
Solving staff rostering problems with
column generation

Dominance cost functions, aggregate branching,
neighbourhood pricing and other matheuristic

improvements.

Isaac Cleland

A thesis submitted in fulfilment of the requirements for the degree of
Doctor of Philosophy in Operations Research,

The University of Auckland, 2022.

Abstract
This thesis presents a methodology for modelling and solving generic staff rostering prob-

lems using column generation. We solve two difficult problem sets using column generation and
demonstrate some novel exact and heuristic improvements to standard column generation, which
are needed to solve these problem sets.

The first problem set we solved was from the International Nurse Rostering Competi-
tion (INRC). The INRC was held in 2010 to identify novel approaches to solve staff-rostering
problems. Although many of the INRC problems were too tricky to solve to proven optimality,
since the competition in 2010, multiple research groups have reported improved solutions to the
problems compared to those proposed during the competition. However, up until this thesis,
optimal solutions had not been found for 11 out of the 30 hardest INRC problem instances.
In this thesis, we report how we obtained optimal solutions for the 30 hardest INRC problem
instances within a 4-hour time window. Some of the identified solutions are of a higher quality
than those obtained previously in the literature. We identified these solutions by implementing
a series of improvements to Genie++, a nested column generation algorithm capable of solving
staff-rostering problems. These improvements include a new dominance technique (dominance
cost functions), new branching techniques, an objective function perturbation technique, and a
shift aggregation relaxation.

The second set of problems were to create rosters for wards serviced by the Waikato District
Health Board (DHB). The exact techniques used to solve the INRC problems were ineffec-
tive at finding solutions to the large and complex Waikato DHB problems. Thus, we developed
some column-generation-based matheuristics to build high-quality rosters. We compare a suite
of novel column-generation-based local search matheuristics for improving an incumbent roster
solution. Our novel implementations of “fixed days" local search and “maximum shift changes
per employee" local search were particularly effective at quickly improving an incumbent roster
solution’s quality.

We also compare a suite of novel column-generation subproblem heuristics that we inte-
grated into a branch and price dive to find high-quality roster solutions quickly. Our novel “LP
neighbourhood pricing" methodology was especially effective at producing high-quality roster
solutions quickly.

Many of the techniques developed in this thesis can be applied to other column generation
problems, especially those with column generation subproblems which involve solving complex
shortest path problems with resource constraints.

iii

Acknowledgements
I would firstly like to thank my supervisors, Associate Professor Andrew Mason and Dr Michael
O’Sullivan. Andrew’s lofty vision for this project has always inspired me. And I have appreciated
Mike’s practical wisdom. I couldn’t have asked for a better team guide me through these PhD
years. I also want to acknowledge that both Andrew and Mike have consistently put aside time
every week to meet with me and keep me on track throughout the entire PhD. I have really
appreciated their dedication.

I want to thank my parents, Peter and Adrienne Cleland, for their belief in me. Over the
years, I’ve had many struggles with this PhD. Both of you have always been there to encourage
me and help me through any obstacle.

I want to thank my partner, Sunny Feng, for her unwavering support. She has always pushed
me to perform my best, and without her, this PhD would never have reached the level that it
did.

I want to thank my godmother, Andrea Craven. She always drove me to do a PhD and fulfil
my potential, and I’m so thankful that I listened to her.

I want to thank Rachel Clarke from the Waikato DHB for her patience and support in
providing data and helping us to model real-world nurse rostering problems.

Contents

Contents v

1 Introduction 1
1.1 The staff rostering problem . 1
1.2 International Nurse Rostering Competition . 2
1.3 Waikato District Health Board . 4
1.4 Thesis outline . 7
1.5 Contribution . 8

2 Background 9
2.1 Staff rostering problems . 9
2.2 Column generation . 11

2.2.1 Dantzig-Wolfe decomposition . 11
2.2.2 Pricing problem . 14
2.2.3 Branch-and-price . 15
2.2.4 Matheuristics . 16

2.3 Chapter summary . 16

3 Literature Review 17
3.1 Column generation . 17
3.2 Column generation to solve staff rostering problems 18

3.2.1 Problem types . 19
3.2.2 Formulating and solving the column generation subproblem 21
3.2.3 Generic staff rostering problem modelling 25
3.2.4 State-space reduction . 26
3.2.5 Resource dominance . 28
3.2.6 Branching techniques . 28
3.2.7 Neighbourhood search with branch and price 29

3.3 International Nurse Rostering Competition . 30
3.4 Chapter summary . 33

v

vi Contents

4 Standard branch and price for staff rostering problems 35
4.1 Column generation . 35

4.1.1 Restricted master problem . 36
4.1.2 Column generation subproblem . 37

4.2 Modelling employee rules . 37
4.2.1 Roster-line cost model . 38
4.2.2 Building entities . 40
4.2.3 Evaluating the cost of entities . 41
4.2.4 Entity feasibility . 43
4.2.5 Standard entity dominance . 43
4.2.6 Roster history . 45
4.2.7 Compile-time customisation . 46
4.2.8 Other column generation subproblem models 46

4.3 Example models . 46
4.3.1 Example INRC problem . 46
4.3.2 Example Waikato DHB problem . 49

4.4 Nested column generation . 54
4.4.1 Dominance algorithm . 54
4.4.2 On-stretch subproblem . 55
4.4.3 Work-stretch subproblem . 56
4.4.4 Checks for work-stretch feasibility with respect to potential roster-lines 58
4.4.5 Roster-line subproblem . 60
4.4.6 Checks for partial roster-lines feasibility 61

4.5 Branching rules . 62
4.6 Column generation framework . 63

4.6.1 Dual stabilisation . 63
4.6.2 Sprint pricing . 64
4.6.3 Optimization suite . 64

4.7 Chapter summary . 64

5 Proving optimality to all INRC problems 65
5.1 Results before enhancements to Genie++ . 65
5.2 Enhancement #1: Improving the column generator 66

5.2.1 Improved resource dominance . 66
5.2.2 Arbitrary shift preferences . 76
5.2.3 Results after improving the column generator 77

5.3 Enhancement #2: Improving the branching rules 77
5.3.1 Aggregate resource branching . 78
5.3.2 Aggregate demand branching . 82
5.3.3 Priority first shift branching . 83
5.3.4 Overall branching rules . 83

Contents vii

5.3.5 Results after improving the branching rules 84
5.4 Enhancement #3: Shift aggregation . 84

5.4.1 Final results . 86
5.5 Chapter summary . 87

6 Neighbourhood search strategies using branch and price 89
6.1 Neighbourhoods . 89
6.2 Maximum changes neighbourhood search . 93

6.2.1 Maximum shift changes per employee 94
6.2.2 Maximum on/off changes per employee 96
6.2.3 Maximum employee changes . 96

6.3 Fixed sub-roster neighbourhood search . 96
6.3.1 Fixed days . 98
6.3.2 Fixed employees . 98
6.3.3 Fixed days (on/off) . 98
6.3.4 Fixed employees (on/off) . 99

6.4 Testing methodology . 99
6.5 Results . 101

6.5.1 Single run example . 102
6.5.2 All runs results . 106
6.5.3 Properties of dives . 110

6.6 Chapter summary . 114

7 Column generation subproblem heuristics 117
7.1 Entity restriction . 118

7.1.1 Entity restriction by cost . 118
7.1.2 Entity restriction by variability in resource vectors 119
7.1.3 Systematic sampling of entities based on cost 121
7.1.4 Precomputed buckets based on resource vectors 124

7.2 LP neighbourhood pricing . 124
7.2.1 LP neighbourhoods . 126
7.2.2 LP variable neighbourhood descent 128
7.2.3 Maximum average modifications per employee 129
7.2.4 Maximum minimum modifications per employee 129
7.2.5 Maximum shift changes per employee by column 130
7.2.6 Comparison of LP neighbourhood pricing techniques 130

7.3 Testing methodology . 131
7.4 Results . 132

7.4.1 Column generation speed . 132
7.4.2 All run results . 133
7.4.3 Properties of dives . 135

viii Contents

7.4.4 Natural integrality properties of LP neighbourhood pricing 137
7.5 Real-world rostering experience . 140
7.6 Chapter summary . 140

8 Conclusions 143
8.1 Achievements . 143
8.2 Contributions . 144
8.3 Future work . 146
8.4 Recommendations . 148
8.5 Final words . 149

A Cost dominance function example enumeration proof 153

B Regression on work-stretch resources 157

Bibliography 159

Chapter 1

Introduction

1.1 The staff rostering problem

A Staff Rostering Problem is a problem in Operations Research that involves identifying feasible
rosters of the highest quality for a group of employees while satisfying a set of constraints and
requirements established by management and a set of roster-quality measures agreed upon by the
employees. The roster requirements specify the number of employees required during different
periods throughout the day. They also may determine the number of employees needed with
particular skills or seniority. These periods are covered by a set of shifts that employees can
work. A “shift” is defined as the period between an initial date and time and a final date and
time. Each employee works a “roster-line”, which is defined as a sequence of shifts worked and
days off corresponding to that employee’s work schedule.

Figure 1.1 presents an illustrative roster solution in a case comprising three employees. A
roster-line is included for each employee over a 17-day roster. This example is modelled using
three types of shifts (D, A, and N in Figure 1.1). Shifts of the same type are defined as having
identical start and end times but are worked on different days.

This thesis’s primary objective was to build a state-of-the-art generic system for modelling
and solving challenging staff rostering problems automatically.

Even today, many staff rostering problems are solved manually. This is time-consuming and
constrains the objective assessment of the quality of each roster. On the other hand, automatic
roster generation saves time and usually yields better roster solutions that can be assessed in
terms of predefined quality criteria. Therefore, several attempts have been made over the years
to solve such problems using both exact and heuristic algorithms. However, despite the ad-
vantages, roster problems have proven challenging to solve automatically—they are typically
NP-Hard (Karp, 2010), often involve a considerable number of variables, possess non-linear or
multi-objective cost functions, and are tightly constrained. For a comprehensive overview of mod-
ern approaches to solve Staff Rostering Problems, please consult the extensive reviews by Van
Den Bergh et al. (2013) on generic personnel scheduling, Ernst et al. (2004) on generic staff
rostering and Burke et al. (2004a) and Cheang et al. (2003) on general nurse rostering.

1

2 Introduction

Figure 1.1: An example roster solution over 17 days with three employees.

Automated approaches to Staff Rostering Problems usually employ heuristics, e.g., variable
neighbourhood search (Burke et al., 2004b, 2008), greedy neighbourhood search (Bellanti et al.,
2004), scatter search (Burke et al., 2010a), ant colony optimization (Gutjahr and Rauner, 2007),
bee colony optimization (Todorovic and Petrovic, 2013), and genetic algorithms (Aickelin and
Dowsland, 2000). Other techniques have also been used such as constraint programming (Nonobe,
2010) and mixed integer programming (MIP) (Beaumont, 1997, Burke et al., 2010b, Santos et al.,
2016, Mischek and Musliu, 2016), the latter often including the use of column generation which
is the core algorithm discussed in our research; please see §3.2 for more details on the use of
column generation to solve staff rostering problems in literature.

In this thesis, the software package, Genie++ (Mason and Smith, 1998, Dohn and Mason,
2013), is extended to address several difficult roster problems. Genie++ was initially developed
to automatically solve a broad range of staff rostering problems using column generation. For an
overview on column generation, see §2.2.

Dohn and Mason (2013) have already applied Genie++ to three large, complex, real-world
staff rostering problems and have proven it effective in solving these problems to optimality in
two cases and near optimality in one case within a 10 hour time window.

Our secondary objective for this thesis was to solve two challenging sets of staff rostering
problems: the International Nurse Rostering Competition (INRC) problems which we introduce
in §1.2 and the problems given to us by the Waikato DHB, which we first introduce in §1.3.

1.2 International Nurse Rostering Competition

In order to compare the performance of Genie++ with other modern staff rostering algorithms,
we evaluated Genie++ on the nurse rostering problems developed for the International Nurse
Rostering Competition (INRC).

International Nurse Rostering Competition 3

Haspeslagh et al. (2010) developed this competition and the associated test instances. These
problems serve as useful benchmarks, and several research groups have published solutions to
these problems using a large variety of exact and heuristic methods. Further, before our research,
optimal solutions to some of the INRC problems were yet to be identified (Rahimian et al., 2017a).

The quality of any roster solutions to an INRC problem instance is judged in terms of “cost”,
where smaller costs correspond to rosters of better quality. This metric is defined to be the
sum of the penalties incurred by certain undesirable features of the roster. These undesirable
features include the assignment of an employee to a shift that they requested to be exempted
from; the assignment of an employee to a work-day that they requested to be exempted from; the
assignment of a regular nurse to a head-nurse shift; and the assignment of an employee to work in
contravention of the rules specified in their employment agreement. The only hard constraints are
that an employee cannot be assigned more than one shift per day and that there cannot be more
or fewer employees than mandated working any given shift. Each problem instance contains 2 to
4 different contracts that specify these rules for different subsets of employees. Employees of the
same contract had identical rules. The only difference between these employees were preferences
to work different shifts or have different days off. For an example of an INRC problem instance,
please consult §4.3.1.

Although the INRC problem instances have been extensively investigated in previous studies
and are considered to be important benchmarks for the evaluation of staff rostering techniques,
they suffer from certain limitations compared to real-world scenarios. As all undesirable features
are assigned similar penalties (between 1 and 10) within the INRC scenarios, any of the employee’s
contractual regulations are allowed to be violated within feasible, optimal roster solutions. This
is not representative of real rostering problems, as most contractual regulations are strict and
cannot be legally violated. Further, since the INRC problems involve only two hard constraints,
they allow for the assignment of an employee to shifts on every successive day over a 28-day
roster or to zero shifts over a 28-day roster. In one competition problem, the assignment of a
head nurse to shifts on every successive day during the entire roster period produces a solution
whose quality is within 20% of that of the best-known roster solution. Thus, these problems are
not entirely realistic.

Another unrealistic aspect of these rostering problems is that they ignore all of the previous
shifts which the employees have worked before starting the roster. For example, if an employee
has just finished working six days consecutively and the new roster begins with the employee
working six days consecutively, then the employee has effectively worked 12 days consecutively.
However, despite these limitations, the INRC problem instances are still useful as a common
benchmark for staff rostering techniques. Among existing techniques, the Genie++ extension
presented in Chapter 5 is the first to prove optimality to all of the challenging INRC problems,
and it did so in a reasonable amount of time (less than four hours).

The INRC problem instances can be classified into three categories: (i) ‘sprints’, which require
the rostering of 10 nurses to 4 shift types distributed over a period of 4 weeks; (ii) ‘mediums’,
which require the rostering of 30 nurses to 4 different shift types distributed over a period of
4 weeks; and (iii) ‘longs’, which require the rostering of 50 nurses to 5 different shift types

4 Introduction

Instances sprint medium long total
early ��10 5 5 20
late ��10 5 (1†) 5 (1†) 20
hidden ��10 5 (5†) 5 (4†) 20
total ��30 15 15 60

Table 1.1: Summary of INRC problems—the problems which are yet to be solved to
proven optimality are indicated by † and crossed-out entries denote problems not con-
sidered in this study.

distributed over a period of 4 weeks. The INRC competition comprised 60 problems in ag-
gregate—30 sprint problems, 15 medium problems, and 15 long problems. The problems were
further segmented such that one-third of the problems of each type corresponded to ‘early’ in-
stances, one-third to ‘late’ instances, and one-third to ‘hidden’ instances. Table 1.1 summarises
the aforementioned INRC segments.

Bulog (2011) has already modelled and solved a small subset of the problem instances using
Genie++. However, they did not find optimal solutions to any of the long instances and did not
model any of the late or hidden instances. As the late and hidden instances use an extended
formulation with more constraints, they are significantly harder to solve.

Due to the reported easy nature of the sprint problems (Santos et al., 2016) and the fact that
all of these problems have already been solved optimally, we did not utilize this set of 30 problems
in our experiments (as indicated in Table 1.1). Out of the remaining 30 problem instances, eleven
of the problem instances are known to exhibit gaps between the best-known lower bounds and
the best-known solutions; see §3.3 for more details. Thus, there was still an opportunity for us
to find better solutions than had been found previously.

1.3 Waikato District Health Board

In 2019, the NZ Ministry of Health (2019) reported that 58,206 nurses were working in NZ,
which is a record high. These nurses were distributed among 19 different District Health Boards
(DHBs) NZ-wide. We interviewed staff from Waikato DHB, Auckland DHB, Waitemata DHB
and Christchurch DHB, and all of these staff stated that they were creating rosters manually in
Excel. In some cases, these staff were charge nurses, who manage a single nurse ward, and in
some cases, they were professional rostering or operational staff.

All NZ nurses are working under a single multi-employer collective agreement (MECA) ne-
gotiated by the NZ Nurses Organisation (2018), which dictates strict rules for how rostering staff
can roster each nurse for a given month. Furthermore, NZ hospital culture demands a high level
of fairness between individual nurses and the acknowledgement of specific individual preferences
(Employment NZ, 2020). The complexity of the MECA, fairness constraints and individual pref-
erences, along with the growing nurse workforce in NZ, means that rostering staff spend a great

Waikato District Health Board 5

deal of time creating rosters. From the details provided by the staff we interviewed, we estimate
that rostering staff spend around three to four days per month rostering for a single ward.

Balancing all of these rules and preferences is also tricky, often leading to understaffed wards
and overworked nurses. Martin and Kilmister (2018) report understaffed wards as a significant
problem in New Zealand. Similarly, overstaffed wards represent a financial burden on a system
already suffering constraints. We strive to reduce the burden on rosterers and District Health
Boards (DHBs) in creating rosters. Furthermore, we wish to reduce the number of understaffed
and overstaffed wards.

During 2019 and 2020, we have been cooperating with the professional rostering staff at
Waikato DHB to automatically produce four-week rosters for an operating theatre ward and
some maternity wards. All of the wards have a legal requirement to follow the NZ Nurse MECA.
Waikato DHB also has its own rules and requirements for rostering. Lastly, we must consider
all of the individual nurse requests and requirements. We provide a detailed example of how
we modelled these rules related to each nurse in the Waikato DHB maternity wards problem in
§4.3.2.

Many of the rules are related to fairness, and there was no formal definition provided to
us for these rules by Waikato DHB. We interpreted fairness rules from our conversations with
rosterers. The rules we built were later validated by the rosterers, who examined a number of our
roster solutions. They also have not provided us with an exact objective function for evaluating
rosters’ quality. As such, we provided a Likert scale to describe the relative penalty for violating
each rule accurately, i.e., a minimal penalty of 1, a small penalty of 10, a medium penalty of 100,
a large penalty of 1000 or infeasible.

The process of creating an accurate model for each of their rostering problems was an iterative
process. Each iteration involved attempting to model their rules given our conversations and
then receiving feedback on that roster from the professional rostering staff. It took around four
iterations until they were happy with the rosters being produced.

We are solving two different rostering problems for the Waikato DHB, the operating theatre
ward problem and the maternity wards problem. There are two significant differences between
the operating theatre ward problem and the maternity wards problem. The first is that we
are solving for three maternity wards simultaneously, whereas we are only solving for a single
operating theatre ward. Thus, we have to consider around 100 nurses1 for the maternity wards
problem and around 30 nurses for the operating theatre ward problem.

The second is that the maternity ward nurses can work both eight-hour and twelve-hour shifts,
whereas the operating theatre ward nurses only work eight-hour shifts. Thus, the maternity wards
nurses can work up to 11 different shift types, whereas the operating theatre ward nurses can
only work up to five shift types. The much larger number of shift types greatly increases the
difficulty of the rostering problem, which we discuss in §4.3.2. Because of these two differences,
the problem of finding a high-quality roster for the maternity wards is much harder than finding
a high-quality roster for the operating theatre ward, as we demonstrate in Chapters 6-7.

1Nurses were hired and left while we were rostering

6 Introduction

Name Description Time Fixed Maternity only

AM 8 hour morning shift 7am to 3:30pm 7 7

PM 8 hour afternoon shift 3pm to 11:30pm 7 7

N 8 hour night shift 11pm to 7:30am 7 7

J 8 hour late morning shift 11am to 7:30pm 7 3

a 12 hour day shift 7am to 7.30pm 7 3

O 12 hour night shift 7pm to 7.30am 7 3

E 8 hour Education day 8am to 4:30pm 7* 7

e 8 hour Education day + work 8am to 7.30pm 7 3

t 12 hour orientation day 7am to 7.30pm 3 3

L 8 hours leave 8am to 4:30pm 3 7

l 12 hours leave 7am to 7.30pm 3 3

Table 1.2: Shift types provided to us for the maternity and operating theatre wards.
The “fixed” column indicates that we can only assign this shift to an employee if the
roster requirements specify that the shift has been preallocated to that employee. The
“maternity only” column indicates whether the shift-type appears only in the maternity
wards problem and not in the operating theatre ward problem. *The E shift was fixed for
the operating theatre ward problem but was not fixed for the maternity wards problem.
This was because the solver could choose between an ‘E’ shift and an ‘e’ shift for a given
maternity nurse if an education day was preallocated for that day.

Name Time

AM period From 7am to 3pm
PM1 period From 3pm to 7:15pm
PM2 period From 7:15pm to 11pm
N period From 11pm to 7am

Table 1.3: Four periods of the day, each of which has requirements on the number of
nurses that need to be working.

Although the MECA does not enforce any particular start or end time for shifts, Waikato
DHB has provided us with a set of standard shifts predesigned from the rules outlined in the
MECA. For a list of these different shift types, see Table 1.2. Note that no 12-hour shifts are
worked in the operating theatre ward.

We divided up the day into four periods covered by the shifts. Please refer to Table 1.3 for
a list of these periods. For each ward, there is a different minimum, target and maximum total
number of nurses that need to work during a given period on each day.

Further, for each ward, there is also a minimum, target and maximum number of nurses with
specific qualifications or skills that need to work during a given period on each day. There are
five different types of nurses at Waikato DHB. Each nurse is a head nurse, intermediate nurse,

Thesis outline 7

Nurses Minimum Target Maximum

All 5 6 8
Head nurses 0 1 n/a
Head nurses and intermediate nurses 1 2 n/a
Nurses with coordinator skill 1 1 n/a
Student nurses 0 1 1
Student nurses and enrolled nurses 0 1 2

Table 1.4: The number of nurses we require with certain qualifications and skills from
7 am to 3 pm on a Wednesday. We need a sufficient amount of senior nurses (head and
intermediate) and nurses with a coordinator skill, but we don’t want too many student
nurses or enrolled nurses.

regular nurse, enrolled nurse or student nurse skill. Some head nurses and intermediate nurses
also have the coordinator skill. In Table 1.4, we provide some example data for the number of
nurses we require from 7 am to 3 pm on a Wednesday.

Each ward has an insufficient number of nurses to meet the target number of nurses working
in every period. We have hard constraints to at least ensure we meet all the minimum nurse
requirements. To encourage the model to distribute the nurses evenly, we give an exponential
penalty cost for the number of nurses below our target for a given period. For example, having
one fewer nurse incurs a minimal penalty; and having two fewer nurses incurs a large penalty
within our MIP. We implement these penalties using slack and surplus variables; see §4.1.1.

1.4 Thesis outline

In Chapter 3, we present a summary of the best performing algorithms in literature for solving
the INRC problems as well as a comprehensive review on how researchers have used column
generation to solve staff rostering problems. In Chapter 4, we present a generic method for
modelling and solving staff rostering problems with column generation. We then use this method
to model an example INRC problem and an example maternity wards problem. In Chapter 5,
we discuss how we found proven optimal solutions to every difficult problem in the INRC. In
Chapters 6-7, we discuss how we found high-quality rosters for the Waikato DHB using column
generation based matheuristics. In Chapter 6, we discuss the use of neighbourhood restricted
branch and price to perform local search and improve the quality of a roster solution. Then in
Chapter 7, we discuss the use of column generation subproblem heuristics to enhance a branch-
and-price dive and find good rosters quickly. Lastly, in Chapter 8, we conclude with an outline
of our achievements and results.

8 Introduction

1.5 Contribution

As part of this work, we have provided a generic mathematical description of nested shortest
path problems with resource constraints for staff rostering problems; see §4.2 for details. We have
provided two example models using our modelling language, a model for an INRC problem and
a model for a Waikato DHB maternity wards problem.

Further, we have designed a series of novel improvements to standard column generation
methods for solving staff rostering problems, which have been necessary to find proven optimal
solutions to all of the difficult INRC problem instances. To this end, the following improvements
have been made: a new dominance technique in §5.2.1 which we call ‘dominance cost functions’, an
objective function perturbation in §5.2.2, new branching techniques in §5.3 and a shift aggregation
technique in §5.4.

Our improved Genie++ algorithm could not solve the Waikato DHB problems to find a
sufficiently high-quality solution in a reasonable time. Thus, we have developed a suite of column
generation based matheuristics and compared their effectiveness in solving the operating theatre
and maternity wards problems. With these techniques, we are able to find high-quality roster
solutions quickly.

The first set of matheuristics involves a series of local search matheuristics using column gen-
eration. Except for “fixed employees” neighbourhood and “maximum shift changes per employee”
neighbourhood, we believe all of these neighbourhood restricted column generation matheuristics
to be novel within the field of staff rostering. See Chapter 6 for more details.

The second set of matheuristics involves a series of novel column generation subproblem
heuristics, including entity restriction and neighbourhood pricing, to improve the speed of finding
negative reduced cost columns in the column generation subproblem. Except for “entity restriction
by cost”, we believe all of these column generation based local search heuristics to be novel within
the field of staff rostering. See Chapter 7 for more details.

Within the literature for staff rostering problems, we also found no other comprehensive
comparison of the effectiveness of multiple column-generation-based matheuristics for solving
staff rostering problems.

We established the novelty of each of our techniques by systematically reviewing every paper
on using column generation to solve staff rostering problems. For a detailed explanation of how
we performed this systematic review, refer to §3.2.

Chapter 2

Background

This chapter provides a comprehensive background on staff rostering problems, the core concepts
of column generation and some of the local search techniques we will be employing to solve staff
rostering problems.

2.1 Staff rostering problems

This thesis considers the “staff rostering problem”, which we initially define in §1.1. Our goal is
to solve a broad range of staff rostering problems, but we still make two core assumptions for the
type of staff rostering problems that Genie++ can solve. The first is that the quality of a staff
roster can be measured by features that are either embedded in an individual’s roster-line or
associated with the number of staff of a particular type working a shift. We do not, for example,
handle staff who want to work together on four days of the fortnight. The second is that we can
define each employee’s roster-line or line of work as a series of activities, one for each day, where
an activity is a shift or a day off. This definition for staff rostering problems, therefore, precludes
other problems such as crew rostering, where staff are instead assigned crew pairings, which
are sequences of flights that start from and end at the same location. We could extend these
algorithms to apply to problems in which more than one activity is started per day; however, we
opted out of this as it was unnecessary for the problems we were attempting to solve and would
introduce code inefficiencies.

Instead of representing a roster-line purely as a set of activities, we can segment a roster-line
into several component entities, where an entity represents a subset of the roster-line’s activities
over a series of consecutive days. Using the terminology of Mason and Smith (1998), we define
six different entities as part of our entity model. A roster-line is made of a series of consecutive
work-stretches, each of which contains a single on-stretch followed by a single off-stretch. An on-
stretch is a series of consecutive days worked and is commonly also referred to in the literature
as a stint (Glass and Knight, 2010) or rotation (Legrain et al., 2020). An off-stretch is a series
of consecutive days off. A full diagram of how the component entities build into a roster-line can
be seen in Figure 2.1. For a mathematical description of our entity model, see §4.2.

9

10 Background

Roster-line

Work-stretchWork-stretch

On-stretch

George

On-stretch Off-stretch

Figure 2.1: An example of our entity model. Here, we show a roster-line for the employee,
George, with two work-stretch components. Each work-stretch has an on-stretch and an
off-stretch component. Each on-stretch has a series of consecutive shifts (D,A,N) as
components, and each off-stretch has a series of consecutive off-days (φ) as components.

We break down a roster-line into component entities as it can help to model rules more easily
and construct roster-lines more efficiently; refer to the work of Dohn and Mason (2013) for more
details on the effectiveness of decomposing a roster-line into component entities. Because we
model a roster-line as a set of component entities, we refer to our column generation algorithm
as being nested.

We define the span of any entity as the longest set of consecutive days for which the entity
defines activities. We define a roster-line that starts on the first day and ends on the last day of
our staff rostering problem as a full roster-line. We also define a roster-line that starts on the
first day and ends on any other day as a partial roster-line.

We define a rostering rule as describing the criteria by which entities are deemed infeasible
or have an associated penalty, given the set of activities worked in that entity or the span of
that entity. For example, a rostering rule might describe a penalty for any entity which contains
a night shift followed by a morning shift. Another example is a rostering rule that deems any
on-stretch infeasible if it has too long a span.

As well as fulfilling a set of rostering rules for each employee, we also need to meet certain
requirements on the number of employees who need to work during certain periods of the day.
We even sometimes need to meet requirements on the number of employees with a specific skill
or seniority. We call these requirements demands.

We note that a single shift can contribute to multiple demands, and a single demand can be
contributed to by multiple shifts. For example, in the Waikato DHB maternity wards problem,
we have a demand for a minimum number of head nurses working from 7:15 pm to 11:00 pm on
day 5. Both the PM shift and the 12-hour day shift on day 5 cover this period, and thus, if a
head nurse works one of these shifts, they cover this demand.

We can represent any roster-line as a set of shifts worked or a set of demands contributed to
as we can easily convert between the two representations.

Column generation 11

2.2 Column generation

The classic formulation of a staff rostering problem as a mixed-integer program involves modelling
the rostering problem using employee-shift variables, i.e., xeS is equal to one if employee e works
shift S and zero otherwise; for an example of this formulation, see Santos et al. (2016). Another
formulation involves modelling the rostering problem as a generalised set partitioning problem
with roster-line variables, i.e., λre is equal to one if employee e works roster-line r and zero
otherwise; for an example of this formulation, see Burke and Curtois (2014). In the second
formulation, many of the rules are modelled implicitly. The existence of a given roster-line in the
formulation implies it is a legal roster-line and the cost of the roster-line implies violations of
soft constraints. In this thesis, we model rostering problems using the second formulation.

Formulating a rostering problem with roster-line variables tends to be a stronger formulation
than with employee-shift variables. This is in the sense that the gap between the solution to the
root node of the search tree, solved with no branching constraints, and the optimal integer solution
is smaller using a formulation with roster-line variables than a formulation with employee-shift
variables (we compare these two formulations in §2.2.1). We provide some evidence of this in
§3.3 where both formulations have been used to solve INRC problems, allowing their root node
objective function values to be compared.

Because there are a very large number of legal roster-lines for a given employee, we use
column generation. Column generation is an approach used to efficiently solve large linear and
integer programs involving a substantial number of variables. Instead of solving the entire linear
program (LP), this method creates a restricted LP master problem by considering only a subset
of the variables (columns). Then, by using the Simplex Algorithm (Dantzig, 1963) to solve this
linear program and produce a dual solution, we can generate negative reduced-cost variables
with a separate column generation subproblem or pricing problem and add these variables to
the restricted LP. This LP is then resolved, and the process is repeated until no more negative
reduced cost columns can be generated. The final solution is an optimal one for the complete LP
with all possible variables. Column generation can be extended to solve mixed-integer programs
(MIPs) with the use of a branch-and-bound tree; this is commonly known as branch-and-price
(Barnhart et al., 1998). For further information on column generation, consult the comprehensive
reviews of column generation by Desaulniers et al. (2005) and Lübbecke (2010).

Using the language of Desrosiers and Lübbecke (2005), we often refer to the formulation of
the staff rostering problem with employee-shift variables as a “compact” formulation and the
equivalent roster-line formulation as an “extensive” formulation.

2.2.1 Dantzig-Wolfe decomposition

Dantzig-Wolfe decomposition (Dantzig and Wolfe, 1960) involves the reformulation of a compact
LP into a restricted master problem and n subproblems. For staff rostering problems with a com-
pact formulation, the reformulation typically gives rise to the extensive formulation as described
above.

12 Background

The modelling approach described in this thesis of using column generation and constraint
branching was developed by Ryan and Foster (1981) independently of a Dantzig-Wolfe formu-
lation. With Ryan and Foster’s approach, we do not formulate our staff rostering problem with
a compact formulation and instead skip straight to modelling the staff rostering problem as a
generalised set partitioning problem with roster-line variables. Ryan and Foster saw the value of
column generation as a modelling tool, not just in the strengthening of the formulation but also
the ability to model otherwise complex constraints in the column structure. Even though we do
not directly use Dantzig-Wolfe decomposition, we still provide a brief overview of how our for-
mulation could be derived using Dantzig-Wolfe decomposition, albeit with arbitrary non-linear
constraints.

Dantzig-Wolfe decomposition is a method of solving linear programs with a special structure.
In this special structure, a subset of the constraints are “coupling” in that they have non-zero
coefficients for a large number of variables; the remainder of the constraints can be divided into
a number of independent groups where if a variable has a non-zero coefficient in one group, then
it must have a zero coefficient in every other group. Within the context of staff rostering, each
independent group corresponds to the constraints placed upon each individual employee in order
to model their rostering rules. The coupling constraints correspond to the demands for a specified
minimum or maximum number of employees to work during certain times throughout the day.
We model each of these requirements using a demand D ∈ D where D = {D1, D2, . . . , D|D|} is
the set of all demands.

We show a representation of a generalised, compact LP for a staff rostering problem in (2.1)-
(2.4). As we skip straight to modelling the staff rostering problem as a generalised set partitioning
problem, we have created the compact formulation with our actual formulation in mind. In
this LP, the set of employee indices is given by E = {1, 2, . . . , |E|}, where |E| denotes the total
number of employees. The variable xeD is one if employee e is contributing to demand D and zero
otherwise. The vector xe = (xeD1 , xeD2 , . . . , xeD|D|) represents a roster-line for a single employee.
Note that because there is a one-to-one mapping between roster-lines represented by shifts and
roster-lines represented by demands contributed to, a roster-line can be represented as a set of
employee-shift variables or a set of employee-demand variables in a compact formulation. In this
example, we use employee-demand variables because it is more straightforward to reformulate
into our actual formulation.

The function fe(xe) represents the sum of penalties for violating certain rostering constraints
in employee e’s roster-line xe. The constraint set (2.2) is a set of coupling constraints that ensure
we are meeting each rostering demand bD. The constraint set (2.3) is a set of independent
constraints He for each employee e ∈ E which enforce rostering constraints for an individual
employee and the mapping between working shifts and contributing to demands.

Column generation 13

Compact LP: Minimize
∑
e∈E

fe(xe) (2.1)

s.t.
∑
e∈E

xeD = bD ∀D ∈ D [πD] (2.2)

geη(xe) = 0 ∀η ∈ He, ∀e ∈ E (2.3)

0 ≤ xeD ≤ 1, ∀e ∈ E , D ∈ D (2.4)

We can use Dantzig-Wolfe decomposition to reformulate our compact LP into a master pro-
gram and |E| subproblems. This reformulation relies on the fact that every point of a non-empty,
bounded convex polyhedron can be represented as a convex combination of its extreme points.
Minkowski and Weyl’s theorem (Schrijver, 1998) says that any polyhedron can be represented as
a convex combination of its extreme points and rays. However, there are no rays because in staff
rostering problems all the variables (xeD) in our compact formulation are bounded. Therefore,
we represent the set of feasible variables xeD in our compact formulation for employee e that
satisfy constraint sets (2.3) and (2.4) as a convex combination of the set of extreme points for
that employee e, with indices Re = {1, 2, . . . , |Re|}, i.e.,

xeD =
∑
r∈Re

areDλ
r
e (2.5)

where
∑
r∈Re

λre = 1 ∀e ∈ E (2.6)

0 ≤ λre ≤ 1, ∀e ∈ E , r ∈ Re (2.7)

where we ensure each extreme point are = (areD1
, areD2

, . . . , areD|D|
) for employee e ∈ E satisfies the

constraints geη(xe) = 0 ∀η ∈ He from the compact formulation and λre is the scalar for extreme
point r of employee e.

In our problem reformulation, each extreme point is a column in our extensive LP shown
in (2.8)-(2.10). Column r for employee e represents a roster-line, R̂re, generated for employee
e. The cost of column r for employee e, r ∈ Re, is given by cre = fe(are). The cost of a given
column indicates its quality, where a lower cost indicates a higher-quality roster-line. The decision
variable, λre, is equal to one if column r ∈ Re for employee e lies in the optimal roster solution
and zero otherwise. The coefficient areD is one if employee e works a shift which contributes to
demand D in column r.

‘Extensive LP: Minimize
∑
e∈E

∑
r∈Re

creλ
r
e (2.8)

s.t.
∑
e∈E

∑
r∈Re

areDλ
r
e = bD ∀D ∈ D [πD] (2.9)

∑
r∈Re

λre = 1 ∀e ∈ E [πe] (2.10)

0 ≤ λre ≤ 1, ∀e ∈ E , r ∈ Re (2.11)

14 Background

The number of possible columns or roster-lines is too large to enumerate every single possible
roster-line and solve this master problem as a whole with an LP solver. Thus, we instead work
with a significant subset of the possible columns, forming the restricted master problem. More
columns are instead generated as needed using a subproblem. Like the simplex method, in every
iteration of column generation, we find a new column or set of columns to enter the basis each
with a negative reduced cost. Thus, we need to define a subproblem that finds entering columns
with the lowest reduced cost for each employee e ∈ E . As we need the duals for each row, the
restricted master problem needs to also be solved each iteration to find these duals.

We define the subproblem in (2.12)-(2.14). This subproblem is also referred to as the pricing
problem. The reduced cost for an entering column ae = (aeD1

, aeD2
, . . . , aeD|D|) for employee e

is given by fe(ae) − πe −
∑
D∈D πDaeD, where πD is the dual for row D in constraint set (2.9)

and πe is the dual for row e in constraint set (2.10). We find the lowest reduced cost column
by minimising over the vector ae. If the reduced cost of that column is less than 0, we add that
column to the restricted master problem as are for some appropriate r.

Subproblem (e): Minimize
aeD D∈D

fe(ae)− πe −
∑
D∈D

πDaeD (2.12)

s.t. geη(ae) = 0 ∀η ∈ He (2.13)

aeD ∈ 0, 1, ∀e ∈ E , D ∈ D (2.14)

2.2.2 Pricing problem

The two most common ways to model the pricing problem are as a MIP or as a shortest path
problem with resource constraints (SPPRC) as defined by Irnich and Desaulniers (2005). The
MIP is typically solved using a standard MIP solver. The SPPRC is modelled as a digraph and
typically solved using dynamic programming, using either a label setting or a label correcting
algorithm (Irnich and Desaulniers, 2005). Since we have no cycles in our graph, we use a label
setting algorithm, which we detail in §4.4.

When solving an SPPRC, the label represents a vector of resources or resource vector. We
calculate how each resource varies along a path through resource extension functions (REFs)
which define how the resource vector changes when the label is extended along an arc. The re-
sources also have associated hard and soft constraints. Genie++ represents all employee rostering
rules using resources, resource extension functions, and resource constraints. As we model our
rostering rules in an SPPRC within the pricing problem, we do not need to model them as linear
constraints as is typical within a MIP formulation. We can instead model all rostering rules with
generic code

Genie++ defines a set of resources, resource extension functions, and resource constraints
using generic C code. The resource extension functions and resource constraints are arbitrary
functions. These functions form the basic building blocks of our modelling approach and take
the place of what might normally be expressed with linear or non-linear functions and decision

Column generation 15

variables in a linear program. Because these functions are the building blocks of our model, the
presentation in this thesis is given in terms of these arbitrary functions rather than a set of linear
constraints and decision variables.

These arbitrary functions are our model’s building blocks and differ from problem to problem,
as different problems have different structures. The core aspect of our modelling approach is that
these functions exist, and despite their arbitrary complexity, we can implement them in a column
generator.

We refer to the state-space in our label setting algorithm as the number of possible labels
which we need to generate in order to solve our pricing problem. When solving staff rostering
problems with many resources and over a long span, the state-space can become large, so it is
standard practice to apply additional strategies to prune labels such as dominance and heuristic
techniques to reduce the number of labels (Irnich and Desaulniers, 2005).

2.2.3 Branch-and-price

We require an integer solution to the staff rostering problem, i.e., each staff member must be
assigned exactly one roster-line. Thus, we use branch-and-price (Barnhart et al., 1998) which is
a branch-and-bound method for solving mixed integer programs (MIPs) where each node in the
search tree is solved using column generation.

In branch-and-bound, the entire solution space is explored when solving the root node, then
branches of the root node are explored, which form a subset of the solution space represented by
further nodes of which can, in turn, be branched on. The corresponding branches and nodes are
referred to as a search tree.

Branching is performed to remove non-integer solutions from the solution space while retain-
ing all possible integer solutions. Since we are solving a minimisation problem, the best-known
integer solution found by solving any node in the search tree represents an upper bound on the
quality of the solution, also known as the primal bound. The lowest possible solution in the
solution space found by solving any set of LPs that contain the entire integer problem space
forms a lower bound on the quality of the solution, also known as the dual bound.

Creating two branches from each node in the binary search tree requires a branching rule. A
branching rule typically involves a set of integer variables to branch on and a method for selecting
the particular variable to be branched on. Instead of branching on variables, we use constraint
branching by Ryan and Foster (1981). In the context of staff rostering, this typically involves
branching on an employee-shift pair, (e, S), i.e., the left branch enforces that employee e must
work shift S and the right branch enforces that employee e must not work shift S. Branching
on these pairs is effectively branching on an employee-shift variables from a typical compact
formulation.

A search strategy involves deciding which node in the branch-and-bound search tree to solve
next. Some common search strategies include depth-first search, which is a LIFO queue-based
implementation and best-first search, which is a priority queue that prioritises nodes in ascending
order based on their lower bound (Clausen, 1999), both of which are used in this thesis.

16 Background

2.2.4 Matheuristics

In order to find high-quality roster solutions more quickly, we can combine our mathematical pro-
gramming method with a metaheuristic. This combination is known as a matheuristic (Maniezzo
et al., 2021).

A popular metaheuristic is variable neighbourhood search (Hansen et al., 2016) where multiple
neighbourhoods of an incumbent solution are explored. This technique proves useful as local
minima for one neighbourhood are not necessarily local minima for another neighbourhood.
A subclass of variable neighbourhood search which involves iteratively increasing the size of a
neighbourhood is called variable neighbourhood descent (Hansen et al., 2016).

We can use variable neighbourhood search in combination with column generation as a
matheuristic in two ways. The first way is generating new rosters more quickly by generating
them in the neighbourhood of previous rosters. The second way is generating new roster-lines
more quickly by generating them in the neighbourhood of old roster-lines.

2.3 Chapter summary

In §2.1, we have carefully defined the staff rostering problem we will be solving in this thesis and
our entity model for defining roster-lines. In §2.2, we explained how Dantzig-Wolfe decomposition,
which is one theoretical basis for column generation, fits in with our approach. We also describe
the core concepts of column generation, including the pricing problem and branch-and-price.
Lastly, we cover how column generation can potentially be sped up using matheuristics.

Chapter 3

Literature Review

This chapter explores two segments of the staff rostering problem literature. In §3.1, we introduce
common usages of column generation in literature for solving complex integer programs. In
§3.2, we perform a comprehensive literature search on solving staff rostering problems with
column generation with a particular focus on modelling and acceleration strategies. In §3.3, we
introduce some of the most successful attempts at solving the International Nurse Rostering
Competition (INRC) problems.

3.1 Column generation

Column generation has typically been used to solve a wide range of complex integer linear pro-
grams including broader personnel scheduling problems (Van Den Bergh et al., 2013, Ernst et al.,
2004, Burke et al., 2004a, Cheang et al., 2003), airline crew scheduling problems (Gopalakrishnan
and Johnson, 2005, Heil et al., 2020), and vehicle routing problems (Desaulniers et al., 2011).
In this section, we briefly discuss the use of column generation in solving crew scheduling and
vehicle routing problems. We then provide a comprehensive review of literature on staff roster-
ing problems solved using column generation. As our focus is on extending an existing column
generation framework for solving staff rostering problems. We are primarily focused on literature
eminently relevant to this topic.

We first define the airline crew scheduling problem. Airline crew scheduling is usually broken
down into the airline crew pairing and airline crew rostering problems (Quesnel et al., 2020).
The airline crew pairing problem (Aggarwal et al., 2020, Desaulniers et al., 2020, Tahir et al.,
2019, Zeren and Özkol, 2016, Muter et al., 2013) involves constructing a set of crew pairings,
each of which is a legal set of flights starting from a crew base and ending at the same crew base.
Within our staff rostering terminology, the airline crew pairing problem is similar to building
on-stretches from tasks with precedence constraints (see §3.2.1 for more details on tasks). Crew
pairs are usually constructed over one or a few days.

The airline crew rostering or airline crew assignment problem (Kasirzadeh et al., 2017,
Boubaker et al., 2010, Zeighami and Soumis, 2019, Maenhout and Vanhoucke, 2010b) involves

17

18 Literature Review

assigning each crew pairing to a staff member. Airline crew rostering also involves considering
employee preferences, requests, rest periods, training and annual leave. Within staff rostering ter-
minology, the airline crew rostering problem is similar to building roster-lines from on-stretches.
Crew rosters are usually constructed over many days.

The vehicle routing problem (VRP) (Desaulniers et al., 2011, Dabia et al., 2013, Gutiérrez-
Jarpa et al., 2010) involves assigning routes to vehicles to deliver goods to a number of customers.
Typically vehicle routes are constructed on a single day.

Personnel scheduling problems, airline crew scheduling problems, and vehicle routing prob-
lems are all similar because they are fundamentally set covering and set partitioning problems.
Each of these problems involves choosing a set of activities or destinations which need to be
covered by a set of people or vehicles. They also both frequently involve the use of a Shortest
Path Problem with Resource Constraints (SPPRC) to solve their column generation subprob-
lem. In preparing our literature survey, we examined papers that use SPPRCs to solve column
generation subproblems. SPPRCs are useful for modelling a large variety of linear and non-linear
constraints.

Both staff rostering and airline crew rostering problems usually have a separate column
generation subproblem for each staff member. This is because these problems are sensitive to
the wants and needs of each staff member. However, crew pairings and vehicle routes are usually
anonymous, and so these two problems usually only have a single column generation subproblem.

In the papers which involve using an SPPRC to solve the column generation subproblem,
staff rostering problems, crew pairing problems and crew rostering problems all considered many
different resources. Crew pairings often involve many legal requirements, and crew rostering
problems involve contractual and legal requirements as well as preferences and requests from
each staff member to consider. However, VRPs usually had few resources in their SPPRCs.
VRPs typically focus on a day’s worth of activities for a vehicle. Thus, we don’t need to embed
as many qualities in the SPPRC. For example, a standard vehicle routing problem with time
windows, as described by Desaulniers (2010), only has three resources: time, vehicle load, and
whether a customer has been visited.

As discussed, there are significant similarities between staff rostering, and crew scheduling.
Although we consider notable crew scheduling literature, we only performed a systematic litera-
ture review on the staff rostering problem.

3.2 Column generation to solve staff rostering problems

The staff rostering problem has multiple aliases within the literature. Many researchers refer to
the staff rostering problem as the nurse rostering problem, even though it applies to other staff
types. Other forms include the staff scheduling problem and the personnel scheduling problem.
Further, column generation is regularly referred to as both “column generation” and “branch and
price” within the literature. To emphasise the use of column generation in our search, we only
reviewed papers that specifically mention column generation or branch and price in the title.

Hence, we performed a search in Google Scholar with the following search terms:

Column generation to solve staff rostering problems 19

“staff rostering” OR “nurse rostering” OR “staff scheduling” OR “personnel schedul-
ing” intitle: “column generation” OR intitle: “branch and price”

This search produced 101 results. Of these 101 results, 28 were either duplicates or inacces-
sible. All pertinent features of the remaining 73 papers are summarised in §3.2.1-§3.2.7.

56 of the 73 papers were published in 2010 or later, and 36 of the 73 papers were published
in 2015 or later. This indicates that using column generation to solve staff rostering problems is
becoming more popular. Thus, we believed there were opportunities to make significant contri-
butions to this research field and explored the identified literature for potential opportunities.

3.2.1 Problem types

We broadly define a staff rostering problem within the literature as assigning shifts or activities to
a set of employees over multiple days. Out of our 73 results, 54 of the papers were staff rostering
problems according to this broad definition. However, these 54 problems still had significant
variations in the exact problem being solved. This section classifies the 54 papers on staff rostering
problems according to five prominent features.

According to the review of staff rostering by Ernst et al. (2004), there are six possible com-
ponents to the staff rostering process: demand modelling, days-off scheduling, shift scheduling,
line of work construction, task assignment, and staff assignment. Many researchers within the
literature used this set of components to classify staff rostering problems. However, we found
that column generation is generally used in literature to solve problems that integrate most of
these components to various extents. Thus, we have extracted some of the prominent differences
between the different staff rostering problems solved using column generation.

One complexity of solving staff rostering problems comes from many complex rules with soft
constraints. Maenhout and Vanhoucke (2010a) defined the “multiple objective nurse scheduling
problem” as one which not only involves minimising under-staffing and over-staffing but also
seeks to include various types of nurse preferences, nurse special requests and measurements of
fairness. We found that explicitly modelling fairness with a complex cost structure dramatically
increases the difficulty of solving the problem; see §4.3.2 for more details. Allowing for preferences
and special requests also means that there must be a separate column generation subproblem for
each employee, leading to symmetry if the employees are mostly the same; see §5.2.2 for more
details. Thus, our first two classification features are whether fairness is modelled and whether
requests and preferences are modelled.

Many researchers increased their staff rostering problem’s complexity with the explicit mod-
elling of tasks/activities. There is some confusion within the literature over the differences be-
tween a task and an activity. For example, Boyer et al. (2014) referred to tasks and activities as
separate and distinct entities. In their definition, tasks are small, have sequence constraints and
have hard time constraints. Further, activities are daily operations and have penalties for under-
coverage. Conversely, Gérard et al. (2016) considered a task as a time interval where a single
activity is worked. For the remainder of this section, we refer to tasks as worked components of a

20 Literature Review

shift. Thus, our third classification feature is whether shifts are constructed from multiple tasks
within their column generation algorithm.

Some researchers further complicated task assignment by giving the tasks precedence con-
straints, i.e., a given task must be worked before another task. In some cases, these tasks were
components of multiple separate projects. Thus, our fourth classification feature is task prece-
dence constraints.

Our final classification feature includes solving cyclic rostering problems, which involves
adding additional constraints to the rostering problem.

Table 3.1 provides a summary of all 54 papers in terms of the five classification features.
This table also includes the two problem sets modelled in this work: the INRC problems and the
Waikato DHB problems.

The INRC problems are a relatively standard staff rostering problem within the literature
with the only complex feature of employee preferences. This is a well-studied class of problem as
many of the problems in literature have specific employee preferences and requirements (31/54).
However, by being the first to solve each instance to proven optimality, we have demonstrated
that the techniques outlined in this work are a new contribution even to this well-studied class
of problem.

In contrast, the Waikato DHB problems are relatively unique within the literature due to
the explicit modelling of fairness with a complex, non-linear objective function.

We only found two explicit mentions of modelling fairness (2/54) in the literature. Dohn and
Mason (2013) mentioned that “a sophisticated cost structure applies that distributes weekend
shifts fairly and distributes off-days evenly over the weeks. This cost structure makes it very hard
to find near-optimal solutions.” Although Bard and Purnomo (2005b) did not explicitly model
fairness within a single rostering problem, they did track the number of preference violations for
a given nurse and attempted to provide that nurse with a better schedule in their next roster.
This was to achieve fairness over the long term.

We did not choose to solve such a uniquely difficult problem but were provided with this
problem by the Waikato DHB.

Solving an integrated staff scheduling problem, involving the construction of shifts from tasks
and roster-lines from shifts, is a common use of column generation. We found that 18 of the 54
papers explicitly constructed shifts from tasks. Six of those 18 papers had precedence constraints
on those tasks. Although we did not directly model the construction of shifts from tasks, we
believe that our generic formulation and acceleration strategies that provided proven optimality
for the INRC problems (i.e., problems with only employee preferences) could easily be modified
to include the modelling of tasks. We would consider a task as a separate entity and construct a
set of feasible shifts using a separate SPPRC in our nested column generation subproblem, similar
to Gérard et al. (2016). Hence, the techniques outlined in this work also have the potential for
the feature combination of tasks and employee preferences.

It is also worth noting that very few approaches considered both tasks and employee pref-
erences (5/54), and only one research group considered tasks, task precedence and employee

Column generation to solve staff rostering problems 21

preferences (1/54). Thus, we believe integrating tasks in our already uniquely difficult problem
is unnecessary to demonstrate the effectiveness of our column generation algorithm.

We also identified eight papers that solved cyclic rostering problems using column generation.
Further research is required to investigate how our solver could be used to solve generic cyclic
rostering problems.

3.2.2 Formulating and solving the column generation subproblem

In this section, we summarise the methods used in staff rostering literature to formulate and
solve the column generation subproblem.

Table 3.2 shows a summary of the methods used in each of the 54 staff rostering papers to
formulate their column generation subproblem. The most common two methods used to formulate
the column generation subproblem in staff rostering literature were as a shortest path problem
with resource constraints (SPPRC) as defined by Irnich and Desaulniers (2005) (which is typically
solved using dynamic programming) and as a mixed-integer program (MIP). 23 of the 54 papers
on staff rostering used an SPPRC and 26 of the 54 papers used a MIP. Otherwise, four papers
used constraint programming, and four papers used other methods.

In the rest of this section, we discuss any paper which used a non-standard formulation or
solution methodology. We define this as any paper which defined multiple separate SPPRCs,
MIPs or constraint programs, any paper with a method in the “other” category, or any paper
which did not generate roster-lines with their column generation subproblem.

Some researchers compared multiple methods of formulating column generation subproblems.
Novak (2015) compared MIP, constraint programming and A* to solve the column generation
subproblem. They concluded that their A* heuristic was preferable for smaller column generation
subproblems but produced a too low-quality solution for the larger instances, and it was better
to use a MIP for these instances. Novak (2015) also deemed constraint programming ineffective.
Manuel and Barbosa (2018) used MIP with employee-shift variables (i.e. whether a given em-
ployee works a given shift), MIP with network flow variables and constraint programming to solve
the column generation subproblem. They concluded that a MIP with employee-shift variables
was the most effective option.

He and Qu (2012) used constraint programming to model the column generation subproblem
with two improvements to the solution methodology. One of these was to generate diverse columns
by using Depth-bounded Discrepancy Search (Walsh, 1997). The other was using a cost threshold
where the first column with a cost below the threshold is returned by the column generation
subproblem. The cost threshold was adaptively decreased as the rostering problem was solved. He
and Qu (2012) argued that there is a powerful expressiveness to modelling the column generation
subproblem using constraint programming; constraint programming can model a large variety of
complicated nurse rostering constraints.

Some papers used a nested column generation subproblem where the column generation
subproblem is decomposed into multiple SPPRCs and the output from one SPPRC becomes the
input to another. We use the same nested column generation as first discussed in Dohn and Mason

22 Literature Review

Paper Tasks Task precedence Fair Preferences Cyclic
Total papers (out of 54)* 18 6 2 31 8
Cleland (INRC) 3

Cleland (Waikato DHB) 3 3

Van Den Eeckhout et al. (2020) 3 3

Strandmark et al. (2020) 3

Lensing (2020) 3

Legrain et al. (2020) 3

Den Eeckhout et al. (2020) 3 3

Bender et al. (2019) 3

Wang (2019)
Pakpoom and Charnsethikul (2019) 3

Swahn (2019) 3

Zeng et al. (2019)
Václavík et al. (2018) 3

Restrepo et al. (2018) 3

Meijer (2018) 3 3

Dopheide and Spliet (2018) 3

Gomes et al. (2017) 3

Zamorano and Stolletz (2017) 3 3

Karl and Volland (2017) 3 3 3

Volland et al. (2017) 3 3 3

Zeng et al. (2016)
Restrepo et al. (2016) 3 3

Firat et al. (2016) 3

Gérard et al. (2016) 3

Novak (2015) 3

Ohara and Tamaki (2015)
Dahmen et al. (2015) 3

Boyer et al. (2014) 3 3 3

Brunner and Stolletz (2014)
Côté et al. (2013) 3 3

Dohn and Mason (2013) 3 3

Brunner and Bard (2013) 3

Lusby et al. (2012) 3

Restrepo et al. (2012) 3

Lim and Mobasher (2012) 3

He and Qu (2012) 3

Brunner et al. (2011) 3

Brunner and Edenharter (2011)
Bulog (2011) 3

Mason et al. (2011) 3

Burke and Curtois (2010) 3

Maenhout and Vanhoucke (2010a) 3

Beliën and Demeulemeester (2008) 3 3

Al-Yakoob and Sherali (2008) 3

Purnomo and Bard (2007) 3 3

Maenhout and Vanhoucke (2007) 3

Ni and Abeledo (2007) 3

Beliën and Demeulemeester (2007) 3 3

Hoogeveen and Penninkx (2007) 3

Beliën and Demeulemeester (2006) 3 3

Demassey et al. (2006) 3

Wang (2006)
Bard and Purnomo (2005b) 3** 3

Belien and Demeulemeester (2004) 3

Mehrotra et al. (2000) 3 3

Table 3.1: Classification of staff rostering problems solved with column generation. The
two “Cleland” rows are a classification of the two problem types we attempt to solve in
this work. *Not including “Cleland”. **Bard and Purnomo (2005b) model fairness over
multiple rostering periods, not within a single rostering period.

Column generation to solve staff rostering problems 23

(2013). For more details on our nested structure, see §4.2. Gérard et al. (2016) also used nested
column generation to solve a granular nurse rostering problem. Firstly, they used an SPPRC to
construct a set of tasks from 15 minute time periods. Secondly, they used an SPPRC to construct
“timeslots” from tasks. Thirdly, they used an SPPRC to construct a set of shifts from timeslots,
and finally, they used an SPPRC to construct lines of work from shifts. Restrepo et al. (2018)
solved a similar nurse rostering problem where they used separate SPPRCs to create shifts from
tasks and create roster-lines from shifts. The type of nested column generation described above
is not to be confused with the nested column generation used by Tilk et al. (2019), and Enoch
(2018), in which the column generation subproblem is solved using a MIP and that MIP is itself
solved using column generation.

Some papers did not solve their SPPRC to produce roster-lines. Legrain et al. (2020) and
Lensing (2020) used an SPPRC to generate only rotations or a sequence of shifts worked consec-
utively without a day off, which we define in §4.2 as an on-stretch. The on-stretches are combined
to form roster-lines in the restricted master problem. Volland et al. (2017) used two different col-
umn generation subproblems, which generated two different types of columns: roster-lines from
shifts and shifts from tasks, and added both types of columns to the restricted master problem.
They used a MIP to solve both of these column generation subproblems. Similarly, Beliën and
Demeulemeester (2008) generated two types of columns to add to the restricted master prob-
lem, roster-lines and surgery schedules. They generated roster-lines using an SPPRC and surgery
schedules using a MIP.

Beliën and Demeulemeester (2007) compared two different decompositions for their column
generation subproblem. The first was standard, which was solving the column generation sub-
problem to find all the activities that a given staff member works. The second was solving a
column generation subproblem to find all of the staff who work a given activity. They concluded
that the activity-decomposed column generation subproblem leads to better solve times, but the
staff-decomposed column generation subproblem allows for more flexible modelling of rules. They
used a MIP to solve both of these subproblems.

Václavík et al. (2018), and Lensing (2020) used regression with the dual solution of the
restricted master problem to calculate an approximate lower bound on the reduced cost of the
possible columns for a given employee. They trained the regression parameters while solving the
nurse rostering problem, and as such, they did not need to precompute these parameters. They
used this method to reduce the number of times the column generation subproblem required to
be solved.

Four papers did not model the column generation subproblem as a SPPRC, MIP or constraint
program. Boyer et al. (2014) and Côté et al. (2013) constructed their lines of work via a “minimum
cost parse tree” which relates to their grammar-based formulation. Dopheide and Spliet (2018)
and Bard and Purnomo (2005b) both used local search to generate columns; see 3.2.4 for more
details.

We use an SPPRC to model the column generation subproblem and a dynamic program
to solve it, a common method in the literature. Our column generation subproblem is nested,
similarly to Gérard et al. (2016) and Restrepo et al. (2018). However, both research groups solved

24 Literature Review

Paper SPPRC MIP CP Other
Total papers (out of 54)* 23 26 4 5
Us (INRC, Waikato DHB) 3

Van Den Eeckhout et al. (2020) 3

Strandmark et al. (2020) 3

Lensing (2020) 3

Legrain et al. (2020) 3

Den Eeckhout et al. (2020) 3

Bender et al. (2019) 3

Wang (2019) 3

Pakpoom and Charnsethikul (2019) 3

Swahn (2019) 3

Zeng et al. (2019) 3

Manuel and Barbosa (2018) 3 3

Václavík et al. (2018) 3

Restrepo et al. (2018) 3

Meijer (2018) 3

Dopheide and Spliet (2018) 3

Gomes et al. (2017) 3

Zamorano and Stolletz (2017) 3

Karl and Volland (2017) 3

Volland et al. (2017) 3

Zeng et al. (2016) 3

Restrepo et al. (2016) 3

Firat et al. (2016) 3

Gérard et al. (2016) 3

Novak (2015) 3 3 3

Ohara and Tamaki (2015) 3

Dahmen et al. (2015) 3

Boyer et al. (2014) 3

Brunner and Stolletz (2014) 3

Côté et al. (2013) 3

Dohn and Mason (2013) 3

Brunner and Bard (2013) 3

Lusby et al. (2012) 3

Restrepo et al. (2012) 3

Lim and Mobasher (2012) 3

He and Qu (2012) 3

Brunner et al. (2011) 3

Brunner and Edenharter (2011) 3

Bulog (2011) 3

Mason et al. (2011) 3

Burke and Curtois (2010) 3

Maenhout and Vanhoucke (2010a) 3

Beliën and Demeulemeester (2008) 3 3

Al-Yakoob and Sherali (2008) 3

Purnomo and Bard (2007) 3

Maenhout and Vanhoucke (2007) 3

Ni and Abeledo (2007) 3

Beliën and Demeulemeester (2007) 3

Hoogeveen and Penninkx (2007) 3

Beliën and Demeulemeester (2006) 3

Demassey et al. (2006) 3

Wang (2006) 3

Bard and Purnomo (2005b) 3

Belien and Demeulemeester (2004) 3

Mehrotra et al. (2000) 3

Table 3.2: Method used to solve column generation subproblem. *Not including “Cleland”

Column generation to solve staff rostering problems 25

a single SPPRC to build roster-lines from shifts and days off. Genie++ (Dohn and Mason, 2013)
is the only algorithm that divides up the construction of roster-lines, from shifts and days off,
into multiple nested SPPRCs.

Many researchers model their column generation subproblem as an SPPRC. Thus, the tech-
niques in this work which apply only to SPPRCs, i.e., dominance cost functions (§5.2.1), aggregate
resource branching (§5.3.1), and our column generation subproblem heuristics (Chapter 7), are
also applicable to many of the algorithms used in the literature, i.e., 23/54 papers.

3.2.3 Generic staff rostering problem modelling

Most column generation subproblems are modelled using SPPRCs, MIPs or constraint program-
ming. MIPs are naturally modelled through an objective function and a set of linear constraints.
Similarly, constraint programs are naturally modelled through an objective function and a set of
logical constraints. However, SPPRCs are mostly constructed without such an abstraction. Thus,
in this section, we present all usages of a generic methodology for modelling a large variety of
staff rostering constraints in an SPPRC from the papers defined in our comprehensive literature
review.

Restrepo et al. (2018) and Restrepo et al. (2016) used context-free grammar to define the
make-up of a shift from tasks and breaks. Gérard et al. (2016) stated that using context-free
grammar results in a huge hyper-graph and means the column generation subproblem can take
much longer to solve.

Burke and Curtois (2014) and Novak (2015) used flexible pattern definitions to define rules
for a roster-line. These patterns include days on, days off or specific shift types. They can be of
various lengths and can be assigned complex costs. These patterns can describe shift sequences,
days on/off patterns, weekend definitions and many other rules. Both Burke and Curtois (2014)
and Novak (2015) used the patterns to define the cost of a roster-line but only Burke and Curtois
(2014) also used the patterns to define hard constraints. Václavík et al. (2018) used the pattern
definition from Burke and Curtois (2014).

Bender et al. (2019) created a domain-specific language where they can define a set of rules
to map a customer’s database to the inputs of their column generation algorithm. They modelled
rules as SQL-like queries on a database where one query’s output can form the input of another
query. As far as we can tell, the rule engine does not map to resources in their SPPRC but more
simple rules such as which employee can work which shift.

Dohn and Mason (2013) defined a set of entities such as on-stretches, work-stretches and
roster-lines, each with a set of attributes that define the rules for an employee’s line of work.
These attributes can be modelled with a single C++ header file.

In §4.2, we present a novel improvement on the work of Dohn and Mason (2013) to model
a large variety of staff rostering constraints. The model is given in a concise set of tables for
each type of entity. These tables precisely describe the resource extension functions, dominance,
feasibility, and cost of each resource in our resource constrained shortest path problems. We used
these tables to accurately model all employee-specific rules of the INRC problems and Waikato

26 Literature Review

DHB problems. This generic model can also be easily optimised using the other techniques
outlined in this work.

3.2.4 State-space reduction

In some of the more challenging column generation subproblems, the state-space is reduced to
solve the column generation subproblem heuristically; refer to §2.2.2 for more details on the
state-space. This section outlines all usages of heuristic state-space reduction from the papers
defined in our comprehensive literature review.

The problem described by Den Eeckhout et al. (2020) is an integrated personnel and project
scheduling problem and involves sharing personnel between multiple projects. They reduced
the state-space by adding artificial restrictions to how many projects a single employee can be
assigned. If they could not find a negative reduced cost column, they increased the maximum
number of projects until they could, or the column generation subproblem is solved optimally.

Some researchers chose to have a greedy state-space reduction to keep high-quality compo-
nents of a roster-line. Dohn and Mason (2013), and Burke and Curtois (2014) used a greedy
strategy of keeping the lowest cost resource vectors at each node to solve the column generation
subproblem heuristically. However, Burke and Curtois (2014) increased the number of resource
vectors kept at each node until they found a negative reduced cost column or the column gener-
ation subproblem was solved optimally.

Gérard et al. (2016) heuristically reduced the number of shifts in their nested SPPRC by
taking the minimum reduced cost shift from a set of shifts with the same day, start time, and
working time, but different finish times. Barbosa et al. (2015) built a roster-line for a given driver
by greedily assigning all duties in order from the most negative reduced cost duty to the least.
They then added the roster-line to the restricted master problem. If they found no negative
reduced cost column using this method, they solved the column generation subproblem exactly.

Some researchers have only considered a subset of the resources in their SPPRC for dom-
inance. Dominance is a common technique for removing partial paths from an SPPRC which
are strictly worse than other paths. If they are not considering a given resource for dominance,
this resource could have a worse value and could still dominate a resource vector with a better
value for that resource. Thus, this heuristic dominance strategy removes proof of optimality for
the SPPRC. Zamorano and Stolletz (2017) and Restrepo et al. (2016) only considered a subset
of the resources for dominance to solve the column generation subproblem heuristically. If they
could not find a negative reduced cost column, they considered every resource for dominance
and solved the column generation subproblem optimally. Strandmark et al. (2020) only included
resources for minimum and maximum total work time and minimum and maximum consecutive
shifts in their SPPRC to reduce the state-space heuristically. They modelled all other constraints
by checking if they are violated in the shortest path and, if they are, resolving the SPPRC with
large penalties applied to the appropriate employee-shift variables. For example, if the shortest
path has too many working weekends, they assigned large penalties to the weekends exceeding
this limit and resolve their SPPRC.

Column generation to solve staff rostering problems 27

Maenhout and Vanhoucke (2010a) used a local search algorithm to take several existing
columns with a negative reduced cost close to zero and performed single shift swaps to find
negative reduced cost columns. They also employed a greedy shuffling heuristic to make all
feasible swaps between the nurse schedules’ sub-parts. If they could not find a negative reduced
cost column using swaps, then they reverted to an SPPRC to solve the column generation
subproblem exactly. Gomes et al. (2017) used neighbourhood swaps to find negative reduced cost
columns in the neighbourhood of the best roster solutions found. They made swaps with one of
four neighbourhood restrictions: “Change Allocation of one Day”, which allows for the change of
the activity worked on a single day; “Swap Allocation”, which swaps any two activities worked
on two days; “Change Allocation Working Windows”, which changes which shifts are worked but
maintains the same day on/off pattern; and lastly, “Invert Working Windows”, which first inverts
the day on/off pattern and then performs the same search as in “Change Allocation Working
Windows”. If they could not find a negative reduced cost column with neighbourhood search, they
instead used a MIP to solve the column generation subproblem to optimality. Bard and Purnomo
(2005b) generated columns through swaps to each roster-line in the incumbent solution. They
then added all those columns to the restricted master problem and solved the restricted master
problem as a MIP. They repeated this process until they could not find a better incumbent
solution. Dopheide and Spliet (2018) solved their column generation subproblem through a greedy
construction heuristic and then a series of swaps to find negative reduced cost columns.

One research group has tried multiple methods for state-space reduction. Beliën and De-
meulemeester (2008) solved a problem to find surgery schedules in two phases. Initially, they
solved their column generation subproblem using a MIP with a time limit to hopefully find nega-
tive reduced cost columns/surgery schedules. Later, they used a MIP without a time limit to find
the most negative reduced cost column to prove optimality. Beliën and Demeulemeester (2006)
solved a column generation subproblem for each activity in the roster to build a set of employees
who work that activity. They restricted the state-space of this column generation subproblem
by initially removing all staff from an activity’s column generation subproblem if the staff have
specified that they are not available to work on that day. This method is heuristic as the non-
availability is a soft constraint. Lastly, Belien and Demeulemeester (2004) added additional hard
constraints to the column generation subproblem, which are not often violated in an optimal
solution, to reduce the state-space heuristically. They also explored a limited number of paths
through their SPPRC but randomised which activities they considered first, so over successive
SPPRC solves, they considered most parts of the feasible path state-space.

In Chapter 7, we compare greedy state-space reduction, resource-based state-space reduction,
and local search for state-space reduction. However, our resource-based state-space reduction is
novel in that we apply it to a generic model. Further, our local search for state-space reduction
is novel in that it is generic and is solved using an SPPRC.

28 Literature Review

3.2.5 Resource dominance

When solving an SPPRC using dynamic programming, the dominance strategies from Irnich
and Desaulniers (2005) are used most of the time. Although there have been multiple heuristic
dominance techniques used to solve SPPRCs as seen in §3.2.4, we have not seen any attempts
at improving the resource dominance in SPPRCs specifically for staff rostering problems. We
could not find any novel description of dominance in SPPRCs that is not directly from Irnich
and Desaulniers (2005).

However, two researchers in our field have mentioned the difficulty of dominance for solving
the column generation subproblem for staff rostering problems. Gérard et al. (2016) stated,
“[SPPRC] is much more efficient when only upper bounds are considered. When both lower and
upper bounds co-exist, the dominance relations, used to reduce enumeration, are weaker.” Legrain
et al. (2020) found that soft constraints are bad for SPPRCs as if the value of a resource goes
above its soft upper bound, the corresponding path still cannot be removed from the SPPRC.
Further, if the value of a resource is below its soft lower bound, then the corresponding path
cannot be dominated. Instead of modifying their dominance technique, Legrain et al. (2020)
increased the size of their column generation subproblem’s graph or used enumeration to remove
the resources with soft lower and upper bounds. For example, they managed the penalties on the
maximum number of consecutive assignments by adding network layers and arcs. They handled
the penalties on the minimum number of consecutive assignments by enumeration of all possible
states.

We discuss a novel dominance technique called dominance cost functions which makes dom-
inance in SPPRCs for staff rostering problems more efficient in §5.2.1.

3.2.6 Branching techniques

Innovative branching techniques can quickly find solutions in the branch-and-price tree and drive
up the lower bound. Common branches for staff rostering problems involve branching on the
roster-line variables or constraint branching, i.e., that a given employee must work a given shift
or not (see Ryan and Foster (1981)). In this section, we discuss all mentions of other branching
techniques from the papers defined in our comprehensive literature review.

Legrain et al. (2020) used two branch types in their branch-and-price tree. Their first branch
type was “branching on days” which involves enforcing that a particular day is a work-day or a
rest day for a given employee. This branching rule is not complete, i.e., the rule does not guarantee
integrality, so if they cannot branch on a day, they instead utilise constraint branching.

Zeng et al. (2019) solved a staff rostering problem to decide the number of employees required
with different skill levels. They also used an incomplete branching method by branching on the
number of employees with a particular skill level. If they could not find an integer solution
through this branching method, they do not revert to a complete branching rule but instead
solve a MIP with the columns at hand.

Mehrotra et al. (2000) used several unique, incomplete branching rules for shift scheduling:
“Work period based branching,” which is branching on the total number of shifts that cover a

Column generation to solve staff rostering problems 29

specific work period; “Break period based branching,” which is branching on the total number of
shifts that cover a specific break period; and “Duty period based branching,” which is branching
on the total number of shifts that cover a set of consecutive periods.

Beliën and Demeulemeester (2006) compared two branching techniques on employee-shift
variables: branching on whether an employee should work a given shift and branching on whether
one employee must work a shift before another employee.

Maenhout and Vanhoucke (2010a) compared three different complete branching techniques
on employee-shift variables. The first technique involved branching on whether an employee
should work a given shift. The second technique involved creating non-binary branches where
each branch corresponds to a different shift that a person can work or a day off. Their last
branching technique involved branching on the ‘minimal consecutive working days of the same
shift type’. This branching method created three branches for a given shift: 1. Enforcing that
the employee works the previous shift, and this shift; 2. Enforcing that the employee works this
shift and the next shift; 3. Enforcing that the employee does not work this shift.

In §5.3, we discuss generic branching techniques for staff rostering problems which are novel
in that we branch on generic rules and groups of employees. We also discuss prioritising branching
on employees with higher skill levels and the order of application for our incomplete branching
rules.

3.2.7 Neighbourhood search with branch and price

We have already reviewed the work of several research groups using neighbourhood search as a
method of column generation in §3.2.4. Instead, in this section, we present all of the researchers
who combine branch and price with neighbourhood search to find roster solutions within the
neighbourhood of an incumbent roster solution from the papers defined in our comprehensive
literature review.

We found three research groups using neighbourhood restricted column generation, i.e.,
adding restrictions to a column generation algorithm such that the algorithm only produced
roster solutions that are similar to an incumbent solution. Legrain et al. (2020) used neighbour-
hood restricted column generation to improve sub-optimal roster solutions. First, they randomly
selected either a subset of the nurses from all the nurses, or nurses working a given contract, or
all the nurses with a certain skill. They fixed the lines of work for every other nurse and solved to
find lines of work for the unfixed nurses using branch and price. We refer to this neighbourhood
as “fixed employees neighbourhood” which we further elaborate on in §6.3.2.

Dahmen et al. (2015) created an initial roster solution by solving a branch-and-price problem
for each of their “departments” independently. They then solved the full problem with a neigh-
bourhood restriction, specifying that shifts must be similar to those produced in the incumbent
solution, e.g., similar start times and lengths.

Bulog (2011) constrained the maximum number of changes to each employee’s roster-line
within the column generation subproblem and used this neighbourhood in a near-steepest de-

30 Literature Review

scent local search. We refer to this neighbourhood as “maximum roster-line modifications neigh-
bourhood” which we further elaborate on in §6.2.1.

Apart from Legrain et al. (2020), Dahmen et al. (2015) and Bulog (2011), we did not find
any other research group using neighbourhood constrained branch and price. Thus, we performed
a brief search of some high profile researchers using neighbourhood constrained MIPs (without
column generation) to solve staff rostering problems. Rahimian et al. (2017b) fixed the roster-
lines for all but a small number of employees in an incumbent solution and solved a MIP to find
optimal roster-lines for the remaining employees. Santos et al. (2016) fixed a subset of the days
to match those in an incumbent and solved a MIP to find the optimal roster solution for the
remaining days. They initially only had a single day unfixed and unfixed more days iteratively.
Smet et al. (2016) used three neighbourhoods in their search: unfixing a small subset of days such
as Santos et al. (2016), unfixing a small number of employees such as Rahimian et al. (2017b),
and using local branching, which involves restricting the Hamming distance (sum of differences
in variable values between the LP solution and an incumbent solution) with a constraint and
solving the MIP to optimality with this restriction. We draw inspiration from the neighbourhood
constrained MIPs of Smet et al. (2016), Santos et al. (2016) and Rahimian et al. (2017b) for our
neighbourhood constrained column generation techniques in Chapter 6.

Two researchers used the entire set of columns produced so far from their column gener-
ation subproblems to find new incumbent solutions. Manuel and Barbosa (2018) used the set
of columns generated from the column generation subproblems in different meta-heuristics to
create improved roster solutions. These meta-heuristics include genetic algorithms and variable
neighbourhood search. Brunner and Stolletz (2014) used simulated annealing to construct a high-
quality roster solution at a given node in their branch-and-price search tree. They started with
a roster solution created by selecting random columns in the node’s column set. Then they used
simulated annealing on that roster solution. The neighbourhood they explored using simulated
annealing involved replacing a single roster-line in a roster solution with a column in the node’s
column set. They mentioned that this procedure is time-consuming, and as such, we would have
liked to see a comparison with constructing a roster solution by solving a MIP instead of using
simulated annealing.

In Chapter 6, we present several novel methods of neighbourhood restricted column gener-
ation for staff rostering problems. Apart from Legrain et al. (2020) who used a fixed employees
neighbourhood and Bulog (2011) who used a maximum roster-line modifications neighbourhood,
all our neighbourhood restricted column generation heuristics are novel for staff rostering prob-
lems.

3.3 International Nurse Rostering Competition

As covered by the reviews of Van Den Bergh et al. (2013), Ernst et al. (2004), Burke et al.
(2004a) and Cheang et al. (2003), there are many different algorithms that are used to solve
staff rostering problems. A large proportion of these algorithms have been used to solve the

International Nurse Rostering Competition 31

International Nurse Rostering Competition (INRC), both in the competition itself as well as
papers published after the competition. Over 100 papers have cited the competition problems
created by Haspeslagh et al. (2010). In this section, we present the five papers which reported
the highest-quality solutions.

The two most effective staff rostering algorithms in solving these problems were by Burke
and Curtois (2014) and Santos et al. (2016). Burke and Curtois (2014) used column generation
and Santos et al. (2016) used matheuristics. Because of the effectiveness of these two algorithms,
we focus deeply on these two topics in this thesis.

We judge the quality of each group’s results in terms of the two following criteria—the lowest
cost roster solution identified and, in the case of optimisation-based algorithms, the identified
lower bound for the costs of possible roster solutions. Solution times are not considered within
the scope of this thesis. We chose to include a paper if its results are non-dominated, i.e., the
paper must have beaten every other paper in the quality of the solution of at least one problem.
The only exception is Valouxis et al. (2012) who is honourably mentioned as they achieved the
highest score in the competition itself.

Table 3.3 depicts the best results obtained by each of the research groups available in the
literature. As we prove the optimality of the solutions proposed in this thesis corresponding
to each of the problem instances, the “Cleland” column presents the best possible results for
comparison. In addition, corresponding to problems in which we have identified a new lower
bound or upper bound, the proven optimal solution is displayed in bold, and the corresponding
previous best upper or lower bound has been crossed out.

Burke and Curtois (2014) demonstrated the effectiveness of column generation by applying
it to the INRC problems and concluded that strong lower bounds could be generated simply by
solving the root node of their branch-and-price search tree. They produced the best-known roster
solutions for the majority of the problems that they considered using a branch-and-bound dive.
However, they reported no further improvements to the lower bounds via branching. Further,
they did not report solutions to the most challenging instances—the 20 hidden ones.

We are pleased to see that we found identical root node objectives to every problem that
Burke and Curtois (2014) solved when solving our root node, as this verifies that our formulation
is correct. Any improvements we made to Burke and Curtois (2014)’s best known lower bounds
were through branching.

Santos et al. (2016) solved the INRC problems as a MIP with a novel clique separation
procedure to generate cuts to improve the lower bounds. Using this procedure with the COIN-OR
branch-and-cut solver (Cbc), they produced some strong lower bounds. However, they discovered
that commercial solvers operating over compact formulations are ineffective for the identification
of lower bounds and low-cost roster solutions to relatively difficult INRC problems. In order to
identify low-cost roster solutions, Santos et al. used two separate variable neighbourhood descent
(VND) matheuristics with two separate neighbourhoods. Each matheuristic’s neighbourhood
was parameterised by k, which indicated its size. The first neighbourhood involved forcing each
employee to work the same shifts as in an incumbent roster solution on each day except n − k
consecutive days, where n denotes the total number of days. In §6.1, we term the neighbourhood

32 Literature Review

used in this matheuristic, the “fixed days neighbourhood.” They then used CPLEX to identify the
optimal neighbouring solution by changing the shifts worked on the remaining days. The second
neighbourhood involved forcing each employee to work on the same days as in an incumbent
roster solution on each day except n − k consecutive days. In §6.1, we term the neighbourhood
used in this matheuristic, the “fixed days (on/off) neighbourhood."

Valouxis et al. (2012) developed a two-phase matheuristic to identify low-cost roster solutions.
The first phase involved the utilisation of a MIP with full column enumeration (128 columns per
person) to identify four separate week-long rosters for each of the weeks in a given problem
instance, each with the lowest possible cost given a subset of the original problem instance’s
penalties. During this initial phase, the shifts worked by each employee are ignored, and only the
assigned work-days of each employee are considered. An example of a week-long roster solution
during this initial phase is as follows: on-on-off-off-on-on-on. Each of the four-week-long rosters
were then combined, and a randomised hill-climbing heuristic was used with three different
swaps to improve the solution quality. Phase 2 involved the implementation of another integer
program to assign shifts to each of the employee’s work-days specified in phase one. This algorithm
produced the highest overall score in the INRC competition itself but has since been outperformed
by methods proposed by Rahimian et al. (2017a) and Santos et al. (2016).

Rahimian et al. (2017a) used a MIP to solve the INRC problems with several enhancements
to improve solution times. The first enhancement involved the application of a constraint pro-
gramming algorithm to generate low-cost roster solutions that could be added to the MIP solver
as upper bounds. The second enhancement solved several relaxations of the original problem to
identify lower bounds. For example, similar to the approach discussed in Valouxis et al. (2012), a
MIP was used to identify an optimal solution corresponding to each of the four weeks. Then, the
solutions were combined together to constitute a single four-week roster. The third enhancement
solved a modified MIP with some of the soft constraints modelled instead as hard constraints to
identify high-quality roster solutions quickly to add to the MIP solver as upper bounds. Over one
hour, the enhanced MIP identified several of the best-known roster solutions and proved some
of them to be optimal.

Lü and Hao (2012) matched the majority of the best-known upper bounds to the INRC
problem instances using an adaptive neighbourhood search heuristic with neighbourhood swaps.

Despite many researchers having attempted to solve these problems, 11 medium and long
problems remained for which the cost of the best-known roster solution identified by previous
works is larger than the corresponding best known lower bound. In Chapter 5, we demonstrate
how we identified optimal solutions for all of the 11 problems where the best known lower bound
in literature was not equal to the best known upper bound, along with every other medium and
long problem, within a reasonable period of time (less than four hours).

It is worth noting that there are two core methods of modelling a staff rostering problem
using integer programming. Santos et al. (2016) and Rahimian et al. (2017a), for example, use

Chapter summary 33

employee shift variables, i.e.,

xesd =

1, if employee e works shift s on day d.

0, otherwise
(3.1)

Whereas Burke and Curtois (2014) and we use roster-line variables, i.e.,

λre =

1, if employee e works roster-line r.

0, otherwise
(3.2)

Even with Santos et al. (2016) using clever cut generation and Rahimian et al. (2017a) using
various relaxations to drive up the lower bound, Burke and Curtois (2014) and we were both
able to attain better lower bounds merely from solving the root node. This is a testament to the
strength of the roster-line variables based formulation.

There are too many possible roster-line variables to enumerate all of them in a MIP without
column generation for a reasonably sized staff rostering problem. Thus, one must either choose
a subset of the roster-line variables to use within the MIP but give up proof of optimality or use
column generation, which can efficiently solve MIPs with a very large number of variables. Thus,
MIP with column generation can lead to a stronger formulation for staff rostering problems than
MIP without column generation.

3.4 Chapter summary

In §3.2, we investigated column generation techniques for solving staff rostering problems in the
literature. We also found that there has not been extensive research into resource dominance or
branching for solving staff rostering problems to proven optimality with column generation. This
motivates our novel resource dominance and branching strategies described in Chapter 5.

Although many researchers have used heuristics to speed up column generation, most have
used one or two heuristics at most, and no one has extensively compared their use. This motivates
our comprehensive comparison of column generation based matheuristics in Chapters 6-7.

In §3.3, we established that no one has found proven optimal solutions to every problem in
the INRC. Thus, in Chapter 5, we develop new techniques to find proven optimal solutions to
these problems.

We also found that column generation has been a useful technique for solving the INRC
problems, even though no one has yet used column generation to solve every INRC problem.
Thus, in the following chapters, we continue to develop on the column generation work of Dohn
and Mason (2013), instead of switching to another technique of solving these problems.

34 Literature Review

Instances Us Previous best bounds Burke Santos Rahimian Val. Lü
LB &UB LB UB Gap LB UB LB UB LB UB UB UB

Medium
Early

01 240 240 240 0 240 240 240 240 240 240 240 240
02 240 240 240 0 240 240 240 240 240 240 240 240
03 236 236 236 0 236 236 236 236 236 236 236 236
04 237 237 237 0 237 237 237 237 237 237 237 237
05 303 303 303 0 303 303 303 303 303 303 303 303

Late
01 157 156 157 1 156 157 156 157 144 157 158 164
02 18 18 18 0 18 18 18 18 18 18 18 20
03 29 29 29 0 29 29 29 29 22 29 29 30
04 35 35 35 0 35 35 35 35 32 35 35 35
05 107 107 107 0 107 107 107 107 107 107 107 112

Hidden
01 111 89 111 22 ? ? 88 111 89 117 130 117
02 219 197 220 23 ? ? 197 221 190 248 221 220
03 34 28 34 6 ? ? 28 34 23 36 36 35
04 78 73 78 5 ? ? 73 78 68 81 81 79
05 118 91 119 28 ? ? 91 119 56 129 122 119

Long
Early

01 197 197 197 0 197 197 197 197 197 197 197 197
02 219 219 219 0 219 219 219 219 219 219 219 222
03 240 240 240 0 240 240 240 240 240 240 240 240
04 303 303 303 0 303 303 303 303 303 303 303 303
05 284 284 284 0 284 284 284 284 284 284 284 284

Late
01 235 235 235 0 235 235 232 235 231 235 235 237
02 229 229 229 0 229 229 229 229 229 229 229 229
03 220 219 220 1 219 220 219 220 218 221 220 222
04 221 221 221 0 221 221 215 222 213 230 221 227
05 83 83 83 0 83 83 83 83 79 94 83 83

Hidden
01 346 341 346 5 ? ? 341 346 337 368 363 346
02 89 86 89 3 ? ? 86 89 81 92 90 89
03 38 36 38 2 ? ? 36 38 17 47 38 38
04 22 19 22 3 ? ? 19 22 14 29 22 22
05 41 41 41 0 ? ? 41 41 40 41 41 45

Table 3.3: Best known upper and lower bounds available in the literature: us, Burke and
Curtois (2014), Santos et al. (2016), Valouxis et al. (2012), Rahimian et al. (2017a), and
Lü and Hao (2012) compared to our best upper and lower bounds. Our improvements
to the previous best bounds in literature are highlighted in bold. The previous best LBs
and UBs have been crossed out to indicate that our proven optimal solution improves
upon these bounds. “?" is added to indicate the problems that are not considered in the
relevant paper.

Chapter 4

Standard branch and price for staff
rostering problems

This chapter introduces how we solve staff rostering problems within a nested column generation
framework. In §4.1, we introduce our column generation algorithm. In §4.2-4.4, we show how we
model and construct roster-lines. In §4.5, we introduce branching for finding integer solutions
and in §4.6, we introduce dual stabilisation, sprint pricing and the tools we are using to perform
our tests.

Note that most of the column generation subproblem modelling and solution methodologies
in this chapter are derived from Genie++ which has been developed by Dohn and Mason (2013),
Mason et al. (2011). There have only been slight modifications in order to model Waikato DHB
problems which are first described in §4.2. Furthermore, the linear programming formulation is
standard for staff rostering with column generation.

In this Chapter, however, we do present a new mathematical terminology for precisely defin-
ing the column generation subproblem in a generic way. For our novel improvements on column
generation modelling and solution methodologies, see Chapters §5-§7.

4.1 Column generation

The fundamental algorithm of Genie++ is a branch-and-price algorithm, which is a branch-and-
bound algorithm in which the linear programming relaxation is solved at each node in the branch-
and-bound search tree via column generation. The execution of column generation involves the
solution of two core problems—the restricted master problem (RMP) and the column generation
subproblem. The RMP is a linear program to identify the lowest-cost convex combination of a
given subset of possible full roster-lines for each employee. We define our RMP in §4.1.1 The
column generation subproblem is used to identify feasible full roster-lines for the RMP; consult
§4.2-4.4 for more details on solving the column generation subproblem.

35

36 Standard branch and price for staff rostering problems

4.1.1 Restricted master problem

This section introduces how we model our RMP for both the INRC problems and the Waikato
DHB problems. For an introduction to using column generation for staff rostering, see §2.2.

We can not necessarily meet all demands specifically for the Waikato DHB problems. There-
fore, we also define a set of slack y−D and surplus y+

D variables with associated costs c−D and c+D
respectively.

We show the RMP for the Waikato DHB problems in (4.1)-(4.5). The objective, depicted in
(4.1), is to minimise the roster’s cost, which is defined as the sum of each column’s costs plus
the costs of slacks and surpluses on each demand. The constraint set introduced by (4.2) ensures
each employee works a single roster-line. The constraint set presented by (4.3) ensures that the
slack and surplus variables are correct for a given demand.

RMP: Minimize
∑
e∈E

∑
r∈Re

creλ
r
e +

∑
D∈D

c−Dy
−
D +

∑
D∈D

c+Dy
+
D (4.1)

s.t.
∑
r∈Re

λre = 1 ∀e ∈ E [πe] (4.2)

∑
e∈E

∑
r∈Re

areDλ
r
e = bD − y−D + y+

D ∀D ∈ D [πD] (4.3)

0 ≤ λre ≤ 1 ∀e ∈ E ,∀r ∈ Re (4.4)

y−D ≥ 0, y+
D ≥ 0 ∀D ∈ D (4.5)

Note that there are no upper limits on the slack and surplus variables. We can still model a
demand with strict requirements by providing a very large slack cost c−D or surplus cost y+

D for
that demand. This model ensures that we can always find a feasible roster solution, provided
we can generate a legal roster-line for each employee. This makes constructing a feasible roster
solution trivial. We can use a feasible roster solution to warm-start our RMP or as a starting
solution for our column generation based neighbourhood search (see Chapter 6).

Also note that non-linear demands can effectively be modelled with multiple demands, i.e.,
a demand for being one nurse short can be modelled with a small cost and a separate demand
for being three nurses short can be modelled with a large cost.

Because we model our pricing problem using shifts and our restricted master problem using
demands, we need to translate between shifts and demands. Thus, we define the set of demands
fulfilled by employee e if they work shift S as DSe . We define areD as one if shift S is worked in
roster-line R̂re and fulfils demand D and zero otherwise, i.e.,

areD =

1, if ∃S ∈ R̂re s.t. D ∈ DSe
0, otherwise

(4.6)

Unlike our Waikato DHB problems, the INRC problems utilise a shift demand. This means
there is a one to one relationship between shifts and demands. No changes to our RMP are
required to model this simplified case.

Modelling employee rules 37

As we model a given roster-line in our pricing problem as a set of dated shifts, we calculate
the reduced cost of an entering column in terms of the cost of the roster-line for a given employee,
the employee dual, and a set of shifts duals for shifts worked in that column. Thus, we need to
convert our demand duals from 4.3 to shift duals with the following equation:

πS =
∑
D∈DSe

πD (4.7)

Thus, we can calculate the reduced cost fR(R̂re) of entering column R̂ with the following equation:

fR(R̂re) = cre −
∑
S∈R̂

πS − πe (4.8)

4.1.2 Column generation subproblem

To identify the input columns for our RMP, we identify the lowest reduced-cost, feasible roster-
line corresponding to each employee.

In §4.2, we demonstrate how we model the reduced cost and feasibility of a given roster-line,
given the rules which apply to that employee. In §4.3, we show how we model a set of rules for the
INRC problems and a set of rules for the Waikato DHB problems. Lastly, in §4.4, we show our
nested Shortest Path Problem with Resource Constraints (SPPRC) for finding the most negative
reduced cost roster-line.

4.2 Modelling employee rules

We define a roster-line for a given employee as a sequence of shifts worked and days off corre-
sponding to that employee’s work schedule. We define the set of shifts worked on day d as Sd
and a day off on day d as φd. Hence, we can denote a roster-line R as a set of activities, with one
activity per day d, where an activity is either a work-shift S ∈ Sd or a day off φd. For example,
we can denote a given roster-line as R = {M1,M2, φ3, . . . , Nn−1, Nn} whereM1 andM2 denote
morning shifts on days 1 and 2 respectively, φ3 is a day off on day 3, and Nn−1 and Nn are night
shifts on days n− 1 and n respectively.

A roster-line entity,

R = W1 ∪W2 ∪ . . . ∪W|R|W = (W1,W2, . . . ,W|R|W)

can be modelled as a set of |R|W work-stretch W entities, each of which is a series of consecutive
work-days followed by a series of consecutive off-days. We utilise the set notation, ∪, to indicate
that an entity is the union of multiple sets of daily activities. Further, we utilise the vector
notation to indicate that the component entities can be naturally ordered based on the days on
which they are defined. Henceforth in this thesis, we denote the number of Y entities in entity
X, by |X|Y , e.g., |R|W is the number of work-stretches in a roster-line. We denote the number
of activities in entity X with |X|. Each roster-line begins on day 1. For each employee, we seek

38 Standard branch and price for staff rostering problems

to derive a full roster-line, R̂, which is a roster-line ending on day n, where n denotes the total
number of days considered in the problem. However, we also consider (partial) roster-lines which
end before day n.

Each work-stretch
W = O ∪ F = (O,F)

can be further segmented into two component entities, an on-stretch, O, which is defined to
be a series of consecutive work-days, and an off-stretch, F , which is defined to be a series of
consecutive off-days.

We define an on-stretch

O = {S1, S2, . . . , S|O|} = (S1, S2, . . . , S|O|)

as a sequence of |O| shifts S worked consecutively without a day off. When modelling the (less
complex) INRC problems, we consider an on-stretch to be a series of consecutive calendar days,
on which shifts are worked, with no calendar days off. However, in the NZ Nurse MECA, it
specifies a day off as a 24-hour break between shifts. In this case, if you work the shift sequence:
(N,−, A) where the night shift starts on day one, and the AM shift starts on day 3, there is less
than 24 hours off, so we define this shift sequence pattern as an on-stretch. Conversely, the shift
sequence (A,N) is a single shift on-stretch followed by 24 hours off followed by another single
shift on-stretch. The first on-stretch in a roster-line can be of length 0 since a roster-line can
start with a day off.

We define an off-stretch,

F = {φd, φd+1, . . . , φd+|F |} = (φd, φd+1, . . . , φd+|F |)

as |F | consecutive off-days beginning on day d. When modelling the INRC problems, there is
one off-stretch for each start day 1 ≤ d ≤ n and length 1 ≤ |F | ≤ n − d + 1 as an off-stretch is
a series of consecutive calendar days off and there are no hard constraints on off-stretch length.
However, as mentioned previously, the NZ Nurse MECA specifies a day off as a 24 hour break
between shifts and thus, there is one off-stretch for each feasible combination of end times and
start times of the different shifts.

Each off-stretch must have at least 1 day off except the dummy off-stretch F = (φn+1, φn+1),
since a roster-line can end on a worked day.

We define S to be the set of all shifts, F to be the set of all off-stretches, O to be the set of
all on-stretches, W to be the set of all work-stretches, and R to be the set of all roster-lines.

We note that although we have elected to break down a roster-line into work-stretch, on-
stretch and off-stretch component entities, this decomposition is arbitrary. For example, we could
easily break down a roster-line into fortnight and week entities.

4.2.1 Roster-line cost model

For the remaining sections, we refer to the reduced cost of a full roster-line as the ‘cost’ and model
each component entity as having its own associated cost. As each entity is composed of dated

Modelling employee rules 39

shifts and days off, the cost of an entity is defined as the sum of the costs of all rule violations
by the entity minus the sum of the duals for each of the shifts worked within the entity.

As we decompose some of our entities into a set of component entities, we can model each
entity’s cost with the sum of the costs of its component entities and an interaction cost corre-
sponding to the particular sequence of its component entities. For example, an on-stretch cost
includes the cost of its component shift entities and an interaction cost, e.g., a cost for working
too many days in a row and a cost for working a night shift followed by a morning shift.

The implementation of such a nested cost structure enables the costs, which are solely ap-
plicable to work-stretches, to be reduced to a single work-stretch cost. Thus, they are no longer
required to be considered during the calculation of the costs of roster-line entities. Likewise, the
rules that are solely applicable to on-stretches are no longer required to be considered during the
calculation of the costs of work-stretch entities. This nested cost structure simplifies the process
of modelling and costing a roster-line. It also enhances the efficiency of the identification of the
lowest-cost roster-line corresponding to a particular employee (Dohn and Mason, 2013).

We model the cost of a shift, S, with the following function:

fS(S) = f ′S(S)− πS ,

where f ′S(S) is a cost used to model the aversion of an employee to work shift, S, or on the day
containing shift, S and πS is the shift dual calculated from our RMP.

By definition of the proposed nested cost model, the cost of an on-stretch, O =

(S1, S2, . . . , S|O|), is given by the following function:

fO(O) =
∑
S∈O

fS(S) + gO(O) (4.9)

where fS(Si) denotes the cost of the shift, Si, and gO(O) denotes the on-stretch interaction cost of
the on-stretch, O. Certain rules, such as that involving the attribution of a cost to an excessive
or inadequate number of consecutive work-days, can be modelled solely using the on-stretch
interaction cost, gO(O).

The cost of a work-stretch, W = (O,F), is given by the following function:

fW(W) = fO(O) + fF(F) + gW(W) (4.10)

where gW(W) denotes the work-stretch interaction cost of the work-stretch, W . The cost of an
off-stretch, fF(F), models a given employee’s preference to work one of the shifts on the same day
as this off-stretch. Certain rules, such as that involving the attribution of a cost to an employee
working incomplete weekends, can be modelled purely with the work-stretch interaction cost,
gW(W).

Finally, the cost of a roster-line, R = (W1,W2, . . . ,W|R|W), is given by the following function:

fR(R) =
∑
W∈R

fW(W) + gR(R) (4.11)

where gR(R) denotes the roster-line interaction cost of the roster-line, R. Certain rules, such as
that involving the attribution of a cost to an excessive number of consecutive working-weekends,

40 Standard branch and price for staff rostering problems

need to be modelled using the roster-line interaction cost, gR(R). Since the employee dual πe
is fixed for a given employee, we can ignore this dual when finding the minimum reduced cost
roster-line.

The procedure to calculate the interaction cost of each entity is described in detail in the
following section.

4.2.2 Building entities

Later in the paper, the proposed model is used to solve a nested Shortest Path Problem with
Resource Constraints (SPPRC) for each employee. Thus, we adopt the terminology introduced
by Irnich and Desaulniers (2005) to describe our model in this section. We use resource vectors
to model the rules that have been provided in the INRC contracts and that we have built for the
Waikato DHB. Five sets of resources are considered—ΘS for shifts, ΘO for on-stretches, ΘF for
off-stretches, ΘW for work-stretches, and ΘR for roster-lines. Each entity, τ ∈ S ∪F ∪O∪W∪R,
corresponds to one associated resource vector, Tτ , which comprises one resource variable for each
resource, θ. Hence, a resource vector corresponding to a work-stretch includes |ΘW| variables. A
rule may involve multiple resource variables within its constituent entities of varying types.

In Genie++, new entities and their associated resource vectors are created by adding a
component entity to the end of a shorter entity. The individual cases are described in detail
below.

A new on-stretch, O′, is created by adding a single shift, S, to the end of a shorter on-stretch,
O = (S1, S2, . . . , S|O|). In other words,

O′ = O ∪ S = (S1, S2, . . . , S|O|, S) (4.12)

where the shift, S, is scheduled directly after shift, S|O| with no day off in between. Therefore, the
resource vector, TO′ , corresponding to the on-stretch, O′, is calculated based on the associated
resource vector, TO, of the shorter on-stretch, O, and the resource vector, TS , of the shift, S,
using a vector of resource extension functions (REFs):

TO′ = EO(TO, TS) =
(
Eθ
O(TO, TS), ∀θ ∈ ΘO

)
(4.13)

where Eθ
O(TO, TS) denotes the REF corresponding to the on-stretch resource, θ. The resource

vector, TS , corresponding to each shift, S, is selected to optimise the modelling of rules included
in the problem description. As an illustrative example of an on-stretch REF, let us consider the
“last shift type” resource of an on-stretch, O. We retain the shift type of the final shift in the
on-stretch with resource variable, T LastShiftType

O . Then, this is used in the REFs in connection
with resources related to shift sequence patterns (e.g., a night shift followed by a morning shift).
In this case, the REF is given by ELastShiftType

O (TO, TS) = T ShiftType
S where T ShiftType

S denotes
the shift resource representing the shift type.

A work-stretch, W , is created by adding an on-stretch, O, to an off-stretch, F . In other
words,

W = O ∪ F (4.14)

Modelling employee rules 41

where the first day of the off-stretch, F , follows the final day of the on-stretch, O. The resource
vector, TW , corresponding to the work-stretch, W , is calculated from the resource vector, TO, of
the on-stretch, O, and the resource vector, TF , of the off-stretch F , using the following equation:

TW = EW(TO, TF) =
(
Eθ
W(TO, TF), ∀θ ∈ ΘW

)
(4.15)

where Eθ
W(TO, TF) denotes the REF corresponding to the work-stretch resource, θ. The resource

vector, TF , corresponding to each off-stretch entity, F , is explicitly enumerated as only a relatively
small number of combinations of consecutive off-days are possible.

Finally, a new roster-line, R′, is created by adding a single work-stretch, W , to a shorter
roster-line, R = (W1,W2, . . . ,W|R|W). In other words,

R′ = R ∪W = (W1,W2, . . . ,W|R|W ,W) (4.16)

where the first day of the work-stretch,W , follows the final day of the roster-line, R. The resource
vector TR′ corresponding to the roster-line, R′, is calculated based on the resource vector, TR,
of the roster-line, R, and the resource vector TW , of the work-stretch, W , using the following
equation:

TR′ = ER(TR, TW) =
(
Eθ
R(TR, TW), ∀θ ∈ ΘR

)
(4.17)

where Eθ
R(TR, TW) denotes the REF corresponding to the roster-line resource, θ.

4.2.3 Evaluating the cost of entities

Using the resource vectors calculated for any given on-stretch, work-stretch, or roster-line, τ ∈
O ∪ W ∪ R, we can calculate the interaction cost for each entity, introduced in §4.2.1. The
interaction cost, gτ (τ), for the entity, τ , is given by the following equation in terms of its associated
resource vector, Tτ .

gτ (τ) =
∑
θ∈Θτ

gθτ (T θτ) (4.18)

where gθτ (T θτ) denotes the cost of the resource, θ (c.f. overall entity cost presented in §4.2.1).
Four primary types of resource cost functions are included in the INRC problems and three
additional resource cost functions are included in the Waikato DHB problems. The first resource
cost function for a resource, θ, is given by

C∅ : gθτ (T θτ) = 0, (4.19)

and is used if the resource, θ, does not contribute directly to the cost of an entity and is, instead,
only used in the REF calculations corresponding to other resources.

The second resource cost function is given by

C linear : gθτ (T θτ) = αθT θτ , (4.20)

where αθ is a constant penalty cost. This cost function is used if resource θ directly corresponds
to rule violations.

42 Standard branch and price for staff rostering problems

The third resource cost function is given by

CUB : gθτ (T θτ) =

αθ(T θτ − γθ), if T θτ > γθ

0, otherwise
, (4.21)

where αθ is a penalty cost applied if the value of T θτ is greater than an upper bound, γθ. This
cost function is used if resource θ tracks a value corresponding to a rule violation if above a
certain upper bound.

The fourth resource cost function is given by

CLBUB : gθτ (T θτ) =

αθ(T θτ − γθ), if T θτ > γθ

βθ(δθ − T θτ), if T θτ < δθ

0, otherwise

, (4.22)

where αθ is a penalty cost applied if the value of T θτ is greater than an upper bound, γθ, and βθ

is a penalty cost applied if the value of T θτ is less than a lower bound, δθ. This cost function is
used if resource θ tracks a value corresponding to rule violations if above a certain upper bound
or below a certain lower bound. For examples of all four of these resource cost functions, see
§4.3.1.

Note that the first three resource cost functions are just special cases of the fourth one so
in principle one could model all of these with just alternative parameter choices for γθ and δθ.
However, we choose to separate them as it helps better express the structure of the problem.

Our fifth, sixth and seventh cost functions are only used for the more complex Waikato DHB
problems. The fifth resource cost function is given by

CLB : gθτ (T θτ) =

αθ(δθ − T θτ), if T θτ < δθ

0, otherwise
, (4.23)

where αθ is a penalty cost applied if the value of T θτ is less than a lower bound, δθ. This cost
function is used if resource θ tracks a value corresponding to a rule violation if below a certain
lower bound.

The sixth resource cost function is given by

C2UB : gθτ (T θτ) =

(αθ + βθ)(T θτ − γθ), if T θτ > γθ

αθ(T θτ − δθ), if T θτ ≤ γθ and T θτ > δθ

0, otherwise

, (4.24)

where αθ is a penalty cost applied if the value of T θτ is greater than an upper bound, γθ and
βθ is a further penalty cost applied if the value of T θτ is also above a greater upper bound, δθ.
This cost function is used if resource θ tracks a value corresponding to rule violations if above a
certain upper bound and a large rule violation if above a larger upper bound.

Modelling employee rules 43

The final resource cost function is given by

Cexp : gθτ (T θτ) = (αθ)T
θ
τ (4.25)

where αθ is the base of an exponential cost. This cost function is used if resource θ tracks a value
where we simultaneously prefer lower values but also require fairness. For examples of the fifth,
sixth and seventh resource cost functions, see §4.3.2.

4.2.4 Entity feasibility

Likewise, from the resource vectors we have calculated for any given on-stretch, work-stretch or
roster-line τ ∈ O ∪W ∪R, we can calculate whether a given entity is feasible.

An entity τ is feasible if its corresponding resource vector Tτ is feasible, i.e., F(Tτ) = True.
We say that a resource vector is feasible if every resource variable T θτ in the resource vector is
feasible, i.e., F(Tτ) = True ⇐⇒ F(T θτ) = True ∀θ ∈ Θτ .

We have four functions used to calculate feasibility for a given resource variable. The first
feasibility function, F all, is used in cases where the resource variable is always feasible, i.e.,

F all : F(T θτ) = True ⇐⇒ 0 ≤ T θτ ≤ ∞ (4.26)

Because there is no complex infeasibility in the INRC problems, all resources in these problems
have the F all feasibility function.

The Waikato DHB problems have contractual rules with legal consequences for being broken.
Thus, we model these rules with feasibility. We use a feasibility function if a given resource
variable is infeasible if it is below a lower bound, above an upper bound or both, i.e.,

F lb : F(T θτ) = True ⇐⇒ T θτ ≥ T θτ,lower (4.27)

Fub : F(T θτ) = True ⇐⇒ T θτ ≤ T θτ,upper (4.28)

F lbub : F(T θτ) = True ⇐⇒ T θτ,lower ≤ T θτ ≤ T θτ,upper (4.29)

For examples of all four of these resource feasibility functions, please see §4.3.2.

4.2.5 Standard entity dominance

Entities are compared in terms of dominance, and entities that can be replaced by another
entity in any feasible full roster-line without decreasing the cost of the line or rendering the line
infeasible are discarded (please consult §5.2.1 for further details). We model Genie++’s original
dominance rule using our novel terminology as follows:

Definition 1. Suppose that two on-stretch, work-stretch, or roster-line entities are of the same
type with the same initial and final days—entity, τ1 ∈ O ∪W ∪R, with the associated resource
vector, Tτ1 , and entity, τ2 ∈ O ∪ W ∪ R, with the associated resource vector, Tτ2 . Then, τ2

is said to be dominated by τ1 if the cost, fτ (τ1), of τ1 is less than the cost, fτ (τ2), of τ2 and

44 Standard branch and price for staff rostering problems

each resource variable, T θτ1 , in τ1’s resource vector is dominated by the corresponding resource
variable, T θτ2 , in entity τ2’s resource vector. In other words,

T θτ1 � T θτ2 ∀θ ∈ Θτ and fτ (τ1) ≤ fτ (τ2)⇒ τ1 � τ2 (4.30)

where τ1 � τ2 denotes that entity 2 is dominated by entity 1 and T θτ1 � T θτ2 denotes that the
resource variable, T θτ2 , is dominated by the resource variable, T θτ1 .

If we consider the cost of each entity to be a separate resource, this definition is standard for
SPPRCs; consult Irnich and Desaulniers (2005). To each resource, θ ∈ ΘO ∪ΘW ∪ΘR, we assign
an individual dominance rule.

To define which resource variables dominate other resource variables, we provide an individual
dominance rule for each resource θ ∈ ΘO ∪ΘW ∪ΘR. The first rule, equality dominance, asserts
that for any two entities, τ1 ∈ O ∪W ∪R and τ2 ∈ O ∪W ∪R, of the same type, the resource
variable, T θτ2 , is dominated by the resource variable, T θτ1 , only if their values are equal. In other
words,

D= : T θτ1 � T θτ2 ⇐⇒ T θτ1 = T θτ2 . (4.31)

This rule is applicable when it is unclear whether a higher or lower value for θ will lead to a lower
resource cost or “less infeasibility” in any full roster-line. Note, we define “less infeasibility” as
having fewer required changes to the resource variables to become feasible. For example, consider
a resource that captures the number of shifts worked in an on-stretch. In the INRC problems, this
resource influences the resource representing the number of shifts worked in a roster-line, which
possesses the cost function, CLBUB. Therefore, in a full roster-line involving multiple shifts, a
shorter on-stretch may induce a lower cost. In contrast, in a full roster-line involving few shifts,
a shorter on-stretch may yield a higher cost. Thus, we use equality dominance for this resource.

The second rule, less than dominance, asserts that the resource variable, T θτ2 , is dominated
by the resource variable, T θτ1 , only if T θτ1 ≤ T θτ2 . In other words,

D≤ : T θτ1 � T θτ2 ⇐⇒ T θτ1 ≤ T θτ2 . (4.32)

This rule is applicable when lower values of θ always induce a lower resource cost or less infeasibil-
ity in any full roster-line. For example, consider a resource with the cost function, CUB, and a non-
decreasing REF, e.g., the resource variable T θR has a non-decreasing REF if T θR ≤ Eθ

R(TR, TW),
for any roster-line resource vector, TR and work-stretch resource vector, TW . An example of a
resource with a non-decreasing REF is the total number of shifts in a roster-line; the value of this
resource can never decrease as the roster-line is extended. Evidently, a lower value of a resource
with a non-decreasing REF and the cost function, CUB, always induces a lower cost in any full
roster-line as the value of the resource can only increase as the entity is extended. Thus, we use
less than dominance for this resource.

Our third rule, greater than dominance, indicates that resource variable T θτ2 is dominated by
resource variable T θτ1 only when T θτ1 ≥ T θτ2 , i.e.,

D≥ : T θτ1 � T θτ2 ⇐⇒ T θτ1 ≥ T θτ2 . (4.33)

Modelling employee rules 45

This rule is used when higher values for resource θ always lead to a higher resource cost or more
infeasibility in any full roster-line. For example, consider a resource with the feasibility function,
F lb, and a non-decreasing REF. A greater value for this resource will always be more likely to
lead to an infeasible full roster-line as the value can only increase as the roster-line is extended.
Thus, we use greater than dominance for this resource.

The fourth rule, bounded dominance, asserts that the resource variable, T θτ2 , is dominated
by the resource variable, T θτ1 , if their values are equal, or both values are above a certain lower
bound γθ and resource variable T θτ2 is greater than resource variable T θτ1 . In other words,

Dγθ : T θτ1 � T θτ2 ⇐⇒ T θτ1 = T θτ2 or γθ ≤ T θτ1 ≤ T θτ2 , (4.34)

For example, consider a resource with a non-decreasing REF and the cost function, CLBUB. If
the value of this resource is smaller than the lower bound, then it is unclear whether a higher or
lower value will induce a lower resource cost or less infeasibility in any full roster-line. However,
if the value of this resource exceeds the lower bound, lower values always induce a lower resource
cost in any full roster-line. Thus, we use bounded dominance for this resource. For examples of
all four of these dominance rules, see §4.3.2.

4.2.6 Roster history

We modelled the INRC problems as if the nurses had worked no shifts prior to this roster.
However, when building real rosters, this is unrealistic. For example, if a nurse can work a
maximum of five days in a row and has just worked five days in a row immediately preceding
the first day of the roster we are building, then they can’t start the roster with another five-day
on-stretch.

For each Waikato DHB problem, we used the two weeks immediately preceding the roster as
the roster’s history. We used the roster’s history to generate a set of initial resource values for
any on-stretch or work-stretch that starts with the dummy shift.

For example, in the Waikato DHB problems, there is a resource tracking the number of
consecutive days on within on-stretches, T DaysOn

O . If there is an on-stretch Oh that finishes on
the last day of the roster’s history, then the first on-stretch we create, O1 = (Dummy), with
a single dummy shift, can be considered as already part of on-stretch Oh. Thus, we give the
dummy on-stretch the following value for the DaysOn resource:

T DaysOn
O1 = T DaysOn

Oh
(4.35)

In the literature, more complex history models use a rolling horizon to model the history of
the rostering problem. Lusby et al. (2012) model a six-month problem by using a rolling time
horizon with history. Their history model involves including part of the previous roster in their
problem as fixed shifts. However, our history model worked fine for the Waikato DHB problems.

46 Standard branch and price for staff rostering problems

4.2.7 Compile-time customisation

To accelerate finding the solution to the column generation subproblem, Genie++ utilises the
C++ Boost Preprocessor library to customise the column generation subproblem code during
compilation. The column generation subproblem’s code is generated directly based on the model
description, which is in the form of a C++ header file. The model description file defines the
vector of resources corresponding to each entity type, including the REF, cost function, and
dominance rule associated with each resource. This functionality ensures that the code is compile-
time optimised by the C++ compiler, which accelerates it by up to 10 times compared to simply
reading the resource data from input files (Dohn and Mason, 2013).

4.2.8 Other column generation subproblem models

Although we have discussed our generic modelling terminology in terms of a nested model with
shifts, off-stretches, on-stretches, work-stretches and roster-lines, our model can also be applied
to other decompositions. For example, we could break down roster-lines into shift, day-off, week
and fortnight component entities. Likewise, our model could have tasks as component entities,
and these tasks could build into shifts in a separate nested subproblem; please see §3.2.2 for more
details on tasks.

Although using a nested column generation subproblem is computationally efficient, it is not
strictly necessary. Instead, we could solve a single SPPRC to generate roster-lines from shift and
day-off entities.

4.3 Example models

In order to facilitate the understanding of the proposed formulation of Genie++’s entity model,
we discuss two illustrative entity models: the model for the “medium hidden 01” INRC problem
instance and the model for a Waikato DHB maternity wards problem instance.

4.3.1 Example INRC problem

The first problem instance we are describing is: “medium hidden 01”. For further details regarding
this problem, please refer to the official INRC website (Causmaecker, 2010). Note that because
every combination of shifts and days off is feasible for the INRC problem instances, we have
omitted feasibility functions in this section.

First, a new on-stretch, O′, is constructed based on an existing on-stretch, O, and a shift, S,
i.e., O′ = (O,S). We construct the resource vector

TO′ =
(
T StartDay
O′ , T EndDay

O′ , . . . , T SkillsUnmet
O′

)
of on-stretch O′ from the resource vector

TO =
(
T StartDay
O , T EndDay

O , . . . , T SkillsUnmet
O

)

Example models 47

of on-stretch O and the resource vector

TS =
(
T StartDay
S , T EndDay

S , . . . , T DayOfWeek
S

)
of shift S using T θO′ = EO(TO, TS) =

(
Eθ
O(TO, TS), ∀θ ∈ ΘO

)
. A representative set of on-stretch

resources and their associated REFs are presented in Table 4.1 along with their associated dom-
inance rules and cost functions.

The resources associated with a shift in “medium hidden 01” include the shift’s initial day,
T StartDay
S ; final day, T EndDay

S ; type,

T ShiftType
S ∈ {Dummy,Morning,Afternoon,Late,Night,Head nurse};

and its day of the week, T DayOfWeek
S ∈ {Monday,Tuesday, . . . ,Sunday}.

Table 4.1 includes the resources corresponding to the initial day of an on-stretch, T StartDay
O′ ,

the final day of an on-stretch, T EndDay
O′ , and the number of days in the on-stretch, T DaysOn

O′ .
As certain REFs require knowledge of the previous two shift-types, Table 4.1 includes resources
representing each of these shifts-the last shift-type resource, T LST

O′ , and the second-to-last shift-
type resource, T SLST

O′ . Further, Table 4.1 includes the “identical shift weekend” resource, T ISW
O′ ,

which represents the number of shifts worked in a non-symmetrical weekend (i.e., only one shift is
worked or two shifts of different types are worked during the weekend). Table 4.1 also includes the
resource, T P1

O′ , representing the frequency of occurrence of the shift sequence pattern, (D,N,D).
Although a total of eight resources are used to represent the frequencies of occurrence of certain
shift sequence patterns, these resources share similar associated REFs and dominance rules. As
a result, only one resource of this type has been presented in Table 4.1 as an illustration, and the
remaining seven shift sequence resources have been omitted. Table 4.1 also includes the resource,
T WW
O′ , which represents the total number of full or split weekends that have been worked in the

on-stretch being considered, and the resource, T SkillsUnmet
O′ , which represents the total number of

head-nurse shifts worked by a regular nurse.
Next a work-stretch, W , is constructed based on an on-stretch, O, and an off-stretch, F , i.e.,

W = (O,F). We construct the resource vector

TW =
(
T StartDay
W , T EndDay

W , . . . , T WeekendsOff
W

)
of work-stretch W from the resource vector

TO =
(
T StartDay
O , T EndDay

O , . . . , T SkillsUnmet
O

)
of on-stretch O and the resource vector

TF =
(
T StartDay
F , T EndDay

F , . . . , T SinglesOff
F

)
of off-stretch F using the vector of REFs EW(TO, TF) =

(
Eθ
W(TO, TF), ∀θ ∈ ΘW

)
. The full set

of work-stretch resources and their associated REFs are presented in Table 4.2 along with their
associated dominance rules and cost functions.

48 Standard branch and price for staff rostering problems

Resources for O′ REF: Eθ
O(TO, TS) Dom. Cost

T StartDay
O′ T StartDay

O D= C∅

T EndDay
O′ T EndDay

O + 1 D= C∅

T DaysOn
O′ T DaysOn

O + 1 D= CLBUB

T LST
O′ T ShiftType

S D= C∅

T SLST
O′ T LST

O D= C∅

T ISW
O′

T ISW
O if T DayOfWeek

S is weekday

D= C linearT ISW
O + 1 if T DayOfWeek

S = Saturday
T ISW
O − 1 if T DayOfWeek

S = Sunday & T ShiftType
S = T SLST

O

T ISW
O + 1 if T DayOfWeek

S = Sunday & T ShiftType
S 6= T SLST

O

T P1
O′

T P1
O + 1 if (T ShiftType

S , T LST
O , T SLST

O) is (day,night, day)
D≤ C linear

T P1
O′ otherwise

T WW
O′

T WW
O + 1 if T DayOfWeek

S = Saturday
D= C∅T WW

O otherwise

T SkillsUnmet
O′

T SkillsUnmet
O + 1 if employee 6= head nurse & T ShiftType

S = head nurse
D≤ C linear

T SkillsUnmet
O otherwise

Table 4.1: Representative set of on-stretch resources corresponding to the INRC problem,
“medium hidden 01”. For each resource, θ, the table includes the corresponding resource
variable, T θO′ , associated REF, Eθ

O(TO, TS), cost function, and dominance rule. One shift
sequence pattern, “P1”, has been included, but the remaining 7 have been omitted as
their dominance rules and cost functions are identical to those of “P1” and their REFs
are similar.

The set of off-stretches are pre-enumerated using associated resources. In this problem,
they include resource variables representing the off-stretch’s initial day, T StartDay

F ; its final day,
T EndDay
F ; its total number of off-days, T DaysOff

F ; its total number of off weekends, T WeekendsOff
F ;

and its number of single off-days, T SinglesOff
F .

Table 4.2 includes the resource variables: T StartDay
W , T EndDay

W , T DaysOn
W , and T WW

W , which
are similar to their on-stretch counterparts. The resource variables, T WeekendsOff

W and T DaysOff
W ,

are similar to their off-stretch counterparts. The incomplete weekend resource variable,
T IncompleteWeekend
W , calculates the number of half-worked weekends in the work-stretch.

Finally, a new roster-line, R′, is constructed based on a work-stretch, W , and a shorter
roster-line R, i.e., R′ = (R,W). We construct the resource vector

TR′ =
(
T EndDay
R′ , T DaysOn

R′ , . . . , T P2
R′

)
of roster-line R′ from the resource vector

TR =
(
T EndDay
R , T DaysOn

R , . . . , T P2
R

)

Example models 49

Resources for W REF: Eθ
W(TO, TF) Dom. Cost

T StartDay
W T StartDay

O D= C∅

T EndDay
W T EndDay

F D= C∅

T DaysOn
W T DaysOn

O D= C∅

T DaysOff
W T DaysOff

F D= CLBUB

T WeekendsOff
W T WeekendsOff

F D= C∅

T IncompleteWeekend
W (T StartDay

O = Sunday) + (T EndDay
O on Saturday) D≤ C∅

T WW
W T WW

O D= C linear

Table 4.2: Full set of work-stretch resources in the INRC problem, “medium hidden
01”. For each resource, θ, the table includes the corresponding resource variable, T θW ,
associated REF, Eθ

W(TO, TF), cost function, and dominance rule.

of roster-line R and the resource vector

TW =
(
T StartDay
W , T EndDay

W , . . . , T WeekendsOff
W

)
of work-stretch W using the vector of REFs ER(TR, TW) =

(
Eθ
R(TR, TW), ∀θ ∈ ΘR

)
. The full

set of roster-line resources and their associated REFs is presented in Table 4.2 along with their
associated dominance rules and cost functions.

Table 4.2 includes the final day resource variable, T EndDay
R′ ; and the final consecutive weekends

resource variable, T ECW
R′ , which represents the number of consecutive weekends worked, counting

backwards from the last weekend in the roster-line, R′. The final consecutive weekends resource
variable, T ECW

R′ , is used in the REF of both the maximum number of consecutive weekends worked
resource variable, T MCW

R′ , and the number of lone weekends resource variable, T LoneWeekend
R′ , which

represents the number of work-weekends that are not followed or preceded by a work-weekend.
Finally, the table includes the resource variable, T OneDayOff

R′ , representing the number of single
off-days. This is used to calculate the second shift sequence pattern, T P2

R′ , which represents the
number of times no shifts are worked on Friday, but at least one shift is worked on the following
weekend.

4.3.2 Example Waikato DHB problem

The second problem instance we are describing is the Waikato DHB maternity wards problem
(MWP). The set of resources in this problem is a super-set of the resources in the Waikato DHB
operating theatre ward problem.

50 Standard branch and price for staff rostering problems

Resources for R′ REF: Eθ
R(TR, TW) Dom. Cost

T EndDay
R′ T EndDay

W D= C∅

T DaysOn
R′ T DaysOn

R + T DaysOn
W Dγθ CLBUB

T ECW
R′

0 if T WeekendsOff
W > 0

D= C∅T ECW
R + T WW

W otherwise

T MCW
R′

T ECW
R + T WW

W ifT ECW
R + T WW

W ≥ 2 and T ECW
R + T WW

W > T MCW
R D≤ CUB

T MCW
R otherwise

T LoneWeekend
R′

T LoneWeekend
R + 1 if T ECW

R + T WW
W = 1 and T WeekendsOff

W > 0
D≤ C linear

T LoneWeekend
R , otherwise

T OneDayOff
R′

true if T DaysOff
W = 1

D≤ C linear
false otherwise

T P2
R′

T P2
R + 1 if (T EndDay

R is Friday or T OneDayOff
R = False)

D≤ C linearand T StartDay
W is Weekend

T P2
R otherwise

Table 4.3: Full set of roster-line resources for the INRC problem, “medium hidden 01”. For
each resource, θ, the table includes the corresponding resource variable, T θR′ , associated
REF, Eθ

R(TR, TW), cost function, and dominance rule.

The resources associated with a shift in the MWP include the shift’s initial time,
T StartTime
S ; final time, T EndTime

S ; type, T ShiftType
S ; day of the week, T DayOfWeek

S ∈
{Monday,Tuesday, . . . ,Sunday} and ward T ward

S .
The resources associated with an on-stretch in the MWP shown in Table 4.4 include

the on-stretch’s initial time, T StartTime
O′ ; final time, T EndDay

O′ ; total number of worked hours,
T HoursOn
O′ ; total number of hours worked in fortnight x, T FxHours

O′ ; total number of hours worked
in week x, T WxHours

O′ ; type of the last shift worked, T LST
O′ ; number of times there are differ-

ent shift types worked on consecutive days, T TotalShiftChanges
O′ ; number of different wards worked,

T NumDifferentWards
O′ , whether the on-stretch starts on a Sunday or ends on a Saturday, T StartsSunday

O′

and T EndsSaturday
O′ ; total number of PM and night shifts, T TotalPM

O′ and T TotalN
O′ ; number of times

an education shift is worked immediately followed by a PM shift, T EToPM
O′ ; and number of night

shifts worked in week x, T WxHasN
O′ .

In some cases, we reworked the rules provided to us by Waikato DHB to work more efficiently
within our on-stretch/off-stretch/work-stretch model. For example, initially, the staff at Waikato
DHB told us they wanted a maximum of two different shift types in any given week. We would
have to model this with separate resources in on-stretches, work-stretches and roster-lines to
model which shift types have already been worked each week. We would also need roster-line re-
sources to track the maximum number of shift types worked each week. We instead approximated
this rule with a single resource, the maximum number of shift changes resource, T TotalShiftChanges

O′ .
Using this resource, we could produce roster solutions that still met their requirements. Further,
we could model this rule purely within the on-stretch entity.

Example models 51

Resources for O′ REF: Eθ
O(TO, TS) Dom. Cost Feas.

T StartTime
O′ T StartTime

O D= C∅ F all

T EndTime
O′ T EndTime

S D= C∅ F all

T HoursOn
O′ T HoursOn

O + T HoursOn
S D= CUB F ub

T FxHours
O′ T FxHours

O + T FxHours
S D= C∅ F all

T WxHours
O′ T WxHours

O + T WxHours
S D= C∅ F all

T LST
O′ T ShiftType

S D= C∅ F all

T TotalShiftChanges
O′ T TotalShiftChanges

O +

{
1, T LastShiftType

O 6= T ShiftType
S

0, otherwise
D≤ CUB F all

T NumDifferentWards
O′ T NumDifferentWards

O +

{
1, T Ward

S is not employee’s ward
0, otherwise

D≤ C∅ F ub

T StartsSunday
O′ T StartsSunday

O D= C∅ F all

T EndsSaturday
O′ T DayType

S is Saturday D= C∅ F all

T TotalPM
O′ T TotalPM

O +

{
1, T Shift Type

S is PM
0, otherwise

D≤ CUB F all

T TotalN
O′ T TotalN

O +

{
1, T Shift Type

S is N
0, otherwise

D≤ C∅ F ub

T EToPM
O′ T EToP

O +

{
1, T Shift Type

S is PM and T Last shift type
O is E

0, otherwise
D≤ C linear F all

T WxHasN
O′

{
1, T WxHasN

O = 1 or (T Shift Type
S is N and T Week

S = x)

0, otherwise
D≤ C∅ F all

Table 4.4: Representative set of on-stretch resources corresponding to the MWP. For each
resource, θ, the table includes the corresponding resource variable, T θO′ , associated REF,
Eθ
O(TO, TS), cost function, dominance rule and feasibility rule. One shift sequence pattern,

“P1”, has been included, but the remaining 7 have been omitted as their dominance rules
and cost functions are identical to those of “P1” and their REFs are similar.

The resources associated with an off-stretch in the MWP include the off-stretch’s start time,
T StartTime
F ; final time, T EndTime

F ; total number of off-days, T DaysOff
F ; number of off-days in week

x, T WxDaysOff
F ; and number of whole weekends off, T WholeWeekendsOff

F .
The resources associated with a work-stretch in the MWP include: T StartTime

W ,
T NumDifferentWards
W , T FxHours

W , T WxHours
W , T TotalN

W , and T WxHasN
W which are similar to their on-

stretch counterparts. They also include T EndTime
W , T WxDaysOff

W and T WholeWeekendsOff
W which are

similar to their off-stretch counterparts. There are also resources representing the number of half-
worked weekends in the work-stretch, T SplitWeekend

W ; whether there is a 48 hour consecutive break,

52 Standard branch and price for staff rostering problems

T WxConsecutive48hOff
W ; having only a single day off after working a night shift, T OneDayOffAfterNight

W ;
working only a single day on, T SingleDayOn

W ; and having only a single day off, T SingleDayOff
W .

Resources for W REF: Eθ
W(TO, TF) Dom. Cost Feas.

T StartTime
W T StartTime

O D= C∅ F all

T EndTime
W T EndTime

F D= C∅ F all

T FxHours
W T FxHours

O D= C∅ F all

T WxHours
W T WxHours

O D≤ C∅ F all

T NumDifferentWards
W T NumDifferentWards

O D≤ C∅ F all

T TotalN
W T TotalN

O D≤ C∅ F all

T WxHasN
W T WxHasN

O D≤ C∅ F all

T SplitWeekend
W T StartsSunday

O + T EndsSaturday
O D≤ C linear F all

T WxConsecutive48hOff
W T WxDaysOff

F ≥ 2 D≥ C∅ F all

T WxDaysOff
W T WxDaysOff

F D≥ C∅ F all

T WholeWeekendsOff
W T WholeWeekendsOff

F D≥ C∅ F all

T OneDayOffAfterNight
W T LastShiftType

O is N and T DaysOff
F = 1 D≤ C linear F all

T SingleDayOn
W T DaysOn

O = 1 D≤ C linear F all

T SingleDayOff
W T DaysOff

F = 1 D≤ C linear F all

Table 4.5: Full set of work-stretch resources in the MWP. For each resource, θ, the
table includes the corresponding resource variable, T θW , associated REF, Eθ

W(TO, TF),
cost function, dominance rule and feasibility rule.

The resources associated with a roster-line in the MWP shown in Table 4.3 include the
roster-lines’s final time, T EndTime

R′ ; number of hours worked in a fortnight x, T FxHours
R′ ; number of

hours worked in week x, T WxHours
R′ ; total number of different wards worked, T NumDifferentWards

R′ ;
total number of night shifts worked, T TotalN

R′ ; whether there is a consecutive 48 hour break in
week x, T WxConsecutive48hOff

R′ ; total number of weeks containing a consecutive 48 hour break,
T TotalConsec48hOffWeeks
R′ ; total number of days off in week x, T WxDaysOff

R′ ; whether there is a whole
weekend off, T WholeWeekendOff

R′ ; whether a night shift is worked in week x, T WxHasN
R′ ; and whether

there is a two week break between working night shifts, T DenseN
R′ .

Example models 53

Resources for R′ REF: Eθ
R(TR, TW) Dom. Cost Feas.

T EndTime
R′ T EndTime

W D= C∅ F all

T FxHours
R′ T FxHours

R + T FxHours
W D= C∅ F lbub

T WxHours
R′ T WxHours

R + T WxHours
W D≤ C2UB F all

T NumDifferentWards
R′ T NumDifferentWards

R + T NumDifferentWards
W D≤ C∅ F ub

T TotalN
R′ T TotalN

R + T TotalN
W D≤ Cexp F ub

T WxConsecutive48hOff
R′ min(T WxConsecutive48hOff

R + T WxConsecutive48hOff
W , 1) D≥ C∅ F all

T TotalConsec48hOffWeeks
R′

min(T W1Consecutive48hOff
R + T W1Consecutive48hOff

W , 1)

D≥ CLB F lb
+ min(T W2Consecutive48hOff

R + T W2Consecutive48hOff
W , 1)

+ min(T W3Consecutive48hOff
R + T W3Consecutive48hOff

W , 1)
+ min(T W4Consecutive48hOff

R + T W4Consecutive48hOff
W , 1), 1)

T WxDaysOff
R′ min(T WxDaysOff

R + T WxDaysOff
W , 2) D≥ CLB F all

T WholeWeekendOff
R′ min(T WholeWeekendOff

R + T WholeWeekendOff
W , 1) D≥ CLB F all

T WxHasN
R′ T WxHasN

R D≤ C∅ F all

T DenseN
R′

if T W00HasN
R + T W0HasN

R + T W1HasN
R + min(T W00HasN

W + T W0HasN
W + T W1HasN

W , 1) > 1

D≤ C linear F all
or T W0HasN

R + T W1HasN
R + T W2HasN

R + min(T W0HasN
W + T W1HasN

W + T W2HasN
W , 1) > 1

or T W1HasN
R + T W2HasN

R + T W3HasN
R + min(T W1HasN

W + T W2HasN
W + T W3HasN

W , 1) > 1
or T W2HasN

R + T W3HasN
R + T W4HasN

R + min(T W2HasN
W + T W3HasN

W + T W4HasN
W , 1) > 1

or T W3HasN
R + T W4HasN

R + T W5HasN
R + min(T W3HasN

W + T W4HasN
W + T W5HasN

W , 1) > 1
then T DenseN

R + 1 : T DenseN
R

Table 4.6: Full set of roster-line resources for the MWP. For each resource, θ, the table
includes the corresponding resource variable, T θR′ , associated REF, Eθ

R(TR, TW), cost
function, dominance rule, and feasibility rule.

Several of the resources we modelled appeared to have a significant effect on the difficulty
of solving the problem. We modelled fairness in the number of night shifts with an exponential
cost function Cexp and fairness in the number of hours worked in a week with the double upper
bound cost function C2UB.

Further, the maternity wards problem has a much larger number of entities gener-
ated in the column generation subproblem due to the additional hard-constrained resource,
T NumDifferentWards
R′ . Without this constraint, we can choose to work each shift type from the

ward with the largest dual, simplifying the problem.
Lastly, the maternity wards problem has 8-hour and 12-hour shifts instead of only 8-

hour shifts. Different length shifts significantly increase the number of entities generated in
the column generation subproblem compared to the operating theatre ward problem, which
only has 8-hour shifts. This is because there are many more possible values for T FxHours

R′ .
For example, if an employee works 80 hours a fortnight, then in the operating theatre prob-
lem, T FxHours

R′ ∈ {0, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80} whereas in the maternity wards problem,
T FxHours
R′ ∈ {0, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80}, which is almost

twice as many possible values. T FxHours
R′ has a hard equality constraint which means that it

effectively prevents dominance if the values of this resource being compared are not equal.
We found that when we removed the fairness resources, number of ward restrictions and 12

hours shifts, our standard dive consistently produced an integer roster solution within 5% of the

54 Standard branch and price for staff rostering problems

objective function value of solution to the root node of the branch-and-price search tree. With
these three resources included, there is a significant gap; see §7.4 for more details.

Our model arbitrarily breaks down a roster-line into on-stretches, off-stretches, and work-
stretches, which are all sets of dated activities (shifts or days off). Suppose we instead broke down
a roster-line into weeks and fortnights, which could also be sets of dated activities. In that case,
we believe we could model the Waikato DHB rules more efficiently. For example, the number
of hours worked in a week, T WxHours

R′ , needs to be modelled in the on-stretch, work-stretch and
roster-line. However, it would only need to be modelled once in the week entity. Likewise, the
number of hours in a fortnight, T FxHours

R′ , would only need to be modelled in the week and
fortnight entities, but not the roster-line itself.

4.4 Nested column generation

The primary purpose of our entity model is to solve the column generation subproblem to find
the lowest reduced cost roster-line for a given employee.

The column generation subproblem can be sub-classified into three separate nested subprob-
lems—the generation of on-stretches, work-stretches, and roster-lines. These nested subproblems
are considered to be nested as the solutions to each subproblem define the structure of the fol-
lowing subproblem. The nested subproblems only differ between individual employees in terms
of the shift costs and the parameters defined in the resource cost functions, feasibility functions
and dominance rules; consult §4.2.2. The first and third nested subproblems involve a modified
version of the shortest path problem with resource constraints (SPPRCs) defined by Irnich and
Desaulniers (2005). In this section, we use a modified version of the terminology introduced by
Irnich and Desaulniers to model and solve each of the three aforementioned nested subproblems.

As with Irnich and Desaulniers, we solve both the first and the third nested subproblem with
a dynamic program. Each resource vector represents a state in the dynamic program. In both
nested subproblems, we find a Pareto-optimal set of states ending on each day.

Note that although the primary purpose of the entity model is to be used in the context of
a shortest path problem with resource constraints to find negative reduced cost columns for the
RMP, it can also be used to quickly find the cost of an employee’s roster-line when enumerating
neighbouring roster-lines for local search.

4.4.1 Dominance algorithm

To efficiently define an algorithm to solve each of the aforementioned nested subproblems, we
first define the generic dominance algorithm for any entity, τ ∈ O∪W∪R. Given a set of entities
U of the same type and with the same initial and final days, we identify the set of non-dominated
entities, P, using the following Algorithm 1.

Nested column generation 55

Algorithm 1 Generic dominance algorithm to reduce the size of a set of entities
Require: A set of entities, U .
1: P = ∅ . Initialising set of non-dominated entities
2: Order the set, U , in ascending order of the cost of each entity.
3: for each Entity τ1 ∈ U do . Both “for each”s maintain the ascending order of cost.
4: isDominated = False
5: for each Entity τ2 ∈ P do
6: if τ2 � τ1 then
7: isDominated = True
8: if isDominated = False then
9: ADD τ1 to P.

10: return non-dominated set of entities, P.

4.4.2 On-stretch subproblem

The first nested subproblem, involving the generation of on-stretches, is a modified SPPRC
to identify the set of non-dominated feasible on-stretches between each possible pair of initial
and final days, i.e., ∀i1, i2 ∈ (1, 2, ..., n) s.t. i1 < i2 where n denotes the total number of days
considered in the problem. The SPPRC is modified in that we are building paths from any start
day to any other start day in a single SPPRC.

This modified SPPRC is defined on the on-stretch digraph

GO = (S, σ)

where S = {D0,S1,S2, . . . ,Sn} denote the set of possible shifts starting on each day; D0 is a
dummy shift and Si represents the set of possible shifts starting on day i. We require the dummy
shift D0 as we are building roster-lines from a collection of work-stretches. To model a day off on
day 1, we require a one day on-stretch containing only the dummy shift. σ is a set of functions,
σS(S), for each shift S. Each function σS(S) defines the set of shift successors to a given shift S,
e.g., the set of shift successors to a PM shift P 3 on day 3, σS(P 3) = {A4, P 4, N4}. A given path
in the SPPRC corresponds to an on-stretch O = (S1, S2, . . . , S|O|). An example of the on-stretch
digraph for the Waikato DHB problems is depicted in Figure 4.1.

The NZ nurse MECA specifies that more than 24 hours between shifts is considered a day
off. This can be compared with the INRC problems which specify that there is a day off on a
calendar day if no shift is started on that day. For example, in the Waikato DHB problems, a
roster could contain an AM shift, which finishes at 3.30 pm, followed by an N shift, which begins
at 11.30 pm on the following day. Because there are more than 24 hours between these two shifts,
it is counted as a day off and thus, this combination cannot be included in an on-stretch, and
we must instead provide an off-stretch between these two shifts. Please consult Figure 4.2 for an
example of 24 hours off between shifts that start on consecutive calendar days. Because not all
shifts on consecutive days can form a feasible on-stretch, the legal set of shift successors for a
given shift Si which starts on day i, σS(Si), may not include all shifts worked on day i+ 1.

56 Standard branch and price for staff rostering problems

A1

P 1

N1

A2

P 2

N2

A3

P 3

N3

D0

A1

Figure 4.1: On-stretch digraph, GO, for a three day Waikato DHB problem instance.
Each vertical set of shift nodes represents the shifts starting on a given day. The D0 node
is a dummy node, so a roster-line, constructed from work-stretches, can start with a day
off on day one. The arcs between nodes represent legal shift successions; e.g., the set of
shift successors to an N shift N1 on day 1, σS(N1) = {N2, A3}.

Likewise, in the Waikato DHB problems, a roster could contain an N shift, which starts on
day x and finishes on day x + 1 at 3.30 pm, followed by an AM shift, which begins at 8.00 am
on day x+ 2. The end of this N shift is less than 24 hours from the start of the AM shift, and as
such, the shifts are considered as part of an on-stretch even though there is no shift starting on
day x+ 1. Thus, in our on-stretch graph, an N shift starting on day x has an arc to an AM shift
starting on day x+ 2. We model this with the set of shift successors σS(Si) potentially including
shifts starting on day i+ 2.

We solve the on-stretch SPPRC using a label setting algorithm to identify a set of non-
dominated, feasible on-stretches, Pi1,i2O , between each possible pair of initial and final days, i.e.,
∀i1, i2 ∈ (1, 2, ..., n) s.t. i1 < i2. U i1,i2O is taken to denote a set of possible on-stretches starting on
day i1 ending on day i2, before dominance and feasibility checks. We solve the on-stretch SPPRC
using Algorithm 2.

4.4.3 Work-stretch subproblem

The second nested subproblem involves the generation of work-stretches. We enumerate the set
of non-dominated, feasible work-stretches by combining each non-dominated on-stretch with a
feasible off-stretch, as illustrated in Algorithm 3. The set of constructed work-stretches starting
on day i1 and ending on day i3 before dominance is denoted by U i1,i3W . We define the set of
all legal off-stretches from an on-stretch ending with shift S to day i3 as σFi3(S). We model off-
stretches as starting from a specific shift so we can model an AM shift starting on day i and an
N shift starting on day i+ 1 as having a one-day off-stretch between them for the Waikato DHB
problems.

Nested column generation 57

Day 0 Day 1 Day 2
12:00 AM
1:00 AM
2:00 AM
3:00 AM
4:00 AM Night shift continued
5:00 AM
6:00 AM
7:00 AM
8:00 AM
9:00 AM
10:00 AM
11:00 AM AM Shift
12:00 PM
1:00 PM
2:00 PM
3:00 PM
4:00 PM
5:00 PM
6:00 PM
7:00 PM
8:00 PM
9:00 PM
10:00 PM
11:00 PM Night shift
12:00 AM

>24 hours break

Figure 4.2: An example of an AM shift starting on day 0 and a night shift starting on day
1. In INRC, this would be considered two consecutive days worked as shifts are started
in both day 0 and day 1. In the Waikato DHB problems, there is a day off between these
two shifts as there is a > 24-hour break between the AM shift on day 0 and the night
shift starting on day 1.

58 Standard branch and price for staff rostering problems

Algorithm 2 Solving the first nested subproblem’s SPPRCs to generate on-stretches
Require: An on-stretch digraph GO = (S, σ).
1: U i1,i2O = ∅ ∀i1 ∈ (0, 1, . . . , n), i2 ∈ (i1, i1 + 1, . . . , n)
2: for i2 ← 0 to n do . For each possible on-stretch end day.
3: for each shift S ∈ Si2 do
4: ADD O = (S) to U i2,i2O . Construct an on-stretch out of a single shift.
5: for i1 ← 0 to i2 do . For each possible on-stretch start day.
6: APPLY Algorithm 1 to U i1,i2O to find P i1,i2O
7: for each on-stretch O ∈ P i1,i2O do
8: for each shift S ∈ σS(S|O|) do . where S|O| represents the last shift

of on-stretch O and σS(S|O|) repre-
sents the legal set of shift successors
for shift S|O|.

9: ADD O′ = (O,S) to U i1,T
EndDay
O′

O . Add each shift to the end of each on-
stretch in the set of non-dominated
on-stretches, P i1,i2O . T EndDay

O′ is the
end day of O′.

10: REMOVE infeasible on-stretches from P i1,i2O

11: return P i1,i2O ∀i1 ∈ (0, 1, . . . , n), i2 ∈ (i1, i1 + 1, . . . , n)

Note that in the case we have an AM shift starting on day 1 and a night shift starting on
day 2, our on-stretch starts and finishes on day 1, and our off-stretch also starts on day 1 and
finishes on day 2. In Algorithm 3, this is represented by any work-stretch created when i1 = i2

and i3 = i2 + 1. In the INRC, work-stretches must be at least two days long.

4.4.4 Checks for work-stretch feasibility with respect to potential
roster-lines

In Step 10 of Algorithm 3, we remove work-stretches because their resource vector is infeasible.
However, Dohn and Mason (2013) also remove work-stretches if no feasible full roster-line can
be constructed containing the given work-stretch.

Firstly, we define a function Bθmax(TW) which is an upper bound on how much roster-line
resource θ ∈ ΘR can increase by extending any roster-line with work-stretch W , i.e.,

Bθmax(TW) ≥ max
TR

(Eθ
R(TR, TW)− T θR) (4.36)

For example, if we have a roster-line resource representing the number of days worked in a roster-
line, then the function, BDaysOn

max (TW) is equal to the number of days worked in the work-stretch,
i.e., BDaysOn

max (TW) = T DaysOn
W .

Dohn and Mason (2013) assume that the value of function Bθmax(TW) is equal to the value
of roster-line resource θ when the associated roster-line is only made up of only the work-stretch

Nested column generation 59

Algorithm 3 Generating set of non-dominated work-stretches

Require: A set of non-dominated on-stretches, [P i1,i2O] and the complete set of off-
stretches, [P i1,i2F]

1: U i1,i3W = ∅ ∀i1 ∈ (0, 1, . . . , n) ∀i3 ∈ (i1 + 1, i1 + 2, . . . , n+ 1)
2: for i2 ← 0 to n do . For each on-stretch end day
3: for i1 ← 0 to i2 do . For each on-stretch start day
4: for each on-stretch O ∈ P i1,i2O do
5: for i3 ← i2 + 1 to n+ 1 do . For each off-stretch end day
6: for each off-stretch F ∈ σFi3(S|O|) do . where S|O| represents the last

shift of on-stretch O and
σFi3(S|O|) represents the legal
set of off-stretches starting
with shift S|O| and ending on
day i3.

7: ADD work-stretch W = (O,F) to U i1,i3W .
8: for i1 ← 0 to n do . For each work-stretch start day
9: for i3 ← i1 to n+ 1 do . For each work-stretch end day

10: REMOVE infeasible work-stretches from U i1,i3W
11: APPLY Algorithm 1 to U i1,i3W to find W i1,i3

12: return Set of work-stretch arcs, W = (W0,1,W0,2, . . . ,Wn−1,n+1,Wn,n+1).

itself, i.e., Bθmax(TW) = T θR where R = (W). However, this is not true for any possible resource
extension function, and so resource extension functions must be modelled with this assumption
in mind.

Next, we define a lower limit T θR,lower(d) for a roster-line resource θ as a function of the end
day d of the partial roster-line. For example, if we have no work-stretches with shifts worked on
days 10 to 14 in a 14-day rostering problem, then T DaysOn

R,lower (10) = γθ where γθ is the lower bound
for the full 14-day full roster-line. We find this bound through backpropagation; see Algorithm 4.

Lastly, we define a maximum T θR,forward upper(d) possible value of roster-line resource θ ending
on day d. For example, if we have a work-stretch with days worked on days one to four, then
T DaysOn
R,forward upper(4) = 4. We find this maximum through forward propagation; see Algorithm 5.

Thus, if we have a work-stretch W starting on day d1 and ending on day d2, and the max-
imum possible value T θR,forward upper(d

1) of resource θ for a roster-line ending on day d1 plus
the maximum possible increase Bθmax(TW) in resource θ from extension with work-stretch W is
less than the lower bound T θR,lower(d2) on day d2, then no feasible full roster-line can contain
work-stretch W , i.e.,

T θR,forward upper(d
1) +Bθmax(TW) < T θR,lower(d2)⇒ F(W) = False (4.37)

Similarly, if we have a work-stretch W starting on day d1 and ending on day d2, and the
minimum possible value T θR,forward lower(d

1) of resource θ for a roster-line ending on day d1 plus

60 Standard branch and price for staff rostering problems

the minimum possible increase Bθmin(TW) in resource θ from extension with work-stretch W is
greater than the upper bound T θR,upper(d2) on day d2, then no feasible full roster-line can contain
work-stretch W , i.e.,

T θR,forward lower(d
1) +Bθmin(TW) > T θR,upper(d2)⇒ F(W) = False (4.38)

Algorithm 4 Finding upper and lower bounds on roster-line resource variables as a
function of the day
Require: The set of all feasible, non-dominated work-stretches, W.
1: for each Day d1 ∈ (n, n− 1, . . . , 1) do
2: for each Day d2 ∈ (d1 + 1, d1 + 2, . . . , n) do
3: for each Work-stretch W starting on day d1 and ending on day d2 do
4: T θR,lower(d2) = min(T θR,lower(d1)−Bθ

max(TW), T θR,lower(d2))

Algorithm 5 Finding upper and lower bounds on roster-line resource variables as a
function of the day
Require: The set of all feasible, non-dominated work-stretches, W.
1: for each Day d1 ∈ (1, 2, . . . , n) do
2: for each Day d2 ∈ (d1 + 1, d1 + 2, . . . , n) do
3: for each Work-stretch W starting on day d2 and ending on day d1 do
4: T θR,forward upper(d

2) = max(T θR,forward upper(d
1)−Bθmax(TW), T θR,forward upper(d

2))

4.4.5 Roster-line subproblem

The third nested subproblem, involving the generation of the lowest reduced cost, feasible full
roster-line, is an SPPRC defined on the roster-line digraph,

GR = (D,W)

where D = (D0, D1, . . . , Dn, Dn+1) denotes the set of nodes representing each day considered in
the problem, including dummy nodes, D0 and Dn+1, to account for roster-lines beginning with
an off-day and ending with a worked shift, respectively. The set of arcs between day nodes is
denoted by W = (W0,1,W0,2, . . . ,Wn−1,n) where Wi1,i2 denotes the set of arcs between day
node Di1 and day node Di2 . Each arc W ∈ Wi1,i2 represents a work-stretch starting on day i1
and finishing on day i2. Any path in this SPPRC starting from dummy node D0 corresponds
to a roster-line, R and if the path also finishes on dummy node Dn+1, it corresponds to a full
roster-line, R̂. A simplified example of this digraph is depicted in Figure 4.3.

We solve the roster-line SPPRC using a label setting algorithm to identify the lowest reduced-
cost full roster-line. The set of possible roster-lines ending on day i before dominance is denoted
by U iR and the set of non-dominated roster-lines ending on day i is denoted by PiR. We also
define a transition function σW (R,W) which defines whether partial roster-line R can legally

Nested column generation 61

Day 0 Day 1 Day 2 Day 3 Day 4 Day 5

Work-stretch 1 (W 1)
Work-stretch 2 (W 2)

Work-stretch 3 (W 3)
Work-stretch 4 (W 4)

Figure 4.3: Roster-line digraph, GR, corresponding to a 4-day problem. The nodes, Day
0 and Day 5, represent dummy nodes to account for roster-lines beginning with off-days
and ending with worked shifts. Four possible work-stretches are depicted—work-stretch
1, W 1 ∈ W0,2; work-stretch 2, W 2 ∈ W2,5; work-stretch 3, W 4 ∈ W0,3; and work-
stretch 4, W 4 ∈ W3,5. There are two possible full roster-lines—R̂1 = (W 1,W 2) and
R̂2 = (W 3,W 4).

be extended by work-stretch W . This is required as, for example, a one-day off-stretch can only
connect an AM shift and an N shift in the Waikato DHB problems. σW (R,W) = True indicates
the extension is legal.

The aim is to identify the lowest reduced-cost full roster-line from the set of all full roster-
lines, Un+1

R , where n denotes the total number of days considered in the problem. We only
require the lowest reduced cost full roster-line to guarantee our column generation algorithm
solves optimally but in practice, adding some of the other generated low-cost full roster-lines
to the aforementioned set improves the overall solution time of the LP. We solve the roster-line
SPPRC using Algorithm 6. The final solution to all three nested subproblems is a set of full
roster-lines generated for a given employee, including the full roster-line with the lowest possible
reduced cost.

4.4.6 Checks for partial roster-lines feasibility

In Algorithm 6, we only check the feasibility of full roster-lines. This is because we cannot discard
partial roster-lines deemed infeasible using the feasibility criteria of full roster-lines. For example,
say we have a partial roster-line with eight work-days and a lower bound on the number of work-
days of 10. By extending it with a work-stretch that contains at least two work-days, the partial
roster-line becomes feasible. However, similarly to in §4.4.4, we can create a feasibility criteria for
partial roster-lines through backward propagation. Dohn and Mason (2013) used lower and upper
limits, T θR,lower(d) and T θR,upper(d) for each roster-line resource θ ∈ ΘR for roster-lines ending on
each day d calculated through back propagation. This feasibility range can be used to discard
infeasible partial roster-lines while solving the roster-line SPPRC.

62 Standard branch and price for staff rostering problems

Algorithm 6 Solving the third nested subproblem’s SPPRC to generate the lowest-cost
full roster-line
Require: A roster-line digraph GR = (D,W) and the number, x, of full roster-lines to

be generated.
1: U iR = ∅ ∀i ∈ (1, . . . , n+ 1)
2: for i← 1 to n do
3: for each work-stretch W ∈ W0,i do
4: ADD R = (W) to U iR.
5: for each day i ∈ (1, 2, . . . , n) do
6: APPLY Algorithm 1 to U iR to find P iR.
7: for each roster-line R ∈ P iR do
8: for each day j ∈ (i+ 1, i+ 2, . . . , n+ 1) do
9: for each Work-stretch W ∈ W i,j do

10: if σW (R,W) = True then
11: ADD R′ = (R,W) to U jR.
12: Order the set, Un+1

R , in ascending order of the cost of each roster-line. . Note: Un+1
R

is the set of full roster-lines.
13: return First x feasible roster-lines in Un+1

R .

A roster-line resource is infeasible if it is outside of these bounds for the end day d of its
roster-line, i.e.,

T θτ < T θR,lower(d) or T θτ > T θR,upper(d)⇒ Fd(T θτ) = False (4.39)

Using this equation, we can remove partial roster-lines due to infeasibility at Step 6 of Algo-
rithm 6.

4.5 Branching rules

We use two separate branch-and-price algorithms in parallel to solve any given staff rostering
problem. Each algorithm has a separate branching rule and search strategy.

In staff rostering problems, constraint branching typically involves branching on an employee-
shift pair, (e, S). A 1-branch on (e, S) enforces employee e to work shift S. During the solution of
the column generation subproblem for a given employee, we enforce the 1-branch by removing all
shifts S d̂ worked on the start day, d̂, of the enforced shift, Ŝ, i.e., we remove S ∈ S d̂, S 6= Ŝ. We
also remove all off-stretches that include day d̂, i.e., we remove all F = (φd, φd+1, . . . , φd+|F |),
where d ≤ d̂ ≤ d + |F |. Similarly, a 0-branch prohibits employee e from working a given shift,
S. During the column generation subproblem solution, the enforcement of the 0-branch involves
the removal of the prohibited shift from the set of possible shifts.

We use a separate method to select which employee-shift pair to branch on for both finding
high-quality roster solutions and driving up the lower bound. Firstly, we define the corresponding
value of an employee-shift pair (e, S) in a solution to the RMP as the sum of the values of employee

Column generation framework 63

e’s roster-line variables λre where shift S is worked in each roster-line r, i.e., xeS =
∑
r∈Re|S∈R̂re

λre.
To find lower bounds, we choose to branch on the employee-shift pair (e, S) with the least integer
value i.e.,

min
e,S

(abs(0.5− xeS))

where abs(X) is the absolute value of X. To find high quality roster solutions, we used a
dive heuristic, which involved branching on the largest corresponding non-integer value of any
employee-shift pair (e, S), i.e.,

max
e,S

(xeS) s.t. xeS is fractional

We also used a separate search strategy for both finding high-quality roster solutions and
driving up the lower bound. To drive up the lower bound, we choose nodes to explore next
based on their parent node having the lowest objective function value. Since branching rarely
produced an increase in the objective, if two nodes have parents with the same objective function
value, we prefer 1-branching. To find high quality roster solutions, we chose to only 1-branch (a
diving heuristic). However, this dive heuristic was sometimes not producing the optimal roster
solution, so we extended the algorithm to use the Limited Discrepancy Search (LDS) by Prosser
and Unsworth (2011) to search for additional roster solutions. LDS has already been applied
to column generation in the work of Sadykov (2019). However, we use LDS on the employee-
shift variables instead of the roster-line variables. Essentially, since we assume that if not for
a small number of wrong branching decisions, our branch-and-bound dive would have found a
better solution. Thus, we search our branch-and-bound tree in increasing order of branching
discrepancies to perform a series of similar dives.

4.6 Column generation framework

Genie++ was implemented using COIN-OR’s Branch, Cut and Price (BCP) library, which is a
framework for handling column generation (Ralphs, 2013). However, for our tests, we created
our own staff rostering based column generation framework using only the COIN-OR linear
programming (Clp) solver (Forrest et al., 2020).

4.6.1 Dual stabilisation

We found that dual stabilization was effective for reducing the time taken to solve each LP.
We took a simple approach to dual stabilization, using the algorithm by du Merle et al. (1999).
There are many different ways to apply the algorithm, but we used the current duals as the dual
estimate (one of du Merle et al.’s recommendations) and solved the LP for increasingly smaller
dual penalties and tolerances (another suggestion by du Merle et al.).

64 Standard branch and price for staff rostering problems

4.6.2 Sprint pricing

We found that the sprint pricing employed by Barnhart et al. (1998) was effective at improving
the time to solve the linear relaxation. For some INRC problem instances, in which the structure
of the roster is heavily dependent upon which shifts the head nurses work, sprint pricing leads
to the root node being solved up to 5 times as fast. Sprint pricing in Genie++ involves having
a set of employees that we are generating columns for and removing employees from that set if
they do not return a negative reduced cost column. After there are no longer any employees in
the set, we add every employee back into the set and continue until no negative reduced cost
columns can be generated for any employee. Often, only column generation subproblems for the
head nurses produced negative reduced cost columns, so significant time is saved by having fewer
regular nurses for whom we are generating columns.

4.6.3 Optimization suite

For our tests, we are using the following CPU: Intel Xeon CPU E5-2650 v2 @ 2.60GHz. We run
each of our tests single-threaded, although multiple tests can be run simultaneously.

As our software is compile-time optimized, each model needs to have a separately compiled
executable. We do not include the compilation time overhead in our solve times as multiple solves
are possible with a single model. However, in practice, this overhead is necessary when modifying
the resources.

For enhanced customization, we have implemented our own branch-and-bound tree, dual
stabilization and other generic features of column generation. We have used best practices in
all the major cases. However, there may be a performance deficit compared with highly tuned
column generation frameworks.

4.7 Chapter summary

In this chapter, we have introduced a novel way of modelling a nested column generation sub-
problem for solving staff rostering problems. We have also introduced example models for the
two core applications of our algorithm described in this thesis: solving the INRC problems and
solving the Waikato DHB rostering problems. However, both of these applications required novel
extensions to our column generation algorithm in order to solve, which is introduced in the
following two chapters.

Chapter 5

Proving optimality to all INRC
problems

This chapter demonstrates how we can identify proven optimal solutions to every INRC problem
by implementing a new dominance technique, an objective function perturbation technique, new
branching techniques, and a shift aggregation relaxation. These techniques can be applied to any
column generation based staff rostering solver and apply to other column generation problems
with complex resource constrained shortest path problems.

5.1 Results before enhancements to Genie++

We solve each INRC problem using Genie++’s branch-and-price framework as described in Chap-
ter 4.

We set a four-hour time limit following Santos et al. (2016) to prove the optimality of the
generated solutions to several of the INRC problems. We solved 10 of the 30 problems and
established the solutions as optimal. Each of these ten problems exhibited no gap between the
cost of its linear relaxed solution and its optimal integer roster solution. We were unable to
identify any feasible integer roster solutions to the remaining 20 problems and only managed to
increase the lower bound past that of the root node in the case of the problem, “medium hidden
02”. Further, we were unable to solve the root node of the five “long hidden” problems.

Although the proposed algorithm was incapable of identifying optimal roster solutions in
most cases, the column generation formulation induced strong lower bounds by solving the linear
relaxation. Only six problems exhibited gaps between the linear relaxed solutions obtained via
the proposed algorithm and the best-known roster solutions in the literature. Our algorithm’s
success in finding lower bounds is in contrast with the two MIP-based methods mentioned in
§1.2. Both methods exhibited gaps between their best-known lower bounds and best-known roster
solutions in literature corresponding to a more significant number of problems, notwithstanding
the various improvements to the identification of lower bounds; consult Table 3.3 for details.

65

66 Proving optimality to all INRC problems

Two observations help to increase the number of problems solved to proven optimality. The
first is that on average, around 5% of the time is spent solving the restricted master problem,
and 95% of the time is spent solving the column generation subproblem. Therefore, we can
significantly reduce the solution time by implementing a more efficient column generator. The
second observation is that constraint-branching rarely increases the lower bound. We contend
that this is because of the symmetry present within the INRC problems. Please consult §5.2.2
for more details. Based on these observations, we propose a set of improvements to the column
generation subproblem. We present these improvements in the following section, §5.2.

5.2 Enhancement #1: Improving the column generator

Given the shortcomings of our standard column generation approach, our first enhancement to
Genie++ is to improve standard dominance to significantly shorten the time taken to solve each
column generation subproblem. We also tilted the objective function to produce columns which
lead to more naturally integer roster solutions.

5.2.1 Improved resource dominance

In this section, we discuss the extension of standard dominance to increase the number of entities
removed by dominance while maintaining proof of optimality.

As discussed in §3.2.5, there are no unique, exact dominance techniques described in the
literature on column generation for staff rostering problems. However, there is a need for good
dominance strategies as soft constraints and constraints with lower/upper bounds are known
to be inefficient for SPPRCs (Legrain et al., 2020) and staff rostering problems typically have
multiple instances of these types of constraints.

In §4.4.4 and 4.4.6, we show how Mason and Smith (1998) implemented a standard bidirec-
tional algorithm to calculate hard bounds on the values of resources for roster-lines ending on
each day. One naive way of extending this method for resources with soft bounds is to bound each
resource’s minimum and maximum potential costs. If the sum of the maximum costs of resources
for one entity is less than the sum of the minimum costs of resources for a second entity, then the
second entity is dominated. These bounds could then be used to improve the dominance results
by translating the differences in resource value into differences in the final cost.

However, because of the complex dependencies between resources and non-linear resource
cost functions, the gap between the lower and upper bound for the cost of each resource is often
large and thus, the dominance condition is weak. For example, it is often possible for an entity
with zero weekends worked to violate either the “working too many consecutive weekends” rule,
“working too few consecutive weekends” rule, or not violating any consecutive weekends rules at
all. Complex dependencies between resources and non-linear cost functions happen naturally as
the user is free to define custom resource extension functions and cost functions in object-based
C++ code.

Enhancement #1: Improving the column generator 67

Instead of using this naive strategy, we have developed a novel dominance algorithm which
we call dominance cost functions. With dominance cost functions, instead of calculating the costs
for one resource variable at a time, we consider multiple resource values at once. Also, instead of
bounding the costs of each entity individually, we bound the difference in costs of two entities.
These two factors lead to a very effective dominance condition.

However, since we are considering a maximum bound on the difference in cost between two
whole entities with dependencies amongst the resources, calculating the bound automatically
would be challenging and computationally expensive. Thus, we push the complexity onto the
user and their understanding of how the resources act and have the user create custom code
which achieves the same effect. The goal of genie++ is to allow the expert modeller to embed
their problem into the framework to allow the framework to run very efficiently, which has
generated huge rewards in terms of the actual run times.

Recall from §4.2.5, when performing typical dominance, we compare if each resource in the
resource vector dominates another resource separately. However, consider a rostering problem
with two resources with binary values; one resource has a guaranteed cost of one million, and
one resource might eventually lead to a cost of one. The first resource is so bad that any resource
vector that has a value of one for the first resource would be almost always worse than a resource
vector that does not. However, every paper we looked at was comparing each resource individually
for dominance, and so the cost trade-offs between multiple resources were overlooked. Further,
other approaches only confirm cost contribution at a later stage, but we confirm contribution
immediately. The dominance cost functions introduced in this section give insight into how we
can consider multiple resources at once when performing dominance and make cost trade-offs
immediately without sacrificing proof of optimality.

Consider a very simplified example in which the cost of a roster-line is given by the sum
of a staff member’s preferences for working each shift. There is also a cost of three for each
day worked above 20 days or below 10 days in a full roster-line. Consider two partial roster-lines
R1 = {N1, φ2, D3, N4, D5, D6, D7, D8, φ9}1 with T DaysOn

R1 = 7 days worked and a shift preference
sum of fR(R1) = 10, and R2 = {N1, N2, φ3, D4, D5, D6, φ7, φ8, φ9} of the same length with
T DaysOn
R2 = 5, and fR(R2) = 20. We want to be able to say that roster-line R1 dominates roster-

line R2 because of its lower cost. However, under a standard dominance definition, roster-line R1

could not dominate roster-line R2 because roster-line R1 has more days worked, and there is a
cost for too many days worked in a full roster-line.

We observe that by replacing roster-line R2 with roster-line R1 in any full roster-line contain-
ing roster-line R2, you would increase the total number of days worked by two. In the worst-case
scenario, this would lead to an additional cost of six; see Figure 5.1. However, by replacing roster-
line R2 with roster-line R1, you would also have a guaranteed reduction in the cost of the full
roster-line by ten because of the differences due to staff preferences. Thus, roster-line R1 can
still dominate roster-line R2. This concept of considering the maximum additional cost from a
difference in resource values is the motivation behind our novel dominance rule. We denote the
maximum additional cost from a difference in resource values, a dominance cost function.

1where N1 is a night shift on day 1, φ2 is a day off on day 2 and D3 is a day shift on day 3.

68 Proving optimality to all INRC problems

Figure 5.1: The cost for each number of days worked in a full roster-line. On the left, we
show the current number of days worked in partial roster-lines R1 and R2. On the right,
we show the number of days worked in full roster-line R̂2 containing partial roster-line
R2 and that same full roster-line but with roster-line R2 replaced with roster-line R1:
R̂1.

There is an art to calculating the dominance cost function from a difference in resource values.
This is because resources both implicitly and explicitly influence the values of other resources
in complex ways. For example, in the INRC problems, the resources representing the number
of worked weekend and weekends off in a work-stretch are explicitly mentioned in the resource
extension function for the maximum number of consecutive weekends worked resource; see §4.3.1.
However, the maximum number of consecutive weekends resource is also implicitly affected by
the end day resource, as, after a certain day, there are no further weekends to be worked. We
provide an example of how we can create a complex dominance cost function in §5.2.1.4.

The proposed novel dominance rule significantly reduced the number of entities in every
single rostering problem that we have solved. In the “long late 03” problem, which is a typical
example of one of the more complex INRC problems, via the proposed novel dominance rule, the
total number of entities generated during the solution of the column-generation subproblem was
observed to be reduced by 89%. The generation of a reduced number of entities induced a 95%
reduction in the time required to solve the column-generation subproblem.

This novel dominance rule was the most significant improvement to the column generator.
Thus, we consider the proposal of this approach to dominance to be a significant contribution of
this study.

Dominance cost functions are most useful at solving SPPRC with multiple resources with
costs. Staff rostering problems often have many costs associated with staff preferences which
make this technique very useful. Airline scheduling also considers many staff preferences, and we
are aware of at least one airline company where dominance cost functions could be useful.

5.2.1.1 Dominance notation

To explain the novel dominance method, we first define some notations. A horizon is defined to
be a sequence of n days indexed by 1, . . . , n. A span, (i1, i2) ≡ i1, i1 + 1, . . . , i2, is defined to be
any subset of consecutive days of the horizon, such that 1 ≤ i1 ≤ i2 ≤ n. Any entity, τ , within a
span, (i1, i2), denotes a sequence of activities—one for each day in the span—where an activity
is defined to be either a worked shift or an off-day. A full roster-line, R̂, is an entity within the

Enhancement #1: Improving the column generator 69

span, (1, n), i.e., it defines an activity corresponding to each day in the horizon. The set of all
possible full roster-lines is denoted by R̂.

The complement, (i1, i2), of a span, (i1, i2), is defined to be the set of days in the horizon not
accounted for by the span, i.e., (i1, i2) = {1, . . . , n} \ {i1, i1 + 1, . . . , i2}. The complement of a
span does not necessarily comprise consecutive days. An extension, τ , of an entity, τ , is defined
to be a collection of activities corresponding to each day in the complement of the entity’s span.
Hence, the union of an entity and an extension of that entity comprise a full roster-line, i.e., a
roster-line with a worked shift or an off-day assigned to each day in the horizon. Thus, for an
appropriate pair of full roster-line, R̂, and entity, τ ,

R̂ = τ ∪ τ , τ = R̂ \ τ (5.1)

As the INRC problems do not involve any hard constraints, the set of possible complements to
two entities, τ1 and τ2, of the same type belonging to the same span, are identical. In other
words,

τ1 ∪ τ1 ∈ R̂ ⇐⇒ τ2 ∪ τ1 ∈ R̂ (5.2)

5.2.1.2 Dominance definition

In this section, dominance of a given on-stretch, work-stretch, or roster-line, τ2 ∈ O ∪W ∪ R,
by another entity, τ1 ∈ O ∪W ∪R of the same type and belonging to the same span within the
column generation subproblem is defined. To ensure that the lowest reduced cost full roster-line
is always identified for the column generation subproblem being considered, only entities that
are known to not be a subset of the lowest reduced cost full roster-line are discarded. If the
replacement of τ2 with τ1 in any full roster-line either reduces or preserves the reduced cost of
that roster-line, then it is not necessary to include τ2 in the lowest reduced-cost full roster-line.
Thus, it can be safely discarded. This yields the following definition for dominance.

Definition 2. Given the reduced cost function, fR, corresponding to a roster-line and two enti-
ties, τ1, τ2 ∈ O ∪W ∪R, of the same type and belonging to the same span, τ2 is considered to
be dominated by τ1, denoted by τ1 � τ2, if the replacement of τ2 by τ1 in any full roster-line,
R̂ = τ2 ∪ τ2, does not increase the reduced-cost of that roster-line. In other words,

fR(τ1 ∪ τ2︸ ︷︷ ︸
R̂ with τ2

substituted

by τ1

) ≤ fR(τ2 ∪ τ2︸ ︷︷ ︸
R̂∈R̂

) ∀τ2 : τ2 ∪ τ2 ∈ R̂ ⇒ τ1 � τ2 (5.3)

or equivalently

max
τ2:τ2∪τ2∈R̂

(
fR(τ1 ∪ τ2)− fR(τ2 ∪ τ2)

)
≤ 0⇒ τ1 � τ2 (5.4)

It is to be noted that the proposed dominance methodology functions equally well in the case
of hard-constrained problems by considering the cost, fR(τ1 ∪ τ2), of an infeasible roster-line,
τ1 ∪ τ2, to be very high.

70 Proving optimality to all INRC problems

5.2.1.3 Work-stretch dominance

Dominance is calculated differently, corresponding to each entity type. In this section, we explain
the application of the aforementioned dominance definition to work-stretches, which correspond
to the simplest calculation procedure for the determination of dominance. First, τ1 = W 1 ∈ W
and τ2 = W 2 ∈ W are substituted into (5.4). This yields the following dominance definition for
any two work-stretches, W 1 and W 2, belonging to the same span.

max
W 2:W 2∪W 2∈R̂

(
fR(W 1 ∪W 2)− fR(W 2 ∪W 2)

)
≤ 0 =⇒ W 1 �W 2. (5.5)

where W 2 denotes an extension of the work-stretch, W 2.
Substituting the roster-line reduced cost definition given by (4.11) into the LHS of (5.5)

yields the following definition of work-stretch dominance.

fW(W 1) + max
W 2:W 2∪W 2∈R̂

(
gR(W 1 ∪W 2)− gR(W 2 ∪W 2)

)
≤ fW(W 2) =⇒ W 1 �W 2. (5.6)

By substituting (4.18) into the LHS of (5.6), the following definition of work-stretch domi-
nance is obtained in terms of roster-line resource costs.

fW(W 1)+ max
W 2:W 2∪W 2∈R̂

∑
θ∈ΘR

(
gθR(T θ

W 1∪W 2)−gθR(T θ
W 2∪W 2)

)
≤ fW(W 2) =⇒ W 1 �W 2. (5.7)

Explicit calculation of the LHS of (5.7) is complex and computationally expensive. Therefore,
before solving the column generation subproblem, a new dominance cost function, ψθW(TW 1 , TW 2),
is constructed corresponding to each roster-line resource, θ ∈ ΘR, such that:

ψθW(TW 1 , TW 2) ≥ max
W 2:W 2∪W 2∈R̂

(
gθR(T θ

W 1∪W 2)− gθR(T θ
W 2∪W 2)

)
∀θ ∈ ΘR (5.8)

=⇒
∑
θ∈ΘR

ψθW(TW 1 , TW 2) ≥
∑
θ∈ΘR

max
W 2:W 2∪W 2∈R̂

(
gθR(T θ

W 1∪W 2)− gθR(T θ
W 2∪W 2)

)
(5.9)

≥ max
W 2:W 2∪W 2∈R̂

∑
θ∈ΘR

(
gθR(T θ

W 1∪W 2)− gθR(T θ
W 2∪W 2)

)
(5.10)

Definition 3. Based on (5.7) and (5.10), the following weaker definition for dominance between
any two work-stretches, W 1 and W 2, belonging to the same span can be obtained.

fW(W 1) +
∑
θ∈ΘR

ψθW(TW 1 , TW 2) ≤ fW(W 2) =⇒ W 1 �W 2. (5.11)

In this definition, we can consider the dominance cost function, ψθW(TW 1 , TW 2), to represent
the potential degradation in the quality of the resource vector, TW 1 , compared to the resource
vector, TW 2 . Thus, the obtained dominance definition represents a trade-off between the difference
between the current costs of the two entities and the difference between future potential costs
incurred by differences between the resource vectors.

Enhancement #1: Improving the column generator 71

It is useful to compare the aforementioned definition with the standard definition of dom-
inance applied to work-stretches (consult Definition 1). The standard definition involves two
conditions for dominance—T θW 1 � T θW 2 ∀θ ∈ ΘW and fW(W 1) ≤ fW(W 2). If both these condi-
tions are true, then (5.11) is also true. In this case, the new definition of dominance is observed to
be a relaxation of the standard definition of dominance while preserving the proof of optimality.

However, the dominance definition given by (5.11) can be used to construct dominance cost
functions, ψθW(TW 1 , TW 2), such that W 2 is dominated by W 1 even if T θW 1 6� T θW 2 for any work-
stretch resource, θ ∈ ΘW. For example, if the cost, fW(W 1), of W 1 is significantly less than the
cost, fW(W 2), of W 2, while the resource vector of the former is only slightly worse than that of
the latter, i.e.,

∑
θ∈ΘR

ψθW(TW 1 , TW 2) < fW(W 2)− fW(W 1), then the domination remains valid
under the new definition of dominance.

5.2.1.4 Work-stretch dominance example

In this section, we illustrate the construction of a dominance cost function, ψMCW
W (TW 1 , TW 2),

that satisfies (5.8) for the ‘maximum-number-of-consecutive-weekends-worked’ roster-line re-
source, θ = MCW, corresponding to work-stretches, W 1 and W 2, belonging to the same span.

Each INRC problem includes four weekends which can be worked. Therefore, for a given full
roster-line, R̂ = W 2 ∪ W 2, we can define PW 2∪W 2 = (p1, p2, p3, p4), where pi ∈ {w,−} ∀i ∈
1, 2, 3, 4 represents the weekends that are worked. Here, w denotes a worked weekend and − indi-
cates an unworked weekend. For example, in a full roster-line, W 2 ∪W 2, PW 2∪W 2 = (w,w,−, w)

indicates that 3 weekends were worked in total, with the maximum number of consecutive week-
ends worked being T MCW

W 2∪W 2
= 2.

In order to construct the dominance cost function, ψMCW
W (TW 1 , TW 2), we first identify the

exact cost associated with the MCW resource, gMCW
R (T MCW

W 2∪W 2
), in terms of any given work-

stretch, W 2, and any corresponding feasible extension, W 2, for work-stretch W 2. The resource
cost of the MCW resource is a linear cost, αMCW, for each consecutive weekend worked exceeding
a user-specified upper bound, γMCW ∈ {0, 1, 2, 3}, for each employee, in a given roster-line,
W 2 ∪W 2. This cost is given by:

gMCW
R (T MCW

W 2∪W 2) = αMCW max(T MCW
W 2∪W 2 − γMCW, 0) (5.12)

The complement, (i1, i2), of a span, (i1, i2), of a given work-stretch, W 2, can comprise non-
consecutive days, i.e., (i1, i2) = {1, . . . , n}\{i1, i1+1, . . . , i2}, for some i1 6= 1, i2 6= n. To simplify
subsequent equations, we decompose any extension of the work-stretch, W 2, and its extension,
W 2, into a partial roster-line, R1, and a corresponding extension, R2, to the partial roster-line
R1 ∪W 2, which can be expressed as follows.

R̂ = W 2 ∪W 2 = R1 ∪W 2 ∪R2 (5.13)

where R1 belongs to the span, (1, i1 − 1), and R2 belongs to the span, (i2 + 1, n). Both R1 and
R2 possess spans with consecutive days.

72 Proving optimality to all INRC problems

T WW
W 1 T WO

W 1 T WW
W 2 T WO

W 2 T MCW
R1∪W 1∪R2 T MCW

R1∪W 2∪R2

2 0 1 1 4 2

The worked weekends in a given work-stretch, W 1, and the corresponding work-stretch ex-
tension, R1, can be denoted in a manner similar to that for R̂. For example, for PR1∪W 1∪R2 =

(w,−, w, w), we might have PR1 = (w,−), PW 1 = (w), and PR2 = (w).
The objective is to identify a dominance cost function, ψMCW

W (TW 1 , TW 2), corresponding to
each γMCW ∈ {0, 1, 2, 3} that satisfies (5.8) for all 325 legal combinations of PW 1 , PW 2 , PR1 , and
PR2 such that |PR1 |+ |PW 1 |+ |PR2 | = 4, |PW 1 | = |PW 2 |. As the roster-line resource, θ = MCW,
is only affected by two work-stretch resources—the “weekends worked” work-stretch resource,
θ = WW, and the “weekends off” work-stretch resource, θ = WO, the dominance cost function
can be expressed as follows. ψMCW

W (TW 1 , TW 2) = ψMCW
W (T WW

W 1 , T WO
W 1 , T WW

W 2 , T WO
W 2).

As an example, let us consider one possible combination—PW 1 = (w,w), PW 2 = (w,−), and
an extension comprising PR1 = (w) and PR2 = (w). First, the values of the resource variables
corresponding to worked and unworked weekends over the two work-stretches, W 1 and W 2, are
calculated. Further, the values of the maximum consecutive weekends resource variable over the
two full roster-lines, R1 ∪W 1 ∪R2 and R1 ∪W 2 ∪R2, created from those work-stretches are also
calculated.

So, in this example,

gMCW
R (T MCW

W 1∪W 2)− gMCW
R (T MCW

W 2∪W 2) = αMCW max(4− γMCW, 0)− αMCW max(2− γMCW, 0)

=

2αMCW, γMCW ∈ {0, 1}
αMCW(4− γMCW) γMCW ∈ {2, 3}

≤

2αMCW, γMCW ∈ {0, 1, 2}
αMCW, γMCW = 3

This yields the value of gMCW
R (T MCW

W 1∪W 2
)− gMCW

R (T MCW
W 2∪W 2

) for the combination considered.
Using complete enumeration on all 1300 legal combinations ofW 1,W 2, PR1 , PR2 , and γMCW,

establishes that the dominance cost function

ψMCW
W (TW 1 , TW 2) =

αMCW(4− γMCW), T WO
W 1 = 0 and T WO

W 2 > 0

αMCW(max(T WW
W 1 − T WW

W 2 , 0)), otherwise
(5.14)

always satisfies (5.8) corresponding to each upper bound, γMCW.
Under standard work-stretch dominance rules, W 1 can be dominated by W 2 only if T WW

W 1 ≤
T WW
W 2 and T WO

W 1 ≥ T WO
W 2 . However, under the newly proposed definition of dominance, if T WW

W 1 >

T WW
W 2 or T WO

W 1 < T WO
W 2 , the domination may still hold if the cost, fW(W 1), of W 1 is sufficiently

lower than the cost, fW(W 2), of W 2.

Enhancement #1: Improving the column generator 73

Careful consideration of each of the resources yields a dominance cost function,
ψθW(TW 1 , TW 2), corresponding to each resource, θ ∈ ΘW, that is an improvement on its counter-
part under standard dominance functions. This enables the domination of a greater number of
entities.

5.2.1.5 Roster-line dominance

In this section, we explain how our dominance definition can apply to partial roster-lines. As
with work-stretches, we start by putting τ1 = R1 ∈ R and τ2 = R2 ∈ R in (5.4). This gives
us the following dominance definition for any two roster-lines, R1 = (WR1

1 ,WR1

2 , . . . ,WR1

|R1|) and

R2 = (WR2

1 ,WR2

2 , . . . ,WR2

|R2|) on the same span:

max
R2:R2∪R2∈R̂

(
fR(R1 ∪R2)− fR(R2 ∪R2)

)
≤ 0 =⇒ R1 � R2. (5.15)

where R2 is an extension of roster-line R2.
Substituting our roster-line reduced cost definition from (4.11) into the LHS of (5.15) gives

the following roster-line dominance definition:

max
R2:R2∪R2∈R̂

(∑
W∈R1

fW(W) + gR(R1 ∪R2)−
∑
W∈R2

fW(W)− gR(R2 ∪R2)

)
≤ 0

(5.16)

⇐⇒ max
R2:R2∪R2∈R̂

(
[gR(R1 ∪R2)− gR(R1)]− [gR(R2 ∪R2)− gR(R2)]

+
∑
W∈R1

fW(W)−
∑
W∈R2

fW(W) + gR(R1)− gR(R2)

)
≤ 0

(5.17)

⇐⇒ fR(R1)+ max
R2:R2∪R2∈R̂

(
[gR(R1∪R2)−gR(R1)]− [gR(R2∪R2)−gR(R2)]

)
≤ fR(R2) (5.18)

Substituting (4.18) into the LHS of (5.18), we get our roster-line dominance definition in
terms of resource costs:

fR(R1) + max
R2:R2∪R2∈R̂

∑
θ∈ΘR

(
[gθR(T θ

R1∪R2)− gθR(T θR1)]− [gθR(T θ
R2∪R2)− gθR(T θR2)]

)
≤ fR(R2)

(5.19)

As with work-stretches resources, we construct a new function ψθR(TR1 , TR2), for each roster-
line resource θ ∈ ΘR, such that:

ψθR(TR1 , TR2) ≥ max
R2:R2∪R2∈R̂

(
[gθR(T θ

R1∪R2)− gθR(T θR1)]− [gθR(T θ
R2∪R2)− gθR(T θR2)]

)
(5.20)

74 Proving optimality to all INRC problems

Definition 4. From (5.19) and (5.20), we can deduce the following weaker dominance definition
for any two roster-lines, R1 and R2 on the same span:

fR(R2) +
∑
θ∈ΘR

ψθR(TR1 , TR2) ≤ fR(R1) =⇒ R1 � R2. (5.21)

For our INRC problem instances, we found ψθR(TR1 , TR2) for each resource θ ∈ ΘR either
through enumeration as shown in §5.2.1.4 or through exploiting the structure of the resource’s
cost. For example, the pattern counter resource θ = P2 has the following property:

gP2R (T P2
R1∪R2) = gP2R (T P2

R1) + gP2R (T P2
R2) (5.22)

where T P2
R2

represents the number of times there is a day off on the Friday immediately before a
worked weekend in R2. Therefore, through substitution into (5.20), we can identify the following
function:

ψP2
R (TR1 , TR2) = 0.

5.2.1.6 On-stretch dominance

In this section, we explain how our dominance definition can apply to on-stretches. As with
roster-line and work-stretch dominance, we start by putting τ1 = O1 ∈ O and τ2 = O2 ∈ O in
(5.4). This gives us the following dominance definition for any two on-stretches, O1 and O2 on
the same span:

max
O2:O2∪W 2∈R̂

(
fR(O1 ∪O2)− fR(O2 ∪O2)

)
≤ 0 =⇒ O1 � O2. (5.23)

where O2 is an extension of on-stretch O2.
Unlike roster-lines and work-stretches, on-stretches can be a component of two different

entities in our model: a longer on-stretch or a work-stretch; refer to (4.12) and (4.14). Thus,
on-stretches have two roles in which they can be dominated. They can be dominated as a full
on-stretch, Ô, which builds into a work-stretch, i.e., W = Ô∪F . They can also be dominated as
a partial on-stretch, O, which builds into a full on-stretch which then builds into a work-stretch,
i.e., W = O ∪ O3 ∪ F where O3 is a set of shifts on a consecutive span and O ∪ O3 is a full
on-stretch.

Firstly, we describe dominance between two on-stretches with the assumption that they are
partial on-stretches. As with work-stretches, for a given partial on-stretch O2, any extension of
that on-stretch, O2, can have a non-consecutive span. Therefore, we decompose a given partial
on-stretch O2 and on-stretch extension O2 into consecutive components as follows:

R̂ = O2 ∪O2 = R1 ∪O2 ∪O3 ∪ F ∪R2. (5.24)

where O2 ∪O3 is a full on-stretch, O2 ∪O3 ∪F is a work-stretch, R1 is a partial roster-line, and
R2 is an extension of partial roster-line R1 ∪O2 ∪O3 ∪ F .

Enhancement #1: Improving the column generator 75

Substituting our roster-line reduced cost definition from (4.11) and our decomposition of
on-stretch extension O2 shown in (5.24) into the LHS of (5.23) gives the on-stretch dominance
condition:

max
R1,O3,F,R2:R1∪O2∪O3∪F∪R2∈R̂

(
fW(O1 ∪O3 ∪ F)− fW(O2 ∪O3 ∪ F)

+ gR(R1 ∪O1 ∪O3 ∪ F ∪R2)

− gR(R1 ∪O2 ∪O3 ∪ F ∪R2)

)
≤ 0. (5.25)

Further substitution of our work-stretch reduced cost definition from (4.10) into (5.25) gives:

max
R1,O3,F,R2:R1∪O2∪O3∪F∪R2∈R̂

(
fO(O1 ∪O3) + gW(O1 ∪O3 ∪ F)− fO(O2 ∪O3)

− gW(O2 ∪O3 ∪ F) + gR(R1 ∪O1 ∪O3 ∪ F ∪R2)

− gR(R1 ∪O2 ∪O3 ∪ F ∪R2)

)
≤ 0. (5.26)

Lastly substitution of our on-stretch reduced cost definition from (4.9) into (5.26) gives:

max
R1,O3,F,R2:R1∪O2∪O3∪F∪R2∈R̂

(∑
S∈O1

fS(S) + gO(O1)−
∑
S∈O2

fS(S)− gO(O2)

+ [gO(O1 ∪O3)− gO(O1)]− [gO(O2 ∪O3)− gO(O2)]

+ gW(O1 ∪O3 ∪ F)− gW(O2 ∪O3 ∪ F)

+ gR(R1 ∪O1 ∪O3 ∪ F ∪R2)

− gR(R1 ∪O2 ∪O3 ∪ F ∪R2)

)
≤ 0. (5.27)

⇐⇒ fO(O1) + max
R1,O3,F,R2:R1∪O2∪O3∪F∪R2∈R̂

(
[gO(O1 ∪O3)− gO(O1)] (5.28)

− [gO(O2 ∪O3)− gO(O2)]

+ gW(O1 ∪O3 ∪ F)− gW(O2 ∪O3 ∪ F)

+ gR(R1 ∪O1 ∪O3 ∪ F ∪R2)

− gR(R1 ∪O2 ∪O3 ∪ F ∪R2)

)
≤ fO(O2).

(5.29)

By following a process similar to partial roster-line and work-stretch dominance (See Sections
5.2.1.5 and 5.2.1.3), we find the following on-stretch dominance definition:

Definition 5. We define dominance for two partial on-stretches, O1 and O2, on the same span,
in terms of a function ψθO(TO1 , TO2) for each resource θ, i.e.,

fO(O1) +
∑

θ∈ΘR∪ΘW∪ΘO

ψθO(TO1 , TO2) ≤ fO(O2) =⇒ O1 � O2. (5.30)

76 Proving optimality to all INRC problems

where we construct each function ψθO(TO1 , TO2) so that it satisfies one of the following equations,
depending on whether θ is an on-stretch, work-stretch or roster-line resource:

ψθO(TO1 , TO2) ≥ max
O3:O2∪O3∈O

[
gθO(T θO1∪O3)− gθO(T θO1)

]
−
[
gθO(T θO2∪O3)− gθO(T θO2)

]
∀θ ∈ ΘO

ψθO(TO1 , TO2) ≥ max
O3,F :O2∪O3∪F∈W

gθW(T θO1∪O3∪F)− gθW(T θO2∪O3∪F) ∀θ ∈ ΘW

ψθO(TO1 , TO2) ≥ max
R1,O3,F,R2:R1∪O2∪O3∪F∪R2∈R̂

gθR(T θR1∪O1∪O3∪F∪R2)− gθR(T θR1∪O2∪O3∪F∪R2) ∀θ ∈ ΘR

The dominance definition for any two full on-stretches on the same span is the same as
Definition 5 but with an empty on-stretch extension i.e., O3 = ∅. Thus, O1∪O3 = O1, O2∪O3 =

O2 and therefore ψθO(TO1 , TO2) = 0 for all θ ∈ ΘO.

5.2.1.7 Implementation recommendations

Because dominance cost functions involve multiple resources at once and can be complicated,
it can be easy to make mistakes when creating these functions. Thus, we would recommend
starting with traditional resource dominance and transitioning over to dominance cost functions
for one resource at a time. If we use both dominance methods simultaneously, we first check for
traditional resource dominance and then evaluate our dominance cost functions. Sometimes, just
changing one or two resources to dominance cost functions can significantly differ the time taken
to solve the column generation subproblem.

Each iteration of our column generation subproblem solves to proven optimality with either
method of dominance. Thus, we can compare our column generation subproblem with only
traditional dominance to one with dominance cost functions to ensure they are solving identically
and our dominance cost functions are correct.

5.2.2 Arbitrary shift preferences

Symmetry was a significant feature of the INRC problem instances. Because of the identical
or near-identical formulations of employees working the same contract, entire roster-lines can be
swapped between employees with no change to the roster solution’s cost. Furthermore, because of
the sparseness of both shift preferences and penalised shift sequences, many shift swaps between
employees are possible, with no change to the cost of the roster solution. Vanderbeck (2009)
reports that when multiple columns have identical formulations, branching on variables in the
compact space (in our case, employee-shift pairs) can induce symmetries, which make column
generation problems challenging to solve.

Even when there is no gap between the optimal roster solution and the solution to the root
node of the branch-and-price search tree, problem instances can be challenging to solve. This is
because of the large number of optimal integer solutions. A solution to any node in the branch-
and-price search tree can be a convex combination of many optimal roster solutions with the
same objective function value, so the solution is rarely integer unless many of the shifts have
already been branched on.

Enhancement #2: Improving the branching rules 77

To improve each node’s natural integrality, we attempt to ‘tilt the objective towards a single
integer roster solution by making each roster’s cost unique. If each roster has a unique cost, then
there is one optimal integer solution to each problem instance. We propose making this change
by adding a small modification δeS ≥ 0 to the cost of each shift S for a given employee e. If the
sum of all of these shift cost modifications is less than one, then any optimal roster solution to
our modified formulation is also optimal for our original formulation as all costs in the original
formulation are integer. Ideally, we create these modifications so that the sum of any combination
of them is unique, so we know that any roster solution is also unique. However, according to the
result of Erdos (1957), to define a set of unique shift modifications with a unique sum for any
subset and a total sum of less than 1, we would need at least 268 significant decimal digits.
Therefore, it is not feasible within the precision of CLP.

We instead find a set of unique random values for our shift cost modifications with a sum of
less than one, so our roster solutions are mostly unique. To find this set of values, we find a vector
of integers, (1, 2, . . . , |E| × |S|) where |E| is the number of employees and |S| is the number of
shifts and divide each value in the vector by the total length of the vector, |E|× |S|. We can then
randomly choose a value from this vector without replacement for each shift cost modification
δeS .

Mason (2001) uses a similar objective function perturbation and coins it elastic constraint
branching. The addition of this improvement means we could solve many of the INRC problem
instances with zero branching.

5.2.3 Results after improving the column generator

Based on the first set of improvements to Genie++, we optimally solved all but seven of the INRC
problems within the prescribed four-hour time window (medium late 01, long late 03, medium
hidden 01, medium hidden 02, medium hidden 04, and medium hidden 05 remained unsolved).
Further, we identified better lower bounds than those available in the literature corresponding
to nine problems. We provide a detailed analysis of the lower and upper bounds achieved for the
eleven most INRC challenging instances in Table 5.1 where either the optimal lower or upper
bound had not been reported in existing literature. Based on these results, it is evident that the
medium hidden category contains the hardest problem instances.

One of the fundamental problems that persisted despite the improvements was that branching
rarely improved the lower bound by more than merely the sum of the shift-cost perturbations. To
optimally solve the remaining problems, we developed better branching techniques to increase
the lower bounds in the branch-and-bound trees more efficiently.

5.3 Enhancement #2: Improving the branching rules

As described in §4.5, our branching rule involves using constraint branching, i.e., branching on
a given employee working or not working a certain shift. However, using standard constraint
branching has been ineffective at driving up the lower bounds of any of our problem instances

78 Proving optimality to all INRC problems

Obj./Bounds

Problem
medium long

late hidden late hidden
01 01 02 03 04 05 03 01 02 03 04

Genie++ LB 156 96 215 34 76 118 219 n/a n/a n/a n/a
Best Known LB 156 89 197 28 73 91 219 341 86 36 19
LB (after Enh. #1) 156 96 215 34 76 118 219 345 89 38 22
UB (after Enh. #1) 157 139 228 34 80 120 220 346 89 38 22
Best Known UB 157 111 229 34 78 119 220 346 89 38 22
Genie++ UB n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
Proof 7 7 7 3 7 7 7 7 3 3 3

Table 5.1: Results corresponding to the 11 problems, where either the optimal lower or
upper bound had not been reported in existing literature. These results are obtained via
Genie++, before and after enhancement #1. A 3 in the Proof column indicates that the
optimality of the solutions obtained for this problem has been established using Genie++
with enhancements, i.e. the highest lower bound (LB) = the objective of the lowest cost
roster solution (UB) found. All of these results were identified within the prescribed
four-hour time limit. “n/a” indicates a result could not be found within four hours.

for which there is a gap between the best-known roster solution and the solution to the column
generation linear relaxation. This ineffectiveness is most likely due to employees that are working
the same contract having near identical formulations and near symmetry between different shift
types; see §5.2.2 for more details. Therefore, when branching on an employee not working a
specific shift (0-branching), another shift can often be assigned to that employee with no change
to the overall roster solution’s cost. Since 0-branching is ineffective at raising the lower bound,
we want to change to a more effective branching rule.

Thus, our second enhancement to Genie++ is to use a more effective branching rule that
circumvents the natural symmetry of this problem.

5.3.1 Aggregate resource branching

There has been some discussion on branching with regards to the staff rostering problem’s rules
in the literature for using column generation to solve staff rostering problems. This includes
branching on the minimum number of consecutive shifts of the same type by Maenhout and
Vanhoucke (2010a), branching on the total number of shifts which cover different periods by
Mehrotra et al. (2000) and branching on whether one employee must work an activity before
another employee by Beliën and Demeulemeester (2006). Please see §3.2.6 for more details.
However, no one is branching on the values of resources within a given roster-line in a generic
way.

Our first branching rule is an aggregate resource branch. An aggregate resource branch
involves branching on the sum of the corresponding values of a given roster-line resource, θ ∈

Enhancement #2: Improving the branching rules 79

ΘR, over all full roster-lines, R̂er, in the roster solution. Branching on the total number of non-
symmetrical weekends (i.e., only one shift is worked or two shifts of different types are worked)
worked in the roster solution by any employee serves as an example. Roster-line resources exert
a direct effect on the roster’s cost, increasing the effectiveness of branching on the sum of roster-
line resources in increasing the lower bound. Further, branches over groups of employees are less
affected by the symmetry between employees.

The first resource branching method involves the enforcement of an upper bound, Bθ-UB, and
a lower bound, Bθ-LB, on the total sum of the values of resource variables, T θ

R̂er
, corresponding

to each roster-line resource, θ ∈ ΘClinear

R = {θ ∈ ΘR|gθR ≡ C linear}, with a linear cost over each
full roster-line, R̂er, in the roster solution. In other words, the following constraints are added to
the RMP:

Bθ-LB ≤
∑
e∈E

∑
r∈Re

T θ
R̂er
λre ≤ Bθ-UB ∀θ ∈ ΘClinear

R [πθ] (5.31)

where πθ denotes the dual associated with the resource, θ. We choose to branch on roster-line
resources with linear costs, ΘClinear

R , because the values of the corresponding resource variables
directly affect the overall cost of the roster (please consult §5.3.1.1 for further details).

Our second branching rule is similar to the first, but is only applicable to full roster-lines in
the roster solution that are worked by employees Ec working a given contract, c. In other words,
the following constraints are added to the RMP:

Bθ-LBc ≤
∑
e∈Ec

∑
r∈Re

T θRrλre ≤ Bθ-UBc ∀θ ∈ ΘClinear

R , ∀c ∈ C [πθc] (5.32)

where πθc denotes the dual associated with θ for employees working the contract, c.
The reduced cost calculations within the column generation subproblem also need to be

altered to account for the differences in the restricted master problem. The new reduced cost,
associated with the resource, θ, for employee e working the contract, c, is given by gθR(T θR) =

(αθ − πθ − πθc)T θR .
These branching methods are equivalent to the addition of auxiliary original variables to

the proposed formulation to represent the value of each roster-line resource for each employee
and branching on the sum of those variables. Please consult Desrosiers and Lübbecke (2011) for
further details. As the values of all resource variables are always integral, i.e., T θRr ∈ Z ∀θ ∈
Θτ , e ∈ E , r ∈ Re, these branches are valid corresponding to any resource.

5.3.1.1 Branching on resources with other cost functions

Branching on the sum of the values of resources with the cost functions, CLBUB or CUB can
be ineffective. This is because resources with values that are not outside the bounds for any
roster-line can exhibit sums similar to those of resources where half of the roster-lines have
values exceeding the upper bounds and half of the roster-lines have values lower than the lower
bounds. An example of this phenomenon concerning the workdays resource, T DaysOn

R , is depicted
in Figure 5.2. Therefore, the sum of the values of these resource variables does not exhibit

80 Proving optimality to all INRC problems

0 30
Employee e

0

10

20

30

T
D

ay
sO

n
R

0 30
Employee e

0

10

20

30

T
D

ay
sO

n
R

Figure 5.2: The value of the workdays resource, T DaysOn
R , corresponding to each employee

in two different roster solutions. T DaysOn
R represents the number of days worked by an

employee over the roster-line and exhibits a cost function, CLBUB. Blue lines indicate the
lower bound, γθ = 10, and the upper bound, δθ = 20, for the considered resource’s cost
function. The sum of this resource variable’s values over all employees is similar for each
example roster solution. However, the sum of the costs generated by this resource is high
for the roster solution on the left and zero for the roster solution on the right.

consistent information about the degree of influence exerted by the resource on the cost of the
roster solution.

To branch on resource variables with the cost functions, CLBUB or CUB, we add a new
resource variable, T θ-surplusR , representing the amount by which the soft upper bound, γθ, is
exceeded by resource variable T θR , and, if relevant, a new resource variable, T θ-slackR , is also added
to represent the amount by which resource variable T θR falls short of the soft lower bound, δθ.
For example, the original cost of the roster-line workdays resource variable, T DaysOn

R , is CLBUB.
In other words,

gDaysOn
R (T DaysOn

R) =

αDaysOn(T DaysOn

R − γDaysOn), if T DaysOn
R > γDaysOn

βDaysOn(δDaysOn − T DaysOn
R), if T DaysOn

R < δDaysOn

0, otherwise

.

This cost is altered to C∅, i.e., gDaysOn
R (T DaysOn

R) = 0, and is instead represented by the costs of
two new resources—T DaysOn-surplus

R with the cost function,

gDaysOn-surplus
R (T DaysOn-surplus

R) = αDaysOnT DaysOn-surplus
R

and REF,
EDaysOn-surplus
R (TR, TW) = max[T DaysOn

R + T DaysOn
W − γDaysOn, 0]

and T DaysOn-slack
R with the cost function,

gDaysOn-slack
R (T DaysOn-slack

R) = βDaysOnT DaysOn-slack
R

Enhancement #2: Improving the branching rules 81

and REF,
EDaysOn-slack
R (TR, TW) = max[δDaysOn − T DaysOn

R − T DaysOn
W , 0].

5.3.1.2 Branching on on-stretch and work-stretch resources

To branch on work-stretch and on-stretch resource variables, we must track these resource vari-
ables at the roster-line level. To track an on-stretch resource, θ, at the work-stretch level, we
track its value using a new work-stretch resource variable, T θ-trackerW , with the REF,

T θ-trackerW = Eθ-tracker
W (TO, TF) = T θO .

To track a work-stretch resource, θ, at the roster-line level, we simply sum the values of
the resources corresponding to each constituent work-stretch using a new roster-line resource
variable, T θ-trackerR , with the REF,

T θ-trackerR′ = Eθ-tracker
R (TR, TW) = T θ-trackerR + T θW

where T θ-trackerR is used to track the work-stretch resource, θ, at the roster-line level. This enables
branching on the resource variable, T θ-trackerR .

5.3.1.3 Selection method for resource branching

We chose to select the most fractional candidate to branch on in each case. The most fractional
value x in a set X is given by:

most fractional
x∈X

(x) = min
x∈X

(abs(0.5− x− bxc))

where the function abs() gives the absolute value. If we branch over all roster-lines, the up branch
is given by

Bθ-UB =

⌊
most fractional

θ∈ΘR

∑
e∈E

∑
r∈Re

T θ
R̂er
λre

⌋
(5.33)

and the down branch is given by

Bθ-LB =

⌈
most fractional

θ∈ΘR

∑
e∈E

∑
r∈Re

T θ
R̂er
λre

⌉
. (5.34)

If we branch over the roster-lines within a contract, the up branch is given by

Bθ-UBc =

⌊
most fractional

θ∈ΘR,c∈C

∑
e∈Ec

∑
r∈Re

T θ
R̂er
λre

⌋
(5.35)

and the down branch is given by

Bθ-LBc =

⌈
most fractional

θ∈ΘR,c∈C

∑
e∈Ec

∑
r∈Re

T θ
R̂er
λre

⌉
. (5.36)

Branching on the aggregate sum of resource only does not guarantee integrality, and thus,
we may also need to use (the less effective) constraint branches to reach optimal solutions.

82 Proving optimality to all INRC problems

5.3.2 Aggregate demand branching

Our third branching rule is an aggregate demand branch. Aggregate demand branching is another
method to circumvent the symmetry of the INRC problems. It involves branching on the set of
aggregate demand variables, zcD, which is defined as the set of employees under each contract,
c ∈ C, working each demand, D ∈ D. These variables are known as aggregate original variables.
Please consult Desrosiers and Lübbecke (2011) for further details.

To add aggregate demand variables to the proposed RMP, we divide the original demand
constraints (consult (4.3)) into two different constraint sets. The first constraint set defines the
aggregate demand variables, zcD. In other words,∑

e∈Ec

∑
r∈Re

areDλ
r
e = zcD ∀c ∈ C ∀D ∈ D [πcD]. (4.3’a)

where πcD denotes the dual corresponding to each of the constraints.
The second constraint set ensures the fulfilment of the each demand, D ∈ D over all employ-

ees. In other words, ∑
c∈C

zcD = bD ∀D ∈ D. (4.3’b)

We also need to modify the calculation of shift duals (see 4.7). When using aggregate demand
branching, the shift duals need to be calculated through the following equation:

πS =
∑
D∈DSe

πcD (5.37)

where columns corresponding to each employee’s working contract, c ∈ C, are generated.
We branch on each aggregate demand variable, zcD, by adding the following additional

constraint set to the RMP.

BLower
cD ≤ zcD ≤ BUpper

cD ∀c ∈ C ∀S ∈ S (5.38)

where BLower
cD and BUpper

cD denote the lower and upper bounds for the aggregate demand variables.
These branches remain unaffected by the symmetry of employees under the same contract.

As with aggregate resource branching, we chose to select the most fractional candidate to
branch on in each case. The up branch involves setting upper bound BUpper

cD to be the floor of
the most fractional aggregate demand variable, i.e.,

BUpper
cD =

⌊
most fractional

D∈D,c∈C
zcD

⌋
(5.39)

and the down branch involves setting lower bound BLower
cD to be the ceiling of the most fractional

aggregate demand variable, i.e.,

BLower
cD =

⌈
most fractional

D∈D,c∈C
zcD

⌉
(5.40)

Branching on aggregate demand branches only does not guarantee integrality, and thus, we
may also need to use (the less effective) constraint branches to reach optimal solutions.

Enhancement #2: Improving the branching rules 83

Algorithm branching order selection strategy search strategy
lower bound search #1 order #1 most fractional best first
lower bound search #2 order #2 most fractional best first
upper bound search #1 order #1 least fractional LDS
upper bound search #2 order #2 least fractional LDS

Table 5.2

5.3.3 Priority first shift branching

The last branching technique we used to improve the lower bounds of some INRC problem in-
stances is priority first shift branching. With priority first shift branching we divide up employee-
shift pairs into two different set of pairs: priority employee-shift pairs, i.e., (e, S) where shift
S ∈ Ŝ and Ŝ is the set of priority shifts, and non-priority employee-shift pairs, i.e., (e, S) where
shift S ∈ S \ Ŝ.

In the case of INRC, the set of priority shifts is the set of head nurse shifts, i.e.,

Ŝ = (S ∈ S|T ShiftType
S = head nurse) (5.41)

where T ShiftType
S is the shift type resource variable for shift S. Experimentally, we found that

branches on head nurse shifts have a larger effect on the lower bound than branches on regular
shifts.

Branching on priority shifts only does not guarantee integrality, and thus, we may also need
to branch on non-priority employee-shift pairs to reach optimal solutions.

5.3.4 Overall branching rules

As discussed so far in §5.3, we have implemented multiple different branching rules. We have
used two algorithms for this set of tests for finding lower bounds and two algorithms for finding
high-quality roster solutions. Each algorithm has a separate order of branching rules, selection
strategy within each branching rule and branch-and-bound tree search strategy. A summary of
each algorithm is provided in Table 5.2. For more details on most fractional branching, least
fractional branching, best first search and LDS, refer to §4.5.

We had two different orders in which we prioritise different branching rules. Order #1 is as
follows:

1. Aggregate resources (see §5.3.1)

2. Priority shift-employee pairs (see §5.3.3)

3. Aggregate demands (see §5.3.2)

4. Non-priority shift-employee pairs (see §4.5)

84 Proving optimality to all INRC problems

We have ordered these branching rules by the number of possible branches they can produce.
As the first three branching rules do not guarantee integrality, if we cannot find a fractional
candidate within the first branching rule, then we use the second branching rule and so forth.
Order #2 is as follows:

1. Aggregate resources (see §5.3.1)

2. Aggregate demands (see §5.3.2)

3. Priority shift-employee pairs (see §5.3.3)

4. Non-priority shift-employee pairs (see §4.5)

We ran all four algorithms in parallel for each INRC problem instance until either the time
limit was reached or the best lower bound found was equal to the highest quality roster solution.

5.3.5 Results after improving the branching rules

Table 5.3 presents the results obtained by resolving the remaining unsolved problems using the
aforementioned improved branching techniques. Using the improved branching strategies, we
were able to identify optimal lower bounds in all problems. Their optimality follows from their
equality with the objective functions of the best roster solutions obtained subsequently (see
Table 5.4).

We increased the lower bound above the root node solution in five problem instances. Further,
we identified higher quality roster solutions for all five medium hidden instances than had been
solved without the improved branching rules.

5.4 Enhancement #3: Shift aggregation

Our third enhancement to Genie++ is to aggregate multiple shift types into a single shift type.
This aggregation accelerates the lower bounds’ improvement and leads to the production of
higher quality integer roster solutions.

By tracking both the non-integer and integer roster solutions produced within the proposed
branch-and-bound tree, we concluded that there were almost zero undesirable shift sequence pat-
terns or non-identical shift weekends. This observation led to the hypothesis that differentiation
between shift types did not significantly affect the solution quality.

Therefore, we removed the on-stretch resources related to different shift types from the
column generation subproblem. These on-stretch resources include:

• The eight on-stretch shift sequence pattern resources, T Pi
O ∀i ∈ (1, 2, . . . , 8)

• The identical shift weekend resource, T ISW
O

Please see §4.3.1 for more details about these resources.
We also aggregated the shift types in both the RMP and the column generation subproblem

so that we are only concerned with which days the employees are working and not which shifts

Enhancement #3: Shift aggregation 85

Obj./Bounds

Problem
medium long

late hidden late hidden
01 01 02 03 04 05 03 01 02 03 04

Genie++ LB 156 96 215 34 76 118 219 n/a n/a n/a n/a
Best Known LB 156 89 197 28 73 91 219 341 86 36 19
LB (after Enh. #1) 156 96 215 34 76 118 219 345 89 38 22
LB (after Enh. #2) 157 111 219 - 78 118 220 346 - - -
UB (after Enh. #2) 157 111 224 - 78 119 220 346 - - -
UB (after Enh. #1) 157 139 228 34 80 120 220 346 89 38 22
Best Known UB 157 111 229 34 78 119 220 346 89 38 22
Genie++ UB n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
Proof 3 3 7 3 3 7 3 3 3 3 3

Table 5.3: Results corresponding to the seven problems remaining unsolved after En-
hancement #1. These results are obtained via Genie++, equipped with all the afore-
mentioned enhancements, using the proposed four tree-searching algorithms. As in Table
5.1, all of these results were identified within the prescribed four-hour time limit. “n/a”
indicates a result could not be found within four hours.

they are working on those days. We removed the early shifts, day shifts, late shifts and night shifts
from our set of shifts, S, and replaced them with a single shift for each day, which we refer to
as a “Regular shift”. The one shift type we found that we could not remove without significantly
changing the quality of the roster solutions produced is the head nurse shift. Therefore, our new
shift aggregation formulation has regular shifts and head nurse shifts. We calculated the demand
for each regular shift each day by summing up the demands of the removed shifts.

We demonstrate how shifts were aggregated using the “medium hidden 04” problem instance.
This instance has the following shifts with respective demands (on the left) on a Wednesday that
we aggregated as shown (on the right):

• Early shift: demand 6

• Late shift: demand 6

• Day shift: demand 3

• Night shift: demand 4

• Regular shift: demand 19

• Head nurse shift: demand 1 • Head nurse shift: demand 1

As we are only removing potential roster-line costs and relaxing the demand constraints
in our RMP, our shift aggregation technique is a relaxation of the original formulation. Thus,
the cost of a given roster solution in this shift aggregation formulation is always less than that
roster solution’s cost in the full formulation. Therefore, the lower bound for the shift aggregation
formulation is still a valid lower bound for the original formulation.

86 Proving optimality to all INRC problems

We used the integer roster solutions obtained by solving the problem using the shift ag-
gregation formulation mentioned above to identify integer roster solutions valid for the original
formulation. We identified these roster solutions by solving the original formulation using a hard
constraint in the column generator, mandating that all roster solutions be of the same form as
the identified solution to the shift aggregation formulation. For example, suppose the shift ag-
gregation formulation’s identified solution has assigned a particular employee to a regular shift
on a particular day. In that case, constraints are added to the column generator to ensure that
the employee is necessarily assigned an early shift, late shift, day shift, or night shift on that day.
This enabled us to find integer roster solutions valid for the original formulation with the same
cost as the corresponding solution to the proposed shift aggregation formulation in every case.
Therefore, although this relaxation is a heuristic, the lower bounds it produces are provably valid
lower bounds for the original problem and the upper bounds happened to always be valid.

Aggregating shift types provides several benefits over the standard formulation. There are
fewer feasible entities in the column generation subproblem since there are only two shift types in
the shift aggregation formulation. Thus, we can solve the column generation subproblem faster.
Also, as there are fewer demand constraints, the LP size is reduced and takes less time to solve.
Lastly, the algorithm produces more naturally integer solutions because there is less shift-type
symmetry than without the aggregation.

A similar decomposition was used successfully by Valouxis et al. (2012); please see §3.3. The
novel differences are that we do not decompose by week, and we differentiate between normal
shifts and head nurse shifts instead of just days on and days off.

Another heuristic that is likely to significantly improve the solve time would be to aggregate
all employees with the same contract. However, this heuristic would be ineffective in real rosters
as employees usually differ by hard constraints (e.g., different FTEs) as well as history. Since
we had already solved every instance to proven optimality, we did not deem it necessary to
experiment with this heuristic.

5.4.1 Final results

Table 5.4 presents the improved results obtained by executing the proposed shift aggregation
technique or a period of one hour. The optimality of the solutions to all 30 difficult INRC problems
were established within the prescribed four-hour time limit. Further, we identified new solutions,
which have been depicted on the official website: https://nrpcompetition.kuleuven-kulak.
be/instances-results/.

The five most difficult roster solutions in terms of the identification of optimal solutions
exhibit gaps between the root node solution and the optimal roster solution. These are also the
most difficult problems to solve based on heuristics, as evidenced by the identification of new
solutions to these problems in this study several after years their introduction.

Figure 5.3 shows the branch-and-bound tree of our best first search strategy applied to
“long late 03”. With only resource branching and our shift aggregation technique, we can prove

Chapter summary 87

Obj./Bounds

Problem
medium long

late hidden late hidden
01 01 02 03 04 05 03 01 02 03 04

Genie++ LB 156 96 215 34 76 118 219 n/a n/a n/a n/a
Best Known LB 156 89 197 28 73 91 219 341 86 36 19
LB (after Enh. #1) 156 96 215 34 76 118 219 345 89 38 22
LB (after Enh. #2) 157 111 219 - 78 118 220 346 - - -
LB (after Enh. #3) - - 219 - - 118 - - - - -
UB (after Enh. #3) - - 219 - - 118 - - - - -
UB (after Enh. #2) 157 111 224 - 78 119 220 346 - - -
UB (after Enh. #1) 157 139 228 34 80 120 220 346 89 38 22
Best Known UB 157 111 229 34 78 119 220 346 89 38 22
Genie++ UB n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
Proof 3 3 3 3 3 3 3 3 3 3 3

Table 5.4: Results corresponding to the two problems remaining unsolved after Enhance-
ment #2. These results are obtained by Genie++, equipped with all the aforementioned
improvements, using the proposed four tree-searching algorithms. As in Tables 5.1 and
5.3, all of these results were identified within the prescribed four-hour time period. “n/a”
indicates a result could not be found within four hours.

optimality to this problem instance with a small tree; our column generation algorithm did not
require any constraint branches.

5.5 Chapter summary

The results obtained in this chapter establish that we can identify provably optimal solutions
for all 30 of the hardest INRC problems within a reasonable amount of time. We achieved this
using a generic column generation algorithm with novel dominance cost functions, arbitrary shift
preferences, novel branching strategies, and a shift aggregation technique. This study represents
the first successful effort to prove the optimality of solutions to all of the INRC problems.

We have also established that problems that are difficult to solve via column generation
solvers due to their inherent symmetry remain challenging to solve with heuristics. With im-
provements to circumvent the symmetries in the problems, the proposed column generation
algorithm was more effective than standard heuristics in solving these problems.

88 Proving optimality to all INRC problems

218.500000

218.500000

E-1A0<=2

218.500000

E-1A0>=3

218.500000

E-1A3<=32

218.500000

E-1A3>=33

221.000000

E-1A5<=18

219.000000

E-1A5>=19

219.000000

G1A0<=1

219.000000

G1A0>=2

219.000000

E-1A0<=1

219.250000

E-1A0>=2

219.333333

G0A3<=23

219.500000

G0A3>=24

219.500000

G2A3<=8

219.642857

G2A3>=9

218.500000

E-1A0<=1

218.666667

E-1A0>=2

218.500000

E-1A3<=33

218.500000

E-1A3>=34

219.000000

E-1A4<=8

219.000000

E-1A4>=9

219.500000

G2A3<=8

220.800000

G2A3>=9

219.500000

E-1A0<=0

219.222222

E-1A0>=1

219.000000

E-1A0<=0

218.666667

E-1A0>=1

219.000000

E-1A4<=7

219.000000

E-1A4>=8

220.000000

E-1A5<=18

219.500000

E-1A5>=19

219.000000

E-1A3<=34

219.166667

E-1A3>=35

219.000000

G0A3<=25

219.666667

G0A3>=26

221.166667

E-1A5<=18

219.923077

E-1A5>=19

220.000000

E-1A5<=18

219.333333

E-1A5>=19

220.000000

E-1A5<=18

219.333333

E-1A5>=19

220.000000

E-1A5<=18

219.000000

E-1A5>=19

219.000000

G2A0<=0

219.250000

G2A0>=1

219.500000

G2A3<=8

219.642857

G2A3>=9

Figure 5.3: Example branch-and-bound tree for “long late 03.” The integer solution found
is shown in light blue. Bounded nodes are shown with green. Resource branches are shown
with “E-1Ax" where x is the resource index. Contract resource branches are shown with
“GyAx" where y is the contract index and x is the resource index.

Chapter 6

Neighbourhood search strategies
using branch and price

The following two Chapters, Chapters 6 and 7, demonstrate how we can identify high-quality
solutions to the operating theatre ward and maternity wards problems. Using the strategies
outlined in Chapter 5 dramatically increases our chances of finding a proven optimal solution to
a staff rostering problem. However, in more challenging problems such as the maternity wards
problem, our algorithm cannot find a proven optimal solution in a reasonable amount of time.
However, by using the strategies outlined in Chapter 5, we can construct an initial roster solution
that can be improved through neighbourhood search.

Thus, in this chapter, we demonstrate how we can perform neighbourhood search to improve
a sub-optimal integer solution’s quality quickly by using branch and price.

Section 6.1 introduces 14 different neighbourhoods that can be used to search for improve-
ments to incumbent roster solutions. In Sections 6.2-6.3, we demonstrate how we implemented
a subset of these neighbourhoods with our column generation model. In Sections 6.4-6.5, we
perform comprehensive tests to find which neighbourhoods work best with column generation
and how the problem’s difficulty and the initial incumbent solution’s quality impact these neigh-
bourhoods’ effectiveness.

6.1 Neighbourhoods

This section details 14 neighbourhoods that can apply to integer incumbent solutions to staff
rostering problems. The following neighbourhood definitions are not column generation specific.

Firstly, we must define some notation to describe our different neighbourhoods accurately.
With any neighbourhood, we are classifying whether a given candidate roster solution, X, is
similar to an incumbent roster solution, X̂. As these neighbourhoods are not column generation
specific, we define a candidate roster solution in terms of each employee-shift variable’s values,
xeS ∈ X, i.e., xeS = 1 if employee e works shift S and 0 otherwise. We also define an incumbent

89

90 Neighbourhood search strategies using branch and price

roster solution in terms of the values of each employee-shift variable x̂eS ∈ X̂. Lastly, we define
the set of shifts on day d as Sd.

Given some candidate roster X and an incumbent roster X̂, we define a shift modification
δed to employee e’s incumbent roster-line on day d as follows:

δed =

0, xeS = x̂eS ∀S ∈ Sd

1, otherwise
(6.1)

Likewise, we can define an on/off modification δoned , which indicates a modification for an employee
from working a shift on a given day to having a day off and vice versa. The on/off modification
is defined as follows:

δoned =

0,
∑
S∈Sd xeS =

∑
S∈Sd x̂eS

1, otherwise
(6.2)

From these two definitions for roster modifications, we define four aggregate modifications to
an incumbent roster. The first aggregate modification is the aggregate employee modification, δe.
This modification indicates whether there are any changes to the roster-line of employee e ∈ E .
The aggregate employee modification is defined as follows:

δe =

0,
∑
d∈D δed = 0

1, otherwise
(6.3)

The second aggregate modification is the aggregate day modification δd. This modification in-
dicates whether there are any changes to any employee’s activity on a given day, d ∈ D where
D = (1, 2, . . . , n) is the set of all day indices. The aggregate day modification is defined as follows:

δd =

0,
∑
e∈E δed = 0

1, otherwise
(6.4)

The on/off aggregate modifications are identical to the first two aggregate modifications except
instead use the on/off modifications. The aggregate on/off day modification is defined as follows:

δone =

0,
∑
d∈D δ

on
ed = 0

1, otherwise
(6.5)

Lastly, the aggregate on/off employee modification is defined as follows:

δond =

0,
∑
e∈E δ

on
ed = 0

1, otherwise
(6.6)

An example of how this notation can apply to an incumbent solution and a candidate roster
solution is shown in Figure 6.1.

Using the notation above, we define all 14 neighbourhood restrictions that we use for a
rostering problem. Please refer to Table 6.1 for a list of all 14 neighbourhoods. We categorise

Neighbourhoods 91

Sd ded de Sd don
ed don

e

Emp 1 N N N N - - - - N N - - N N - - 0 0 0 0
Emp 2 M M N N - - - - N A - - M M M M 1 1 0 0
Emp 3 M M N N - - - - N A - - N - M M 2 1 1 1
Emp 4 N N N N - - - - N N - - N M - M 2 1 1 1
Emp 5 N N N N - - - - N A - - N M - M 3 1 1 1
Emp 6 N N N N - - - - N A - - N M - M 3 1 1 1

Se ded SdSe ded=11

dd

Se don
ed SdSe dw

ed=4

don
d

Legend M
A
N
-

4 0 4 30 0 0 0

1 10 0 0 0 1 0

Day 5 Day 6 Day 7 Day 8Day 1 Day 2 Day 3 Day 4

1

0 0 0 1 3

0 0 0 1

0 0 0

Change

0 0 0

Day off

Morning Shift
Afternoon Shift

Night shift

Figure 6.1: Example of each modification variable for a given incumbent solution (shown
on the left column of each day) compared to a candidate roster solution (shown on the
right column of each day).

the neighbourhoods into two different types: “maximum changes neighbourhood” and “fixed sub-
roster neighbourhood”. For the maximum changes neighbourhoods, we specify a neighbourhood
function, N(X̂, k), which takes an incumbent roster solution X̂ and a neighbourhood distance
parameter k and modifies the restricted master problem or column generation subproblem ap-
propriately to apply the neighbourhood restrictions. The neighbourhood distance parameter, k,
specifies how many changes can be made to the incumbent roster solution.

We define a fixed sub-roster neighbourhood as one that allows for changes only in some
regions of the problem. For the fixed sub-roster neighbourhoods, we specify a neighbourhood
function, N(X̂, k, j), which takes an incumbent roster solution X̂, a neighbourhood distance
parameter k, and a neighbourhood location parameter j and modifies the column generation
subproblem appropriately to apply the neighbourhood restrictions. The neighbourhood distance
parameter, k, specifies how much of the search space is unfixed, and the neighbourhood location
parameter, j, determines where the search space is unfixed.

We also categorise the neighbourhoods in terms of whether they count shift modifications or
on/off modifications.

It is possible to use any combination of the 14 neighbourhoods simultaneously. For example,
we could use both fixed days neighbourhood, δd = 0 ∀ d 6∈ {3, . . . , 5} ⊆ D and maximum shift
changes per employee neighbourhood,

∑
d δed ≤ 1 ∀ e, which indicates that days three, four, and

five can have modifications, but there can only be one modification per employee’s roster-line.
Within the column generation literature for staff rostering problems, only Legrain et al.

(2020) and Bulog (2011) have used neighbourhood restricted column generation: Legrain et al.
(2020) used fixed employees neighbourhood δe = 0 ∀ e 6∈ {j, . . . , j + k} ⊆ E and Bulog (2011)

92 Neighbourhood search strategies using branch and price

Type Modification Neighbourhood Formula (shorthand*) C.G.
Maximum changes Shift (δed) Maximum shift changes per employee

∑
d δed ≤ k ∀ e 3

neighbourhood Maximum shift changes per day
∑

e δed ≤ k ∀ d 7

Maximum shift changes per roster
∑

e

∑
d δed ≤ k 7

Maximum employee changes
∑

e δe ≤ k 7

Maximum day changes
∑

d δd ≤ k 7

On/off (δoned) Maximum on/off changes per employee
∑

d δ
on
ed ≤ k ∀ e 3

Maximum on/off changes per day
∑

e δ
on
ed ≤ k ∀ d 7

Maximum on/off changes per roster
∑

e

∑
d δ

on
ed ≤ k 7

Maximum employee on/off changes
∑

e δ
on
e ≤ k 7

Maximum day on/off changes
∑

d δ
on
d ≤ k 7

Fixed sub-roster Shift (δed) Fixed days δd = 0 ∀ d 6∈ {j, . . . , j + k} ⊆ D 3

neighbourhood Fixed employee δe = 0 ∀ e 6∈ {j, . . . , j + k} ⊆ E 3

On/off (δoned) Fixed days (on/off) δond = 0 ∀ d 6∈ {j, . . . , j + k} ⊆ D 3

Fixed employees (on/off) δone = 0 ∀ e 6∈ {j, . . . , j + k} ⊆ E 3

Table 6.1: Shows a comprehensive list of the neighbourhood rules we define using our
modification notation. The table shows our two separate neighbourhood types, “max-
imum changes neighbourhood” and “fixed sub-roster neighbourhood.” It also specifies
whether the neighbourhood is defined by counting shift modifications δed or on/off mod-
ifications δoned . Lastly, the “C.G.” column indicates whether the neighbourhood can be
enforced purely within the column generation subproblem. *Note: We give formulas for
each neighbourhood in shorthand.

∑
d indicates

∑
d∈D, and

∑
e indicates

∑
e∈E . Likewise,

∀e indicates ∀e ∈ E and ∀d indicates ∀d ∈ D.

used maximum shift changes per employee neighbourhood
∑
d δed ≤ k ∀ e. However, several

researchers have used one of these 14 neighbourhood restrictions on a standard MIP without
column generation. Rahimian et al. (2017b) used fixed employees neighbourhood δe = 0 ∀ e 6∈
{j, . . . , j+k} ⊆ E ; Santos et al. (2016) used fixed days neighbourhood δd = 0 ∀ d 6∈ {j, . . . , j+k} ⊆
D and fixed days (on/off) neighbourhood δond = 0 ∀ d 6∈ {j, . . . , j + k} ⊆ D; Rahimian et al.
(2017b) used fixed days neighbourhood, fixed employees neighbourhood and maximum roster
modifications neighbourhood

∑
e

∑
d δed ≤ k. Please see §3.2.7 for more details.

In practice, each of these neighbourhoods requires modifying different parts of our branch-
and-price algorithm. The fixed sub-roster neighbourhoods only require modifying the input data
to the column generation subproblem for each employee. These neighbourhoods are the easiest
to implement as we do not need to change the structure of our column generation subproblem or
restricted master problem; see §6.3 for details. The maximum employee changes neighbourhood
only requires adding a single constraint to the restricted master problem and no changes to the
column generator or column generator input. Thus, it is also easy to implement; see §6.2.3. The
maximum shift changes per employee and maximum on/off changes per employee neighbour-
hoods only require adding a single resource to the column generation subproblem to track shift
or on/off changes; see §6.2.1-6.2.2. This resource is easy to add using our generic resource mod-
elling and automatic code generation. The remaining neighbourhoods require modifying both the
restricted master problem and the column generation subproblem and, thus, are more challenging
to implement.

Maximum changes neighbourhood search 93

The majority of time spent solving a column generation instance is spent solving the col-
umn generation subproblem. Thus, we implemented all of the neighbourhoods which modify the
structure of or input to the column generation subproblem; please see Table 6.1 for more details.
We refer to these neighbourhoods as “IP neighbourhood pricing” as we are solving our column
generation subproblem or pricing problem in the neighbourhood of an IP solution. Later, we
extend a subset of these methods in §7.2 to solve the pricing problem in the neighbourhood of
an LP solution, which we refer to as “LP neighbourhood pricing”.

We also implemented the maximum employee changes neighbourhood (
∑
e δe ≤ k) as the

implementation was trivial. In the following sections, we show how these 14 neighbourhoods can
be applied to a column generation framework for maximal effectiveness. We also compare these
neighbourhoods’ effectiveness in detail.

6.2 Maximum changes neighbourhood search

The first type of neighbourhood search we discuss is maximum changes neighbourhood search. As
seen in §6.1, the maximum changes neighbourhoods are defined by a single parameter, k, which
defines the maximum allowed distance from the incumbent roster. Thus, we represent a given
maximum changes neighbourhood with a maximum changes neighbourhood function N(X̂, k)

which applies the maximum changes neighbourhood to either the column generation subproblem
or the RMP as appropriate.

In our experiments, we observed that the time taken to solve our neighbourhood constrained
branch-and-price algorithm is typically exponential with respect to the neighbourhood distance
parameter k; see §6.5.1 for more details. Thus, we first solve with the smallest possible neighbour-
hood distance parameter k = 1 and only increase our neighbourhood distance if our algorithm
did not produce a lower cost roster solution with that neighbourhood distance. We define the
cost fX(X) of a roster solution X as the objective function value of the RMP defined in (4.1),
i.e., fX(X) =

∑
e∈E

∑
r∈Re c

r
eλ
r
e +

∑
D∈D c

−
Dy
−
D +

∑
D∈D c

+
Dy

+
D.

We are essentially implementing a “basic sequential variable neighbourhood descent” proce-
dure as outlined by Hansen et al. (2016) for each maximum changes neighbourhood.

For each maximum changes neighbourhood we discuss, there is a maximum possible neigh-
bourhood distance kmax. For example, the maximum shift changes neighbourhood has kmax = n

where n is the total number of days. If the neighbourhood distance parameter is equal to its max-
imum value, i.e., k = kmax, then the neighbourhood includes all possible solutions. Thus, each
maximum changes neighbourhood search would find an optimal solution if a sufficient maximum
run time was permitted. Therefore, each variable neighbourhood descent algorithm converges to
global optimality and so is technically not a heuristic. However, in practice, our neighbourhood
restricted branch and price only solves efficiently for the lower values of k.

Our sequential variable neighbourhood descent algorithm is shown in Algorithm 7. We con-
tinue solving our neighbourhood restricted branch-and-price algorithm with a given neighbour-
hood distance parameter k until no improvements to the incumbent roster can be made. The

94 Neighbourhood search strategies using branch and price

neighbourhood distance parameter is then increased by one. To speed up the time taken to find
an integer roster solution with each neighbourhood constraint, we perform a branch-and-price
dive find an integer roster solution. Refer to §4.5 for more details on diving.

For a better understanding of how our variable neighbourhood descent algorithms work, refer
to the graphs in §6.5.1. These graphs show the objective of all solutions to the restricted master
problem and all integer incumbent solutions found over time.

Algorithm 7 Sequential variable neighbourhood descent with maximum changes neigh-
bourhoods
1: procedure VND(X, kmax, N(X̂, k)) . We require an initial incumbent solution,
X, the largest possible value of our neighbourhood distance parameter, kmax and a
maximum changes neighbourhood function N(X̂, k).

2: k ← 1
3: while k ≤ kmax do
4: X̂ ← X
5: APPLY neighbourhood N(X̂, k) to RMP or column generator
6: X ← solution to branch-and-price dive with neighbourhood restrictions
7: if fX(X) < fX(X̂) then
8: X̂ ← X
9: k ← 1

10: else
11: k ← k + 1

12: return X

6.2.1 Maximum shift changes per employee

The first maximum changes neighbourhood search method uses the maximum shift changes per
employee neighbourhood (

∑
d δed ≤ k ∀ e). This neighbourhood limits the number of differences

between each employee’s roster-line in the incumbent solution and that employee’s roster-line
in any new solution produced. In practice, we enforce this neighbourhood purely in the column
generator. If we are generating a roster-line for a given employee, we define the incumbent roster-
line as the roster-line worked by that employee in the incumbent roster solution.

We enforce this neighbourhood in the column generator by adding an additional resource
to the resource vectors for each of the entities within our nested Shortest Path Problem with
Resource Constraints (SPPRC). We denote each of these resources incumbent difference, since
they are a count of the number of days with different activities from the incumbent roster-line.
For a given employee e, the incumbent difference, T Incumbent difference

S , for each shift, S, is one if
this shift is not in employee e’s incumbent roster-line, i.e.,

T Incumbent difference
S =

0, if x̂eS = 1

1, otherwise

Maximum changes neighbourhood search 95

A P - - A A

A A -

1

Incumbent
roster-line:

Work-stretch
entity:

1

Day: 1 2 3 4 5 6

Figure 6.2: In this example, we count the number of incumbent differences for a 3 day
work-stretch entity starting on day 2 in comparison with an incumbent full roster-line.
Here we have an incumbent difference of two in the work-stretch entity shown above.
Each arrow indicates one incumbent difference.

We define the incumbent difference T Incumbent difference
F for each off-stretch F as the number

of shifts in the incumbent roster-line worked during the days off covered by that off-stretch, i.e.,

T Incumbent difference
F =

∑
d∈(d1,...,d2)

∑
S∈Sd

x̂eS

where d1 and d2 are the first and last days of the off-stretch respectively.
For a given on-stretch O, work-stretchW or roster-line R, the incumbent difference is merely

the sum of the incumbent differences of its respective component entities. The REFs for each of
these entities are as follows:

E Incumbent difference
O (TO, TS) = T Incumbent difference

O + T Incumbent difference
S

E Incumbent difference
W (TO, TF) = T Incumbent difference

O + T Incumbent difference
F

E Incumbent difference
R (TR, TW) = T Incumbent difference

R + T Incumbent difference
W

Each incumbent difference resource has an upper bound equal to the neighbourhood dis-
tance parameter k, i.e. γIncumbent difference

O = γIncumbent difference
W = γIncumbent difference

R = k. This
neighbourhood distance parameter k represents the maximum number of differences from our
incumbent roster-line. Figure 6.2 provides an example of how we can calculate the incumbent
difference resource for a given work-stretch.

This neighbourhood significantly reduces the number of entities generated in our column gen-
eration subproblem. We do not create any entities which contain more roster-line modifications
than we are allowing.

96 Neighbourhood search strategies using branch and price

6.2.2 Maximum on/off changes per employee

The second maximum changes neighbourhood search method uses the maximum on/off changes
per employee neighbourhood (

∑
d δ

on
ed ≤ k ∀ e). This neighbourhood is very similar in implemen-

tation to the neighbourhood described in §6.2.1 except in how we define the incumbent difference
resource for shift entities.

For a given employee e, the incumbent difference, T Incumbent difference
S , for a given shift S

worked on day d, is zero if any shift S′ ∈ Sd is worked on day d in employee e’s incumbent
roster-line, i.e.,

T Incumbent difference
S =

0, if
∑
S′∈Sd x̂eS′ = 1 for d s.t. S ∈ Sd

1, otherwise

This neighbourhood reduces the number of entities generated in our column generation sub-
problem to a lesser extent than maximum shift changes per employee neighbourhood for a given
neighbourhood distance parameter k. As such, the column generation subproblem solves slower.

6.2.3 Maximum employee changes

The third maximum changes neighbourhood search method uses the maximum employee changes
neighbourhood (

∑
e δe ≤ k). This neighbourhood limits the total number of employees with a

roster-line that differs from their roster-line in the incumbent roster solution.
In practice, we enforce this neighbourhood in the RMP with the following constraint:∑

e∈E

∑
r∈Re

εrλ
r
e ≥ |E| − k (6.7)

where

εr =

1, if roster-line r is in the incumbent solution

0, otherwise

If we generate a further column r that is not part of the incumbent solution, we set εr = 0.
However, if we generate an incumbent column due to numerical error, we can still set εr = 0.
This is because any integer roster solution that is feasible with an incumbent column r s.t. εr = 0

would also be feasible with an identical column but with εr = 1 due to the “≥” constraint.
As we always set εr = 0 in any further columns generated, we do not need to consider the

dual for this constraint in our column generation subproblem. Thus, this neighbourhood search
has a trivial implementation overhead.

6.3 Fixed sub-roster neighbourhood search

The second type of incumbent search we discuss is fixed sub-roster neighbourhood search. As seen
in §6.1, the fixed sub-roster neighbourhoods are defined by two parameters, the neighbourhood

Fixed sub-roster neighbourhood search 97

distance parameter k and the neighbourhood location parameter j. Thus, we represent a given
fixed sub-roster neighbourhood with a fixed sub-roster neighbourhood function N(X̂, k, j) which
applies the fixed sub-roster neighbourhood to the column generation subproblem.

Like the maximum changes neighbourhood, each fixed sub-roster neighbourhood has a maxi-
mum possible neighbourhood distance parameter kmax. If the neighbourhood distance parameter
is equal to its maximum value, i.e., k = kmax and j = 0, then the problem will be solved to
global optimality, given an infinite amount of time. Thus, we could use the same neighbourhood
search as in §6.2 with j = 0. In our experiments, we observed that the time taken to solve our
neighbourhood constrained branch-and-price algorithm is typically exponential with respect to
the neighbourhood distance parameter k, but not with respect to the neighbourhood location
parameter j; see §6.5 for more details. Thus, it is usually better to search in different parts of
the solution space with a lower neighbourhood distance than increase the neighbourhood dis-
tance. Therefore, we only increase the neighbourhood distance parameter k if we can not find
any improved solutions by changing the neighbourhood location parameter j.

We are practically implementing the “mixed variable neighbourhood descent” procedure out-
lined by Hansen et al. (2016) for each fixed sub-roster neighbourhood. This algorithm is a “cyclic
variable neighbourhood descent” nested inside a “sequential variable neighbourhood descent.”

Our mixed variable neighbourhood descent algorithm is shown in Algorithm 8. For a given
neighbourhood distance parameter k, we solve for every possible neighbourhood location param-
eter j. If no improvements were made, the neighbourhood distance parameter is then increased
by one.

Algorithm 8 Mixed variable neighbourhood descent with fixed sub-roster neighbour-
hoods
1: procedure VND(X, kmax, jmax, N(X̂, k, j)) . We require

an initial incumbent solution, X, the largest possible value of our neighbourhood
distance parameter, kmax, the largest possible value of our location parameter j and
a fixed sub-roster neighbourhood function N(X̂, k, j).

2: k ← 1
3: X̂ ← X
4: while k ≤ kmax do
5: for j ∈ (0, 1, 2, . . . , jmax) do
6: APPLY neighbourhood N(X̂, k, j)
7: X ← solution to branch-and-price dive
8: if fX(X) < fX(X̂) then
9: X̂ ← X

10: if fX(X) < fX(X̂) then
11: k ← 1
12: else
13: k ← k + 1

14: return X

98 Neighbourhood search strategies using branch and price

6.3.1 Fixed days

The first fixed sub-roster neighbourhood search method uses the fixed days neighbourhood (δd =

0 ∀ d 6∈ {j, . . . , j + k} ⊆ D). This neighbourhood involves fixing a subset of the days in any
solution produced to be equal to those of an incumbent solution.

We impose this neighbourhood by modifying the input to the column generation subproblem
for each employee e ∈ E . We remove any shifts from e’s column generation subproblem if they
are on one of the set of fixed days d ∈ (1, 2, . . . , j−1, j+k+1, . . . , n) and are not in employee e’s
incumbent roster-line. Likewise, we remove any off-stretches from employee e’s column generation
subproblem if they cover a fixed day, which is worked in employee e’s incumbent roster-line.
The process of modifying the input to employee e’s column generation subproblem is shown in
Algorithm 9.

Algorithm 9 Fixed days column generator preprocessor

1: procedure Fix days(X̂, j, k) . We require an incumbent solution, X̂, the first
unfixed day, j, and the total number of unfixed days k.

2: for d ∈ (1, 2, . . . , j − 1, j + k + 1, . . . , n) do
3: if

∑
S∈Sd x̂eS > 0 then . If day d is worked in the incumbent solution.

4: for F ∈ Fd1,d2 do . Fd1,d2 is the set of off-stretches from day d1 to day d2

5: if d1 ≤ d ≤ d2 then
6: REMOVE off-stretch F . i.e. we don’t consider off-stretch F

in the work-stretch SPPRC graph
7: for S ∈ Sd do
8: if x̂eS = 0 then . If shift S is not worked in the incumbent solution.
9: REMOVE shift S . i.e. we don’t consider shift S in the on-stretch

SPPRC graph

6.3.2 Fixed employees

The second fixed sub-roster neighbourhood search method uses the fixed employees neighbour-
hood (δe = 0 ∀ e 6∈ {j, . . . , j + k} ⊆ E). This neighbourhood involves choosing a subset of
employees and fixing their roster-lines to be equal to their roster-lines in the incumbent solution.

In practice, initially, we remove all columns except the incumbent column for each fixed
employee e ∈ (1, 2, . . . , j−1, . . . , j+k+1, . . . , |E|) from the RMP.While solving the neighbourhood
restricted branch and price, we do not generate any further columns for the fixed employees.

6.3.3 Fixed days (on/off)

The third fixed sub-roster neighbourhood search method uses the fixed days (on/off) neighbour-
hood (δond = 0 ∀ d 6∈ {j, . . . , j + k} ⊆ D). This neighbourhood involves fixing certain days such
that if an employee works on a fixed day d ∈ (1, 2, . . . , j − 1, j + k+ 1, . . . , n) in their incumbent

Testing methodology 99

roster-line, they also work that day d in any solutions produced. Conversely, if an employee has a
day off on a fixed day in their incumbent roster-line, they also have that day off in any solutions
produced.

We impose this neighbourhood by modifying the input to the column generation subproblem
for each employee e ∈ E similarly to in §6.3.1. However, we only remove a given shift from the
column generation subproblem if it resides on a day off in employee e’s incumbent roster-line.
The process of modifying the input to employee e’s column generation subproblem is shown in
Algorithm 10.

Algorithm 10 Fixed days (on/off) column generator preprocessor

1: procedure Fix days (on/off)(X̂, j, k) . We require an incumbent solution, X̂,
the first unfixed day, j, and the total number of unfixed days k.

2: for d ∈ (1, 2, . . . , j − 1, j + k + 1, . . . , n) do
3: if

∑
S∈Sd x̂eS > 0 then . If day d is worked in the incumbent solution.

4: for F ∈ Fd1,d2 do . Fd1,d2 is the set of off-stretches from day d1 to day d2

5: if d1 ≤ d ≤ d2 then
6: REMOVE off-stretch F . i.e. we don’t consider off-stretch F

in the work-stretch SPPRC graph
7: else
8: for S ∈ Sd do
9: REMOVE shift S . i.e. we don’t consider shift S in the on-stretch

SPPRC graph

6.3.4 Fixed employees (on/off)

The fourth fixed sub-roster neighbourhood search method uses the fixed employees (on/off)
neighbourhood (δone = 0 ∀ e 6∈ {j, . . . , j + k} ⊆ E). This neighbourhood involves fixing a subset
of the employees. If a fixed employee works on any given day in their incumbent roster-line, they
also work that day in any solutions produced. Conversely, if a fixed employee has a day off on any
given day in their incumbent roster-line, they also have that day off in any solutions produced.

In practice, we impose this neighbourhood by modifying the input to the column generation
subproblem for each fixed employee e ∈ (1, 2, . . . , j−1, j+k+1, . . . , |E|). The process of modifying
the input to fixed employee e’s column generation subproblem is shown in Algorithm 11. The
implementation of this neighbourhood is similar to fixed days (on/off) neighbourhood in §6.3.1;
however, we are fixing every day instead of a subset of days.

6.4 Testing methodology

As we first introduced in §1.3, we have two different problems, the (easier) operating theatre
ward problem and the (more challenging) maternity wards problem. We test our neighbourhood

100 Neighbourhood search strategies using branch and price

Algorithm 11 Fixed employees (on/off) column generator preprocessor

1: procedure Fix employees (on/off)(X̂) . We only require an incumbent
solution, X̂ as we fix all days for the fixed employees.

2: for d ∈ (1, 2, . . . , n) do
3: if

∑
S∈Sd x̂eS > 0 then . If day d is worked in the incumbent solution.

4: for F ∈ Fd1,d2 do . Fd1,d2 is the set of off-stretches from day d1 to day d2

5: if d1 ≤ d ≤ d2 then
6: REMOVE off-stretch F . i.e. we don’t consider off-stretch F

in the work-stretch SPPRC graph
7: else
8: for S ∈ Sd do
9: REMOVE shift S . i.e. we don’t consider shift S in the on-stretch

SPPRC graph

restricted column generation algorithms on both of these problems to show how the matheuristics
behave when solving these two problems.

We compare each algorithm’s effectiveness in terms of the objective of the best incumbent
solution found over time. We observed that some of our matheuristics are more effective at
improving higher cost roster solutions, and some are more effective at improving lower cost roster
solutions; see §6.5.2 for details. Thus, we have a high-quality and low-quality initial incumbent
roster solution for each problem. With two problems and two initial incumbent roster solutions,
we have four experiments total.

The first initial incumbent solution for each problem was created by generating the lowest
cost roster-line for each employee. When generating these roster-lines, we ignore the duals from
each demand, i.e., πD = 0 ∀D ∈ D. Thus, if there were no constraints on the demand, this
would be the lowest cost solution possible. However, there are soft constraints with high costs
on demands in practice, so this was a low-quality solution; see §4.1.1 for more details on demand
costs and duals. The other initial incumbent solution is the first integer solution found by a single
dive from an optimal LP solution with no heuristics or neighbourhood restrictions. This initial
incumbent solution is of a much higher quality than the first.

One of the problems with performing experiments that involve a branch-and-bound dive
is that small changes to the problem (such as simply reordering the constraints; see Fischetti
and Monaci (2014)) can have a large effect on which branches are selected and the resulting
solution quality. This effect is mitigated as we are running a large number of branch-and-bound
dives per experiment during each variable neighbourhood descent and reporting averaged results.
However, to further mitigate the variance, we decided to create ten instances of each of our four
experiments, with slight differences in the employee shift costs. As roster history (see §4.2.6) only
affects two resources in the whole problem, and employee contracts don’t change from month to
month, the main difference from month to month for the Waikato DHB problems was employee
preferences. Thus, this was an adequate emulation of how the roster could change in real life
from month to month.

Results 101

To create each of these instances in a repeatable way, we set 10 different seeds for the random
shift cost perturbations, first described in §5.2.2. We performed a brief experiment to verify
that the random shift cost perturbations changed the branch-and-bound tree in a meaningful
way. In this experiment, we performed a standard dive from an optimal LP solution with no
neighbourhood restrictions and random shift cost perturbations generated with each of the ten
seeds. We identified, on average, a 5% similarity in branches made by diving between the ten sets
of random shift costs. We calculated the similarity of branches between two dives as the number
of employee shift variables which were branched on in both dives divided by the average number
of branches for the two dives. Thus, we can infer that our branch-and-bound dive was different
each time, which suggests we have sufficient variability to ensure we are not repeating the same
local search for each instance. We also observed that we obtained a different solution for each
dive.

As the total cost contribution from the random shift cost perturbations is minimal compared
to the cost of the original objective function, we can use the same incumbent solution across all
ten instances of a given experiment; those incumbent solutions all start with a similar objective.

Thus, with two problems, two initial incumbent solutions and ten instances of each exper-
iment, we performed 40 runs in total for each variable neighbourhood descent heuristic. As we
are comparing seven different heuristics, we needed to complete 280 runs in total. Due to the dif-
ference in problem difficulty, the 140 runs involving the maternity wards problem had a 12-hour
time limit, and the 140 runs for the operating theatre ward problem had a one hour time-limit.
If we were to run all the tests on a single-core, they would take 1820 hours (about 2.5 months)
total.

We record the lowest cost roster solution found at various times to show the improvement
over time for our variable neighbourhood descent algorithms. We recognise that it is possible
that by imposing a neighbourhood search in the column generation subproblem, all we are
doing is speeding up the column generation subproblem. Thus, we track how many column
generation iterations and dives we perform in the set time with each variable neighbourhood
descent algorithm.

Further, we are interested in whether the neighbourhood structure strongly changes the
nature of the solves, specifically the “integrality” or how close solutions to the root node of
the branch-and-price search tree are to the integer solution produced by diving. Thus, we also
recorded the time taken to solve the root node and two integrality measures for each dive in
each run: the number of non-zero columns in the root node solution and the number of branches
required for each dive. Each variable neighbourhood descent algorithm involved many dives, so
we report the average of each of these metrics across the run.

6.5 Results

The following sections detail the results of all 280 runs. Not only do we compare the relative
effectiveness of each of our seven variable neighbourhood descent algorithms, but we also show

102 Neighbourhood search strategies using branch and price

how the neighbourhood restrictions affect solving the root node and the resulting branch-and-
price search tree.

6.5.1 Single run example

To demonstrate how our variable neighbourhood descent algorithms work, in this section, we show
the results from a single run using the “maximum shift changes per employee” neighbourhood
(
∑
d δed ≤ k ∀ e). During this run, we recorded the objective of every solution of the restricted

master problem (RMP) generated during the branch-and-price dives. Note that we refer to a
dive as inclusive of solving the root node in the following sections.

A graph of the RMP solution’s objective over time is shown in Figure 6.3. We show the
objective of the best incumbent integer solution found at the end of each branch-and-price dive
in the variable neighbourhood descent with an ‘x’. Lighter colours/shades for the ‘x’s indicate
the end of a neighbourhood restricted dive with a larger neighbourhood distance parameter k.
We also provide a graph of a small subset of the RMP solutions from the same run in Figure 6.4.
With the smaller values of k, the improvements are small, but the dives take a very short amount
of time to complete.

As we are trying to find the incumbent solution with the smallest objective, if a neighbour-
hood restricted dive does not find an improved incumbent solution, the best incumbent solution
remains the same. Thus, if the objective values of the RMP solutions (indicated by dots) pro-
duced during the dive are higher than the objective value of the best incumbent integer solution
(indicated by an ‘x’), then the next ‘x’ will be at the same objective value as the previous ‘x’.

On the later solves in Figure 6.3, we can see a noticeable dip in the objective while the root
node is being solved, followed by a rise caused by branching. However, in Figure 6.4, we observe
that many of the early dives have naturally integer root nodes and thus, require little or no
branching. Thus, in some of the early dives, we can see no rise from branching.

The first dive in Figure 6.4 has a neighbourhood distance k = 4. An improved incumbent
solution is found, and thus the neighbourhood distance resets to one. The next two dives with
k = 1 are naturally integer and lead to a very small improvement in the incumbent solution.
However, the next dive leads to no improved incumbent solution, and so the neighbourhood
distance is increased to k = 2.

One observation we made was that after a large enough neighbourhood distance parameter,
k, our dives are ineffective at producing improved incumbent solutions. By definition, solving
with a large neighbourhood distance k is the equivalent of having no neighbourhood restric-
tion. For example, if we are using the maximum shift changes per employee neighbourhood∑
e

∑
d δed ≤ k and k = n, then every day can change for every employee, and there are ef-

fectively no neighbourhood restrictions. By extrapolation, we can assume that diving with no
neighbourhood restrictions is unlikely to produce a better solution than variable neighbourhood
descent can produce.

To confirm our assumption and to further demonstrate why column generation based local
search is so effective compared to a branch-and-price dive without neighbourhood restrictions, we

Results 103

compare both methods on the same graph in Figure 6.5. This graph shows that solving an LP all
the way down and branching all the way up is less effective than imposing a neighbourhood and
avoiding a descent and climb. The much higher quality (lower objective) of the root node solution
is wasted as many more branches are required to reach an integer solution. Those branches drive
up the objective significantly.

Another observation is that while solving the start of the root node for the last two dives in
Figure 6.3, columns are added to the RMP, but no improvement is made to the RMP objective.
Thus, we observe a small flat line at the start of solving these two root nodes. We propose
that this occurs because we are starting the RMP with only the columns from the previous
best incumbent integer solution along with the slack and surplus columns. Because the previous
best incumbent integer solution is of a very high quality, any solution we generate by swapping
columns in the best incumbent integer solution with newly generated columns is likely to be
worse than the incumbent solution because it requires additional slacks and surpluses to be at
non-zero values which increases the objective value. Also, since during these branch-and-price
dives, we are generating columns with a large number of possible changes to the incumbent,
i.e., k ≥ 8, the columns generated tend to have much larger differences to the columns in the
incumbent solution. This means that replacing a column in the incumbent solution with the
newly generated column is more likely to require non-zero slacks and surpluses.

104 Neighbourhood search strategies using branch and price

0 500 1000 1500 2000 2500 3000 3500
Time (s)

23000

24000

25000

26000

27000

28000

29000
Ob

j

1

2

3

4

5

6

7

8

9

Ne
ig

hb
ou

rh
oo

d
di

st
an

ce
 (k

)

Figure 6.3: The objective of each solution to the RMP during a single run of solving the
operating theatre ward problem with the maximum shift changes per employee neigh-
bourhood (

∑
d δed ≤ k ∀ e). Each ‘x’ is the best incumbent roster solutions found after a

neighbourhood restricted dive. Lighter colours/shades of ‘x’ indicate starting a dive with
a larger neighbourhood distance parameter k where 1 ≤ k ≤ 9.

Results 105

400 450 500 550 600 650 700 750 800
Time (s)

25000

25250

25500

25750

26000

26250

26500

26750

27000

Ob
j

1

2

3

4

Ne
ig

hb
ou

rh
oo

d
di

st
an

ce
 (k

)

Figure 6.4: The same as Figure 6.3 except zoomed in over a small subset of the total
time and with a small range of neighbourhood distance parameter k: 1 ≤ k ≤ 4.

106 Neighbourhood search strategies using branch and price

0 100 200 300 400 500 600 700 800
Time (s)

24000

26000

28000

30000

32000

34000

36000

38000

40000
Ob

j
VND LP solutions
VND IP solutions
Standard dive LP solutions
Standard dive IP solutions

Figure 6.5: The objective of each solution to the RMP during a single run of solving the
operating theatre ward problem with the maximum shift changes per employee neigh-
bourhood (

∑
d δed ≤ k ∀ e) compared to a single branch-and-price dive without neigh-

bourhood restrictions. Each ‘x’ is an integer roster solution found. The objective drops
while the root node is being solved and then rises with branching until an integer solution
is found. For the VND, this pattern is replicated multiple times for each iteration.

6.5.2 All runs results

This section presents the results for all 280 runs. We performed all 280 runs and recorded the
objective of the best incumbent solution found at various intervals for each problem. As the
Maternity wards problem is significantly more difficult than the Operating theatre ward problem,
we recorded the objective of the best incumbent solution produced at different times for the two
problems. We recorded the incumbent solution objective for the maternity wards problem after
10 minutes, one hour and 12 hours, and for the operating theatre ward problem after one minute,
15 minutes and one hour. The results for the 140 operating theatre ward problem runs are shown
using bar and whisker plots in Figure 6.6 and the results for the 140 maternity wards problem
runs are shown using bar and whisker plots in Figure 6.7. Each box and whisker represents ten
runs of solving one of our two problems with a neighbourhood descent algorithm and with a
low-quality or high-quality initial incumbent solution.

Results 107

We observed that there is no best algorithm for all experiments at every measured interval. We
define the best algorithm for a given experiment and interval as the one with the lowest average
objective. However, there are some algorithms that are best to use under certain conditions. When
starting with a low-quality initial incumbent solution and a limited amount of time (≤ one hour)
for both problems, the maximum shift changes per employee neighbourhood (

∑
d δed ≤ k ∀ e)

produces the lowest average objective incumbent solution by a significant margin.
When starting with a high-quality initial incumbent solution to the (more challenging) ma-

ternity wards problem, the fixed days (δd = 0 ∀ d 6∈ {j, . . . , j+ k} ⊆ D) neighbourhood produces
the lowest average objective incumbent solutions. However, when starting with a high-quality ini-
tial incumbent solution to the operating theatre ward problem, multiple algorithms have similar
average incumbent solution quality.

We also note that the neighbourhood search algorithms which generate a larger number of
entities are better in solving the operating theatre ward problem than the (more challenging)
maternity wards problem. The on/off modification equivalent of a neighbourhood always gener-
ates a larger number of entities and performs relatively better when solving the (easier) operating
theatre ward problem. For example, the maximum on/off changes per employee neighbourhood
(
∑
d δ

on
ed ≤ k ∀ e) performs better relative to the maximum shift changes per employee neigh-

bourhood (
∑
d δed ≤ k ∀ e) in the maternity wards problem than in the operating theatre wards

problem.
We observe that some heuristics have less spread of the objective value of the best incumbent

solution found at certain times than others. For example, the objective value of all the best
incumbent solutions produced by the fixed days algorithm (δd = 0 ∀ d 6∈ {j, . . . , j + k} ⊆ D) are
relatively similar. However, there is a much greater spread with the maximum on/off changes per
employee algorithm (

∑
d δ

on
ed ≤ k ∀ e). We suspect this is because of our observation that most

dives within the fixed days algorithm have a naturally integer root node. In contrast, most dives
within the maximum on/off changes per employee algorithm require many branches to reach an
integer incumbent solution. We discuss this further in §6.5.3.

We observe that for the maternity wards problem, some of the algorithms gave an immediate
and significant improvement in the quality of the high-quality initial incumbent solution. Within
our cost structure, a cost of 10,000 indicates violation of a relaxed hard constraint. In only
10 minutes, the fixed days algorithm (δd = 0 ∀ d 6∈ {j, . . . , j + k} ⊆ D) reduced the equivalent
number of ‘hard’ constraints violated by around 20. This reduction is a considerable improvement
in the quality of the roster solution. The high-quality initial incumbent solution to the operating
theatre ward problem was of a much higher quality and, thus, could not be improved as much.

108 Neighbourhood search strategies using branch and price

O
p
er
at
in
g
th
ea
tr
e
w
ar
d
p
ro
b
le
m

M
SC

E
M

OC
E

M
EC

FD
FE

FD
O

FE
O

Al
go

rit
hm

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

Obj

1e
6

Af
te

r o
ne

 m
in

ut
e

M
SC

E
M

OC
E

M
EC

FD
FE

FD
O

FE
O

Al
go

rit
hm

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

Obj

1e
6

Af
te

r 1
5

m
in

ut
es

M
SC

E
M

OC
E

M
EC

FD
FE

FD
O

FE
O

Al
go

rit
hm

0.
00

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75

2.
00

Obj

1e
6

Af
te

r o
ne

 h
ou

r

(a
)
Lo

w
-q
ua

lit
y
st
ar
ti
ng

in
cu
m
be

nt
so
lu
ti
on

M
SC

E
M

OC
E

M
EC

FD
FE

FD
O

FE
O

Al
go

rit
hm

2.
2

2.
4

2.
6

2.
8

3.
0

Obj

1e
4

Af
te

r o
ne

 m
in

ut
e

M
SC

E
M

OC
E

M
EC

FD
FE

FD
O

FE
O

Al
go

rit
hm

2.
2

2.
4

2.
6

2.
8

3.
0

Obj

1e
4

Af
te

r 1
5

m
in

ut
es

M
SC

E
M

OC
E

M
EC

FD
FE

FD
O

FE
O

Al
go

rit
hm

2.
2

2.
4

2.
6

2.
8

3.
0

Obj

1e
4

Af
te

r o
ne

 h
ou

r

(b
)
H
ig
h-
qu

al
it
y
st
ar
ti
ng

in
cu
m
be

nt
so
lu
ti
on

F
ig
ur
e
6.
6:

C
om

pa
ri
so
n
of

th
e
ob

je
ct
iv
e
of

th
e
lo
w
es
t
co
st

in
cu

m
be

nt
ro
st
er

so
lu
ti
on

pr
od

uc
ed

af
te
r
on

e
m
in
ut
e,

15
m
in
ut
es

an
d
on

e
ho

ur
in

th
e
14

0
ru
ns

fo
r
th
e
op

er
at
in
g
th
ea
tr
e
w
ar
d
p
ro
b
le
m
.
T
he

gr
ap

hs
on

th
e
to
p
sh
ow

th
e
re
su
lt
s
fr
om

th
e
ru
ns

st
ar
ti
ng

w
it
h
a
lo
w
-q
ua

lit
y
in
it
ia
l
in
cu

m
be

nt
so
lu
ti
on

,
an

d
th
e
gr
ap

hs
on

th
e
bo

tt
om

sh
ow

th
e
re
su
lt
s
fr
om

th
e

ru
ns

st
ar
ti
ng

w
it
h
a
hi
gh

-q
ua

lit
y
in
it
ia
l
in
cu

m
be

nt
so
lu
ti
on

.
T
he

ob
je
ct
iv
e
of

ea
ch

in
it
ia
l
in
cu

m
be

nt
so
lu
ti
on

is
sh
ow

n
w
it
h

a
bl
ue

lin
e.

E
ac
h
al
go

ri
th
m

is
a
va
ri
ab

le
ne

ig
hb

ou
rh
oo

d
de

sc
en
t
al
go

ri
th
m

w
it
h
th
e
fo
llo

w
in
g
ne

ig
hb

ou
rh
oo

ds
:
m
ax

im
um

sh
ift

ch
an

ge
s
pe

r
em

pl
oy
ee

(M
SC

E
,
∑ d

δ e
d
≤
k
∀
e)
,
m
ax

im
um

on
/o

ff
ch
an

ge
s
pe

r
em

pl
oy
ee

(M
O
C
E
,
∑ d

δo
n
ed
≤
k
∀
e)
,

m
ax

im
um

em
pl
oy
ee

ch
an

ge
s
(M

E
C
,
∑ e

δ e
≤
k
),

fix
ed

da
ys

(F
D
,
δ d

=
0
∀
d
6∈
{j
,.
..
,j

+
k
}
⊆
D
),

fix
ed

em
pl
oy
ee
s
(F

E
,

δ e
=

0
∀
e
6∈
{j
,.
..
,j

+
k
}
⊆
E)

,fi
xe
d
da

ys
(o
n/

off
)
(F

D
O
,δ

on d
=

0
∀
d
6∈
{j
,.
..
,j

+
k
}
⊆
D
),

an
d
fix

ed
em

pl
oy
ee
s
(o
n/

off
)

(F
E
O
,δ

on e
=

0
∀
e
6∈
{j
,.
..
,j

+
k
}
⊆
E)

.

Results 109
M
at
er
n
it
y
w
ar
d
s
p
ro
b
le
m

M
SC

E
M

OC
E

M
EC

FD
FE

FD
O

FE
O

Al
go

rit
hm

0123456 Obj

1e
6

Af
te

r 1
0

m
in

ut
es

M
SC

E
M

OC
E

M
EC

FD
FE

FD
O

FE
O

Al
go

rit
hm

0123456 Obj

1e
6

Af
te

r o
ne

 h
ou

r

M
SC

E
M

OC
E

M
EC

FD
FE

FD
O

FE
O

Al
go

rit
hm

0123456 Obj

1e
6

Af
te

r 1
2

ho
ur

s

(a
)
Lo

w
-q
ua

lit
y
st
ar
ti
ng

in
cu
m
be

nt
so
lu
ti
on

M
SC

E
M

OC
E

M
EC

FD
FE

FD
O

FE
O

Al
go

rit
hm

1.
0

1.
5

2.
0

2.
5

3.
0

Obj

1e
5

Af
te

r 1
0

m
in

ut
es

M
SC

E
M

OC
E

M
EC

FD
FE

FD
O

FE
O

Al
go

rit
hm

1.
0

1.
5

2.
0

2.
5

3.
0

Obj

1e
5

Af
te

r o
ne

 h
ou

r

M
SC

E
M

OC
E

M
EC

FD
FE

FD
O

FE
O

Al
go

rit
hm

1.
0

1.
5

2.
0

2.
5

3.
0

Obj

1e
5

Af
te

r 1
2

ho
ur

s

(b
)
H
ig
h-
qu

al
it
y
st
ar
ti
ng

in
cu
m
be

nt
so
lu
ti
on

F
ig
ur
e
6.
7:

C
om

pa
ri
so
n
of

th
e
ob

je
ct
iv
e
of

th
e
lo
w
es
t
co
st

in
cu

m
be

nt
ro
st
er

so
lu
ti
on

pr
od

uc
ed

af
te
r
10

m
in
ut
es
,o

ne
ho

ur
an

d
12

ho
ur
s
in

th
e
14

0
ru
ns

fo
r
th
e
m
at
er
n
it
y
w
ar
d
s
p
ro
b
le
m
.T

he
gr
ap

hs
on

th
e
to
p
sh
ow

th
e
re
su
lt
s
fr
om

th
e
ru
ns

st
ar
ti
ng

w
it
h
a
lo
w
-q
ua

lit
y
in
it
ia
li
nc

um
be

nt
so
lu
ti
on

,a
nd

th
e
gr
ap

hs
on

th
e
bo

tt
om

sh
ow

th
e
re
su
lt
sf
ro
m

th
e
ru
ns

st
ar
ti
ng

w
it
h
a
hi
gh

-
qu

al
it
y
in
it
ia
li
nc

um
be

nt
so
lu
ti
on

.T
he

ob
je
ct
iv
e
of

ea
ch

in
it
ia
li
nc

um
be

nt
so
lu
ti
on

is
sh
ow

n
w
it
h
a
bl
ue

lin
e.
E
ac
h
al
go
ri
th
m

is
a

va
ri
ab

le
ne

ig
hb

ou
rh
oo

d
de

sc
en
t
al
go

ri
th
m

w
it
h
th
e
fo
llo

w
in
g
ne

ig
hb

ou
rh
oo

ds
:m

ax
im

um
sh
ift

ch
an

ge
s
pe

r
em

pl
oy
ee

(M
SC

E
,

∑ d
δ e
d
≤
k
∀
e)
,
m
ax

im
um

on
/o

ff
ch
an

ge
s
pe

r
em

pl
oy
ee

(M
O
C
E
,
∑ d

δo
n
ed
≤
k
∀
e)
,
m
ax

im
um

em
pl
oy
ee

ch
an

ge
s
(M

E
C
,

∑ e
δ e
≤
k
),

fix
ed

da
ys

(F
D
,
δ d

=
0
∀
d
6∈
{j
,.
..
,j

+
k
}
⊆
D
),

fix
ed

em
pl
oy
ee
s
(F

E
,
δ e

=
0
∀
e
6∈
{j
,.
..
,j

+
k
}
⊆
E)

,
fix

ed
da

ys
(o
n/

off
)
(F

D
O
,δ

on d
=

0
∀
d
6∈
{j
,.
..
,j

+
k
}
⊆
D
),
an

d
fix

ed
em

pl
oy
ee
s
(o
n/

off
)
(F

E
O
,δ

on e
=

0
∀
e
6∈
{j
,.
..
,j

+
k
}
⊆
E)

.

110 Neighbourhood search strategies using branch and price

6.5.3 Properties of dives

As mentioned in §6.4, we are interested in if the neighbourhood structure strongly changes the
nature of the dives itself or is merely speeding up the column generator. This section presents our
findings on each neighbourhood restriction’s effect on the column generator and branch-and-price
dives.

Firstly, we found the average number of dives and the average number of calls to the column
generator for each employee per run with each neighbourhood across the two different problems.
This data was collected over 12 hours for the maternity wards problem and 1 hour for the
operating theatre ward problem. We show this in Figure 6.8. We found a wide discrepancy
between our neighbourhoods in the number of branch-and-price dives that occurred within the
given time. However, we note that the neighbourhoods with fewer dives still perform well in
some cases. The average improvement in the objective of an incumbent solution per dive is
higher in these cases to compensate for the fewer dives. For example, in some cases, variable
neighbourhood descent using maximum shift changes per employee neighbourhood leads to lower
average objective value incumbent solutions than using fixed days neighbourhood even though
using fixed days neighbourhood means a much larger number of dives can occur.

We also observed that the neighbourhoods that can generate fewer possible entities tended to
generate columns more quickly. For example, when using fixed days neighbourhood (δd = 0 ∀ d 6∈
{j, . . . , j + k} ⊆ D), fewer possible entities are generated than using maximum shift changes per
employee neighbourhood (

∑
d δed ≤ k ∀ e), and as a result, the column generator solves faster

on average.
We then compared three different metrics for each run to see if the nature of each dive is

changing or the change is just in the speed of solving the column generator. The first metric,
“average number of non-zero columns by algorithm,” is a measure of the root node solution’s
integrality. If the number of non-zero columns is equal to the number of employees, then our
root node solution is naturally integer. The larger the number of non-zero columns, the more
fractional our root node solution is. The second metric, “average time spent solving root node by
algorithm”, is a measure of the average time taken to solve each root node in the dives. The third
metric, “average number of branches in dive by algorithm” is a measure of the average number
of branches required to reach an integer roster solution in the dives.

In Figure 6.9, we compare these metrics for all 240 runs with box and whisker plots. We also
added a “None” box and whisker to each plot which is the same metrics but for ten instances of
a single dive with no neighbourhood restrictions.

As shown by the top and bottom graphs in Figure 6.9, the neighbourhood restricted branch-
and-price dives are more naturally integer than branch-and-price dives with no neighbourhood
restriction. Thus, we suspect that neighbourhood restriction is having a larger effect on the
branch-and-price dive than reducing the number of times that the column generator needs to be
called.

We also observed that the relative difference in the time taken to solve the root node between
the branch-and-price dives with neighbourhood restrictions and those without is much larger

Results 111

for the maternity wards problem. However, the relative difference in integrality and number of
branches between the branch-and-price dives with neighbourhood restrictions and those without
were similar for the two problems.

Although these metrics vary considerably between the different algorithms, they also vary
between branch-and-price dives with different neighbourhood distance parameters within the
same algorithm. Thus, we took all dives in all 20 runs for the maximum shift changes per
employee neighbourhood (

∑
d δed ≤ k ∀ e) and recorded the same metrics as above but for each

neighbourhood distance parameter k. A set of box and whisker plots showing these experiments’
results is demonstrated in Figure 6.10.

Recall that if the neighbourhood distance parameter reaches a maximum value, i.e., k = kmax,
then this is the equivalent of no neighbourhood restrictions. Therefore, as expected, the metrics
all tend towards those of a dive with no neighbourhood restrictions. For example, in Figure 6.9,
we can see that there are on average 560 non-zero columns in the root node solution to the
maternity wards problem solved with no neighbourhood restrictions. We can compare this to the
top left graph in Figure 6.10 where when our neighbourhood distance parameter k = 6, there
are on average 500 non-zero columns in the root node solution. This is much less integer than
the same neighbourhood but with k = 1.

112 Neighbourhood search strategies using branch and price

MSCE MOCE MEC FD FE FDO FEO

0

500

1000

1500

2000

Nu
m

be
r o

f d
iv

es
Number of dives by algorithm

MSCE MOCE MEC FD FE FDO FEO
Algorithm

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Nu
m

be
r o

f c
al

ls

1e6 Calls to column generator by algorithm

(a) Maternity wards problem

MSCE MOCE MEC FD FE FDO FEO

0

250

500

750

1000

1250

1500

1750

Nu
m

be
r o

f d
iv

es

Number of dives by algorithm

MSCE MOCE MEC FD FE FDO FEO
Algorithm

20000

40000

60000

80000

100000

120000

140000

Nu
m

be
r o

f c
al

ls
Calls to column generator by algorithm

(b) Operating theatre ward problem

Figure 6.8: Comparison of the number of dives per run and number of calls to the column
generator for a single employee per run with the following neighbourhoods: maximum
shift changes per employee (MSCE,

∑
d δed ≤ k ∀ e), maximum on/off changes per

employee (MOCE,
∑

d δ
on
ed ≤ k ∀ e), maximum employee changes (MEC,

∑
e δe ≤ k),

fixed days (FD, δd = 0 ∀ d 6∈ {j, . . . , j + k} ⊆ D), fixed employees (FE, δe = 0 ∀ e 6∈
{j, . . . , j + k} ⊆ E), fixed days (on/off) (FDO, δond = 0 ∀ d 6∈ {j, . . . , j + k} ⊆ D), and
fixed employees (on/off) (FEO, δone = 0 ∀ e 6∈ {j, . . . , j + k} ⊆ E).

Results 113

MSCE MOCE MEC FD FE FDO FEO None

100

200

300

400

500

No
n

ze
ro

 c
ol

um
ns

Average number of non zero columns by algorithm

MSCE MOCE MEC FD FE FDO FEO None
0

5000

10000

15000

20000

25000

30000

35000

Ti
m

e(
s)

Average time spent solving root node by algorithm

MSCE MOCE MEC FD FE FDO FEO None
Algorithm

0

100

200

300

400

Br
an

ch
es

Average number of branches in dive by algorithm

(a) Maternity wards problem

MSCE MOCE MEC FD FE FDO FEO None

40

60

80

100

120

140

160

180

No
n

ze
ro

 c
ol

um
ns

Average number of non zero columns by algorithm

MSCE MOCE MEC FD FE FDO FEO None
0

100

200

300

400

Ti
m

e(
s)

Average time spent solving root node by algorithm

MSCE MOCE MEC FD FE FDO FEO None
Algorithm

0

20

40

60

80

100

120

Br
an

ch
es

Average number of branches in dive by algorithm

(b) Operating theatre ward problem

Figure 6.9: Comparison of various metrics for a single dive from an optimal root node
solution with no neighbourhood constraints (“None”) against average dive metrics from
our variable neighbourhood descent algorithm with the following neighbourhoods: maxi-
mum shift changes per employee (MSCE,

∑
d δed ≤ k ∀ e), maximum on/off changes per

employee (MOCE,
∑

d δ
on
ed ≤ k ∀ e), maximum employee changes (MEC,

∑
e δe ≤ k),

fixed days (FD, δd = 0 ∀ d 6∈ {j, . . . , j + k} ⊆ D), fixed employees (FE, δe = 0 ∀ e 6∈
{j, . . . , j + k} ⊆ E), fixed days (on/off) (FDO, δond = 0 ∀ d 6∈ {j, . . . , j + k} ⊆ D), and
fixed employees (on/off) (FEO, δone = 0 ∀ e 6∈ {j, . . . , j + k} ⊆ E).

114 Neighbourhood search strategies using branch and price

1 2 3 4 5 6

100

200

300

400

500
No

n
ze

ro
 c

ol
um

ns
Number of non zero columns

1 2 3 4 5 6
0

1000

2000

3000

4000

5000

Ti
m

e(
s)

Time spent solving root node

1 2 3 4 5 6
k

0

50

100

150

200

250

Br
an

ch
es

Number of branches in dive

(a) Maternity wards problem

1 2 3 4 5 6 7 8 9 10

40

60

80

100

120

140

160

No
n

ze
ro

 c
ol

um
ns

Number of non zero columns

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

Ti
m

e(
s)

Time spent solving root node

1 2 3 4 5 6 7 8 9 10
k

0

20

40

60

80

100

Br
an

ch
es

Number of branches in dive

(b) Operating theatre ward problem

Figure 6.10: Comparison of the number of non zero columns in the solution to the root
node, the average time spent solving the root node and the average number of branches
per dive by neighbourhood distance parameter k. The dives are collated from all runs
with the maximum shift changes per employee neighbourhood (

∑
d δed ≤ k ∀ e).

6.6 Chapter summary

This chapter has shown how we perform neighbourhood search on an integer roster solution
using branch and price. In §6.1, we define 14 different neighbourhoods that can be used with

Chapter summary 115

rostering problems. We then showed how we implemented seven of these neighbourhoods within
our generic column generation model introduced in Chapter 4.

Through experimentation, we found using the maximum shift changes per employee
(
∑
d δed ≤ k ∀ e) and fixed-days (δd = 0 ∀ d 6∈ {j, . . . , j + k} ⊆ D) were the two most ef-

fective neighbourhoods to use with branch and price out of those we tested. The effectiveness
of each neighbourhood restriction algorithm was sensitive to the problem being solved and the
incumbent roster solution’s quality.

We found that every neighbourhood restrictions we tested had several significant effects on
a branch-and-price dive. Each neighbourhood restriction led to solving the column generation
subproblem fewer times, a less fractional root node solution, and fewer branches in a given
dive. These factors lead to a given branch-and-price dive with neighbourhood restrictions taking
significantly less time than without neighbourhood restrictions.

Chapter 7

Column generation subproblem
heuristics

In Chapter 6, we presented various methods of performing neighbourhood search using branch
and price to quickly improve an initial roster solution. One of the methods we used to construct
a given initial roster solution is to perform a single branch-and-price dive with no heuristics.

However, finding an initial roster solution with a dive for the maternity wards problem takes
around 16 hours. 92% of this time is spent solving the column generation subproblem. This is
because of the vast number of entities we are constructing in the nested Shortest Path Problem
with Resource Constraints (SPPRC). Our SPPRC suffers from the “curse of dimensionality” from
having many state variables (resources), which is common for many types of dynamic programs
(Powell, 2009). The recommendation by Powell (2009) in this case is to solve an approximate
dynamic program in which the number of states are heuristically reduced by approximation of
the value function or cost-to-go.

In this chapter, we present two core heuristic methods for solving the column generation
subproblem much faster. The first method, which we call “entity restriction”, involves reducing
the number of entities that we choose to extend at each node in our nested SPPRC. Although we
lose proof of optimality within our column generation subproblem, we can still find low reduced
cost roster-lines. We introduce four entity restriction methods in §7.1.

The second method, which we call “LP neighbourhood pricing”, involves putting neighbour-
hood restrictions on the column generation subproblem to find the most negative reduced cost
column in the neighbourhood of the current LP solution. By adding neighbourhood restrictions
to the column generation subproblem, we reduce the number possible entities generated sig-
nificantly. We also found that by using LP neighbourhood pricing, our RMP produced more
naturally integer solutions; see §7.4.4. We introduce three LP neighbourhood pricing methods in
§7.2.

In the column generation literature for staff rostering problems, several groups have used en-
tity restriction in various forms. Dohn and Mason (2013), Burke and Curtois (2014), Gérard et al.

117

118 Column generation subproblem heuristics

(2016), and Barbosa et al. (2015) have heuristically kept only the lowest reduced cost entities.
We discuss the implementation of this method in §7.1.1. This method essentially approximates
the value function or cost-to-go as zero. Since certain resources such as the hours worked per
fortnight are infeasible if not equal to an exact value, approximating a non-zero cost-to-go for
these resources is challenging.

Zamorano and Stolletz (2017), Restrepo et al. (2016) and Strandmark et al. (2020) heuris-
tically remove non-dominated entities based on the corresponding resource vectors. However,
each of these research groups does this in a problem specific way. In §7.1.2-§7.1.4, we explore
generic methods of removing non-dominated entities based on the corresponding resource vectors.
We believe these methods to be novel within the staff rostering literature. However, the tech-
niques we use are similar to those used in the field of multi-constrained optimal paths (Garroppo
et al., 2010). Using the classification of Garroppo et al. (2010), precomputed buckets (§7.1.4)
and systematic sampling (§7.1.3) are “interval partitioning” techniques, and entity restriction by
variability (§7.1.2) is a “separation’ technique.

Maenhout and Vanhoucke (2010a), Gomes et al. (2017) and Bard and Purnomo (2005a) have
used neighbourhood swaps to enumerate columns and find columns with negative reduced costs.
In §7.2, we discuss using a modified version of our nested SPPRC to find the most negative
reduced cost column in a given neighbourhood instead of enumerating all possible swaps. No-one
has used a neighbourhood restricted SPPRC with an LP incumbent solution within the staff
rostering literature to find new negative reduced cost columns.

See §3.2.4 for more details on each of the staff rostering papers mentioned in this section.

7.1 Entity restriction

In the following sections, we report on heuristically removing a subset of the entities at each
node in a nested SPPRC either because they have a high reduced cost or because there is not
enough variability between the resource vectors.

7.1.1 Entity restriction by cost

The first entity restriction strategy, as discussed by Dohn and Mason (2013), involves keeping
only the M lowest reduced cost entities. We call this strategy “entity restriction by cost”. This
strategy is a greedy heuristic in that we are trying to find the lowest reduced cost full roster-line
and are, hence, keeping the lowest reduced cost component entities of that full roster-line. This
strategy is shown in Algorithm 12 where Steps (10) and (11) are the only differences to our
standard dominance algorithm (see Algorithm 1). Recall that this algorithm is used for entities
of a particular type at a particular node in the SPPRC of a particular employee.

As our dominance algorithm already involves ordering the entities by their cost, this strategy
involves little additional computation.

Entity restriction 119

Algorithm 12 Modified dominance algorithm with entity restriction by cost
Require: A set of entities before dominance, U .
1: P = ∅ . Initialising set of non-dominated entities
2: Order set, U , by the cost of each entity in ascending order.
3: for each Entity τ1 ∈ U do . Both “for each”s maintain the ascending order of cost.
4: isDominated = False
5: for each Entity τ2 ∈ P do
6: if τ2 � τ1 then
7: isDominated = True
8: if isDominated = False then
9: ADD τ1 to P.

10: if |P| > M then
11: EXIT for loop
12: return non-dominated set of entities, P.

Figure 7.1 provides a contrived example of a set of non-dominated entities, which start and
end on the same day with a single resource. In this example, we are keeping the five lowest-cost,
non-dominated entities.

The single resource in Figure 7.1 has a “prefer lower” dominance rule, which means that we
consider lower resource values as better. Thus, after dominance, we tend to observe a correlation
between higher costs and lower resource values; if an entity has a high cost and a high resource
value, it would have been dominated. For example, there is very strong evidence of a correlation
between the cost of a work-stretch and the values of resources with the C∅ cost function for
a single column generation iteration; see Appendix B. Therefore, the main drawback to entity
restriction by cost is that we often do not consider entities with good resource values, which
could be necessary for a low reduced cost full roster-line.

7.1.2 Entity restriction by variability in resource vectors

Instead of keeping entities with the lowest cost, we can also attempt to keep entities that have
desirable resource vectors. Evaluating the quality of a resource vector is difficult without solving
the SPPRC to completion, and thus, we instead find a set of dissimilar resource vectors.

Thus, our second strategy for reducing the number of entities at each node in our nested
SPPRC is “entity restriction by variability”. With this strategy, we only keep entities with dis-
similar resource vectors at each node in the nested SPPRC.

We denote resource vector Tτ1 as being similar to resource vector Tτ2 with the notation,
Tτ1 ∼ Tτ2 . We deem two resource vectors similar if the weighted Euclidean distance between
them is less than a given parameter dτ , i.e.,

Tτ1 ∼ Tτ2 ⇐⇒

√√√√∑
θ∈Θτ

(T θτ1 − T θτ2

ξθ

)2

≤ dτ (7.1)

120 Column generation subproblem heuristics

0 20 40 60 80 100
Cost

0

20

40

60

80

100
Re

so
ur

ce
 v

al
ue

Entity restriction by cost

Figure 7.1: Example of selecting the five lowest cost entities, irrespective of the resource
value. In this figure, the kept entities are circled.

where ξθ is an estimate of the relative importance per 1 unit difference in the values for re-
source θ as determined by the user. If resource θ has a cost αθ, we choose ξθ = αθ to
be our resource weight for resource θ, otherwise, we choose ξθ = αθ

2

where resource θ af-
fects the value of resource θ2 and αθ

2

is the associated cost of resource θ2. For example,
the on-stretch resource θ = OnStretchWeekOneHours, which represents the number of hours
worked in a given week, doesn’t have a direct cost, but does contribute to the equivalent
roster-line resource θ = RosterLineWeekOneHours which does have a cost. So in this case:
ξOnStretchWeekOneHours = αRosterLineWeekOneHours

Entity restriction by variability in resource vectors involves only keeping entities if they are
not similar to any other entity we have already kept in our non-dominated, dissimilar set. We
demonstrate this strategy in Algorithm 13 where Step 9 involves an additional check for similarity
to other entities in our non-dominated set, which is used in Step 11 to prune entities. Note that
we have retained Step 13 from our entity restriction by cost algorithm in case our parameter dτ
is too low, and there are too many non-similar entities.

Figure 7.2 shows an example of us keeping the best entities by cost, which are of distance
dτ = 10 away from the resource vectors of other entities which we are choosing to keep. The

Entity restriction 121

Algorithm 13 Modified dominance algorithm with entity restriction by variability in
resource vectors
Require: A set of entities, U .
1: P = ∅ . Initialising set of non-dominated entities
2: Order set, U , by the cost of each entity in ascending order.
3: for each Entity τ1 ∈ U do . Both “for each”s maintain the ascending order of cost.
4: isDominated = False
5: isSimilar = False
6: for each Entity τ2 ∈ P do
7: if τ2 � τ1 then
8: isDominated = True
9: if τ2 ∼ τ1 then

10: isSimilar = True
11: if isDominated = False and isSimilar = False then
12: ADD τ1 to P.
13: if |P| > M then
14: EXIT for loop
15: return non-dominated set of entities, P.

main disadvantage of this algorithm is in finding appropriate parameters. If dτ is too large, we
remove too many entities and reduce our likelihood of finding low reduced cost full roster-lines.
If dτ is too small, we will not achieve a high enough variability of resource vectors. The choice in
the number of entities that will be kept is also sensitive to the resource weight vector, ξθ, that
we have estimated.

7.1.3 Systematic sampling of entities based on cost

Our third strategy for reducing the number of entities at each node in our nested SPPRC is
“systematic sampling of entities based on cost”. Since we know that entities with higher costs
often have worse resource values, we can find a restricted set of entities with an even distribution
of costs and hope this will lead to a good balance of the cost and the quality of the resource
vectors.

This algorithm involves the systematic sampling of the full set of entities U before perform-
ing dominance checks. Algorithm 14 shows us reducing the number of unprocessed entities by
ordering the entities by cost in Step 2 and only keeping every (|U|/M)th entity in Steps 3-5,
where |U| is the total number of unprocessed entities and M is the number of entities we want
to keep. Then dominance is calculated as normal.

Figure 7.3 shows an example of us selecting an even spread of entities with respect to the
entity cost. The main drawback to this algorithm is that we choose to keep entities with a high
cost that are unlikely to be part of the low reduced cost full roster-lines.

122 Column generation subproblem heuristics

0 20 40 60 80 100
Cost

0

20

40

60

80

100

Re
so

ur
ce

 v
al

ue

Entity restriction by resource variance

Figure 7.2: Example of selecting the lowest cost entities with a minimum distance of 10
between the resource value of all other entities we are keeping. In this example, there
is a single resource with weight ξθ = 1 and maximum distance dτ = 10. In this figure,
the kept entities are circled. We show the minimum distance with a red bar and prune
any entities within the red bars as they are too similar to another entity we are already
keeping. Note that because we apply this algorithm to entities in order of increasing
cost and increasing resource quality, the bar only needs to be below the entity we are
selecting.

Entity restriction 123

Algorithm 14 Modified dominance algorithm with systematic sampling
Require: A set of entities, U .
1: P = ∅ . Initialising set of non-dominated entities
2: Order set, U , by the cost of each entity in ascending order.
3: for i← 1 to |U| do
4: if (i− 1)%(|U|/M) 6= 0 then . Where we define a%b as the remainder from

dividing a by b. In this step we are only keeping
every (|U|/M)th entity.

5: REMOVE [U]k

6: for each Entity τ1 ∈ U do . Both “for each”s maintain the ascending order of cost.
7: isDominated = False
8: for each Entity τ2 ∈ P do
9: if τ2 � τ1 then

10: isDominated = True
11: if isDominated = False then
12: ADD τ1 to P.
13: return non-dominated set of entities, P.

0 20 40 60 80 100
Cost

0

20

40

60

80

100

Re
so

ur
ce

 v
al

ue

0

1

2 3 4

5 67

8

9
10 1112

13

Systematic sampling based on cost

Figure 7.3: Example of keeping every third entity ordered by cost. In this figure, the kept
entities are circled.

124 Column generation subproblem heuristics

7.1.4 Precomputed buckets based on resource vectors

Our fourth strategy for reducing the number of entities at each node in our nested SPPRC is
“precomputed buckets based on resource vectors”. This strategy involves clustering the entities
with similar resource vectors and only keeping a certain number of non-dominated entities from
each cluster by cost.

Sadykov et al. (2020) clustered resource vectors into several “buckets”. These buckets were
chosen by equally dividing up the time and capacity resources for the column generation subprob-
lem of a vehicle routing problem. Sadykov et al. (2020) used the buckets to speed up dominance
calculations and, in some cases, heuristically reduce the number of entities in the SPPRC.

With more than ten resources, this process becomes more complicated. If we divide each
resource’s possible values into two ranges, high and low, then for 15 resources, there are 32768
different buckets.

We wanted to precompute a set of k buckets, which appropriately divide up the resource
space.

To achieve this, we called the column generator with all duals set to zero to generate a full
roster-line for each employee. We then collated the resource vectors of every on-stretch, work-
stretch and partial roster-line constructed.

We performed k-means clustering on the resource vectors for each set of entities to divide
the entities into k clusters. To efficiently calculate which cluster each entity belongs to, we built
a binary classification tree for on-stretches, work-stretches and roster-lines.

Our approach to creating the buckets is naive. We are producing the lowest cost roster-
lines for each employee, which may not represent the best roster-lines that we expect to find
in an optimal solution. However, our experiments show that this method still has reasonable
performance even with our naive approach to creating the buckets.

When solving each node of our SPPRC, we first divide our set of unprocessed entities into
bins using the binary classification tree. We then perform Algorithm 12 on each bin and combine
the set of non-dominated, low-cost entities from each bin.

Figure 7.4 shows an example of us selecting the lowest cost entity in each of five buckets. In
our real algorithm, we select more than one entity per bucket.

7.2 LP neighbourhood pricing

This section focuses on finding the most negative reduced cost roster-line in the neighbourhood
of an incumbent LP solution to the Restricted Master Problem (RMP). We deem this method
“LP neighbourhood pricing.” Specifically, we are enforcing a neighbourhood within each of the
SPPRCs of our nested subproblems. Enforcing a neighbourhood in an SPPRC allows us to prune
any entity outside our neighbourhood rule. By pruning entities, we can speed up the time taken
to generate columns considerably.

To demonstrate the effectiveness of LP neighbourhood pricing, we have chosen to use the
maximum shift changes per employee neighbourhood

∑
d δed ≤ k ∀ e, introduced in §6.1. This

LP neighbourhood pricing 125

0 20 40 60 80 100
Cost

0

20

40

60

80

100

Re
so

ur
ce

 v
al

ue

Precomputed clustering

Figure 7.4: Example of keeping lowest cost entity from 5 different clusters of the resource
value. In this figure, the kept entities are circled. The lines represent each bucket for a
single resource value.

neighbourhood quickly improves low-quality solutions, especially with the smaller neighbourhood
sizes (k ≤ 3). However, this neighbourhood can only be used with an integer incumbent roster
solution, and so is a form of IP neighbourhood pricing. Because an LP solution is not necessarily
integer, we modified this neighbourhood in three different ways so that it can apply to an LP
solution (which can be integer or non-integer). We describe each of these three resulting LP
neighbourhoods in §7.2.1.

One of the benefits of LP neighbourhood pricing is that we produce many integer roster
solutions while solving the root node; see §7.4.4 for more details. This means we can rapidly
produce some good roster solutions without having to branch or fully solve the root node.

Another benefit of enforcing a neighbourhood in the column generation subproblem is that
it is less likely to be affected by dual instability. Generated columns must be similar to those
already part of the best known primal solution. Thus, the generated columns are more likely to
improve the primal solution than unrestricted columns generated using oscillating duals.

Neighbourhood pricing is a particular form of partial pricing. We never do a full price with
LP neighbourhood pricing but update our incumbent to partial price in a new neighbourhood.

126 Column generation subproblem heuristics

Partial pricing has the advantage of finding a good entering column very quickly. We see the
same benefit here by applying our neighbourhood.

7.2.1 LP neighbourhoods

Unlike an integer incumbent, where there is one roster-line worked per employee, an incumbent
LP solution to the RMP can have a single employee work a convex combination of multiple
roster-lines. Thus, in this section, we consider how we can generate a candidate roster-line in the
neighbourhood of an LP incumbent solution.

Similar to §6.1, we represent a candidate roster-line in terms of a set of binary, employee-
shift variables, xeS , i.e., xeS = 1 if employee e works shift S in their associated roster-line and 0
otherwise.

Unlike §6.1, we define the incumbent LP solution X̂ to the RMP in terms of a set of incumbent
roster-lines X̂κ

e for each employee e. Each incumbent roster-line is a roster-line with a non-zero
value in the incumbent LP solution. We can represent each incumbent roster-line X̂κ

e as a set
of binary employee-shift variables, i.e., X̂κ

e = (x̂κeS , ∀S ∈ S), where x̂κeS is a binary variable
representing whether employee e works shift S in incumbent roster-line κ. We can also represent
the incumbent LP solution X̂ using the same employee-shift variables, i.e.,

X̂ = (x̂κeS , e = 1, 2, . . . , |E|, κ = 1, 2, . . . ,K, ∀S ∈ S).

Consider all roster-lines r ∈ Re within an incumbent LP solution generated for an employee
e (see §4.1.1 for more details on the RMP). We order these roster-lines by decreasing value in
the LP solution λre and index this ordering by κ = 1, 2, . . ., i.e., the incumbent roster-lines X̂κ

e

have decreasing value in the LP solution as κ increases.
As we tend to LP optimality, we often produce LP solutions with many incumbent roster-

lines. For this reason, we only use the first K incumbent roster-lines for our LP neighbourhood,
i.e., we consider X̂κ

e ∀κ ∈ (1, . . . ,K). Considering fewer incumbent roster-lines lowers the com-
plexity of the neighbourhood search.

From these definitions, we can define three new modification variables that we can use to
define neighbourhoods to a given incumbent LP solution. We define a modification δedκ to an
LP incumbent as zero if employee e is assigned the same shift on day d in both the generated
column and the κth incumbent column, and one otherwise, i.e.,

δedκ =

0, if xeS = x̂κeS ∀S ∈ Sd

1, otherwise
(7.2)

The second and third modifications to an LP incumbent involve generating a single roster-
line, xeS , in the neighbourhood of the first K incumbent roster-lines. We define the average
modification δAverageed to an LP incumbent as the sum of the modifications for each incumbent
roster-line divided by the number of incumbent roster-lines, i.e.,

δAverageed =

∑
κ∈1,...,K δedκ

K
(7.3)

LP neighbourhood pricing 127

k Sd dedk Sd d
Average

ed2 Sd d
Min

ed2

Emp 1 1 N N M - N - N - 3

2 M N - - N - M M 4

Legend M

A

N

-

Afternoon Shift

Night shift

Change

Morning Shift

1

Day off

0 10 0 0 0 0

1

0.5 0 0.5 0 0 1 0.5 1

1 0 0 0 0

3.5 2

0 0 1 0 0 1 0 1

N NNN N N

ded1

ded2

d
Average

ed2

d
Min

ed2

Day 8Day 1 Day 2 Day 3 Day 4

--

Day 5 Day 6 Day 7

1 1

Figure 7.5: Example of each of our new day modification variables for the top K = 2
roster-lines by value in an incumbent LP solution (shown on the left column of each day)
compared to a generated roster-line (shown on the right column of each day).

Initially, our average modification was weighted towards the value of each incumbent roster-
line κ in the RMP. However, in our initial experiments, we found this approach to not work as
well in practice. There are more possible values for each of the resources which track the sum
of the weighted average modifications in our column generation subproblem. This increases the
number of possible entities that the column generation subproblem can generate significantly.
For more details on this resource, see §7.2.3.

Lastly, we define the minimum modification δMin
ed to an LP incumbent as zero if employee

e is assigned the same shift on day d in the generated column as occurs in any of the first K
incumbent roster-lines, and one otherwise, i.e.,

δMin
ed = min

κ∈1,...,K
δedκ (7.4)

An example of how this notation can describe the modifications, from an LP incumbent
solution to a generated roster-line, is shown in Figure 7.5.

From these three new modification variables, we can define three LP neighbourhoods which
are all enforced in the column generation subproblem:

1. Maximum shift changes per employee by column, minκ(
∑
d δedκ) ≤ k ∀ e

2. Maximum average modifications per employee,
∑
d δ

Average
ed ≤ k ∀ e

3. Maximum minimum modifications per employee,
∑
d δ

Min
ed ≤ k ∀ e

Please note that we give formulas for each neighbourhood in shorthand.
∑
d indicates

∑
d∈D,

∀e indicates ∀e ∈ E and minκ indicates minκ∈K .
In practice, for each of our neighbourhoods, we only considered the first K = 2 incumbent

roster-lines to reduce the number of entities we generate. A larger number of incumbent roster-
lines can increase the number of entities we generate significantly; see §7.2.6 for more details.

128 Column generation subproblem heuristics

7.2.2 LP variable neighbourhood descent

To solve each node in the branch-and-bound tree using LP neighbourhood pricing, we adapted the
“pipe variable neighbourhood descent” procedure described by Hansen et al. (2016) for use with
LP neighbourhood pricing. Our implementation of this procedure is shown in Algorithm 15. We
use a different implementation of LP neighbourhood pricing for each of our LP neighbourhoods
discussed in §7.2.1. However, we are solving a modified instance of an SPPRC with an additional
resource in each implementation.

Algorithm 15 Pipe variable neighbourhood descent to solve a node in the branch-and-
bound tree
1: procedure VND
2: k ← 1
3: while k ≤ kmax = 3 do
4: improvement = false
5: for e ∈ E do
6: RUN LP neighbourhood pricing for employee e within the neighbourhood

of that employee’s incumbent columns X̂κ
e ∀κ ∈ (1, . . . ,K) to generate negative

reduced cost columns and with neighbourhood size k
7: if negative reduced cost columns were generated then
8: ADD negative reduced cost columns to RMP
9: SOLVE restricted RMP

10: X̂ ← solution to RMP
11: improvement = true
12: if improvement = false then
13: k ← k + 1

14: return X̂

We solve the column generation subproblem using LP neighbourhood pricing with a given
neighbourhood distance parameter k until we can find no further negative reduced cost columns.
The neighbourhood is then increased by one. The maximum neighbourhood distance kmax we
use for LP neighbourhood pricing is three. We found that a larger value than three for the
neighbourhood distance significantly increased the column generation subproblem solve time.

We need to find an initial set of columns on which to perform LP neighbourhood pricing.
To do this, we use the construction heuristic described in §6.4, i.e., we generate the lowest cost,
legal roster-line for each employee with no neighbourhood restrictions and combine them to form
a (low quality) starting solution.

In the following sections, we discuss how we model LP neighbourhood pricing for our three
LP neighbourhoods within our column generation framework introduced in Chapter 4. We first
discuss the maximum average modifications per employee neighbourhood (

∑
d δ

Average
ed ≤ k ∀ e)

and the maximum minimum modifications per employee neighbourhood (
∑
d δ

Min
ed ≤ k ∀ e)

as they only require solving a single nested SPPRC per employee. Afterwards, we discuss the

LP neighbourhood pricing 129

maximum shift changes per employee by column neighbourhood (minκ(
∑
d δedκ) ≤ k ∀ e) in

which we need to solve more than one nested SPPRC per employee.

7.2.3 Maximum average modifications per employee

The first LP neighbourhood pricing method uses the maximum average modifications per em-
ployee neighbourhood (

∑
d δ

Average
ed ≤ k ∀ e).

All three of our LP neighbourhood pricing techniques involve adding resources to calculate in-
cumbent difference to each entity, similar to the maximum shift changes per employee neighbour-
hood described in §6.2.1. However, we use different values for the incumbent difference resources
for shifts and off-stretches to model each neighbourhood. For the K = 2 incumbent roster-lines
κ ∈ (1, 2) worked by employee e, we define the incumbent difference T Incumbent difference

S for a
given shift, S, as follows:

T Incumbent difference
S = 1− x̂1

eS + x̂2
eS

2

The off-stretch incumbent difference T Incumbent difference
F is defined by:

T Incumbent difference
F =

∑
S∈SF

x̂1
eS + x̂2

eS

2

where SF is the set of shifts which overlap with off-stretch F .
The on-stretch, work-stretch and roster-line incumbent difference resources,

T Incumbent difference
O , T Incumbent difference

W and T Incumbent difference
R , are modelled the same as in

§6.2.1, i.e., with the following resource extension functions:

E Incumbent difference
O (TO, TS) = T Incumbent difference

O + T Incumbent difference
S

E Incumbent difference
W (TO, TF) = T Incumbent difference

O + T Incumbent difference
F

E Incumbent difference
R (TR, TW) = T Incumbent difference

R + T Incumbent difference
W

and a hard upper bound equal to the neighbourhood distance, γIncumbent difference
O =

γIncumbent difference
W = γIncumbent difference

R = k.
Note that all five of these incumbent resources can potentially be non-integer.

7.2.4 Maximum minimum modifications per employee

The second LP neighbourhood pricing method uses the maximum minimum modifications per
employee neighbourhood (

∑
d δ

Min
ed ≤ k ∀ e).

In practice, for the K = 2 incumbent roster-lines κ ∈ (1, 2) worked by employee e, we define
the incumbent difference resource variable for shift S as follows:

T Incumbent difference
S = min(1− x̂1

eS , 1− x̂2
eS)

Similarly, we define the off-stretch incumbent difference resource variable as follows:

T Incumbent difference
F =

∑
S∈SF

min(x̂1
eS , x̂

2
eS)

130 Column generation subproblem heuristics

where SF is the set of shifts which overlap with off-stretch F .
The on-stretch, work-stretch and roster-line incumbent difference resources,

T Incumbent difference
O , T Incumbent difference

W and T Incumbent difference
R , are modelled the same as in

§6.2.1 and §7.2.3.

7.2.5 Maximum shift changes per employee by column

The third LP neighbourhood pricing method uses the maximum shift changes per employee by
column neighbourhood (minκ(

∑
d δedκ) ≤ k ∀ e).

In practice, we solve a separate nested SPPRC within the neighbourhood of each of employee
e’s incumbent roster-lines κ ∈ (1, 2). We enforce this neighbourhood in each of the two nested
SPPRCs identically to how we enforced the maximum shift changes per employee neighbourhood
but separately for each incumbent roster-line (§6.2.1).

From solving these two nested SPPRCs, we find two separate roster-lines for each employee
e ∈ E . One roster-line with the most negative reduced cost within the neighbourhood of incum-
bent roster-line κ = 1, i.e.,

∑
d δed1 ≤ k, and one roster-line with the most negative reduced

cost within the neighbourhood of incumbent roster-line κ = 2, i.e.,
∑
d δed2 ≤ k. Out of these

two roster-lines, the one with the most negative reduced cost is the roster-line with the most
negative reduced cost within the maximum shift changes per employee by column neighbourhood
(minκ(

∑
d δedκ) ≤ k ∀ e). However, in practice, we also add the other column to our RMP as it

is often also a low reduced cost column.

7.2.6 Comparison of LP neighbourhood pricing techniques

As mentioned previously, the incumbent difference resources for the maximum average modifi-
cations per employee neighbourhood (

∑
d δ

Average
ed ≤ k ∀ e) can take fractional values. Thus, the

total number of possible values for each incumbent difference resource is equal to K×k+1, e.g. if
k = 2 and K = 2 then T Incumbent difference

τ ∈ {0, 0.5, 1, 1.5, 2}. The higher number of possible val-
ues significantly increases the number of non-dominated entities as an entity with a lower value
for the incumbent difference resource can not be dominated by an entity with a higher value
for that resource. In contrast, the other two neighbourhoods can only have integer incumbent
differences.

The maximum minimum modifications per employee neighbourhood (
∑
d δ

Min
ed ≤ k ∀ e)

allows for much fewer entities to be removed at each node than the other two neighbourhood
strategies. This is because the value of the minimum modification is less than the value of the
average modification and the modification per column by definition, i.e., δMin

ed ≤ δedκ and δMin
ed ≤

δAverageed . In each neighbourhood, we only remove entities if the sum of the modifications over
each day d for the given employee e is above the neighbourhood distance parameter k. Thus, a
smaller value for each modification variables means we remove fewer entities at each node in our
nested SPPRC.

Lastly, only the maximum shift changes per employee by column neighbourhood
(minκ(

∑
d δedκ) ≤ k ∀ e) requires solving the column generation subproblem more than once.

Testing methodology 131

7.3 Testing methodology

We have thus far discussed seven different column generation subproblem heuristics: four entity
restriction methods and three LP neighbourhood pricing methods. To compare each of these
column generation subproblem heuristics, we want to understand how many entities are generated
in each nested SPPRC within our column generation subproblem. We also want to understand
how they reduce the time it takes to solve the nested SPPRC.

Further, we wish to compare each column generation subproblem heuristic’s effectiveness
within the broader context of finding high-quality integer roster solutions. To find a high-quality
integer roster solution, we used a separate branch-and-price dive with each column generation
subproblem heuristic. Please refer to Section 4.5 for more details on diving.

To demonstrate the behaviour of the different column generation subproblem heuristics on
solving rostering problems with different levels of difficulty, we solve both the (easier) operating
theatre ward problem and the (more challenging) maternity wards problem. Similar to our exper-
iments with variable neighbourhood descent in §6.4, we used random shift cost perturbations to
create ten instances of each problem to ensure more accurate results by mitigating the variance
in the branch-and-bound tree. Unlike variable neighbourhood descent, each instance is a single
dive, so it is more affected by variance in the branch-and-bound tree.

Thus, with two problems and ten instances of each problem, we performed 20 runs with
each column generation subproblem heuristic. As we compare seven different column generation
subproblem heuristics, we needed to perform 140 runs in total.

We also recorded the average number of entities produced in each solve of the nested SPPRC
and the average time taken to solve the nested SPPRC using each column generation subproblem
heuristic.

We deem a column generation subproblem heuristic more effective if using that heuristic
with a branch-and-price dive can produce integer roster solutions with a lower cost than using
another heuristic in the same amount of time. Thus, we also recorded all integer roster solutions
produced and their quality to measure the branch-and-price dive’s effectiveness with each column
generation subproblem heuristic.

Further, we are interested in determining if the column generation subproblem heuristics
strongly change the nature of the solves, specifically the “natural integrality” (i.e., how close the
solution to the root node is to integrality). Thus, we also recorded the objective of the root node
solution for each run and two measures of natural integrality for the root node: the number of
non-zero columns in the root node solution and the number of branches required for each dive.

Lastly, for our LP neighbourhood pricing algorithms, we recorded all incumbent LP solutions
to the RMP produced while solving the root node. We compare these solutions with how the
LP incumbent solution to the RMP is changing over time. This is to gain insight into why our
LP neighbourhood pricing algorithm consistently produces multiple high-quality integer roster
solutions while solving the root node. No high-quality integer roster solutions were produced while
solving the root node when using entity restriction or solving the column generation subproblem
optimally.

132 Column generation subproblem heuristics

7.4 Results

The following sections detail the results of the 120 runs with entity restriction by cost, systematic
sampling, precomputed buckets, and our three LP neighbourhood pricing methods. We do not
report on the 20 runs with entity restriction by variability in resource vectors as, despite spending
significant efforts in testing, no configuration for this method produced reasonable quality integer
roster solutions. We also provide results for 20 runs with no column generation subproblem
heuristic.

7.4.1 Column generation speed

In this section, we discuss the effect of column generation subproblem heuristics on solving
our nested SPPRC. While solving each dive with column generation subproblem heuristics, we
recorded the average time spent solving each nested SPPRC and the average number of entities
generated (including on-stretches, work-stretches and roster-lines). The average time to solve the
SPPRC and the average number of entities generated for each run is shown with box and whisker
plots in Figure 7.6.

Entity restriction by cost, systematic sampling and the three LP neighbourhood pricing
algorithms all lead to a significant reduction in the time taken to solve the nested SPPRC and
the number of entities generated compared with no column generation subproblem heuristic.
This difference is exacerbated in the (more challenging) maternity wards problem as we impose
the same upper limit on the number of entities extended M at each node in our nested SPPRC
(or same neighbourhood distance parameters 1 ≤ k ≤ 3) for each column generation subproblem
heuristic across the two problems. However, there is a much larger number of entities created
with no column generation subproblem heuristic in the maternity wards problem. Out of these
five column generation subproblem heuristic techniques, the three LP neighbourhood pricing
techniques solve our nested SPPRC much faster than entity restriction by cost and systematic
sampling.

Although we solve the column generation subproblem faster using precomputed buckets
than not using a heuristic, we still generated more entities in the maternity wards problem. This
is because we only run dominance for each individual bin and not after combining the bins.
Since a large amount of time is spent calculating dominance, the time taken to solve the nested
SPPRC with precomputed buckets is still shorter than solving the column generation subproblem
optimally, even though more entities are created.

Results 133

NER ERC SS PB MAM MMM MSC
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ti
m

e
(s

)

Average time solving nested SPPRC

NER ERC SS PB MAM MMM MSC
0

50000

100000

150000

200000

250000

Av
er

ag
e

en
tit

ie
s g

en
er

at
ed

Average entities generated per nested SPPRC

(a) Maternity wards problem

NER ERC SS PB MAM MMM MSC

0.02

0.04

0.06

0.08

Ti
m

e
(s

)

Average time solving nested SPPRC

NER ERC SS PB MAM MMM MSC

10000

20000

30000

40000

50000

Av
er

ag
e

en
tit

ie
s g

en
er

at
ed

Average entities generated per nested SPPRC

(b) Operating theatre ward problem

Figure 7.6: Average time spent generating entities and average number of entities gen-
erated with the following column generation subproblem heuristics: no entity restriction
(NER), entity restriction by cost (ERC), systematic sampling (SS), precomputed buckets
(PB), maximum average modifications per employee (MAM), maximum minimum mod-
ifications per employee (MMM), and maximum shift changes per employee by column
(MSC).

7.4.2 All run results

In this section, we discuss performing a branch-and-price dive until an integer roster solution is
found for all 140 runs described in §7.3.

134 Column generation subproblem heuristics

We summarise the time taken to find the first integer solution by diving and the quality of
that solution for all 140 runs with box and whisker plots in Figure 7.7.

The results show that finding integer solutions with LP neighbourhood pricing is signifi-
cantly faster than cost and resource restriction. Furthermore, for the operating theatre ward
problem, the integer roster solutions produced by diving with LP neighbourhood pricing are of
a considerably lower cost than with entity restriction by cost, systematic sampling and with no
column generation subproblem heuristic and have a similar cost to precomputed buckets. This
suggests the most effective method of neighbourhood restriction when performing a dive is LP
neighbourhood pricing.

Out of our cost and resource restriction algorithms, restriction by cost appears to perform
the best for the Waikato DHB problems, and precomputed buckets appears to perform the best
for the operating theatre ward problem. Although precomputed buckets doesn’t perform as well
on the Maternity wards problem, it is the most complex entity restriction method and has a lot
of potential for further optimisation. For example, we could have used entities generated using
non-zero duals for the clustering algorithm or used a different clustering algorithm. Thus, we
may have happened across a more effective set of buckets for the operating theatre ward problem
by chance.

Results 135

NER ERC SS PB MAM MMM MSC

10000

20000

30000

40000

50000

60000

70000

Ti
m

e(
s)

Time to first integer solution

NER ERC SS PB MAM MMM MSC

200000

250000

300000

350000

400000

450000

Ob
je

ct
iv

e

Objective of first integer solution

(a) Maternity wards problem

NER ERC SS PB MAM MMM MSC
0

200

400

600

800

1000

1200

Ti
m

e(
s)

Time to first integer solution

NER ERC SS PB MAM MMM MSC

26000

28000

30000

32000

34000

Ob
je

ct
iv

e

Objective of first integer solution

(b) Operating theatre ward problem

Figure 7.7: Comparison of the time and objective of the first integer solution produced by
diving with the following column generation subproblem heuristics: no entity restriction
(NER), entity restriction by cost (ERC), systematic sampling (SS), precomputed buckets
(PB), maximum average modifications per employee (MAM), maximum minimum mod-
ifications per employee (MMM), and maximum shift changes per employee by column
(MSC).

7.4.3 Properties of dives

In this section, we show metrics for all 140 runs with regards to the objective of the solution to
the root node and how far the solution to the root node is from integrality. We also measure the

136 Column generation subproblem heuristics

total number of branches in the branch-and-bound dive. We show these metrics for all 140 runs
with a box and whisker plot in Figure 7.8

Our entity restriction strategies had a similar number of non-zero columns in the solution
to the root node and took a similar number of branches to dive to an integer solution as when
solving the column generation subproblem with no heuristics. However, each run with LP neigh-
bourhood pricing had significantly fewer non-zero columns in the solution to the root node and
took fewer branches to dive to an integer solution than the other strategies. Further, for many of
the runs which involved solving the operating theatre problem with LP neighbourhood pricing,
the solution to the root node was naturally integer (as shown by zero branches being required).

We observed that although the cost and resource restriction methods produced higher quality
solutions to the root node than the LP neighbourhood pricing methods, this did not correlate with
higher quality integer solutions after diving. The LP neighbourhood pricing methods mostly had
a higher objective value solution to the root node and an equal or lower objective value integer
solution produced with a branch-and-price dive; cf. §7.4.2. These observations indicate that LP
neighbourhood pricing methods produce root node solutions that are closer to being integer. The
natural integrality of LP neighbourhood pricing methods is discussed next.

Results 137

NER ERC SS PB MAM MMM MSC
460

480

500

520

540

560

Nu
m

be
r o

f n
on

-z
er

o
co

lu
m

ns

Number of non-zero columns after solving root node

NER ERC SS PB MAM MMM MSC

55500

56000

56500

57000

57500

Ob
je

ct
iv

e

Objective after solving root node

NER ERC SS PB MAM MMM MSC

150

200

250

300

350

400

Nu
m

be
r o

f b
ra

nc
he

s

Number of branches in dive

(a) Maternity wards problem

NER ERC SS PB MAM MMM MSC

40

60

80

100

120

140

160

180

Nu
m

be
r o

f n
on

-z
er

o
co

lu
m

ns

Number of non-zero columns after solving root node

NER ERC SS PB MAM MMM MSC

24500

25000

25500

26000

26500

27000

27500

28000

Ob
je

ct
iv

e

Objective after solving root node

NER ERC SS PB MAM MMM MSC
0

20

40

60

80

100

120

140

Nu
m

be
r o

f b
ra

nc
he

s

Number of branches in dive

(b) Operating theatre ward problem

Figure 7.8: Comparison of root node metrics and the number of branches in the dive with
the following column generation subproblem heuristics: no entity restriction (NER), en-
tity restriction by cost (ERC), systematic sampling (SS), precomputed buckets (PB),
maximum average modifications per employee (MAM), maximum minimum modifica-
tions per employee (MMM), and maximum shift changes per employee by column (MSC).

7.4.4 Natural integrality properties of LP neighbourhood pricing

This section reports on one of the other core benefits of using LP neighbourhood pricing:
LP neighbourhood pricing often produces integer solutions from non-integer solutions without
branching, which never happened with the entity restriction methods or with no column genera-
tion subproblem heuristic. Since we often still converge to an IP solution with no IP restriction,

138 Column generation subproblem heuristics

there is no point doing further column generation iterations to improve the root node solution if
these improvements are undone in the diving process.

To demonstrate this phenomenon, we provide detailed metrics showing the progression of
solving the root node for a single run with maximum minimum modifications per employee LP
neighbourhood pricing. As in §7.4.3, we measure the integrality of the root node solution with
the number of incumbent roster-lines. If the number of incumbent roster-lines is equal to the
number of employees, the solution is integer.

We compare each LP solution’s integrality level with the total number of changes from one
incumbent LP solution to the next incumbent LP solution. We calculate the total number of
changes between two incumbent LP solutions,

X̂old = (x̂κ,oldeS , e = 1, 2, . . . , |E|, κ = 1, 2, . . . ,K, ∀S ∈ S)

and
X̂new = (x̂κ,neweS , e = 1, 2, . . . , |E|, κ = 1, 2, . . . ,K, ∀S ∈ S),

with the following equation:

∑
e∈E

∑
S∈S

abs

 ∑
κ∈1,...,K

(x̂κ,oldeS − x̂κ,neweS)

 (7.5)

where x̂κ,oldeS and x̂κ,neweS are binary variables representing whether employee e works shift S in
incumbent roster-line κ. This metric is often referred to as the Hamming distance.

The other two metrics include the incumbent LP solution’s objective and the current neigh-
bourhood distance parameter k.

We show how each of these four metrics changes over time with three line graphs in Fig-
ure 7.9. The dashed line shown in the first graph indicates the total number of employees in the
problem. As shown by the dashed blue line and the solid blue line intersecting, multiple integer
roster solutions are found while solving the root node LP. This occurs in other examples of LP
neighbourhood pricing even when the root node is not naturally integer. Further, we can see that
the LP solutions often go from non-integer to integer while solving the root node. We observe
that the jumps from non-integer to integer solutions usually correlate with a large change to the
incumbent LP solution. However, we can’t find a strong link between changes to the objective
or neighbourhood distance and the jump to an integer solution.

Results 139

0 25 50 75 100 125 150 175

40

60

80

100

120

140

Nu
m

be
r o

f i
nc

um
be

nt
 ro

st
er

-li
ne

s

Integrality vs changes to incumbent LP solution over time

0 25 50 75 100 125 150 175
22000

24000

26000

28000

30000

32000

34000

36000

38000

Ob
je

ct
iv

e

Objective of incumbent LP solution over time

0 25 50 75 100 125 150 175
Time(s)

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

k

Neighbourhood distance over time

0

50

100

150

200

250

300

350

Nu
m

be
r o

f c
ha

ng
es

 to
 in

cu
m

be
nt

 so
lu

tio
n

Figure 7.9: Solving the root node of a single operating theatre ward problem with the
maximum minimum modifications per employee neighbourhood. The first graph shows
the number of incumbent roster-lines in blue, with the incumbent change over time shown
in red. In this graph, a dotted blue line indicates the total number of employees. If there
is one incumbent roster-line per employee, i.e. the solid blue line and the dotted blue line
intersect, then the LP incumbent solution is integer. The other two graphs show the LP
incumbent solution’s objective over time and the neighbourhood distance (k, respectively.

140 Column generation subproblem heuristics

7.5 Real-world rostering experience

Using the algorithms shown in Chapters 6 and 7, we made four rosters for the operating theatre
ward, which the rostering staff at Waikato DHB implemented in practice with minimal changes.
Unfortunately, although they verified our solution to an old Maternity wards problem, due to
changing priorities caused by COVID-19, they were unable to implement rosters for the Maternity
wards before submission of this thesis.

Our process for real-world rostering involved creating a template form for the rostering staff
to fill out in Excel and using Python to process the Excel template into our column generation
model’s input data. The data they provided consistently had multiple mistakes as this was data
they usually provided to human rosterers. Human rosterers can easily interpret which data was
incorrect using their expertise, but our algorithm could not.

To find mistakes in the input data, we first constructed a decent roster solution using a
branch-and-price dive with LP neighbourhood pricing using the maximum minimum modifica-
tions neighbourhood (§7.2.3). We then performed 10 minutes of neighbourhood search on that
roster solution using the maximum shift changes per employee neighbourhood (§6.2.1). Using
these two matheuristics would usually lead to a roster solution that would be good enough to
spot the roster model’s mistakes. This strategy allowed us to test and fix the input data rapidly.

Once we had validated that the inputs to our model were correct, we attempted to find the
highest quality roster solution possible. Because we had access to a server with many CPU cores,
we ran all of the column generation based neighbourhood search strategies from Chapter 6 in
parallel overnight to improve the incumbent found when validating inputs and attempt to find
the best roster solution possible.

The rostering staff would send the template to us by email, and we would use the process
outlined in this section to produce a solution. If the solution was almost perfect, then the rostering
staff would accept it. Otherwise, the rostering staff would provide feedback about how we could
improve the model by adding in more constraints or by modifying the relative importance of the
constraints that we already have.

The whole process was mostly manual and tedious, and it would be ideal if we could automate
some of this process with a high-quality user interface and a web server to solve the rostering
problems.

7.6 Chapter summary

This chapter has shown how we use heuristics within the column generation subproblem to speed
up branch and price. We have compared two different types of column generation subproblem
heuristics. The first is entity restriction, in which we remove a subset of the entities at each node
in our SPPRC. Entity restriction is a standard method of speeding up the column generation
subproblem in the literature.

The second type of column generation subproblem heuristic is LP neighbourhood pricing.
Although we have seen researchers enumerate neighbourhood swaps to generate columns from

Chapter summary 141

an LP incumbent, we did not find anyone using a dynamic program to explore a neighbourhood
to an LP incumbent solution to generate columns.

All of our column generation subproblem heuristics were useful at speeding up the time
taken to perform a branch-and-price dive. However, we found that the LP neighbourhood pricing
heuristics could be used to find a solution of the same or better quality in less time. Further,
the LP neighbourhood pricing heuristics were much more likely to produce a naturally integer
solution to the root node and produce integer roster solutions while solving the root node.

Thus, we would recommend implementing LP neighbourhood pricing if the goal is to find
high-quality roster solutions quickly within a column generation framework.

Chapter 8

Conclusions

In this chapter, we summarise the significance of this work, provide ideas for future work on this
topic, and finally provide insights about how to solve difficult staff rostering problems.

8.1 Achievements

The primary objective of this research has been to improve upon Genie++ to build a state-of-the-
art generic system for modelling and solving challenging staff rostering problems automatically.
This work has improved upon standard column generation methods for solving staff rostering
problems found within the literature. Further, we have compared and implemented a large se-
lection of novel column generation based matheuristics. By doing so, we believe that we have
achieved our primary objective and built a state-of-the-art generic staff rostering solver.

Our secondary objective has been to solve two challenging sets of staff rostering problems:
the International Nurse Rostering Competition (INRC) problems and the problems given to us
by the Waikato DHB. We used our staff rostering solver to solve these two challenging sets of
staff rostering problems successfully.

The first set of staff rostering problems was from the INRC. Within a 4-hour time limit, we
solved 30 of the most difficult INRC problems to proven optimality. In doing so, we produced 11
new lower bounds and two new upper bounds (best-known roster solutions) that had not been
found before. As many researchers have tested their rostering algorithms on these problems, this
was a significant achievement. Not only did we show the value of the improvements we made to
Genie++, but we also confirmed the value of a column generation decomposition for solving staff
rostering problems. Furthermore, most column generation based algorithms use a single dive to
find a high-quality solution but do not prove optimality for that solution. Being able to prove
optimality to a large number of problems with a column generation based algorithm shows the
effectiveness of the techniques we have employed.

The second set of staff rostering problems was from the Waikato DHB. These problems were
complex as they involved non-linear cost functions that incorporated complex fairness rules.

143

144 Conclusions

Few researchers in the literature have been modelling complex fairness rules. Even with the
novel improvements to standard column generation that we used to solve the INRC problems,
our solver took a long time to generate roster solutions; further, these solutions were initially
low-quality.

After developing and implementing new matheuristics, including neighbourhood pricing, we
were able to quickly generate high-quality solutions to these problems through a set of column
generation-based matheuristics used to construct an initial roster solution and perform local
search. The rosters we generated were used in practice at the Waikato hospital for four consecutive
months. Their usage of our rosters is a testament to the solution’s quality and the model’s
accuracy; they did not accept our solution until we had implemented their required complex cost
functions and fairness features into our model.

The fact that we were able to build rosters for two very different classes of problems, the INRC
and Waikato DHB problems, using our nested column generation framework, is a testament to
the strength of our modelling framework.

8.2 Contributions

By building our state-of-the-art roster solver, we believe that we have contributed to the literature
for solving staff rostering problems with column generation in several ways.

Firstly, having found no existing comprehensive, generic column generation model for the
multi-objective nurse rostering problem, we introduced a novel way of modelling a generic nested
column generation subproblem (§4.6). We also believe that our model could be modified to include
modelling tasks that build into shifts. Our model works seamlessly with all the techniques we
have introduced, including dominance cost functions, complex branching rules, relaxations and
matheuristics. The framework we presented and math notation was adequate to describe all these
additional features.

Secondly, we found that there had not been extensive research in resource dominance or
branching for solving staff rostering problems with column generation. Thus, we developed a
novel dominance cost function (§5.2.1) and novel branching strategies (§5.3) to identify provably
optimal solutions for all 30 of the hardest INRC problems within a reasonable amount of time.
The dominance cost function was pivotal in solving the INRC problems to provable optimality
within a four-hour time limit. With respect to the dominance cost functions, instead of requiring
each resource to have a better value in one resource vector than another, our approach exploits
the fact that resources eventually contribute to the objective function of the roster-line. Thus,
dominance cost functions allow cost trade-offs to be made early. Using dominance cost functions,
we could solve the column generation subproblem around 20x faster than with standard methods.
This approach was a significant improvement to our overall solver as the column generation
subproblem accounted for most of the time spent solving rostering problems.

The novel branching strategies were pivotal to increasing the upper bound. Our branching
strategies allowed us to effectively branch over multiple employees at once or over key employees

Contributions 145

and break the rostering problem’s underlying symmetry. Without their use, we only had an
increase in the upper bound of a single INRC problem. By using these strategies, in one case, we
proved optimality for the entire branch-and-bound tree with less than 30 nodes for a problem
that was previously unsolved to proven optimality.

In addition to novel dominance and branching techniques, we also developed a novel arbitrary
shift preference technique (§5.2.2) and a shift aggregation technique (§5.4) which were helpful in
decreasing the solve time.

Thirdly, we found that no one has extensively compared neighbourhood search strategies
within branch-and-price frameworks. In Chapter 6, we defined 14 different neighbourhoods and
applied seven of these neighbourhoods to our generic rostering system using a variable neigh-
bourhood descent (VND) algorithm. Out of these seven neighbourhoods, we believe “maximum
on/off changes per employee”, “maximum employee changes”, “fixed days”, “fixed days (on/off),"
and “fixed employees (on/off)" to be novel neighbourhoods used in column generation matheuris-
tics within the field of staff rostering. Although “fixed employees” neighbourhood and “maximum
shift changes per employee” neighbourhood are not novel column generation matheuristics within
the field of staff rostering, our VND which utilises each of our neighbourhoods is novel. We then
demonstrated how our novel applications of “maximum roster-line modifications" neighbourhood
and “fixed-days neighbourhood" were the two most effective neighbourhood restricted column
generation techniques of the seven that we tried.

Fourthly, we found that no one has extensively compared column generation subproblem
heuristics for staff rostering. In Chapter 7, we defined two different types of column generation
subproblem heuristics, “entity restriction” and “LP neighbourhood pricing”. Out of the four entity
restriction heuristics, we believe “entity restriction by variability in resource vectors”, “systematic
sampling of entities based on cost”, and “precomputed buckets based on resource vectors” to
be novel. We also consider LP neighbourhood pricing in general to be novel. The three novel
LP neighbourhoods we used with LP neighbourhood pricing include “maximum average modi-
fications per employee”, “maximum minimum modifications per employee”, and “maximum shift
changes per employee by column”. All of these column generation subproblem heuristics meant
the column generation subproblem could be solved significantly faster. Using any column gener-
ation subproblem heuristics with a branch-and-price dive allowed us to find integer roster solu-
tions more quickly than solving a branch-and-price dive without column generation subproblem
heuristics.

We demonstrated that using our novel LP neighbourhood pricing methods to find negative
reduced cost columns can be more effective than generating columns with entity restriction.
Using LP neighbourhood pricing with a branch-and-price dive finds roster solutions of the same
or higher quality in less time than the same branch-and-price dive using entity restriction or no
column generation subproblem heuristics. Further, LP neighbourhood pricing often found good-
quality integer roster solutions while solving the root node to our Waikato DHB problems. It
also consistently found naturally integer solutions to the initial LP root node of our operating
theatre ward problem.

146 Conclusions

Our LP neighbourhood pricing and IP neighbourhood restrictions both lead to smaller
branch-and-price dives. The success of these algorithms over a branch-and-price dive with no
restrictions is evidence of the concept that solving an LP all the way down and branching all the
way up is less effective than imposing a neighbourhood and avoiding a descent and climb. We can
even consider imposing a neighbourhood as branching on some distance from a solution before
solving the LP. By using LP neighbourhood pricing with a branch-and-price dive, we found IP
roster solutions of the same or better quality 7-20x faster than with a standard branch-and-price
dive. We found that by performing column generation restricted local search, we can find up to
3x better quality solutions to the Maternity wards problem than can be found with a standard
branch-and-price dive in the same time.

We found no other work in the literature that systematically explored and compared this
many column generation based matheuristics to solve staff rostering problems. Most papers we
found implemented at most two matheuristics.

8.3 Future work

We believe that the techniques outlined in this work are already very effective at solving staff
rostering problems. Thus, the most important piece of future work is expanding our research to
cover more classes of staff rostering problems and applying our techniques to other fields.

A prevalent model for solving staff rostering problems is to break down shifts into individual
tasks as described in §3.2.1. Thus, our next step would be to model task entities and solve modified
SPPRCs to build shift entities from task entities within our column generation subproblem.

We also found that breaking down a roster-line into on-stretches, off-stretches, and work-
stretches is somewhat arbitrary. We believe that breaking down a roster-line into a set of weeks
and fortnights would be better for the Waikato DHB problems as more of their rules were
modelled by week and fortnight than by on-stretch, off-stretch and work-stretch. We would like
to experiment on how best to break down a roster-line into component entities for maximum
efficiency in the future.

We would also like to see the techniques described in this work applied to airline crew
scheduling problems. As described in §3.1, airline crew scheduling is a similar class of problem
to staff rostering. Hence we believe that our techniques, particularly dominance cost functions,
would be similarly effective in solving these problems.

Our work has explored a large variety of techniques, many of which have the potential to
be investigated further and improved. Our dominance cost functions (§5.2.1) are very effective if
they are constructed well. However, in our current implementation, they need to be constructed
by hand. In future, we would like to see an automatic method for constructing effective dominance
cost functions.

We found that random, arbitrary shift preferences (§5.2.2) help a lot when there are multiple
optimal solutions to the same rostering problem. Their use leads to a less fractional root node
solution and fewer branches required to find an integer roster solution. We also found they were

Future work 147

an effective means of creating ‘fake’ new problem instances with sufficient variability, which we
first elaborate on in §7.3. On experimentation with different random seeds to create these shift
preferences, we found that the fractionality of the root node solution can change a lot depending
on the arbitrary shift preferences; see §7.4 for details. In future, we would like to look into
creating these arbitrary shift preferences systematically instead of randomly to see if we can lead
the branch-and-price dive towards quickly finding an integer roster solution with fewer branches.

In some of the INRC problems, branching on resources over groups of employees (§5.3.1) was
the most effective method we tested at driving up the lower bound. On other INRC problems,
branching on high priority nurses (head nurses) was more effective (§5.3.3). We want to investigate
why different problems respond so differently to our two different branching rules in future work.
Furthermore, we want to investigate which resources are most effective to branch on and which
nurses are of the highest priority to branch on.

The experiments we performed in Chapters 6 and 7 could be extended to consider modelling
and solving more rostering problems to verify the effectiveness of our techniques further. Although
we utilised arbitrary shift preferences to simulate having different problems, which did change
the nature of the solves, we were not testing on truly different problems.

With each variable neighbourhood descent (VND) algorithm in Chapter 6, we changed the
neighbourhood distance but did not change the neighbourhood type. In future, we would like
to explore the effectiveness of combining multiple neighbourhood types into a single VND. As
different neighbourhoods were more effective for solving different difficulties of problems and
improving solutions to the same problem but with different objective values, combining multiple
neighbourhoods might work better to solve a wide variety of problems. It is also possible to
combine multiple neighbourhoods into a composite neighbourhood type as described in §6.1. We
have yet to test composite neighbourhood types.

In Chapter 7, we solved several branch-and-price dives, each with a different column genera-
tion subproblem heuristic. By only solving a heuristic column generation subproblem, we could
produce high-quality roster solutions with a dive faster than by solving the column generation
subproblem to optimality. We also discovered the natural integrality properties of LP neighbour-
hood search. However, many researchers in the literature solve each node in the branch-and-price
tree in two stages. In the first stage, they use a heuristic to solve the column generation sub-
problem, and in the second stage, they solve the column generation subproblems optimally. We
have yet to test this two-stage method with our column generation subproblem heuristics.

We also wish to investigate the capabilities and advantages of LP neighbourhood pricing
further. We still do not have a firm understanding of why LP neighbourhood pricing consistently
generates so many integer solutions from the neighbourhood of non-integer solutions. We also
wish to experiment with different neighbourhoods for LP neighbourhood pricing. For example,
we could implement the fixed days neighbourhood from §6.3.1 with an LP incumbent solution
to perform neighbourhood pricing.

Several researchers in the literature have generated negative reduced cost columns by enu-
merating shift swaps (see §3.2.4). We are interested in comparing using an SPPRC to perform

148 Conclusions

LP neighbourhood pricing with the enumeration of shift swaps to evaluate the same neighbour-
hood. We are also interested in soft neighbourhood restrictions in which we model the maximum
neighbourhood distance with a cost. Soft neighbourhood restrictions may work well with our
dominance cost functions.

Although we did not formally report in detail on this aspect, our compile-time customised
entity model for modelling the feasibility and cost of a roster-line could also evaluate the cost and
feasibility of a roster-line very quickly. Thus, our single model is easy to use with both column
generation and with local search by enumeration. It is worth exploring how we can exploit this
to improve our state-of-the-art generic system for solving rostering problems.

We found that, for many of the INRC problems, the gap between the objective of the LP
solution and the IP solution found using a single branch-and-price dive was zero when using
column generation. However, the gap was very large for the maternity wards problem. We want
to investigate the primary cause of a large gap when solving staff rostering problems with column
generation.

8.4 Recommendations

This section provides the reader with our insights into how they might solve their specific staff
rostering problem.

Firstly, one must decide on whether to use column generation at all. We found that certain
constraints lend themselves to column generation very well (instead of a MIP formulated with-
out column generation). For example, any constraints modelled purely within on-stretches or
work-stretches, such as shift precedence constraints or the ratio between days on and days off,
do not significantly increase the time taken to solve the rostering problem with column gener-
ation. However, constraints that apply over the whole roster-line, such as a maximum number
of nights, require a separate resource in each of three entity types: on-stretches, work-stretches,
and roster-lines, and this can significantly increase the time taken to solve the column generation
subproblem.

Next, one must decide on how to program the resources in the SPPRC. We used generic
programming (i.e. compile-time optimised code) to build our SPPRC. Generic programming is
significantly faster than having the resources as run-time inputs to the column generator. When
modelling multiple classes of problems, only a single, small C++ file needs to be modified. In staff
rostering, the column generation subproblem can vary significantly between different hospitals
in the resources required. This variance contrasts with problems like VRPs, where there is less
variety in resource types. Thus, if modelling many classes of problems, we would recommend
generic programming. However, when modelling a single class of problems, debugging is made
easier by directly programming the resources into the column generation subproblem.

When modelling the problem, our recommendation is to model as realistically as possible.
In our experience, more accurate modelling trumps better quality solutions to a less accurate
model. Our client could quickly tell if we were not correctly modelling any of the constraints they

Final words 149

described. However, it was difficult to tell the difference between a high-quality and an optimal
roster solution once we had built the model correctly. Having non-linear constraints was also
critical to modelling the problem correctly. Non-linear constraints are much easier to implement
when using an SPPRC to model the column generation subproblem.

Lastly, one must decide which techniques to apply.
One technique we suggest that should always be applied is arbitrary shift preferences. This

technique is an effortless way to improve the natural integrality of each node in the branch-and-
price tree with little additional computation.

Another technique we suggest that should always be applied is dominance cost functions. This
technique gave us a significant improvement in the time taken to solve the column generation
subproblem, so we would highly recommend using these for dominance of at least some SPPRC
resources.

With these two techniques applied, a standard branch-and-price dive should provide a high-
quality roster solution in a reasonable amount of time unless the rostering problem is particularly
challenging. However, if the problem is complex, we would recommend performing the branch-
and-price dive using LP neighbourhood pricing with the “maximum minimum modifications per
employee” neighbourhood to produce an incumbent solution. Then, we would recommend using
branch-and-price neighbourhood search with a combination of “maximum roster-line modifica-
tions" neighbourhood and “fixed-days neighbourhood".

If the goal is to increase the calculated lower bound, we recommend using aggregate resource
branching and priority first shift branching. A clever relaxation can also be helpful, such as
using a relaxation that removes part of the symmetry. For example, if the shift types are near
symmetrical such as in INRC, we recommend aggregating the shift types. If the employees are
near-symmetrical, we recommend modelling the employees anonymously. However, employees
can never be completely symmetrical due to roster history, and shifts can never be completely
symmetrical; otherwise, they would not be separate shifts. Thus, there must be a process for
dis-aggregating them as appropriate.

8.5 Final words

To my reader, I hope this thesis had been helpful for you in solving difficult staff rostering
problems.

People are complex, and there is a potential in staff rostering problems to model the many
complex facets of work-life, including fairness, health, preferences, work-life balance, and complex
regulations. The high ceiling for problem complexity means there is a need for a complex mod-
elling language and a fast solver. We hope that others may improve upon this work to capture
the complexities inherent in effective human-centred rostering.

Personally, the journey has been long and, at times, frustrating. However, I am proud to
have been given the opportunity to contribute to the international body of knowledge on staff
rostering and column generation.

150 Conclusions

I look forward to hearing from anyone who has used my work to improve people’s lives
through rostering.

Appendices

151

Appendix A

Cost dominance function example
enumeration proof

For a number o f weekends , ’n ’ , f i n d a l l combinat ions o f
weekends worked and weekends o f f wi th no r e s t r i c t i o n s
def get_al l_roster l ine_weekends (n) :

p o s s i b i l i t i e s = [[]]
for i in range (n) :

n ew_po s s i b i l i t i e s = []
for P in p o s s i b i l i t i e s :

n ew_po s s i b i l i t i e s . append (P + [’− ’])
n ew_po s s i b i l i t i e s . append (P + [’w ’])

p o s s i b i l i t i e s = new_po s s i b i l i t i e s
return p o s s i b i l i t i e s

For a number o f weekends , ’n ’ , f i n d a l l combinat ions o f
weekends worked and weekends o f f such t ha t a weekend
worked cannot f o l l ow a weekend o f f
def get_all_workstretch_weekends (n) :

p o s s i b i l i t i e s = [[]]
for i in range (n) :

n ew_po s s i b i l i t i e s = []
for P in p o s s i b i l i t i e s :

i f len (P) == 0 or P[−1] == "w" :
n ew_po s s i b i l i t i e s . append (P + [’w ’])

n ew_po s s i b i l i t i e s . append (P + [’− ’])

153

154 Cost dominance function example enumeration proof

p o s s i b i l i t i e s = new_po s s i b i l i t i e s
return p o s s i b i l i t i e s

Get the maximum number o f consecu t i v e weekends in a ros t e r−l i n e
def get_mcw(R) :

mcw = 0
ecw = 0

for X in R:
i f X == "w" :

ecw += 1
else :

ecw = 0
mcw = max(ecw , mcw)

return mcw

Find the number o f worked weekends in a work−s t r e t c h
def get_ww(W) :

return W. count ("w")

Find the number o f weekends o f f in a work−s t r e t c h
def get_wo(W) :

return W. count ("−")

Find the co s t o f a g iven maximum number o f consecu t i v e weekends
def get_cost (mcw, gamma) :

return max([mcw − gamma, 0])

Ca lcu l a t e work−s t r e t c h dominance f o r MCW
def calculate_dominance (W1, W2, R1 , R2 , gamma) :

return get_cost (get_mcw(R1 + W1 + R2) , gamma) \
− get_cost (get_mcw(R1 + W2 + R2) , gamma)

Ca lcu l a t e the work−s t r e t c h p s i f unc t i on f o r MCW
def calculate_bound (W1, W2, gamma) :

i f get_wo(W1) == 0 and get_wo(W2) > 0 :
return 4 − gamma

else :
return max(get_ww(W1) − get_ww(W2) , 0)

Cost dominance function example enumeration proof 155

t o t a l = 0
gamma_combinations = [0 , 1 , 2 , 3]

for w_start_day in range (0 , 4) :
for w_length in range (1 , 5 − w_start_day) :

R1_combinations = get_al l_roster l ine_weekends (w_start_day)
W1_combinations = get_all_workstretch_weekends (w_length)
W2_combinations = get_all_workstretch_weekends (w_length)
R2_combinations = get_al l_roster l ine_weekends (4 − w_start_day − w_length)
for gamma in gamma_combinations :

for W1 in W1_combinations :
for W2 in W2_combinations :

for R1 in R1_combinations :
for R2 in R2_combinations :

t o t a l += 1
a s s e r t (calculate_dominance (W1, W2, R1 , R2 , gamma)

<= calculate_bound (W1, W2, gamma))

print (t o t a l)

Appendix B

Regression on work-stretch resources

Dep. Variable: cost R-squared: 0.254
Model: OLS Adj. R-squared: 0.253
Method: Least Squares F-statistic: 176.0
Date: Tue, 04 Aug 2020 Prob (F-statistic): 0.00
Time: 10:55:05 Log-Likelihood: -44257.
No. Observations: 6205 AIC: 8.854e+04
Df Residuals: 6192 BIC: 8.863e+04
Df Model: 12

coef std err t P> |t| [0.025 0.975]

Intercept 788.7305 15.763 50.038 0.000 757.830 819.631
wF1Hours -5.585e+13 2.54e+13 -2.202 0.028 -1.06e+14 -6.12e+12
wF2Hours -3.937e+12 1.79e+12 -2.202 0.028 -7.44e+12 -4.32e+11
ww1Hours 5.585e+13 2.54e+13 2.202 0.028 6.12e+12 1.06e+14
ww2Hours 5.585e+13 2.54e+13 2.202 0.028 6.12e+12 1.06e+14
ww3Hours 3.937e+12 1.79e+12 2.202 0.028 4.32e+11 7.44e+12
ww4Hours 3.937e+12 1.79e+12 2.202 0.028 4.32e+11 7.44e+12
ww1Consec48hOff -290.2046 14.728 -19.704 0.000 -319.077 -261.332
ww2Consec48hOff -264.1684 12.001 -22.012 0.000 -287.695 -240.642
ww4Consec48hOff -37.6502 21.852 -1.723 0.085 -80.488 5.187
wwholeWeekendsOff -40.9434 9.853 -4.155 0.000 -60.259 -21.628
wtotalN 43.0155 4.904 8.771 0.000 33.401 52.630
ww2HasN -39.1821 10.091 -3.883 0.000 -58.964 -19.400
ww3HasN -98.2029 25.285 -3.884 0.000 -147.770 -48.636
ww4HasN -75.8744 31.553 -2.405 0.016 -137.730 -14.019

157

158 Regression on work-stretch resources

Omnibus: 1134.082 Durbin-Watson: 0.477
Prob(Omnibus): 0.000 Jarque-Bera (JB): 2098.198
Skew: 1.140 Prob(JB): 0.00
Kurtosis: 4.709 Cond. No. 2.28e+15

Bibliography

Divyam Aggarwal, Dhish Kumar Saxena, Thomas Bäck, and Michael Emmerich. A novel col-
umn generation heuristic for airline crew pairing optimization with large-scale complex flight
networks. arXiv, 7744:0–3, 2020. ISSN 23318422.

Uwe Aickelin and Kathryn A Dowsland. Exploiting problem structure in a genetic algorithm
approach to a nurse rostering problem. Exploiting problem structure in a genetic algorithm
approach to a nurse rostering problem. Journal of Scheduling, 3(3):139–153, 2000. ISSN
1099-1425. doi: 10.1002/(SICI)1099-1425(200005/06)3:3<139::AID-JOS41>3.0.CO;2-2.

S. M. Al-Yakoob and H. D. Sherali. A column generation approach for an employee scheduling
problem with multiple shifts and work locations. Journal of the Operational Research Society,
59(1):34–43, 2008. ISSN 14769360. doi: 10.1057/palgrave.jors.2602294.

Vítor Barbosa, Ana Respício, and Filipe Alvelos. A Column Generation Based Heuristic for a
Bus Driver Rostering Problem. In Progress in Artificial Intelligence, volume 1, pages 143–156.
2015. ISBN 9783319234854. doi: 10.1007/978-3-319-23485-4.

Jonathan F. Bard and Hadi W. Purnomo. Preference scheduling for nurses using column gen-
eration. European Journal of Operational Research, 164(2):510–534, 2005a. ISSN 03772217.
doi: 10.1016/j.ejor.2003.06.046.

Jonathan F. Bard and Hadi W. Purnomo. A column generation-based approach to solve the pref-
erence scheduling problem for nurses with downgrading. Socio-Economic Planning Sciences,
39(3):193–213, 2005b. ISSN 00380121. doi: 10.1016/j.seps.2004.04.001.

Cynthia Barnhart, Ellis L Johnson, George L Nemhauser, W P Martin, No May Jun, Cyn-
thia Barnhart, Ellis L Johnson, George L Nemhauser, Martin W P Savelsbergh, and
Pamela H Vance. Branch-and-Price : Column Generation for Solving Huge Integer Pro-
grams Savelsbergh and Pamela H . Vance Published by : INFORMS Stable URL :
http://www.jstor.org/stable/222825 REFERENCES Linked references are available on JS-
TOR for this article : You may n. Operations Research, 46(3):316–329, 1998.

Nicholas Beaumont. Scheduling staff using mixed integer programming. European Journal of Op-
erational Research, 98(3):473–484, 1997. ISSN 03772217. doi: 10.1016/S0377-2217(97)00055-6.

159

160 Bibliography

URL http://www.scopus.com/inward/record.url?eid=2-s2.0-0031140763&partnerID=
tZOtx3y1.

Jeroen Belien and Erik Demeulemeester. Heuristic branch-and-price for building long term
trainee schedules. DTEW Research Report 0422, pages 1–22, 2004. URL https://lirias.
kuleuven.be/bitstream/123456789/85433/1/OR_0422.pdf.

Jeroen Beliën and Erik Demeulemeester. Scheduling trainees at a hospital department using a
branch-and-price approach. European Journal of Operational Research, 175(1):258–278, 2006.
ISSN 03772217. doi: 10.1016/j.ejor.2005.04.028.

Jeroen Beliën and Erik Demeulemeester. On the trade-off between staff-decomposed and activity-
decomposed column generation for a staff scheduling problem. Annals of Operations Research,
155(1):143–166, 2007. ISSN 02545330. doi: 10.1007/s10479-007-0220-2.

Jeroen Beliën and Erik Demeulemeester. A branch-and-price approach for integrating nurse and
surgery scheduling. European Journal of Operational Research, 189(3):652–668, 2008. ISSN
03772217. doi: 10.1016/j.ejor.2006.10.060.

F. Bellanti, G. Carello, F. Della Croce, and R. Tadei. A greedy-based neighborhood search
approach to a nurse rostering problem. European Journal of Operational Research, 153(1):
28–40, 2004. ISSN 03772217. doi: 10.1016/S0377-2217(03)00096-1.

Marco Bender, Sebastian Berckey, Michael Elberfeld, and Jörg Herbers. Real-World Staff
Rostering via Branch-and-Price in a Declarative Framework. pages 445–451, 2019. doi:
10.1007/978-3-030-18500-8{_}55.

Khaled Boubaker, Guy Desaulniers, and Issmail Elhallaoui. Bidline scheduling with equity by
heuristic dynamic constraint aggregation. Transportation Research Part B: Methodological, 44
(1):50–61, 2010. ISSN 01912615. doi: 10.1016/j.trb.2009.06.003. URL http://dx.doi.org/
10.1016/j.trb.2009.06.003.

Vincent Boyer, Bernard Gendron, and Louis Martin Rousseau. A branch-and-price algorithm for
the multi-activity multi-task shift scheduling problem. Journal of Scheduling, 17(2):185–197,
2014. ISSN 10946136. doi: 10.1007/s10951-013-0338-9.

Jens O. Brunner and Jonathan F. Bard. Flexible weekly tour scheduling for postal service workers
using a branch and price. Journal of Scheduling, 16(1):129–149, 2013. ISSN 10946136. doi:
10.1007/s10951-011-0265-6.

Jens O. Brunner and Günther M. Edenharter. Long term staff scheduling of physicians with
different experience levels in hospitals using column generation. Health Care Management
Science, 14(2):189–202, 2011. ISSN 13869620. doi: 10.1007/s10729-011-9155-x.

Bibliography 161

Jens O. Brunner and Raik Stolletz. Stabilized branch and price with dynamic parameter updating
for discontinuous tour scheduling. Computers and Operations Research, 44:137–145, 2014.
ISSN 03050548. doi: 10.1016/j.cor.2013.11.004. URL http://dx.doi.org/10.1016/j.cor.
2013.11.004.

Jens O. Brunner, Jonathan F. Bard, and Rainer Kolisch. Midterm scheduling of physicians with
flexible shifts using branch and price. IIE Transactions (Institute of Industrial Engineers), 43
(2):84–109, 2011. ISSN 0740817X. doi: 10.1080/0740817X.2010.504685.

Eduard Bulog. A Nurse Rostering Algorithm with Compile-Time Customisation and
Neighbourhood-Constrained Column Generation. 1994, 2011.

E K Burke, T Curtois, R Qu, and G Vanden Berghe. A scatter search methodology for the nurse
rostering problem. Journal of the Operational Research Society, 61(11):1667–1679, 2010a.
ISSN 0160-5682. doi: 10.1057/jors.2009.118. URL http://link.springer.com/10.1057/
jors.2009.118.

Edmund K. Burke and Tim Curtois. New approaches to nurse rostering benchmark instances.
European Journal of Operational Research, 237(1):71–81, 2014. ISSN 03772217. doi: 10.1016/
j.ejor.2014.01.039. URL http://dx.doi.org/10.1016/j.ejor.2014.01.039.

Edmund K. Burke, Patrick De Causmaecker, Greet Vanden Berghe, and Hendrik Van Landeghem.
The state of the art of nurse rostering. Journal of Scheduling, 7(6):441–449, 2004a. ISSN
10946136. doi: 10.1023/B:JOSH.0000046076.75950.0b.

Edmund K. Burke, Timothy Curtois, Gerhard Post, Rong Qu, and Bart Veltman. A hybrid
heuristic ordering and variable neighbourhood search for the nurse rostering problem. European
Journal of Operational Research, 188(2):330–341, 2008. ISSN 03772217. doi: 10.1016/j.ejor.
2007.04.030.

Edmund K. Burke, Jingpeng Li, and Rong Qu. A hybrid model of integer programming
and variable neighbourhood search for highly-constrained nurse rostering problems. Eu-
ropean Journal of Operational Research, 203(2):484–493, 2010b. ISSN 03772217. doi:
10.1016/j.ejor.2009.07.036.

Edmund K Ek Burke and Tim Curtois. An ejection chain method and a branch and price
algorithm applied to the instances of the first international nurse rostering competition,
2010. Proceedings of the 8th International Conference on the Practice and Theory of
Automated Timetabling PATAT, 10:13, 2010. URL https://www.kuleuven-kortrijk.
be/~u0041139/nrpcompetition/abstracts/s4.pdf%5Cnhttp://scholar.google.com/
scholar?hl=en&btnG=Search&q=intitle:An+ejection+chain+method+and+a+branch+
and+price+algorithm+applied+to+the+instances+of+the+first+international+nurse.

162 Bibliography

Ek K Burke, Patrick De Causmaecker, and Greet Vanden Berghe. Novel meta-heuristic ap-
proaches to nurse rostering problems in Belgian hospitals. Handbook of Scheduling: Algo-
rithms, Models and Performance Analysis, 18(September):1–26, 2004b. doi: doi:10.1201/
9780203489802.ch44. URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.1.5770&rep=rep1&type=pdf.

Patrick De Causmaecker. International Nurse Rostering Competition instance set, 2010. URL
https://www.kuleuven-kulak.be/nrpcompetition/instances.

B. Cheang, H. Li, A. Lim, and B. Rodrigues. Nurse rostering problems - A bibliographic survey.
European Journal of Operational Research, 151(3):447–460, 2003. ISSN 03772217. doi: 10.
1016/S0377-2217(03)00021-3.

Jens Clausen. Branch and Bound Algorithms-Principles and Examples. Technical report, 1999.

Marie Claude Côté, Bernard Gendron, and Louis Martin Rousseau. Grammar-based column
generation for personalized multi-activity shift scheduling. INFORMS Journal on Computing,
25(3):461–474, 2013. ISSN 10919856. doi: 10.1287/ijoc.1120.0514.

Said Dabia, Stefan Ropke, Tom Van Woensel, and Ton De Kok. Branch and price for the time-
dependent vehicle routing problem with time windows. Transportation Science, 47(3):380–396,
2013. ISSN 15265447. doi: 10.1287/trsc.1120.0445.

Sana Dahmen, Rekik Monia, Francois Soumis, and Guy Desauliniers. A Branch-and-Price-and-
Cut Algorithm for Adjusting Schedules in a Multi-Department Context. 11e Congres In-
ternational de Genie Industriel, 2015. URL http://www.simagi.polymtl.ca/congresgi/
cigi2015/Articles/CIGI_2015_submission_105.pdf.

George Dantzig. Linear Programming and Extensions. Princeton University Press, 12 1963.
ISBN 9781400884179. doi: 10.1515/9781400884179.

George B. Dantzig and Philip Wolfe. Decomposition Principle for Linear Programs. Operations
Research, 8(1):101–111, 2 1960. ISSN 0030-364X. doi: 10.1287/opre.8.1.101.

Sophie Demassey, Gilles Pesant, and Louis Martin Rousseau. A cost-regular based hybrid
column generation approach. Constraints, 11(4):315–333, 2006. ISSN 13837133. doi:
10.1007/s10601-006-9003-7.

M. Van Den Eeckhout, M. Vanhoucke, and B. Maenhout. A column generation-based diving
heuristic to solve the multi-project personnel staffing problem with calendar constraints and
resource sharing. Computers & Operations Research, page 105163, 2020. ISSN 03050548. doi:
10.1016/j.cor.2020.105163. URL https://doi.org/10.1016/j.cor.2020.105163.

Guy Desaulniers. Branch-and-price-and-cut for the split-delivery vehicle routing problem with
time windows. Operations Research, 58(1):179–192, 2010. ISSN 0030364X. doi: 10.1287/opre.
1090.0713.

Bibliography 163

Guy Desaulniers, Jacques Desrosiers, and Marius M. Solomon. Column Generation, volume 82.
2005. ISBN 0-387-25486-2. doi: 10.1007/b135457. URL http://www.springerlink.com/
content/978-0-387-25485-2/.

Guy Desaulniers, Jacques Desrosiers, and Simon Spoorendonk. The Vehicle Routing Prob-
lem with Time Windows: State-of-the-Art Exact Solution Methods. Wiley Encyclopedia of
Operations Research and Management Science, (1):1–8, 2011. doi: 10.1002/9780470400531.
eorms1034.

Guy Desaulniers, François Lessard, Mohammed Saddoune, and François Soumis. Dynamic Con-
straint Aggregation for Solving Very Large-scale Airline Crew Pairing Problems. SN Operations
Research Forum, 1(3):1–23, 2020. doi: 10.1007/s43069-020-00016-1.

Jacques Desrosiers and Marco E. Lübbecke. A primer in column generation. Column Generation,
(May 2014):1–32, 2005. doi: 10.1007/0-387-25486-2{_}1.

Jacques Desrosiers and Marco E. Lübbecke. Branch-Price-and-Cut Algorithms. Wiley Ency-
clopedia of Operations Research and Management Science, (January), 2011. doi: 10.1002/
9780470400531.eorms0118.

Anders Dohn and Andrew Mason. Branch-and-price for staff rostering: An efficient implementa-
tion using generic programming and nested column generation. European Journal of Opera-
tional Research, 230(1):157–169, 2013. ISSN 03772217. doi: 10.1016/j.ejor.2013.03.018. URL
http://dx.doi.org/10.1016/j.ejor.2013.03.018.

J.J. Dopheide and R. Spliet. Solving Nurse Rostering Problems with Lagrangian Relaxation and
Column Generation. 2018.

O. du Merle, D. Villeneuve, J. Desrosiers, and P. Hansen. Stabilized column generation. Discrete
Mathematics, 194(1-3):229–237, 1999. ISSN 0012365X. doi: 10.1016/S0012-365X(98)00213-1.

Employment NZ. Rostering, 2020. URL https://www.employment.govt.nz/
hours-and-wages/hours-of-work/rostering/.

Julian Enoch. Advanced Column Generation Decompositions for Optimizing Provisioning Prob-
lems in Optical Networks. (June), 2018.

P. Erdos. Colloque sur la Théorie des Nombres. The Mathematical Gazette, 41:127–137, 1957.

A. T. Ernst, H. Jiang, M. Krishnamoorthy, and D. Sier. Staff scheduling and rostering: A review
of applications, methods and models. European Journal of Operational Research, 153(1):3–27,
2004. ISSN 03772217. doi: 10.1016/S0377-2217(03)00095-X.

M. Firat, D. Briskorn, and A. Laugier. A Branch-and-Price algorithm for stable workforce
assignments with hierarchical skills. European Journal of Operational Research, 251(2):676–
685, 2016. ISSN 03772217. doi: 10.1016/j.ejor.2015.11.039.

164 Bibliography

Matteo Fischetti and Michele Monaci. Exploiting erraticism in search. Operations Research, 62
(1):114–122, 2014. ISSN 0030364X. doi: 10.1287/opre.2013.1231.

John J Forrest, Stefan Vigerske, Ted Ralphs, Lou Hafer, Haroldo Gambini Santos, Matthew
Saltzman, Bjarni Kristjansson, and Alan King. coin-or/Clp: Version 1.17.6, 2020. URL https:
//doi.org/10.5281/zenodo.3748677.

Rosario G. Garroppo, Stefano Giordano, and Luca Tavanti. A survey on multi-constrained
optimal path computation: Exact and approximate algorithms. Computer Networks, 54(17):
3081–3107, 2010. ISSN 13891286. doi: 10.1016/j.comnet.2010.05.017. URL http://dx.doi.
org/10.1016/j.comnet.2010.05.017.

Matthieu Gérard, François Clautiaux, and Ruslan Sadykov. Column generation based approaches
for a tour scheduling problem with a multi-skill heterogeneous workforce. European Journal of
Operational Research, 252(3):1019–1030, 2016. ISSN 03772217. doi: 10.1016/j.ejor.2016.01.036.

Celia A. Glass and Roger A. Knight. The nurse rostering problem: A critical appraisal of the
problem structure. European Journal of Operational Research, 202(2):379–389, 2010. ISSN
03772217. doi: 10.1016/j.ejor.2009.05.046.

Rafael A.M. Gomes, Túlio A.M. Toffolo, and Haroldo Gambini Santos. Variable neighborhood
search accelerated column generation for the nurse rostering problem. Electronic Notes in
Discrete Mathematics, 58:31–38, 2017. ISSN 15710653. doi: 10.1016/j.endm.2017.03.005.

Balaji Gopalakrishnan and Ellis L. Johnson. Airline crew scheduling: State-of-the-art. Annals of
Operations Research, 140(1):305–337, 2005. ISSN 02545330. doi: 10.1007/s10479-005-3975-3.

Gabriel Gutiérrez-Jarpa, Guy Desaulniers, Gilbert Laporte, and Vladimir Marianov. A branch-
and-price algorithm for the Vehicle Routing Problem with Deliveries, Selective Pickups and
Time Windows. European Journal of Operational Research, 206(2):341–349, 2010. ISSN
03772217. doi: 10.1016/j.ejor.2010.02.037. URL http://dx.doi.org/10.1016/j.ejor.2010.
02.037.

Walter J. Gutjahr and Marion S. Rauner. An ACO algorithm for a dynamic regional nurse-
scheduling problem in Austria. Computers and Operations Research, 34(3):642–666, 2007.
ISSN 03050548. doi: 10.1016/j.cor.2005.03.018.

Pierre Hansen, Nenad Mladenović, Raca Todosijević, and Saïd Hanafi. Variable neighborhood
search: basics and variants. EURO Journal on Computational Optimization, 5(3):423–454,
2016. ISSN 21924414. doi: 10.1007/s13675-016-0075-x.

Stefaan Haspeslagh, Patrick De Causmaecker, Martin Stølevik, and Andrea Schaerf. First inter-
national nurse rostering competition 2010. PATAT 2010 - Proceedings of the 8th International
Conference on the Practice and Theory of Automated Timetabling, pages 498–501, 2010.

Bibliography 165

Fang He and Rong Qu. A constraint programming based column generation approach to nurse
rostering problems. Computers and Operations Research, 39(12):3331–3343, 2012. ISSN
03050548. doi: 10.1016/j.cor.2012.04.018. URL http://dx.doi.org/10.1016/j.cor.2012.
04.018.

Julia Heil, Kirsten Hoffmann, and Udo Buscher. Railway crew scheduling: Models, methods
and applications. European Journal of Operational Research, 283(2):405–425, 2020. ISSN
03772217. doi: 10.1016/j.ejor.2019.06.016.

Han Hoogeveen and Eelko Penninkx. Finding Near-Optimal Rosters Using Column Generation
Han Hoogeveen Eelko Penninkx Finding Near-Optimal Rosters Using Column Generation.
Knowledge Creation Diffusion Utilization, 2007.

Stefan Irnich and Guy Desaulniers. Shortest Path Problems with Resource Constraints.
In Guy Desaulniers, Jacques Desrosiers, and Marius M Solomon, editors, Column Gen-
eration, pages 33–65. Springer US, Boston, MA, 2005. ISBN 978-0-387-25486-9. doi:
10.1007/0-387-25486-2{_}2. URL https://doi.org/10.1007/0-387-25486-2_2.

Jonas Karl and Christoph Volland. Strategic and Tactical Scheduling of Logistics Assistants
Leveraging Flexibility in Shifts and Tasks Using Column Generation – An Opportunity for
Hospital Logistics. 2017.

Richard M. Karp. Reducibility among combinatorial problems. 50 Years of Integer Programming
1958-2008: From the Early Years to the State-of-the-Art, pages 219–241, 2010. ISSN 00224812.
doi: 10.1007/978-3-540-68279-0{_}8.

Atoosa Kasirzadeh, Mohammed Saddoune, and François Soumis. Airline crew scheduling: models,
algorithms, and data sets. EURO Journal on Transportation and Logistics, 6(2):111–137, 2017.
ISSN 21924384. doi: 10.1007/s13676-015-0080-x.

Antoine Legrain, Jérémy Omer, and Samuel Rosat. A rotation-based branch-and-price ap-
proach for the nurse scheduling problem, volume 12. Springer Berlin Heidelberg, 2020.
ISBN 1253201900. doi: 10.1007/s12532-019-00172-4. URL https://doi.org/10.1007/
s12532-019-00172-4.

Warner Lensing. Heuristic Branch-and-Price algorithms for the nurse rostering problem. PhD
thesis, University of Groningen, 2020.

Gino Lim and Arezou Mobasher. Operating suite nurse scheduling problem: A heuristic approach.
62nd IIE Annual Conference and Expo 2012, pages 1071–1079, 2012.

Zhipeng Lü and Jin Kao Hao. Adaptive neighborhood search for nurse rostering. European
Journal of Operational Research, 218(3):865–876, 2012. ISSN 03772217. doi: 10.1016/j.ejor.
2011.12.016. URL http://dx.doi.org/10.1016/j.ejor.2011.12.016.

166 Bibliography

Marco E. Lübbecke. Column Generation. Wiley Encyclopedia of Operations Research and Man-
agement Science, 2010. ISSN 0031918X. doi: 10.1134/S0031918X15030102.

R. Lusby, A. Dohn, T. M. Range, and J. Larsen. A column generation-based heuristic for rostering
with work patterns. Journal of the Operational Research Society, 63(2):261–277, 2012. ISSN
14769360. doi: 10.1057/jors.2011.27. URL http://dx.doi.org/10.1057/jors.2011.27.

Broos Maenhout and Mario Vanhoucke. A branch-and-price procedure for nurse staffing incorpo-
rating roster preferences. Multidisciplinary scheduling : theory and applications, (May), 2007.
URL http://hdl.handle.net/1854/LU-666135.

Broos Maenhout and Mario Vanhoucke. Branching strategies in a branch-and-price approach
for a multiple objective nurse scheduling problem. Journal of Scheduling, 13(1):77–93, 2010a.
ISSN 10946136. doi: 10.1007/s10951-009-0108-x.

Broos Maenhout and Mario Vanhoucke. A hybrid scatter search heuristic for personalized crew
rostering in the airline industry. European Journal of Operational Research, 206(1):155–167,
2010b. ISSN 03772217. doi: 10.1016/j.ejor.2010.01.040. URL http://dx.doi.org/10.1016/
j.ejor.2010.01.040.

Vittorio Maniezzo, Marco Antonio Boschetti, and Thomas Stutzle. Matheuristics: Algorithms
and Implementations. Springer Nature, 2021.

Victor Manuel and Meneses Barbosa. Bus Driver Rostering by Hybrid Methods Based on Column
Generation. 2018.

Hannah Martin and Sam Kilmister. Short-staffing of New
Zealand hospitals is putting patients and staff at risk – report,
2018. URL https://www.stuff.co.nz/national/health/107793693/
shortstaffing-of-new-zealand-hospitals-putting-patients-staff-at-risk-report.

Andrew Mason, Ed Bulog, and Anders Dohn. Using Nested Column Generation & Generic
Programming to solve Staff Scheduling Problems: Using Compile-time Customisation to create
a Flexible C++ Engine for Staff Rostering. 2011.

Andrew J. Mason. Elastic Constraint Branching, the Wedelin/Carmen Lagrangian Heuristic
and Integer Programming for Personnel Scheduling. Annals of Operations Research, 108(1-4):
239–276, 2001. ISSN 15729338. doi: 10.1023/A:1016023415105.

Andrew J. Mason and Mark C Smith. A Nested Column Generator for solving Rostering Prob-
lems with Integer Programming. pages 827–834, 1998. URL http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.39.1832.

Anuj Mehrotra, Kenneth E. Murphy, and Michael A. Trick. Optimal Shift Scheduling: A Branch-
and-Price Approach. Naval Research Logistics, 47(3):185–200, 2000. ISSN 0894069X. doi:
10.1002/(SICI)1520-6750(200004)47:3<185::AID-NAV1>3.0.CO;2-7.

Bibliography 167

Coen Meijer. Cyclical personnel scheduling using column generation. 2018.

Florian Mischek and Nysret Musliu. Integer Programming and Heuristic Approaches for a Multi-
Stage Nurse Rostering Problem. Proceedings of the 11th International Confenference on Prac-
tice and Theory of Automated Timetabling (PATAT-2016), pages 245–262, 2016.

Ibrahim Muter, Ş Ilker Birbil, Kerem Bülbül, Güvenç Şahin, Hüsnü Yenigün, Duygu Taş, and
Dilek Tüzün. Solving a robust airline crew pairing problem with column generation. Computers
and Operations Research, 40(3):815–830, 2013. ISSN 03050548. doi: 10.1016/j.cor.2010.11.005.

Hua Ni and Hernán Abeledo. A branch-and-price approach for large-scale employee tour schedul-
ing problems. Annals of Operations Research, 155(1):167–176, 2007. ISSN 02545330. doi:
10.1007/s10479-007-0212-2.

Koji Nonobe. INRC2010: An approach using a general constraint optimization solver. 2010.

Antonin Novak. Methods of the efficient state space search for the Nurse Rostering Problem
using branch-and-price approach. Master’s Thesis, 2015.

NZ Ministry of Health. New Zealand’s nursing workforce the largest it’s ever
been, 2019. URL https://www.health.govt.nz/news-media/media-releases/
new-zealands-nursing-workforce-largest-its-ever-been.

NZ Nurses Organisation. DHB NZNO MECA, 2018. URL https://www.nzno.org.nz/groups/
health_sectors/dhb.

Makoto Ohara and Hisashi Tamaki. Mathematical programming approach based on column
generation for a class of staff scheduling problems. 2015 54th Annual Conference of the Society
of Instrument and Control Engineers of Japan, SICE 2015, pages 240–245, 2015. doi: 10.1109/
SICE.2015.7285552.

Pattarapong Pakpoom and Peerayuth Charnsethikul. A Column Generation Approach for Per-
sonnel Sched uling with Discrete Uncertain Requirements. 2018 2nd International Confer-
ence on Informatics and Computational Sciences, ICICoS 2018, pages 185–190, 2019. doi:
10.1109/ICICOS.2018.8621664.

Warren B. Powell. What You Should Know About Approximate Dynamic Programming. Naval
Research Logistics, 55(April 2007):541–550, 2009. ISSN 0894069X. doi: 10.1002/nav. URL
http://www.interscience.wiley.com/jpages/0894-069X/.

P. Prosser and C. Unsworth. Limited discrepancy search revisited. Proceedings of the Fourteenth
International Joint Conference on Artificial Intelligence, 16(1):607–613, 2011. ISSN 10846654.
doi: 10.1145/1963190.2019581.

168 Bibliography

Hadi W. Purnomo and Jonathan F. Bard. Cyclic preference scheduling for nurses using branch
and price. Naval Research Logistics, 54(2):200–220, 2007. ISSN 0894069X. doi: 10.1002/nav.
20201.

Frédéric Quesnel, Guy Desaulniers, and François Soumis. Improving air crew rostering by con-
sidering crew preferences in the crew pairing problem. Transportation Science, 54(1):97–114,
2020. ISSN 15265447. doi: 10.1287/trsc.2019.0913.

Erfan Rahimian, Kerem Akartunal, and John Levine. A hybrid integer and constraint program-
ming approach to solve nurse rostering problems. Computers and Operations Research, 82:
83–94, 2017a. ISSN 03050548. doi: 10.1016/j.cor.2017.01.016. URL http://dx.doi.org/10.
1016/j.cor.2017.01.016.

Erfan Rahimian, Kerem Akartunalı, and John Levine. A hybrid Integer Programming and Vari-
able Neighbourhood Search algorithm to solve Nurse Rostering Problems. European Journal of
Operational Research, 258(2):411–423, 2017b. ISSN 03772217. doi: 10.1016/j.ejor.2016.09.030.
URL http://dx.doi.org/10.1016/j.ejor.2016.09.030.

Ted Ralphs. COIN/BCP User’s Manual. (September 2001), 2013.

Maria I. Restrepo, Bernard Gendron, and Louis Martin Rousseau. Combining Benders de-
composition and column generation for multi-activity tour scheduling. Computers and Op-
erations Research, 93:151–165, 2018. ISSN 03050548. doi: 10.1016/j.cor.2018.01.014. URL
https://doi.org/10.1016/j.cor.2018.01.014.

María I. Restrepo, Leonardo Lozano, and Andrés L. Medaglia. Constrained network-based col-
umn generation for the multi-activity shift scheduling problem. International Journal of Pro-
duction Economics, 140(1):466–472, 2012. ISSN 09255273. doi: 10.1016/j.ijpe.2012.06.030.

María I. Restrepo, Bernard Gendron, and Louis Martin Rousseau. Branch-and-price for person-
alized multiactivity tour scheduling. INFORMS Journal on Computing, 28(2):334–350, 2016.
ISSN 15265528. doi: 10.1287/ijoc.2015.0683.

D. M. Ryan and B. A. Foster. An integer programming approach to b-coloring. Discrete Opti-
mization, 32(October):43–62, 1981. ISSN 15725286. doi: 10.1016/j.disopt.2018.12.001.

Ruslan Sadykov. Modern Branch-Cut-and-Price. 2019.

Ruslan Sadykov, Eduardo Uchoa, and Artur Pessoa. A Bucket Graph–Based Labeling Algorithm
with Application to Vehicle Routing. Transportation Science, pages 1–53, 2020. ISSN 0041-
1655. doi: 10.1287/trsc.2020.0985.

Haroldo G. Santos, Túlio A.M. Toffolo, Rafael A.M. Gomes, and Sabir Ribas. Integer pro-
gramming techniques for the nurse rostering problem. Annals of Operations Research, 239(1):
225–251, 2016. ISSN 15729338. doi: 10.1007/s10479-014-1594-6. URL http://dx.doi.org/
10.1007/s10479-014-1594-6.

Bibliography 169

Alexander Schrijver. Theory of linear and integer programming. John Wiley and Sons, 1998.

Pieter Smet, Andreas T. Ernst, and Greet Vanden Berghe. Heuristic decomposition approaches
for an integrated task scheduling and personnel rostering problem. Computers and Operations
Research, 76:60–72, 2016. ISSN 03050548. doi: 10.1016/j.cor.2016.05.016. URL http://dx.
doi.org/10.1016/j.cor.2016.05.016.

Petter Strandmark, Yi Qu, and Timothy Curtois. First-order linear programming in a column
generation-based heuristic approach to the nurse rostering problem. Computers and Operations
Research, 120, 2020. ISSN 03050548. doi: 10.1016/j.cor.2020.104945.

Lars Sundqvist Swahn. A Column Generation Method for Minimization of Shift Costs at an
Airport. 2019.

Adil Tahir, Guy Desaulniers, and Issmail El Hallaoui. Integral column generation for the set
partitioning problem, volume 8. THE AUTHORS. Published by Elsevier on behalf of the
Association of European Operational Research Societies (EURO)., 2019. ISBN 0123456789.
doi: 10.1007/s13676-019-00145-6. URL http://dx.doi.org/10.1007/s13676-019-00145-6.

Christian Tilk, Michael Drexl, and Stefan Irnich. Nested branch-and-price-and-cut for vehicle
routing problems with multiple resource interdependencies. European Journal of Operational
Research, 276(2):549–565, 2019. ISSN 03772217. doi: 10.1016/j.ejor.2019.01.041. URL https:
//doi.org/10.1016/j.ejor.2019.01.041.

Nikola Todorovic and Sanja Petrovic. Bee Colony Optimization Algorithm for Nurse Roster.
Ieee Transactions on Systems, Man, and Cybernetics: Systems, Vol. 43, No. 2, March 2013,
VOL. 43, N(2):467–73, 2013. ISSN 2168-2216. doi: 10.1109/TSMCA.2012.2210404.

Roman Václavík, Antonín Novák, Přemysl Šůcha, and Zdeněk Hanzálek. Accelerating the
Branch-and-Price Algorithm Using Machine Learning. European Journal of Operational Re-
search, 271(3):1055–1069, 2018. ISSN 03772217. doi: 10.1016/j.ejor.2018.05.046.

Christos Valouxis, Christos Gogos, George Goulas, Panayiotis Alefragis, and Efthymios Housos.
A systematic two phase approach for the nurse rostering problem. European Journal of Oper-
ational Research, 219(2):425–433, 2012. ISSN 03772217. doi: 10.1016/j.ejor.2011.12.042. URL
http://dx.doi.org/10.1016/j.ejor.2011.12.042.

Jorne Van Den Bergh, Jeroen Beliën, Philippe De Bruecker, Erik Demeulemeester, and Liesje
De Boeck. Personnel scheduling: A literature review. European Journal of Operational
Research, 226(3):367–385, 2013. ISSN 03772217. doi: 10.1016/j.ejor.2012.11.029. URL
http://dx.doi.org/10.1016/j.ejor.2012.11.029.

M. Van Den Eeckhout, M. Vanhoucke, and B. Maenhout. A decomposed branch-and-price pro-
cedure for integrating demand planning in personnel staffing problems. European Journal of
Operational Research, 280(3):845–859, 2020. ISSN 03772217. doi: 10.1016/j.ejor.2019.07.069.

170 Bibliography

François Vanderbeck. Branching in Branch-and-Price : a Generic Scheme. 2009.

Jonas Volland, Andreas Fügener, and Jens O. Brunner. A column generation approach for the
integrated shift and task scheduling problem of logistics assistants in hospitals. European
Journal of Operational Research, 260(1):316–334, 2017. ISSN 03772217. doi: 10.1016/j.ejor.
2016.12.026. URL http://dx.doi.org/10.1016/j.ejor.2016.12.026.

Toby Walsh. Depth-bounded discrepancy search. IJCAI International Joint Conference on
Artificial Intelligence, 2(1934):1388–1393, 1997. ISSN 10450823.

Shu Wang. Workforce scheduling with large-scale mixed integer programming using column
generation and 2d genetic algorithms: an application to airport ground staff scheduling.
(December), 2019.

Yong Min Wang. A column generation approach for stochastic optimization problems. ProQuest
Dissertations and Theses, page 151, 2006. URL https://search.proquest.com/docview/
304979135?accountid=188395.

Emilio Zamorano and Raik Stolletz. Branch-and-price approaches for the Multiperiod Technician
Routing and Scheduling Problem. European Journal of Operational Research, 257(1):55–68,
2017. ISSN 03772217. doi: 10.1016/j.ejor.2016.06.058. URL http://dx.doi.org/10.1016/
j.ejor.2016.06.058.

Vahid Zeighami and François Soumis. Combining benders’ decomposition and column genera-
tion for integrated crew pairing and personalized crew assignment problems. Transportation
Science, 53(5):1479–1499, 2019. ISSN 15265447. doi: 10.1287/trsc.2019.0892.

Lishun Zeng, Mingyu Zhao, and Chunlei Mu. Airport Ground Staff-sizing with Hierarchical Skills
Using Column Generation. PATAT 2016 - Proceedings of the 11th International Conference
on the Practice and Theory of Automated Timetabling, pages 569–572, 2016.

Lishun Zeng, Mingyu Zhao, and Yangfan Liu. Airport ground workforce planning with hierarchi-
cal skills: a new formulation and branch-and-price approach. Annals of Operations Research,
275(1):245–258, 2019. ISSN 15729338. doi: 10.1007/s10479-017-2624-y.

Bahad Ir Zeren and Ibrahim Özkol. A novel column generation strategy for large scale airline
crew pairing problems. Expert Systems with Applications, 55:133–144, 2016. ISSN 09574174.
doi: 10.1016/j.eswa.2016.01.045.

