious disease reservoirs; liaison host;
species barrier; wildlife–livestock interface

1. Introduction

Leptospira are conjectured to be saprophytic soil bacteria that evolved into pathogenic
strains by adaptation to mammalian hosts, and genomic tools are beginning to unravel
the diversity of the species in this genus [1,2]. More than 300 Leptospira serovars and
65 species or candidate species have been described internationally. Only eight serovars
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from five serogroups and two species have been isolated in New Zealand (NZ), namely
Leptospira borgpetersenii serovars (sv) Hardjobovis, Ballum, Balcanica and Tarassovi, and
L. interrogans sv Pomona, Copenhageni, Australis and Canicola. Australis and Canicola
have been isolated from humans only [3].

In NZ, leptospirosis was initially named “dairy farm fever” or “swineherd’s dis-
ease” [4,5]. It remains, nowadays, closely associated with agricultural occupations, with
around two-thirds of cases being abattoir or farmworkers [6]. In the 1970s, Hardjobovis
and Pomona represented 99% of the notified human cases [7], and 80–90% of these were
dairy farmworkers [8,9]. Livestock species were determined as maintenance hosts for those
serovars. As observed by Hathaway [10] in the same NZ farm environment, cattle and
pigs harboured Hardjobovis or Pomona, the brush-tailed possum (Trichosurus vulpecula)
harboured sv Balcanica, and rodents and hedgehogs (Erinaceus europaeus) harboured sv
Ballum. Titres in livestock other than to Hardjobovis or Pomona were attributed to cross-
reactivity and spillover events between wild and domestic hosts, and were considered
as sporadic [10,11]. In order to describe this host specificity, the terms ‘nidality’ and ‘eco-
logical niche’ have been used [12–14]. In contrast to numerous other countries, rodents
and wildlife have since been considered of minor importance in human leptospirosis in
NZ [10,15].

While human cases attributed to sv Ballum (i.e., Ballum hereinafter unless indicated
otherwise) represented less than 1% of notifications in the 1970s–1980s [7], they now rep-
resent up to one-third of all cases [6,16,17]. Although more sensitive PCR tests are now
available, serovar determination still relies on serological tests, for which the methodology
has remained similar since the 1970s, and the evolution of laboratory diagnostics cannot ex-
plain this change. This apparent increase is relative and can, at least partially, be explained
by the decreasing incidence of Hardjobovis and Pomona cases since the introduction and
uptake of vaccination in the dairy and pig industries [18]. However, the absolute number of
Ballum cases has also increased: the incidence of cases attributed to Ballum, which was neg-
ligible in the 1970s, increased from 0.2/100,000 in 1990–92 to 0.6/100,000 in 1996–1998 [19].
Nisa et al. [20] reported a 1.59-fold increase (95% CI 1.22–2.09) of the incidence in 2008–2017
(0.38/100,000) compared to 1999–2007 (0.23/100,000) for this serovar. In 2017, the Ballum
incidence was the highest ever recorded in NZ, at 0.77/100,000 inhabitants [17].

This increasing importance of Ballum raises the need to better understand the eco-
epidemiology of this emerging serovar. Wildlife may be an overlooked source of infection
for humans. Farmers are among the notified Ballum cases, though the role of livestock in
the eco-epidemiology of this serovar is unclear [21], and they could act as bridge hosts. This
article reviewed literature on the eco-epidemiology of L. borgpetersenii sv Ballum relevant
to NZ, and explored the possibility for this serovar to spill over into domestic hosts.

2. Methodology and Scope of This Review

The online databases used were Scopus, Web of Science, and SciQuest. Google Scholar,
the Massey University library database (Discover) and NZResearch.org.nz were searched
for additional grey literature on Leptospira in NZ, as well as the paper archives of the
Leptospirosis Reference Centre in Amsterdam (spanning 1915–1990).

We used a narrative approach to conduct this review. First, we reviewed the history of
Ballum worldwide and in NZ. Then, a preliminary literature search on wildlife as a source
of Leptospira infection in NZ was performed (Appendix A and Supplementary Materials
S1), informing a list of maintenance hosts to include in the rest of this review (barriers
a and b; see below): the house mouse (Mus musculus), ship rat (Rattus rattus), brown rat
(R. norvegicus) and hedgehog. Finally, drawing from two disease ecology frameworks
conceptualising the barriers to be crossed for pathogen spillover [22] and the notion
of bridge host [23], we chose five barriers (a–e) to include in the review based on the
hypothesis that cattle act as bridge hosts (Figure 1):

(a) the presence and abundance of maintenance hosts;
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(b) the infection dynamics of Ballum in maintenance hosts, including its prevalence
and pathogenesis;

(c) Ballum shedding and survival in the environment;
(d) the exposure and competency of cattle as a potential bridge species; and
(e) the exposure (risk factors) for humans (target hosts).

Figure 1. Theoretical barriers to Ballum spillover from wildlife to humans included in the literature
search. This diagram assumes that wild mammals are maintenance hosts, cattle act as bridge hosts,
and humans are target hosts. The plain arrows indicate the longest chain of transmission leading to
spillover, while the striped arrows show possible shortcuts. The bullet points detail what is included
in each barrier.

The genetic, physiological and immunological attributes of the spillover hosts, while
important determinants of transmission [22], were considered to be beyond the scope
of this work. As meat workers had a lower incidence than farmers for Ballum [20], and
as dairy farmers are in more frequent contact with livestock species compared to other
farmers, we limited the notion of bridge host to this production system.
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3. First Descriptions of Ballum

The type strain for serovar Ballum (Mus 127) was first isolated from a house mouse
on a Danish farm in 1943 [24]. Another strain (S-102) had previously been isolated from
a laboratory white mouse in Amsterdam in 1941, but wartime conditions limited further
investigations [25].

The serogroup Ballum includes L. borgpetersenii svs Ballum, Castellonis, Arborea,
Kenya, Guangdong and Soccoestomes, as well as L. santarosai sv Peru, and the more
recently described L. mayottensis sv Kenya [26–28]. Standard serological methods like the
microscopic agglutination test (MAT) are not serovar- but rather serogroup-specific, which
limits the interpretation of serological data in areas where several of those serovars can
be present.

Worldwide, Ballum has been isolated in a variety of locations and hosts, often rodents
of the Muridae or Cricetidae families (e.g., [29]), but also Didelphidae (common and
Virginia opossums Didelphis marsupialis and D. virginiana), various carnivores [30] and
snakes (hog-nosed snake Heterodon platyrhinus) [14,31]. In human cases, this serovar is
common in Europe and the Americas, but is less frequently reported in Asia [32]. Wild or
laboratory house mice were proposed as the main reservoir of this serovar [33,34], probably
because of their cosmopolitan and commensal nature, and because of the frequency of
isolation of Ballum from this species. Isolation was occasionally successful from brown
and ship rats, for instance in Portugal [35], Britain [36], Puerto Rico, British Columbia [31],
Hawaii [37] and Italy [38], but they are more commonly associated with serovars from
the Icterohaemorrhagiae serogroup [33,34]. Hedgehogs are more commonly associated
with serovars within the Australis serogroup in Europe [39,40], but one strain of Ballum,
Kipod 88, was isolated from the kidneys and brain of a hedgehog in an urban area in Israel
(Tel-Aviv) in 1957 [41].

Early serosurveys conducted on Leptospira in animals and humans in NZ did not
include this new serogroup (Ballum) in their testing panel [42–48]; see also Appendix A
and Supplementary Materials S1. Smith was the first, in 1963, to include it in the initial
screening phase of his macroscopic agglutination test panel, pooled with Canicola and
Icterohaemorrhagiae [49]. Of the 98 hedgehog sera sampled in Hamilton, Upper Hutt,
Dunedin, and Auckland, three were reactive to this antigen pool, all from the Hamilton area,
and two failed to agglutinate with the specific Icterohaemorrhagiae and Canicola antigens.
Smith did not have Ballum-specific antigens available for further investigation, and only
attempted a culture on a small number of animals. Eight guinea pigs were inoculated with
a mix of kidney and urine from 12 hedgehogs from the Hamilton area. Although two of the
eight died, “apparently of leptospirosis”, he did not isolate any Leptospira from their blood,
urine or kidneys, nor from the urine cultures of 16 additional hedgehogs ([49], p. 105).
These results were not sufficiently reliable to ascertain the presence of Ballum in NZ.

The first NZ isolation of Ballum was performed in 1967 from two sick dairy farm-
workers (Till (1968) in Ref. [11]), and from the urine of healthy calves six years later [50].
In another study, Ballum was included in the MAT panel, and all 26 possum sera tested
were negative for this serovar [51]. It was not until 1976 [52] that the first isolations from
wildlife were reported, from a brown rat and a rabbit (Oryctolagus cuniculus) trapped on an
artificial breeding centre for cattle. The serotyping method was not detailed in the article,
and only two brown rats, 11 rabbits, two possums, four hedgehogs and three hares were
examined. Bovine urine (n = 102) and ovine kidneys (n = 28) were also sampled, and
Leptospira-like organisms were seen using dark-field microscopy (DFM) in, respectively, 34
and five of them. However, the isolation—and therefore serotyping—of those organisms
was not successful.

Most of the available information on Ballum infection in NZ wildlife comes from two
concomitant research projects conducted in the late 1970s [10,53,54]. The first project, led
by Brockie, initially focused on hedgehogs; the isolation of the serovar Ballum from the
kidneys of five healthy female hedgehogs caught in dairy farms throughout the North
Island led him to suggest that this species was a major reservoir of Ballum in NZ [54].
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Brockie also trapped mice and brown rats harbouring Ballum in refuse dumps in the North
Island [53]. The second project, carried out by Hathaway and supervised by Blackmore
and Marshall, focused on possums and Balcanica [55,56], but they also conducted a survey
investigating Leptospira in several species [57], and another focused on ship rats and brown
rats in refuse dumps and farming environments [10]. They found that, contrary to ship rats,
the Ballum culture prevalence was density-dependent for brown rats. It was concluded
that ship rats were maintenance hosts, while brown rats were able to maintain Ballum only
in high-density populations [58]. However, the study did not ascertain the presence or
absence of mice in the refuse dumps where those rats were shot, and mice could have acted
as the primary maintenance host for this serovar.

4. Barriers for Ballum Spillover

(a) Maintenance Host Distribution
Except brown rats, all of the recognised maintenance hosts of Ballum are distributed

throughout NZ. Brown rats, mice and ship rats arrived in NZ with the first European
settlers in the 1770s–1790s, 1790s–1840s and 1860s–1890s respectively [59,60], and rapidly
colonized both the North and South Island. Brown rat populations that were thriving in
the 1850s declined by the end of the 19th century, and have since had a discontinuous
distribution that has been attributed to competition with ship rats and/or predation from
mustelids released as an attempt to control rodents and rabbits [60,61].

Hedgehogs were first released around Christchurch and Dunedin in the 1870s–1890s,
and had reportedly dispersed through most lowland areas of the South Island by 1910,
when they were introduced and quickly spread in the North Island [62]. They are now
present throughout NZ, except at high altitudes, and are found in gardens and urban areas,
and also grassland and shrubland. In their native range, they are known to avoid pastures
because of the risk of predation by badgers [63]. Comparisons of road-kill counts along
North Island highways indicate that the abundance of hedgehogs was similar in 1984 and
1994, dropped drastically (−82%) in 2005 [64], and subsequently recovered between 2009
and 2014 [65].

The preferred habitat for mammal species introduced to NZ can differ from their
original habitat in their native range. Mice, known to be commensal and found only
around human dwellings or farm buildings, benefit from the absence of other wild rodents,
and are also present in pastures and forests throughout NZ. The same is true for ship
rats, which benefit from the absence of other arboreal rodents (such as squirrels) and are
also present in forests [66]. Brown rats remained the most synanthropic. They are found
more readily around dwellings, in suburbs and refuse dumps. They can be found in
farm environments, but in lower densities than ship rats, and preferentially around farm
buildings [61].

Almost all of the available density or abundance estimates published for rodents since
2004 were carried out in forests or islands in the frame of conservation projects (Table 1).
Rodent density estimates in studies published before 2004 are listed in [67,68]. Populations
are known to fluctuate greatly, with spikes associated with seed masting events [69,70].
Although mice and rats are known to be present in pastures, there is a dearth of information
on their abundance in farm habitats. A study in grazed or fenced fragments of native forest
showed a higher density of ship rats in the fenced fragments, and the highest measured
densities in mainland NZ [71]. Mice benefit from the removal of predators [72] and rats [73],
with which they compete, and this effect was expected to be especially true in warmer
forests of NZ [70].

One study in Tāwharanui Open Sanctuary (Northland) compared the mouse relative
abundance in forest, grazing pasture, coastal vegetation and rank grass before and after the
removal of other invasive species. While undetected in pastures before removal, there were
up to 3.5 mice captured per 100 trap-nights (C/100TN) after removal. This was significantly
less than estimates in the three other habitats, which were between 120 and 190 C/100TN
in the same period [72]. Another study described higher mice presence indices in former
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pastures which were being regenerated than in the neighbouring grazed pastures [74].
In forests, the relative abundance ranged between 0 and 62 mice C/100TN, and up to
190 C/100TN in the absence of competitors (Table 1).

Table 1. Indices of relative abundance (in captures or corrected captures/100 trap-nights, or * in sighting/100 km) and
density estimates (individuals per hectare) published in the literature for mice (Mus musculus), rats (Rattus rattus) and
hedgehogs (Erinaceus europaeus) in New Zealand. The table was adapted and completed from [68] with the kind permission
of the authors. Only literature published after 2004 was searched for rodents.

Place Is. Habitat Type Abundance Density Months Years Ref.

Mus musculus

Grebe Valley SI Beech forest 0.5–32.9 \ Feb, Dec 2000 [75]
Borland Valley SI Beech forest 0–62 \ Nov, Feb, Dec 1999–2000 [75]
Borland Valley SI Beech forest \ 0.02–1.8 Feb, May, Nov 2003–2004 [76]
Waitutu Forest SI Beech—mixed forest \ 8–28 F, M, A, N 1 2001–2003 [77]

Ōrongorongo Valley NI Beech—mixed forest 0–13.8 \ F, M, A, N 1 1973–1998 [78]
Maungatautari NI Podocarp—mixed forest † \ 9–46 F, M, A, N 1 2011–2016 [79]

Moturekareka Is. oiNI Coastal forest/scrub † \ 81 Apr 2014 [80]
Saddle Is. oiNI Coastal forest/scrub † \ 8.8–19.2 Jan, Mar, May, Aug 2008 [81]

Tāwharanui NI Coastal forest/scrub † 1–190.16 14.6–156.7 F, A, J, A, O, D 2 2007 [72]
Maud Is. oiSI Coastal forest/scrub † \ 138 Feb 2014 [80]

Moturekareka Is. oiNI Pine forest † \ 34 Apr 2014 [80]
Auckland Is. OI Rata forest (+ shrubland) 5.6–7.2 \ Jun, Jul 2007 [82]

Maud Is. oiSI Scrub (Manuka/Grass) † \ 102 Feb 2014 [80]
Antipodes Is. OI Tussock/Grassland † \ 55–104 Jan, Jul 2011 and

2013
[83,84]

Borland Valley SI Tussock/Grassland \ 0.4–38.6 Feb/Mar, May, Nov 2003–2007 [76]
Auckland Is. OI Tussock/Grassland 12.7 \ Jun, Jul 2007 [82]
Tāwharanui NI Grassland (grazed pasture) † 0–3.51 \ F, A, J, A, O, D 2 2007 [72]
Tāwharanui NI Grassland (rank grass) † 1.71–121.13 \ F, A, J, A, O, D 2 2007 [72]

Waikauri Bay NI Grassland (rank grass) 17.62–91.18 \ Apr, Aug, Dec 2007 [72]
Tāwharanui NI Supra-littoral vegetation † 40–130.44 \ F, A, J, A, O, D 2 2007 [72]

Rattus rattus

Eglinton Valley SI Beech forest \ 0.38 Mar 2005 [85]
Ōrongorongo Valley NI Beech—mixed forest 2.3–7.5 \ F, M, A, N 1 1971–1998 [86]
Ōrongorongo Valley NI Beech—mixed forest 31 5–9 Apr, May 2003–2004 [87]

Waikato NI Broadleaved forest fragment
(fenced)

\ 6.5 Jan, Feb 2008 [71]

Waikato NI Broadleaved forest fragment
(grazed)

\ 0.5 Jan, Feb 2008 [71]

Big South Cape Is. oiStI Supra-littoral vegetation \ 6.5–36.4 Dec, Jan 2003–2004 [67]

Erinaceus europaeus

\ NI Roadkill 0–58.3 * \ Jan, Feb 1987 [88]
\ SI Roadkill 0–8 * \ Jan, Feb 1987 [88]
\ NI Roadkill 6.7–6.9 *(max

23–25 *)
\ Feb 1984–1994 [64]

\ NI Roadkill 1.3 * \ Feb 2005 [64]
\ NI Roadkill 4–25 * \ \ 2009–2014 [65]

Macraes flat SI Tussock/Grassland 0.01 \ May 2013 [89]
Tasman Valley SI Tussock/Grassland (shrubs) 0 \ Jun, Jul 2013 [89]

Lake Wairarapa NI Grassland/Scrub \ 0.88 Oct to May 1995–1996 [90]
Massey University NI Farmland \ 2.5 Nov to Jun 1970–1971 [91]
Massey University NI Farmland \ 1.1 Jul to Oct 1970–1971 [91]

Is. = Island, NI = North Island, SI = South Island, StI = Stewart Island, oiSI/NI/StI = outlying island of SI/NI/StI, OI = Offshore island;
† Mice were the only non-native mammal species present; 1 Quarterly trapping: February, May, August and November; 2 Bi-monthly
trapping: February, April, June, August, October, December.
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(b) Infection Dynamics in Maintenance Hosts
(b1) Ballum Prevalence
The overall seroprevalence for Ballum described in the literature varied between

3 and 8% for mice [53,57], 6 and 28% for ship rats [53,57,58,92], 4 and 29% for brown
rats [53,57,58,92,93] and 2 and 36% for hedgehogs [49,54,57], with a variable cut-off across
the studies (from 12 to 100). The culture prevalence varied between 13 and 16% [53,57],
0 and 33% [53,57,58,92,93], and 0 and 19% [49,54,57,94], respectively (Table 2). No PCR
methods were used except for two pilot studies carried out prior to this work on a small
number of animals (reporting a total of 3/7, 0/2, and 0/1 PCR positive hedgehogs, mice
and “rats”, with a PCR targeting the 16s rRNA gene) [95,96]. Some studies did not allow
the distinction between ship and brown rats [93,96,97]. Other studies had a sample size too
low to allow for an estimation of prevalence [52,95–97]. There was no estimate available
after 1999.

Both Hathaway and Brockie found that among rodents with a Ballum-positive culture,
the majority were seronegative, and that serology was not reliable for the diagnosis of the
infection status of these animals. In total, 46 to 89% of brown rats, 67 to 75% of ship rats,
and 83 to 89% of mice with a Ballum isolate were seronegative [53,57]. Brockie also noted
that one in five hedgehogs shedding Ballum had no detectable antibodies [53].

A statistically significant difference (Fisher’s exact test p-value = 0.0259) was reported
between hedgehogs in urban and farm environments despite the small sample size of the
urban hedgehogs. Six urban hedgehogs showed no seropositive reactions and no isolation,
while 56% of the 72 hedgehogs captured on dairy farms had evidence of infection [54],
which was in agreement with Smith’s results in 98 urban hedgehogs, with only two being
seropositive for Ballum (pooled with Canicola and Icterohaemorrhagiae) [49]. However, in
a recent pilot study, Ballum was isolated from one of five urban hedgehogs [96].

A lower prevalence was also described in urban rodents compared to those in rural
habitats, again relying on low numbers of urban animals (respectively 0/4, 0/2 and
0/3 urban mice, brown rats and ship rats vs. 10/73, 19/76 and 4/14 rural mice, brown rats
and ship rats showed culture or serological evidence of infection with Leptospira sp.) [53,54].
However, contrasting results were also described, with a significantly higher prevalence
of Ballum and Copenhageni in brown rats in urban habitats (11/12 Ballum isolates from
urban brown rats), while ship rats had a higher prevalence in rural areas (one of three
Ballum isolates from urban ship rats) [93]. In this study, the data were presented with both
rat species pooled, and the exact number of urban/rural rats of each species sampled—and
hence the prevalence—could not be inferred.

All of the NZ studies available in the literature investigating the seroprevalence and
prevalence of Ballum are cross-sectional surveys, and therefore single time-point estimates.
No work was conducted on the dynamics of the infection in these populations. A study
from New Caledonia investigated the dynamics of rodents and Leptospira carriage over
time, and linked a higher prevalence to hot and rainy seasons [98]. Despite Ballum being
putatively identified (congruent Multi-Locus Sequence Type) in ship rats and mice, these
results cannot be extrapolated to NZ, where the climate is different.

Table 2. Summary of the published studies investigating Leptospira borgpetersenii serovar Ballum in wild species in New
Zealand. For each study and species (Sp) are indicated: the numbers of seropositive animals (Sero + ve) and animals tested
by serology (#S), the seroprevalence (Seroprev), the numbers of culture-positive animals (Cult + ve) and animals tested by
culture (#C), and the culture prevalence (Cult prev). An extended version of this table with information on other serovars
and studies not testing for Ballum [42–48,56,99–107] is available in the Supplementary Materials S1.

Sp ‡ α Place Habitat † Test § Test
Cut-off

Sero +ve #S Sero
prev

Cult +ve #C Cult
prev

Reference

Ee κ Hamilton,
Upper Hutt,

Dunedin,
Auckland

Urb, Suburb AT \ 3 98 3% 0 28 0% [49]

Ee κ NZ–NS Urb, Suburb NS NS . 98 \ 0 11 0% [94]
Ee κ Bulls,

Manawatū
Rural MAT 20 0 4 0% 0 4 0% [52]

Ee κ North Island Farm MAT 100 28 78 36% 5 78 6% [54]
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Table 2. Cont.

Sp ‡ α Place Habitat † Test § Test
Cut-off Sero +ve #S Sero

prev Cult +ve #C Cult
prev Reference

Ee κ NZ–NS Rural MAT 100 0 1 0% 0 1 0% [97]
Ee κ North Island Farm, Forest,

Urb MAT 24 9 25 36% 5 27 19% [57]
Ee π North Island Rural MAT 48 1 2 50% 0 2 0% [95]
Ee π

Palmerston
North Urb, Suburb MAT 48 1 5 20% 1 5 20% [96]

Tv κ
Whanganui

district Farm MAT 200 0 26 0% 0 NS 0% [51]

Tv κ
Bulls,

Manawatū Rural MAT 20 0 2 0% 0 2 0% [52]

Tv κ North Island Farm MAT 24 \ 127 \ \ \ \ [55]
Tv κ North Island Farm, Forest,

Urb MAT 24 11 754 1% 0 27 0% [57]

Tv κ
Ōrongorongo

valley
Forest MAT 24 1 261 0.40% 0 247 0% [108]

Tv π North Island Rural MAT 48 0 21 0% 0 1 \ [95]

Tv π
Palmerston

North Urb, Suburb MAT 48 2 16 13% 0 26 0% [96]

Rn κ
Bulls,

Manawatū Rural MAT 20 1 2 50% 1 2 50% [52]
Rn κ North Island Urb, Rural MAT 100 7 79 9% 8 79 10% [53]
Rn κ Waikato Urb, Rural MAT 20 26 134 19% 12 132 9% [93]
Rn κ North Island Farm, Forest,

Urb MAT 24 6 168 4% 63 245 26% [57]
Rn κ Manawatū Farm, Forest MAT 12 6 168 4% 63 243 26% [58]
Rn κ North Island Farm, Urb MAT 24 2 7 29% 0 7 0% [92]
Rn π North Island Rural MAT 48 1 1 100% \ \ \ [95]
Rr κ North Island Urb, Rural MAT 100 1 16 6% 4 16 25% [53]
Rr κ Waikato Urb, Rural MAT 20 . . 3 28 11% [93]
Rr κ North Island Farm, Forest,

Urb MAT 24 8 29 28% 21 63 33% [57]
Rr κ Manawatū Farm, Forest MAT 12 8 30 27% 21 61 34% [58]
Rr κ North Island Farm, Urb MAT 24 4 17 23% 0 17 0% [92]

“Rat” κ NZ–NS Rural MAT 100 0 15 0% 0 15 0% [97]
“Rat” π

Palmerston
North Urb, Suburb MAT 48 \ 0 \ \ \ \ [96]

Mm κ North Island Urb, Rural MAT 100 2 67 3% 9 67 13% [53]
Mm κ North Island Farm, Forest,

Urb MAT 24 3 39 8% 11 70 16% [57]
Mm π North Island Rural MAT 48 0 1 0% 0 1 0% [95]
Mm π

Palmerston
North Urb, Suburb MAT 48 \ 0 \ \ \ \ [96]

Af λ
Otago

Peninsula Seashore MAT 100 0 128 0% \ \ \ [109]

An κ North Island Farm, Forest,
Urb MAT 24 0 29 0% 0 29 0% [57]

As κ North Island Farm, Forest,
Urb MAT 24 3 29 10% 0 29 0% [57]

Ce κ North Island Farm, Forest,
Urb MAT 24 0 27 0% 0 3 0% [57]

Ch κ Raglan county Rural MAT 24 4 116 3% 0 101 0% [110]
Cn κ North Island Farm, Forest,

Urb MAT 24 0 4 0% 0 2 0% [57]
“Deer” κ NZ–NS NS NS NS 0 15 0% \ \ \ [94]

Fc κ North Island Farm, Suburb MAT 24 1 11 9% 0 11 0% [15]
Fc π North Island Rural MAT 48 0 14 0% 0 3 0% [95]
Le κ

Bulls,
Manawatū Rural MAT 20 0 3 0% 0 3 0% [52]

Le κ North Island Farm, Forest,
Urb MAT 24 0 5 0% 0 5 0% [57]

Me κ North Island Farm MAT 24 0 9 0% 0 9 0% [15]
Me π North Island Rural MAT 48 0 1 0% \ \ \ [95]

Me π
Palmerston

North Urb, Suburb MAT 48 0 2 0% 0 2 0% [96]
Me* π Rotorua area Forest MAT NS 4 39 10% 0 39 0% [111]
Mf κ North Island Farm MAT 24 0 9 0% 0 9 0% [15]
Mf π North Island Rural MAT 48 0 1 0% \ \ \ [95]
Mn κ North Island Farm MAT 24 0 4 0% 0 4 0% [15]
Mn π North Island Rural MAT 48 \ \ \ \ \ \ [95]

Oc κ
Bulls,

Manawatū Rural MAT 20 1 11 9% 1 11 9% [52]

Oc κ North Island Farm, Forest,
Urb MAT 24 0 9 0% 0 9 0% [57]

Oc π North Island Rural MAT 48 0 1 0% 0 1 0% [95]
Pm κ North Island Farm, Forest,

Urb MAT 24 0 34 0% \ 0 \ [57]
Ss π North Island NS MAT NS 0 60 0% 0 39 0% [111]

‡ Species: Af = NZ fur seal, Arctocephalus forsteri; An = Mallard duck, Anas platyrynchos; As = Grey duck, Anas superciliosa; Ce = Red deer,
Cervus elaphus; Ch = Feral goat, Capra hircus; Cn = Sika deer, Cervus nippon; “Deer” = species not indicated; Ee = European hedgehog,
Erinaceus europaeus; Fc = Feral cat, Felis catus; Le = European brown hare, Lepus europaeus; Me = Stoat, Mustela erminea; Me* = not specified
but likely Dama wallaby, Macropus eugenii; Mf = Ferret, Mustela putorius furo; Mm = House mouse, Mus musculus; Mn = Weasel, Mustela
nivalis; Oc = European rabbit, Oryctolagus cuniculus; Pm = Pukeko, Porphyrio melanotus; “Rat” = species not indicated (could be Rn or
Rr); Rn = Brown rat, Rattus norvegicus; Rr = Ship rat, Rattus rattus; Ss = Feral pig, Sus scrofa; Tv = Brushtail possum, Trichosurus vulpecula;
NS: not specified/not applicable; α, type of study: κ = cross-sectional survey, λ = longitudinal survey, π = pilot study; † Urb = Urban,
Suburb = Suburban (defined according to its original meaning as areas in the periphery of urban centres, this category includes refuse
dumps); § MAT = Microscopic Agglutination Test, AT = Agglutination lysis test.
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(b2) Pathogenesis
The literature on the pathogenesis of Leptospira in laboratory animals is abundant,

especially on mice that are widely used as models of sublethal infection [112], but descrip-
tions of natural infections in wild populations are scarce [113]. Infection is asymptomatic
for mice and rats, and no experimental study on hedgehogs is available for Ballum. Hath-
away determined a minimum infective dose of 10 bacteria for Ballum and Pomona in
pathogen-free laboratory mice injected intraperitoneally [10,114]. This dose was much
higher (107 organisms) for Balcanica and Hardjo.

Experimental infections with a fatal outcome were described for hedgehogs infected
with Pomona [47] and a combination of Szwajizak and Canicola (by instillation into the
nostrils) [41]. The natural route of infection for hedgehogs is thought to be by direct contact
between nasal and/or buccal mucosa and contaminated water while foraging for food [54].
Fennestad and Borg-Petersen [115] described a positive correlation between interstitial
nephritis and Leptospira infection in hedgehogs in Denmark, but the dominant serovar
isolated from this population was Bratislava.

(c) Pathogen Release and Survival in the Environment
(c1) Pathogen Release
The amount of L. borgpetersenii sv Ballum released in the urine of maintenance hosts has

not been studied in natural environments. For Leptospira spp., a recent meta-analysis [116]
gave a quantitative estimate for different hosts, including rats (5.7 × 106 Leptospira/m`
of urine), mice (3.1 × 103 Leptospira/m`), cattle (3.7 × 104 Leptospira/m`) and humans
(7.9 × 102 Leptospira/m`). However, the low number of subjects, the variation in the
methods used to quantify the bacterial load between studies, and the fact that different
species and serovars of Leptospira were considered, limit the possible comparisons between
host species. The presence and amount of Leptospira in the kidney of a host is often inferred
to directly reflect the presence and amount of Leptospira in voided urine. Using quantitative
PCR, Costa et al. [117] indeed found a significant positive correlation between the average
load of Leptospira in the kidneys and urine samples of brown rats. Leptospiruria has,
however, been described as being intermittent, of variable length both within and between
species, and also dependent on the infecting strain, but this may be due to the use of
insensitive methods like DFM [10]. Reviews mentioning intermittent shedding refer to
previous studies conducted without PCR methods (e.g., [113] quoted [118], who used
culture and DFM, [119] quoted [120]) and it is probable that intermittent excretion was in
fact intermittent detection. Experimental infections with Ballum in mice showed that, after
infection, they began shedding rapidly and reached a plateau of 3 × 107 Leptospira/m`
of urine after 117 days, and kept shedding virtually until the end of their lives [121]. A
positive association was described between the renal Leptospira load and weight in male
rats [122].

(c2) Pathogen Survival, Development, and Dissemination Outside the Host
We found no study investigating the specific survival and development of Ballum

in situ (i.e., in the environment). One study investigated Castellonis (strain Castellón 3),
another serovar from the Ballum serogroup, and showed that, in vitro, with sterile condi-
tions at pH 7.2, it survived 9 days at 4 ◦C, 32 days at ambient temperature, and 155 days at
30 ◦C [123]. The addition of saprophytic leptospires (L. biflexa sv Patoc 1) did not affect the
survival and virulence of this serovar in guinea pigs [123]. Brockie and Till [54] hypothe-
sized that because hedgehog urine was acidic, leptospires would not survive long in their
urine unless they were directly voided in water, on pastures or soil.

The species L. borgpetersenii has a smaller genome than L. interrogans, and by com-
paring their genomes (two strains of sv Hardjobovis vs. svs Lai and Copenhageni),
Bulach et al. [124] hypothesized that the former underwent a process of genome reduction,
losing mainly genes which were important for its adaptation and survival in the environ-
ment. They linked this difference in genome size to a difference in the transmission process,
with L. borgpetersenii sv Hardjo having a direct animal-to-animal transmission, rather than
an indirect transmission through the environment. By comparing L. borgpetersenii with both
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L. interrogans and L. biflexa, Picardeau et al. [125] confirmed that the loss of transduction
functions in L. borgpetersenii impacts its ability to survive outside its host. The absence
of environmental transmission was confirmed experimentally for L. borgpetersenii sv Bal-
canica in possums, for which transmission is thought to occur during mating [104,105].
The survival of L. borgpetersenii sv Ballum in the environment should thus be, at least
theoretically, limited.

The importance of abiotic factors like pH, humidity, temperature, salinity, and UV light
for the survival of Leptospira spp. in the environment has long been recognized [126–128].
The physicochemical properties of soil also play a role in the survival of leptospires, but
very little is known on this topic for leptospires in general, and even less so for Ballum. In
Ontario, the distribution of pathogenic and saprophytic Leptospira serovars was correlated
to the type of bedrock, with titres to pathogenic leptospires (mainly Pomona) being found
only in animals from areas with Paleozoic bedrock, while titres to saprophytes (L. biflexa)
were more ubiquitous [129]. Lall [130] described a significant positive relationship between
the presence of Leptospira and soil concentrations of iron, manganese and copper. Soil is
suspected to be a better habitat than water for Leptospira survival [131].

The capacity to form biofilms and resist harsh environmental conditions has been
described in a variety of pathogenic and saprophytic strains of Leptospira spp., including
L. borgpetersenii svs Castellonis, Hardjobovis, Sejroë and Tarassovi [132,133]. Again, no
information on this trait has been published on Ballum, but its capacity to aggregate in
cultures suggests that it can likely form biofilms as well.

Other bacteria present in the environment can interact with and decrease Leptospira
survival: Aerobacter cloacae and Pseudomonas spp. (Abdoelrachman (1947) in [128]); or,
on the contrary, increase it: Escherichia coli, Mycobacterium rubra (Abdoelrachman (1947)
in [128]), Sphingomonas spp. [134], Azospirillum spp., Micrococcus spp., Brevundimonas spp.,
Acinetobacter spp., and Paracoccus spp. [135]. By forming biofilms with other bacteria, Lep-
tospira were more resistant to ultraviolet light, temperature stress and antibiotics [134,135].
It is not known if different serovars react differently to the presence of other bacteria, and
if these findings can be extrapolated to Ballum. More work is needed to understand the
factors affecting the environmental survival of Ballum, and more broadly, of Leptospira
spp. [131,136].

(d) Exposure and Competency of Cattle
Cattle appear to be a competent host of Ballum, and seem to be more exposed to

Ballum in recent serosurveys compared to older ones. Ballum was first isolated in NZ from
two healthy calves, during a study conducted on nine calf groups in the Hauraki Plains [50].
For the same study in asymptomatic calves, the 1972–1973 annual report of the Wallaceville
Animal Research Centre mentioned the presence of anti-Ballum antibodies in 44% of them
(18/25 and 4/25 in two of the nine groups) [137]. The facts that the cut-off for seropositivity
was not specified, and that the results were not detailed in the associated publication—
only titres of leptospiruric calves were reported—call into question the reliability of this
reported seroprevalence. In an experimental infection of Ballum in two 8 to 10-week-old
calves [138], the temperature peaked three days post-infection (PI) and lasted no more
than two days. Leptospiruria was observed between 24 and 68 days PI, and MAT titres
of up to 10,000 were observed at 10 days PI. Complement fixation (CF) antibodies peaked
at 10 days PI and declined more rapidly than MAT titres, being detectable for only 8 to
23 weeks PI [138]. Hodges [139] found no haemolytic effect of Ballum antigens on cattle
erythrocytes. He suspected the presence of haemolysin inhibitors in convalescent sera from
cattle infected with Ballum or Hardjobovis that only partially inhibited the haemolysis
induced by Pomona antigens, and only at low dilutions. In comparison, the inhibition of
haemolysis induced by Pomona antigens was complete for convalescent sera from cattle
infected with Pomona or Copenhageni [139]. Thus, the pathogenicity of Ballum (and
Hardjobovis) appeared to be lower than that of other highly pathogenic serotypes.

Despite no evidence of the pathogenicity of Ballum in cattle in peer-reviewed pub-
lications, there were clinical cases described in the grey literature: severe clinical signs
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of photosensitisation attributed to Ballum were described in more than 17% of a mob of
3-month-old Friesian calves. Two calves died and showed severe subcutaneous oedema,
skin necrosis and sloughing. Two other cases were sampled, and showed leptospiruria and
“seroconversion to Ballum only” ([140], p. 12). The other serovars tested were not specified
in the report. Another report described the case of a calf “doing poorly” that had “red-
discoloured urine”, with analyses revealing a mild multifocal cortical interstitial nephritis,
with a positive Leptospira PCR on urine, but no Leptospira visible by silver staining, and
titres of 400 for Ballum but seronegative for Pomona and Hardjobovis [141]. Two of the ten
asymptomatic calves subsequently tested in the same mob also had titres for Ballum (400
and 1600). These results must be interpreted with caution, as the involvement of Ballum
here was based on only indirect evidence. However, in another report, Ballum was isolated
from the liver and urine of a 4-week-old calf that died of leptospirosis [142]. This calf had
haematuria and pale mucous membranes, and the report mentioned lesions of severe focal
nephritis and “some haemoglobin casts” in the renal convoluted tubules [142]. The method
used to type the Ballum isolate was not indicated.

A very small proportion (3/10,680 in 1973, 3/6409 in 1974, 9/1020 in 1977, 0/257
in 1978) of abortive cows routinely tested by serology at the Ruakura Animal Health
Laboratory showed antibodies for Ballum (titres ≥ 200) [143–146]. The CF test, which was
not serovar-specific, was introduced in 1978 to replace MAT for the routine diagnosis of
leptospirosis [146], and information on the serovar was subsequently not available.

Among the descriptive and analytical studies on Leptospira infection in cattle in NZ
published in the last 40 years, only the most recent included Ballum in their MAT antigenic
panel [147,148]. The others only targeted Pomona and Hardjo [149–155].

The crude seroprevalence of Ballum (48 seropositivity threshold) was 13.7% (95% CI
11.7–16.0%) in beef cattle [147] and 3% (95% CI 3–4%) in dairy cattle [156], with at least one
positive animal in 76% of beef herds and 38% of dairy herds. All of the titres described
were <384. The animals sampled in those two studies were all adults, but as dairy cattle are
usually kept longer than beef cattle, the average age of the animals tested likely differed.
Although there was an apparent increase in Ballum seroprevalence between the 1970s and
2010s (Figure 2), the age at sampling appears to be an important factor, with the highest
prevalence observed in calves. This makes comparisons of studies and the identification of
a real increase difficult.

There is no study available on the Ballum seroprevalence dynamics in naturally in-
fected cattle, or the duration of titres over time. However, the use of serology to assess
exposure may be limited by the presence of seronegative carriers. Using a gyraseB PCR, Yu-
piana et al. [157] found 94/4000 urine samples of adult dairy cows to be positive, with 13/81
of amplicons subsequently sequence-typed as Ballum, all from cows which were seronega-
tive for Ballum. This discrepancy between the MAT titres and culture or PCR results has
also been identified with other species of Leptospira [158]. The seroprevalence presented in
the previous studies cited above is therefore likely to represent an underestimation of the
true prevalence.

The hypothesis of ‘competitive exclusion’ between serovars within a mammalian host
has been proposed in the past [13]. Hathaway suggested the widespread use of vaccines
against Hardjobovis and Pomona in cattle would create an empty ‘niche’ that could benefit
other serovars. Vaccination against Hardjobovis and Pomona has been in place since
the early 1980s in NZ. The coverage varies according to the farming type, with 99.5% of
dairy cattle being vaccinated [157] compared with only around 5–25% of beef and deer,
and less than 1% of sheep [159]. Yupiana et al. showed that vaccination and antibiotic
treatments were efficacious in reducing the risk of shedding Leptospira spp. in dairy
cows, but also reported evidence of some animals shedding Ballum after vaccination [160].
According to this ‘competitive exclusion’ hypothesis, the emergence of a new serovar in
cattle populations would be more likely in dairy cattle than beef cattle, which contrasts
with the recent seroprevalence estimates observed in those two groups.
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Figure 2. Crude seroprevalence of L. borgpetersenii serovar Ballum in cattle and numbers tested reported in the New Zealand
literature since the first description of this serovar in the country.

(e) Human Exposure and Risk Factors
Most studies on human exposure have focused on high-risk occupations in the agricul-

tural sector, and while Hardjobovis and Pomona cases are mostly related to farm and meat
workers, infections with Ballum do not appear to share the same pattern. Leptospirosis is a
notifiable disease in NZ, and is also covered as an occupational disease for farmers and
meat industry workers [161]. There is probably a bias in notification towards these occu-
pations, but even so, the total number of severe cases was estimated to be approximately
three times higher than the notifications. When mild human leptospirosis cases—that are
more likely to be missed—were taken in consideration, this under-ascertainment factor
increased to 22-fold [162].

Among the 1999–2017 notified cases, the odds of Ballum infection were lower for meat
workers compared to farmers (adjusted OR 0.05, 95% CI 0.02–0.13), but almost three times
higher for ‘other’ occupations compared to farmers (adjusted OR 2.61, 95% CI 1.64–4.14),
although farmers and meat workers showed a higher mean incidence for Ballum than
the whole population [163]. People with Ballum infections were significantly older, and
the incidence in people of European ethnicity was also significantly higher than in Māori,
while the contrary was observed for Hardjobovis and Pomona [20,163]. Interestingly, the
annual incidence for Ballum in stock farmers and dairy farmers was relatively similar to
the incidence of Hardjo (the average incidence was, respectively, 13.1 and 7.3/100,000 for
Ballum vs. 18.2 and 11.3/100,000 for Hardjo for the 2008–2017 period), but much lower in
meat workers (2.0/100,000 compared to 38.7/100,000) [20]. Another study indicated that
forestry-related workers were also at risk for Ballum, with 57.1% of cases being due to this
serovar in this occupation group [19].

Among 302 veterinary students enrolled at Massey University, NZ, Fang et al. [164]
found none who were reactive to Leptospira spp. using MAT and testing for Hardjobovis,
Pomona and Ballum. Among 277 veterinarians, Sanhueza et al. [165] found only one with
a titre of 48 for Ballum (0.4%, 95% CI 0–2.0%). Dreyfus et al. [166] did not test for Ballum
in their study on meat workers. A study was conducted in 1974–1976 using the CF test,
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rather than the MAT, on the NZ National Serum Bank. Sera from 879 donors in Wellington
and Christchurch, with occupations other than farmer or meat worker, had no detectable
antibodies against Leptospira spp. [167].

Ballum and Pomona were the most prevalent serovars (respectively 4/178 and 5/178)
in a serosurvey on beef, sheep and deer farmers [159]. The risk factors for Leptospira
seropositivity (all serovars combined) that the authors identified were: assisting in calving
or fawning, a high abundance of wild deer on the farm, farming deer in combination
with sheep and beef or alone, a proportion of flat terrain ≥ 25%, and a low abundance of
possums. The latter was interpreted as the result of a confounding variable, although it
is known that rats are more abundant where possums are not [168]. The abundance of
rodents and hedgehogs on the farm (as estimated by the farmers) was not identified as a
significant risk factor.

The recreational risk of contracting leptospirosis, especially around water-related
activities, has been described in numerous developed countries [169–171], but no specific
study has been conducted on that aspect in NZ. Nevertheless, one of the most common
destinations (after Asia) where Australian travellers acquired leptospirosis was in NZ [172].

5. Discussion

Leptospirosis due to L borgpetersenii sv Ballum is emerging as an important problem
in humans in NZ [19,20,173], but has not been thoroughly studied, and has even been
overlooked in NZ in the past decades. There is a lack of current information on wildlife
infection with Ballum in NZ, as most of the studies published were conducted almost
40 years ago. Mice are the main maintenance host of this serovar, and in NZ other species
like hedgehogs, ship rats and brown rats are also able to maintain Ballum. It is interesting
to note that, apart from a single isolation in Israel [41], NZ is the only country where
descriptions of Ballum isolated from hedgehogs have been published. This review also
highlighted the possibility for Ballum to spill over to livestock.

Other species of introduced mammals present in NZ were excluded from this review,
but have rarely been studied (Appendix A and Supplementary Materials S1), and could
also play a role. Feral pigs have been shown to harbour Ballum in other countries, but only
one unpublished serosurvey was conducted in NZ almost 40 years ago, and all 60 feral
pigs sampled were negative [111]. Very few lagomorphs have been tested in NZ [52,57],
but Ballum was isolated on one occasion from a rabbit [52]. Serosurveys on wild ruminants
did not include Ballum in their MAT panels [45,46,101], but recent serosurveys on farmed
deer showed that Ballum could infect those species too [147].

The densities of the maintenance hosts, and more precisely the density of infected
animals is an important parameter to understand the exposure to a pathogen. Mice, rats
and hedgehogs are known to share the same habitat as humans and cattle, but there
is limited information on their population density, demography and dynamics in NZ
farm habitats.

Vaccination can theoretically lead to a shift in the predominant serovars found in a
population. Given the uptake of vaccination against Pomona and Hardjobovis in dairy
cattle, the ecological niche hypothesis may not be valid anymore for Ballum. The sero-
prevalence for Ballum apparently increased over time not only in dairy but also in beef
cattle [147,157]. Cattle are able to harbour and shed this serovar, but the rate of wildlife-
to-cattle transmission is unknown. Cattle could be becoming part of the maintenance
community of Ballum. Recent information on what serovars are circulating in wildlife and
vaccinated or unvaccinated sympatric livestock stratified by age would be needed.

Once infected, mice can excrete Ballum for the remainder of their lives, but this is
not certain for rats and hedgehogs. Again, questions arise as to how the dynamics of
mouse populations impact shedding over space and time. The role that the environmental
reservoir plays in the survival and transmission of the pathogen to non-maintenance hosts
also remains to be investigated. Leptospires of the species L. borgpetersenii are considered to
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be genetically disadvantaged for long survival in the environment, but nothing is known
on that aspect specifically for Ballum.

Humans can be infected via different transmission pathways (Figure 1), but the relative
importance of each transmission direction is currently unknown. The genetic, physiological
and immunological attributes of humans as spillover hosts are also important determinants
of transmission [22] that were beyond the scope of this work, but would also need to be
considered. Do humans become contaminated mainly via contact with the maintenance
hosts, bridge hosts or the environment? The lower incidence of Ballum in meat workers
compared to stock or dairy farmers [20] indicates that direct contact with livestock is likely
not the main route. Recent advances in molecular methods and genotyping to discriminate
among those different sources could be a way to assess this. It emerges from descriptive
studies of human notified cases that the risk factors for Ballum differ from Hardjobovis and
Pomona, indicating likely different transmission pathways. Understanding the diversity
and relative importance of different sources of infection will be critical for the efficient
control of leptospirosis.

In conclusion, most of the knowledge available for Ballum in NZ relies on studies
performed in the 1970s in both domestic and wild animals. After a long gap with no
available information on this serovar, recent investigations of livestock and human epi-
demiological data indicated that more information is needed about the role of wild hosts in
the maintenance and transmission of Ballum. The possibility for this serovar to spill over
to domestic hosts, which could thus act as bridge hosts, should also be considered.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/tropicalmed6040189/s1. Supplementary Materials S1: Results of the preliminary literature
search on wildlife as a source of Leptospira infection in NZ.
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Appendix A. Preliminary Literature Search on Wildlife as a Source of Leptospira
Infection in NZ

Appendix A.1. Methodology

The preliminary literature search algorithm was #Leptospirosis AND #NZ AND
#Wildlife. The keywords and search strings used in Web of Science are detailed in Table A1.
The online databases used were Scopus, Web of Science, and SciQuest. The searches
were also performed on the references cited in the articles retrieved. Google Scholar, the
Massey University library database (Discover) and NZResearch.org.nz were searched
for additional grey literature on Leptospira in NZ, as well as the paper archives of the
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Leptospirosis Reference Centre in Amsterdam (spanning 1915–1990), which were searched
for the keywords ‘New Zealand’, ‘hedgehog’ and ‘Ballum’. The searches were conducted
between January 2018 and September 2018.

Nearly all species of wild terrestrial mammals introduced to NZ have previously been
investigated for exposure to Leptospira spp. As a result, only the brush-tailed possum was
considered to be of interest as a maintenance host of L. borgpetersenii sv Balcanica, and rats,
mice and hedgehogs were considered to be of interest as maintenance hosts of Ballum.

Other NZ wild species have typically been considered as insignificant hosts for the
maintenance and propagation of domestic animal or human leptospirosis, and have rarely
been studied. The studied species for which an absence of serological titres for Leptospira
spp. has been reported in NZ include feral pig (Sus scrofa) [111], hare (Lepus europaeus),
stoat (Mustela erminea), ferret (Mustela putorious furo), weasel (Mustela nivalis) [15], red
deer (Cervus elaphus) [57], sika deer (Cervus nippon), fallow deer (Dama dama), white-tailed
deer (Odocoileus virginianus borealis), chamois (Rupicapra rupicapra), and Himalayan tahr
(Hemitragus jemlahicus) [46,57].

Table A1. Electronic search strategy used for Web Of Science, with detail on the search strings used (#Leptospirosis AND
#NZ AND #Wildlife) to identify the wild maintenance hosts of Leptospira borgpetersenii serovar Ballum in New Zealand to
include in the literature review.

Terms Search Strings

#Leptospirosis Leptospir* OR “Weil disease” OR “Weil’s disease” OR “dairy farm fever” NOT Leptospirill*
#NZ New-Zealand OR “New Zealand” OR Aotearoa

#Wildlife #Wild OR #Hedgehog OR #Rodents OR #Mustelid OR #Ruminants OR #Wildboar OR #Possum
#Wild Wild OR wildlife OR free-ranging OR “free ranging” OR feral

#Hedgehog hedgehog OR “Erinaceus europaeus”
#Rodents rodent OR rodents OR rat OR rats OR Rattus OR mice OR “Mus musculus” OR mouse OR murine OR kiore

#Ruminants deer OR Cervus OR Axis OR Alces OR moose OR chamois OR Rupicapra OR Odocoileus OR Dama OR Tahr OR
Hemitragus OR “feral goat” OR “feral sheep”

#Mustelid Mustela OR stoat* OR ferret* OR weasel*
#Possum possum OR Trichosurus

#Wildboar (“Sus scrofa” AND (wild OR feral)) OR”wild pig” OR “feral pig” OR “wild boar”

Appendix A.2. Known and Suspected Wild Maintenance Hosts of Leptospira spp. in NZ

On occasion, MAT titres were found in wallabies (probably dama wallabies, Macropus
eugenii) against Hardjobovis and Ballum [111]; in feral cats (Felis catus) against Pomona and
Ballum [15]; in feral goats (Capra hircus) against Pomona, Hardjobovis, Balcanica and Bal-
lum [110]; in hunted deer (Cervus elaphus) against Pomona and Copenhageni [45,101,174];
and more recently in fur seal (Arctocephalus forsteri) against Canicola, Hardjobovis and
Pomona, and in sea lions (Phocarctos hookeri) against Pomona [107,109]. Despite many low
sample sizes, these results were interpreted as sporadic infections through contact with
known maintenance species of these serovars (livestock, rodents or other wild species).

The literature available is synthesized in the Supplementary Materials S1. All of the
publications relied on serological methods (agglutination, CF, MAT), and only some on
bacterial cultures from blood, urine or kidney, and subsequent typing by serotyping, a
cross-agglutination absorption test or a restriction-endonuclease analysis. Some studies
assumed that leptospires isolated or observed under DFM belonged to a certain serovar
without typing them, e.g., [42,44]. Importantly, the number of animals tested was limited
for several studies. Furthermore, Ballum was not included in the test panel in numerous
studies (shaded in the Supplementary Materials S1), and few studies were conducted
outside of the North Island. Given that some wild or feral species were not tested, or only
tested in limited numbers, it is possible that carriage of Ballum (or other serovars) may
have been missed.

The recognised maintenance hosts of Ballum present in NZ targeted in this article are:
the mouse, ship rat, brown rat and hedgehog.
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