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Abstract 

 

Gene-sensors show great promise as tools for various applications, such as clinical 

diagnosis, reliable forensic analysis, environmental monitoring, and biological research. 

There is a great demand for DNA sensors that are able to detect single-base mismatches, 

which are the most common genetic defects that need to be discriminated for medical 

diagnostic purposes. The development of label free, direct, and fast sensors can be essential in 

meeting that requirement. Current gene-sensing technology relies heavily on fluorescent 

labeling of samples but this approach suffers from the disadvantage of time-consuming, 

expensive and multi-stepped procedures, especially during the sample preparation stage. 

Although the use of fluorescent labels has overcome the hazards involved with radioactive 

markers, development of alternative approaches to the traditional assays is still vital to 

advance the area of DNA sensors. 

 

The aim of this research was to develop a one-step sensor, offering direct and specific 

detection of a target DNA. Nanostructured materials, such as quantum dots (QDs) and self-

assembled monolayers, together with hairpin structured DNA probes were applied and 

investigated for optical as well as electrochemical sensors. The properties of inorganic 

quantum dots (or nanoparticles), such as narrow and intensive emission spectra, resistance to 

photobleaching and a wide range of possible surface functionalities, give QDs a great 

potential as labels in biological sensing applications. Self-assembled monolayers provide well 

established and versatile platforms for biosensors and hairpin probes, which are able to 

discriminate single-base mismatches in the target sequences, are ideal components for DNA 

sensors.  

 

Generally, the electrochemical sensors demonstrated a superior response compared to the 

optical sensors. The best prepared sensor showed sensitivity down to 4.7 fM of target and was 

capable of detecting single-base mismatches, fulfilling the requirements for a high-quality 

DNA sensor. 
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