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Abstract

The metal coating line at New Zealand Steel relies on a large electric radiant furnace to
heat steel strip before hot-dip galvanising in a continuous process. The temperature evo-
lution of the strip inside the furnace is vital in ensuring the specified mechanical properties
are achieved for a range of steel products. Ductile products require high temperatures
sufficient to cause recrystallisation of the steel microstructure, while stronger products
must be heated without causing recrystallisation. Strip dimensions and desired proper-
ties are changed often and irregularly during operation, and these changes and associated
furnace control actions cause changes in furnace and strip temperatures and rate of heat
transfer over several different time scales.

Accurate control of temperature is difficult because temperature measurement devices
are strongly affected by reflected radiation in the furnace cavity. The furnace is often
operating during transient temperature conditions, as control actions take effect very
slowly compared to the the rate of change of operational targets. Understanding of the
transient behaviour of this system of interrelated, nonlinear variables can be improved
using modelling to calculate furnace and strip temperatures as a result of control actions
in real time, which cannot otherwise be measured or predicted.

It is shown that a three-dimensional model is capable of accurately calculating furnace
temperatures changing over both time and location, requiring minimal simplification of
the physical system, but is computationally expensive. Radiative heat exchange in the
furnace cavity causes significantly increased temperature along the edges of the steel strip,
which can cause reject product due to localised softening. It was found that furnace ther-
mocouples are strongly affected by reflected radiation, so that furnace wall temperatures
be may significantly hotter than measured.

A simplified, coupled temperature-metallurgical model was shown to accurately calcu-



late both furnace and strip temperatures and metallurgical changes, while the 3D model
provides understanding of effects not explicitly modelled in the simplified model. The
simplified model is used for optimisation of furnace operational parameters, to improve
plant throughput and energy efficiency while maintaining desired metallurgical properties,

which is demonstrated by application to common products at NZ Steel.
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