

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the <u>Library Thesis Consent Form</u> and <u>Deposit Licence</u>.

Note : Masters Theses

The digital copy of a masters thesis is as submitted for examination and contains no corrections. The print copy, usually available in the University Library, may contain corrections made by hand, which have been requested by the supervisor.

Surface-immobilized Hairpin DNA Sensors

for Direct and Specific Detection

of Target DNA

Tanja Kjällman

A thesis submitted in complete fulfillment of the requirements for the degree of Doctor of Philosophy, Department of Chemistry, The University of Auckland, 2009

Abstract

Gene-sensors show great promise as tools for various applications, such as clinical diagnosis, reliable forensic analysis, environmental monitoring, and biological research. There is a great demand for DNA sensors that are able to detect single-base mismatches, which are the most common genetic defects that need to be discriminated for medical diagnostic purposes. The development of label free, direct, and fast sensors can be essential in meeting that requirement. Current gene-sensing technology relies heavily on fluorescent labeling of samples but this approach suffers from the disadvantage of time-consuming, expensive and multi-stepped procedures, especially during the sample preparation stage. Although the use of fluorescent labels has overcome the hazards involved with radioactive markers, development of alternative approaches to the traditional assays is still vital to advance the area of DNA sensors.

The aim of this research was to develop a one-step sensor, offering direct and specific detection of a target DNA. Nanostructured materials, such as quantum dots (QDs) and self-assembled monolayers, together with hairpin structured DNA probes were applied and investigated for optical as well as electrochemical sensors. The properties of inorganic quantum dots (or nanoparticles), such as narrow and intensive emission spectra, resistance to photobleaching and a wide range of possible surface functionalities, give QDs a great potential as labels in biological sensing applications. Self-assembled monolayers provide well established and versatile platforms for biosensors and hairpin probes, which are able to discriminate single-base mismatches in the target sequences, are ideal components for DNA sensors.

Generally, the electrochemical sensors demonstrated a superior response compared to the optical sensors. The best prepared sensor showed sensitivity down to 4.7 fM of target and was capable of detecting single-base mismatches, fulfilling the requirements for a high-quality DNA sensor.

Declaration

This is to certify that:

1) This thesis comprises only the authors original work, except where indicated below;

2) Due acknowledgment to all other material used has been made in the main text of the thesis.

My overall contribution to the work presented in this thesis is approximately 95%, based on the following:

Chapter 4

95 % The models for fitting of the acquired neutron reflectometry data were developed by Dr Ducncan McGillivray, from the Department of Chemistry, The University of Auckland. Dr McGillivray also carried out the polarized neutron reflectometry experiments at the NIST Center for Neutron Research, USA.

Acknowledgements

Firstly, I would like to thank my main supervisor, Associate Professor Jadranka Travas-Sejdic for giving me the opportunity to do my PhD on this interdisciplinary and motivating project. When I sent that first application letter, I never really thought I would get the position because the project sounded too good to be true. Thank you, Jadranka, for your continuous support, on a personal as well as on the professional level, for allowing me the freedom to work in my own way and for always believing in me. I also deeply appreciate the opportunities I have had to interact with researchers on the international arena, which has inspired and motivated me throughout this project.

To my co-supervisor, Associate Professor Christian Soeller, my sincere thanks for your advice, support, encouragement and not least your ever constructive criticism of my work. Heartfelt thanks also to Dr Peng Hui for introducing me to the wonderful world of quantum dots, for your endless patience, willingness to help, suggestions and advice. I consider myself lucky to have worked with such a great experimentalist as you.

To Linus, my beloved, thank you for wanting to go for the adventure on the other side of the world. Thank you for always being there for me, in every possible way. Without you, I would be so much less. Tack, från djupet av mitt hjärta! Tillsammans klarar vi vad som helst.

To my dearest family: Mum, Dad, Patrik, Jimmy and Helge, thank you for always believing in me and for your endless love and support. A BIG thanks goes to the friends I have made in NZ. Especially, Renata, Terry, Janice and Nicole, thanks for inviting me to soccer early on and also into your lives. I don't know what I would have done without our coffee breaks at Uni and I am grateful for all your encouragement and your friendship.

Also, thanks to all my great co-workers within the Polymer Electronics Research Centre (PERC): Zoran, KC, Joy, Rudi, John, Darren, Cosmin, Anu, Angela, Bhuvana, Marsilea, Alex, Sui Jing, Karthik, Clément for making it fun to come to work everyday.

Thank you to our collaborators, Duncan McGillivray from the University of Auckland and Andrew Nelson from the Australian Nuclear Science and Technology Organisation (ANSTO) for their invaluable help and advice for the neutron reflectometry measurements and Frank Heinrich from NIST Centre for Neutron Research, USA, for coating the non-magnetic silicon wafers. To Charles Majkraz, for assistance using the NGI-1 Reflectometer and Joe Dura for coating the magnetic silicon wafers, both from NIST Centre for Neutron Research, USA. Also to Dr Mao-Nan Chang and Mr. Huang-Min Lin from the National Nanodevice Laboratories, NDL, Hshinchu, Taiwan for hosting me during the atomic force microscopy measurements.

Finally, I am grateful to the Marsden Fund of the Royal Society of New Zealand, the MacDiarmid Institute for Advanced Materials and Nanotechnology and the Australian Institute of Nuclear Science and Engineering (AINSE) for financial support.

Table of Contents

Abstract	iii
Declaration	iv
Acknowledgements	v
Table of Contents	vii
List of Figures	X
List of Schemes	XV
List of Tables	xvii
List of Symbols and Abbreviations	xviii
Chapter 1 – General introduction	1
1.1 Objectives	2
1.2 Deoxyribonucleic acid (DNA)	3
1.3 DNA sensors	7
1.3.1 Optical DNA sensors based on molecular beacons	7
1.3.2 Electrochemical DNA sensors	11
1.4 Self-assembled monolayers (SAMs) on gold	17
1.5 Quantum Dots (QDs)	19
Chapter 2 - Materials and methodology	23
2.1 Synthesis	23
2.1.1 Quantum Dots (QDs)	23
2.1.1.1 CdSe/ZnS QDs	23
2.1.1.2 CdTe QDs	23
2.1.2 Ligands for functionalization of the CdSe/ZnS QDs	24
2.1.2.1 Ligand 1 (8-thio-3,6-dioxaoctanol)	24
2.1.2.2 Ligand 2 (DSBA)	25
2.1.3 Functionalization of CdSe/ZnS QDs	28
2.1.3.1 Ligand 1 and 2	28
2.1.3.2 Thioglycolic- and dihydrolipoic acid (TGA and DHLA)	28
2.2 Materials and Chemicals	29
2.2.1 Oligonucleotides (ODNs)	29
2.2.2 Spacer molecules	30
2.2.3 Buffers	30
2.2.4 Gold substrates and electrodes	30
2.3 Formation of self-assembled monolayers (SAMs) as sensor platforms	31
2.3.1 Pretreatment of gold substrates and monolayer preparation for SAM	
characterization by Attenuated Total Reflection-FTIR (ATR-FTIR)	32
2.3.2 Pretreatment of gold substrates and monolayer preparation for SAM	
characterization by Atomic Force Microscopy (AFM)	33
2.3.3 Pretreatment of gold substrates, monolayer preparation and hybridization used	for
neutron reflectometry (NR)	33
2.3.3.1 Experimental details for NR performed at ANSTO, Australia	33
2.3.3.2 Experimental details for polarized neutron reflectometry (PNR), preformed	at
NIST Centre for Neutron Research, USA	34
2.3.4 Pretreatment of gold substrates, monolayer preparation and hybridization for	~ -
optical signal detection	35
2.3.5 Pretreatment of gold substrates, monolayer preparation and hybridization for	
electrochemical signal detection	36
2.4 Characterization techniques	38
2.4.1 UV-vis spectroscopy	38
2.4.1.1 Introduction	38

2.4.1.2 Characterization of the synthesized QDs	. 39
2.4.1.3 Melting Profiles of HPPs and probe/target duplex ODNs	.40
2.4.2 Fluorescence spectroscopy	. 40
2.4.2.1 Introduction	. 40
2.4.2.2 Characterization of the synthesized QDs	.41
2.4.2.3 Optical sensor response	.41
2.4.3 Scanning– and Transmission Electron Microscopy (SEM and TEM)	. 42
2.4.3.1 Introduction	. 42
2.4.3.2 Characterization of Au foils used as substrates in the optical sensor design	.43
2.4.3.3 Characterization of the synthesized QDs	.43
2.4.4 Nuclear Magnetic Resonance Spectroscopy (NMR)	.43
2.4.4.1 Introduction	.43
2.4.4.2 Characterization of the synthesized ligands	. 44
2.4.5 Attenuated Total Reflection Fourier Transformed Infrared (ATR-FTIR)	15
2 4 5 1 Introduction	.45
2.4.5.1 Introduction	.43
2.4.5.2 Characterization of the history (AEM)	.47
2.4.6 1 Introduction	.47
2.4.0.1 Infoduction	/4/ /8
2.4.0.2 Characterization of the modeling and the modeling	<u>40</u> <u>1</u> 0
2.4.7 1 Introduction	<u>4</u> 9
2.4.7.7 Introduction and NR- Measurements	52
2.4.7.3 Polarized neutron reflectometry (PNR)	54
2.4.7.4 Characterization of the mSAMs and detection of the sensor response	54
2.4.7.4 Characterization of the melting behavior of the surface-attached HPPs in the	;
mSAM by polarized neutron reflectometry (PNR)	. 55
2.4.8 Cyclic voltammetry (CV)	. 56
2.4.8.1 Introduction	. 56
2.4.8.2 Characterization of the mSAMs and detection of the sensor response	. 59
2.4.9 Electrical Impedance Spectroscopy (EIS)	. 59
2.4.9.1 Introduction	. 59
2.4.9.2 Characterization of the mSAMs and detection of the sensor response	. 63
Chapter 3 – Characterization of the components of the general DNA sensor design	. 65
3.1 Investigation of the quenching ability of Au and monolayered m-PEG of the	
fluorescence of Cy3 dye and CdSe/ZnS quantum dots	.65
3.1.1 Quenching of the Cy3 fluorescence	66
3.1.2 Quenching of the QDs fluorescence	. 69
3.1.3 Conclusions	.72
3.2 Characterization of the mixed SAMs	.72
3.2.1 Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR)	. 72
3.2.1.1 Characterization of the mSAM by ATR-FTIR	.73
3.2.1.2 Conclusions	.76
3.2.2 Atomic Force Microscopy (AFM)	. 76
3.2.2.1 Characterization of the mSAM by AFM	.78
3.2.2.2 Conclusions	.83
3.5 Unaracterization of the HPPs	.83
3.3.1 Predicted meiting profiles for the basic hairpin structure and its probe/target	05
2.3.2 Experimentally determined malting profiles for the modified and upmodified UD	D _c
5.5.2 Experimentary determined menting promes for the mounted and unmounted HP	Г 5 90
	.07

3.3.3 Conclusions	
Chapter 4 - Neutron Reflectometry Study of a Poly(ethylene glycol) and Hairpin I	Probe
Self-Assembled Monolayer used for DNA-sensing	95
4.1 Introduction	95
4.2 Neutron Reflectometry analysis	97
4.3 Characterization of mSAMs before and after hybridization with complementary t	arget
4.4 Polarized neutron reflectometry for investigation of the melting behavior of the su	
attached probes in the mSAM	114
4 5 Conclusions	125
Chanter 5 - Quantum dots as labels in a hairnin DNA sensor	125
5.1 Introduction	127
5.2 The ontical CdSe/ZnS-labeled hairnin sensor	131
5.2 The optical cube/ZhS habered hanpin sensor	131
5.2.1 Tunctionalization of the cube/End QDS	131
modified Au surface	134
5.2.3 Optical response of a CdSe/ZnS-labeled hairpin sensor	136
5 3 The electrochemical CdTe-labeled hairpin sensor	140
5.3.1 Characterization of the synthesized CdTe ODs	140
5.3.2 mSAM formation and attachment of CdTe ODs	142
5.3.3 Response of the electrochemical CdTe-labeled sensor	147
5.4 Conclusions	157
Chapter 6 - Effect of Probe Density and Hybridization Temperature on the Response	nse of
an Electrochemical Hairpin-DNA Sensor	159
6.1 Immobilization of HPP and m-PEG molecules onto a gold electrode	159
6.3 Hybridization dynamics and sensitivity of the label-free DNA sensor	161
6.4. Selectivity of the label-free DNA sensor	175
6.5. Conclusions	178
Chapter 7 – Summary and future work	179
7.1 Summary	179
7.1 Future work	181
References	183

List of Figures

Figure 1.1. A three-dimensional DNA double helix, courtesy of Bill Frymire	6
Figure 1.2. CdTe QDs of various size excited at the same wavelength, 360 nm. ⁵³	19
Figure 1.3. Representative QD core materials scaled as a function of their emission wavelength. ⁶	20
Figure 3.1. The background corrected fluorescence emission spectra of: A) Cy3 dye and B) functionalized	
CdSe/ZnS QDs drop-cast on quartz glass.	68
Figure 3.2. Quenching of the fluorescence of the Cy3 dye by an unmodified (A) and a m-PEG-modified Au	
surface (B): a) after no rinsing, b) rinsing once and c) rinsing twice with an excess of PBS buffer.	69
Figure 3.3. SEM image of the Au foil used as the substrate. The image was collected at tilt angle of 60° and t	he
magnification 100 000 times	70
Figure 3.4. Quenching of the fluorescence of the functionalized CdSe/ZnS QDs by an unmodified (A) and a n	m-
PEG-modified Au surface (B): a) after no rinsing, b) rinsing once and c) rinsing twice with an excess of PBS	
buffer	71
Figure 3.5. ATR-FTIR spectra of a mixed SAM of m-PEG and the biotinylated probe, HPP-1, recorded from	L
three different spots, blue (dotted line), red (dash-dotted line) and green (solid line), on the same sample. The	
peak assignments are listed in Table 3.1	74
Figure 3.6. Root mean square (<i>RMS</i>) and roughness average (R_a) values for a range of Au substrates. The RM	4S
was found to be: 3.6 nm for Au 1, 1.1 nm, for Au 2, 1.9 nm for NDL-Au and 0.28 nm for Au-mica	80
Figure 3.7. AFM image of A) a bare Au-mica substrate, after immobilization of B) only m-PEG, C) only HPF	2,
D) m-PEG:HPP 25:1, E) m-PEG:HPP 10:1 and F) m-PEG:HPP 2:1.	81
Figure 3.8. A comparison of root mean square (RMS) and roughness average (R_a) values for a bare and modif	fied
Au-mica substrate.	82
Figure 3.9. A representative melting profile of a dsDNA (HPP-2 and cDNA) obtained experimentally. The	
circles symbolize the measured data points and the solid blue line represents the sigmoid Boltzmann fit	89
Figure 4.1. The reflectivity profiles for a monolayer of m-PEG, immobilized at room temperature for 1 h. The	e
diamonds represent the experimental data and the solid lines are the fitted data for three different contrasts, D	$_2O$
(blue line), CM 2.5 (green line) and H ₂ O (red line).	101
Figure 4.2. The neutron scattering length density (SLD) profile for a monolayer of m-PEG immobilized at ro	om
temperature for 1 h. Three different contrasts, D_2O (blue line), CM 2.5 (green line) and H_2O (red line), were u	ised
for the measurements.	102
Figure 4.3. The reflectivity profiles for a monolayer of A) only HPPs, B) after backfilling with m-PEG and C	C)
after hybridization with complementary target ODN at 37 °C for 1 h. The diamonds represent the experimenta	al
data and the solid lines are the fitted data. Three different contrasts, D_2O (blue), CM 2.5 (green) and H_2O (red	l)
were used for the measurements before backfilling or hybridization (A) whereas two contrasts D_2O (blue) and	t
H ₂ O (red), were used for studing the backfilled and hybridized layers (B and C).	104
Figure 4.4. The neutron SLD profiles for a monolayer of only HPPs (dotted lines), after backfilling with m-P	ΈG
(dotted-solid lines) and after hybridization (solid lines) with complementary target ODN at 37 °C for 1 h. Three	ee
different contrasts, D ₂ O (blue lines), CM 2.5 (green line) and H ₂ O (red lines) were used for the measurements	s of
the pure HPP layer, whereas two contrasts, D ₂ O and H ₂ O, were used for the backfilled- and the hybridized	
layers	106

Figure 4.5. The reflectivity profiles for the m-PEG:HPP 2:1 mSAM, A) before and B) after hybridization with complementary target ODN at 37 °C for 1 h. The diamonds represent the experimental data and the solid lines are the fitted data. Three different contrasts, D₂O (blue), CM 2.5 (green) and H₂O (red) were used for the measurements before hybridization (A) whereas two contrasts D₂O (blue) and H₂O (red), were used after Figure 4.6. The neutron SLD profile for the m-PEG:HPP 2:1 mSAM before (dotted lines) and after (solid lines) hybridization with complementary target ODN at 37 °C for 1 h. The data were collected at three different Figure 4.7. The reflectivity profiles for the m-PEG:HPP 10:1 mSAM, immobilized for 1 h at room temperature. The diamonds represent the experimental data and the solid lines are the fitted data. Three different contrasts, Figure 4.8. The neutron SLD profile for the m-PEG:HPP 10:1 mSAM after immobilization for 1 h at room temperature/ The data were collected at three different contrasts: D₂O (blue lines), CM 2.5 (green line) and H₂O Figure 4.9. The magnetic SLD profile for a bare Au surface (blue line), after immobilization with HPP-4 for 1 h (red line) and 2 h (green line) in 35 °C. The data was acquired in D₂O/PBS buffer for up-spin neutrons....... 116 Figure 4.10. Neutron SLD profile for two magnetic contrasts: A) up spin and B) down spin, of a HPP SAM measured at 5 different temperatures: 22 °C (blue lines), 35 °C (red lines) 45 °C (green lines), 55 °C (orange Figure 4.11. Neutron reflectivity profile for an up-spin magnetic contrasts of a HPP SAM measured at 5 different temperatures: 22 °C (blue), 35 °C (red) 45 °C (green), 55 °C (orange) and 65 °C (light blue). The diamonds represent the experimental data and the solid lines represent the fits. The data were acquired in a D₂O Figure 4.12. Neutron SLD profile for an up-spin magnetic contrasts of a HPP SAM measured at 5 different temperatures: 22 °C (blue line), 35 °C (red line) 45 °C (green line), 55 °C (orange line) and 65 °C (light blue Figure 4.13. The magnetic SLD profile for a HPP-SAM at 22 °C (blue line), at 65 °C (red line) and after hybridization (for 1 h at 35 °C) with complementary target ODN (green line) at 22 °C. The data were acquired Figure 5.1. CdSe/ZnS QDs in a) chloroform and b) functionalized with: A) Ligands 1 and 2, B) DHLA and C) Figure 5.2. Quenching of the fluorescence of DHLA-functionalized (A and B) and TGA-functionalized (C and D) CdSe/ZnS QDs by an unmodified (A and C) and a m-PEG-modified Au surface (B and D): a) after no rinsing, b) rinsing once and c) rinsing twice with an excess of PBS buffer. The excitation wavelength was 360 Figure 5.3. The Fluorescence emission spectra of: a) a bare Au surface, b) after immobilization of the hairpin probe (HPP-1), avidin and functionalized CdSe/ZnS QDs and after hybridization with 2.33 µM complementary target ODN at 37 °C for c) 2.5 h, d) 17.5 h, e) 41.5 h and f) 65.5 h. The excitation wavelength was 360 nm... 137 Figure 5.4. The fluorescence emission spectra of the DHLA/CdSe/ZnS-labeled hairpin (HPP-3) sensor: a) before and b) after hybridization with 4.65 µM of complementary ODN. The excitation wavelength was 340 nm. 139

Figure 5.5. Transmission Electron Microscope (TEM) images of the synthesized CdTe QDs. The diameter of the circled particle was determined to 3.6 nm and the average diameter of 10 particles was 4 nm, calculated with the Figure 5.6. Absorption spectra (A) and emission spectra (B) of a 3 mM CdTe-solution. The excitation Figure 5.7. Nyquist plots, -Z_{im} vs. Z_{re}, for A and C: m-PEG:HPP 10:1 and B and D: m-PEG:HPP 25:1 for an Au electrode in SCC buffer containing 5.0 mM Fe(CN) $_{6}^{3}$ /Fe(CN) $_{6}^{4}$ a) bare Au surface and b) after immobilization of the mSAM, c) after covalent attachment of CdTe QDs, d) after hybridization at 37 °C (A-B) or hybridization at 44 °C (C-D) for 1 h with 4.65 ×10⁻⁶ M of complementary target ODN. For clarity the insets in Figure B and D Figure 5.8. Nyquist plots, $-Z_{im}$ vs. Z_{re} and for an Au electrode in SCC solution containing 5.0 mM Fe(CN)₆³⁻ $/Fe(CN)_6^{4-}$: A.a) bare Au surface and A.b) after drying CdTe QDs on Au, without any rinsing and B.a) bare Au surface and B.b) after rinsing off dried CdTeQDs with excess of buffer......146 **Figure 5.9.** $\Delta R_{ct}/R_{ct}$ (ML), taken as the sensor response before and after hybridization with different concentrations of complementary ODN (4.66×10⁻¹⁵ M to 4.66×10⁻⁶ M) in SCC solution containing 5.0 mM $Fe(CN)_6^{3/}Fe(CN)_6^{4.}$ The sensing monolayer was immobilized with predetermined, molar ratio of HPP:m-PEG molecules, A) IS10:1 and B) IS25:1. Hybridizations were carried out at 44 °C. The standard error from the fitting **Figure 5.10.** $\Delta R_{ct}/R_{ct}$ (ML), taken as the sensor response before and after hybridization with different concentrations of complementary ODN (4.66×10⁻¹⁵ M to 4.66×10⁻⁶ M) in SCC solution containing 5.0 mM $Fe(CN)_6^{3}/Fe(CN)_6^{4}$. The sensing monolayer was immobilized with predetermined, molar ratio of HPP:m-PEG molecules, A) IS10:1 and B) IS10:1 repeat. Hybridizations were carried out at 44 °C. The standard error from the **Figure 5.11.** $\Delta R_{ct}/R_{ct}$ (ML), taken as the sensor response before and after hybridization with different concentrations of complementary ODN (4.66×10⁻¹⁵ M to 4.66×10⁻⁶ M) in SCC solution containing 5.0 mM Fe(CN)₆^{3-/}Fe(CN)₆^{4-.} The sensing monolayer was immobilized with predetermined, molar ratio of HPP:m-PEG molecules, A) IS25:1 and B) IS25:1 repeat. Hybridizations were carried out at 44 °C. The standard error from the Figure 5.12. Nyquist plots, -Z_{im} vs. Z_{re}, for A) HPP:m-PEG 10:1 and B) HPP:m-PEG 10:1 repeat for an Au electrode in SCC buffer containing 5.0 mM $Fe(CN)_6^{3-}/Fe(CN)_6^{4-}$: a) for bare electrode, b) after mSAM formation, c) after covalent attachment of CdTe, after hybridization at 44 °C for 1 h with d) 4.66×10^{-15} M, e) 4.66×10⁻¹⁴ M, f) 4.66×10⁻¹³ M, g) 4.66×10⁻¹² M, h) 4.66×10⁻¹¹ M, i) 4.66×10⁻¹⁰ M, j) 4.66×10⁻⁹ M, k) 4.66×10⁻⁸ Figure 5.13. Nyquist plots, -Z_{im} vs. Z_{re}, for A) HPP:m-PEG 25:1 and B) HPP:m-PEG 25:1 repeat for an Au electrode in SCC buffer containing 5.0 mM $Fe(CN)_6^{3-}/Fe(CN)_6^{4-}$: a) for bare electrode, b) after mSAM formation (not included as the impedance was so high that it obscured the rest of the data), c) after covalent attachment of CdTe, after hybridization at 44 °C for 1 h with d) 4.66×10⁻¹⁵ M, e) 4.66×10⁻¹⁴ M, f) 4.66×10⁻¹³ M, g) 4.66×10⁻¹² M, h) 4.66×10⁻¹¹ M, i) 4.66×10⁻¹⁰ M, j) 4.66×10⁻⁹ M, k) 4.66×10⁻⁸ M, l) 4.66×10⁻⁷ M and m) 4.66×10⁻⁶ M of fully

Figure 5.14. The melting profile for 0.5 μ M of HPP-3 (the HPPs used in the electrochemical CdTe-labelled
sensor). The squares symbolized the measured data points an11d the solid blue line represents the sigmoid,
Weibull-5 fit
Figure 5.15. Nyquist plots, -Z _{im} vs. Z _{re} , for A, C) HPP:m-PEG 10:1 and B, D) HPP:m-PEG 25:1 for an Au
electrode in SCC buffer containing 5.0 mM $Fe(CN)_6^{3-}/Fe(CN)_6^{4-}$: a) after covalent attachment of CdTe, after
hybridization at 37 °C (A and B) or at 44 °C (C and D) for 1 h with 4.66×10 ⁻⁶ M of b) non-complementary and
c) fully complementary target ODN
Figure 6.1. A) Nyquist plots, –Z _{im} vs. Z _{re} and B) Electrochemical AC voltammograms for an Au electrode in
SCC buffer containing 5.0 mM $\text{Fe}(\text{CN})_6^{3-}/\text{Fe}(\text{CN})_6^{4-}$: a) bare Au surface and b) after immobilization of the
hairpin probe (HPP) and m-PEG molecules (IS1)
Figure 6.2. A) Nyquist plots, –Z _{im} vs. Z _{re} and B) Electrochemical AC cyclic voltammograms for an Au electrode
in SCC solution containing 5.0 mM $\text{Fe}(\text{CN})_6^{3-}/\text{Fe}(\text{CN})_6^{4-}$: a) bare Au surface, after b) 30 min and c) after 2 h of
m-PEG self-assembly
Figure 6.3. Nyquist plots, $-Z_{im}$ vs. Z_{re} for an Au electrode in SCC buffer containing 5.0 mM Fe(CN) ₆ ⁴⁻ /Fe(CN) ₆ ⁴⁻
: a) bare Au surface, b) after immobilization of the hairpin probe and m-PEG, after hybridization at A) 37 °C and
B) 44 °C with c) 4.66×10^{-15} M, d) 4.66×10^{-13} M, e) 4.66×10^{-11} M, f) 4.66×10^{-9} M, g) 4.66×10^{-7} M of
complementary ODN
Figure 6.4. The melting profile for 2 μ M of HPP-4. The circles symbolized the measured data points and the
solid blue line represents the sigmoid, Boltzmann fit
Figure 6.5. Normalized charge transfer resistance change, $\Delta R_{ct}/R_{ct}$ (ML), taken as the sensor response, before and
after hybridization at A) 37 °C and B) 44 °C with different concentrations of complementary ODN (4.65×10 ⁻¹⁰ M
to 4.65×10^{-6} M) in SCC buffer containing 5.0 mM Fe(CN) ₆ ³⁻ /Fe(CN) ₆ ⁴⁻ . The IS1 strategy was used to form the
sensing monolayer. The standard error from the fitting is set to 10 %
Figure 6.6. Nyquist plots, $-Z_{im}$ vs. Z_{re} and for an Au electrode in SCC solution containing 5.0 mM Fe(CN) ₆ ³⁻
/Fe(CN) ₆ ⁴⁻ : A, E) IS1, B, F) IS2:1, C, G) IS10:1, D, H) IS25:1, a) after immobilization of probe and m-PEG and
after hybridization at either 37 °C (A-D) or at 44 °C (E-H) with b) 4.66×10^{-15} M, c) 4.66×10^{-14} M, d) 4.66×10^{-13}
M, e) 4.66×10^{-12} M, f) 4.66×10^{-11} M, g) 4.66×10^{-10} M, h) 4.66×10^{-9} M, i) 4.66×10^{-8} M, j) 4.66×10^{-7} M and k)
4.66×10 ⁻⁶ M of fully complementary ODN
Figure 6.7. Comparison of $\Delta R_{ct}/R_{ct}$ (ML), taken as the sensor response before and after hybridization with
different concentrations of complementary ODN (4.65×10 ⁻¹⁵ M to 4.65×10 ⁻⁶ M) in SCC solution containing 5.0
mM $Fe(CN)_6^{3-}/Fe(CN)_6^{4-}$. The sensing monolayer was immobilized using either the IS1 strategy (A and E) or
IS2:1, IS10:1 and IS25:1 (B, C, D, F, G and H) with predetermined ratios of m-PEG:HPP molecules. In Figure
A-D hybridizations were carried out at 37 °C whereas 44 °C was used in Figure 5.E-H. The standard error from
the fitting is set to 5 %
Figure 6.8. Comparison of $\Delta R_{ct}/R_{ct}$ (ML), taken as the sensor response before and after hybridization with
different concentrations of complementary ODN (4.65×10 ⁻¹⁵ M to 4.65×10 ⁻⁶ M) in SCC solution containing 5.0
mM Fe(CN) $_{6}^{3}$ /Fe(CN) $_{6}^{4}$ for repeated measurements. The sensing monolayer was immobilized using either the IS1
strategy (A and E) or IS2:1, IS10:1 and IS25:1 (B, C, D, F, G and H) with predetermined ratios of m-PEG:HPP
molecules. In Figure A-D hybridizations were carried out at 37 °C whereas 44 °C was used in Figure 5.E-H The
standard error from the fitting is set to 5 %

List of Schemes

Scheme 1.1. The purines in DNA are adenine (A) and guanine (G) and the pyrimidines are cytosine (C) and
thymine (T). ¹¹
Scheme 1.2. The structural part of a fragment of a DNA chain. At the top is the phosphate-sugar backbone,
connected to the bases shown underneath. The 5' and 3' positions of the linking hydroxyl groups are marked in
blue and red, respectively. ¹¹
Scheme 1.3. Schematic diagram of the DNA structure, where the sugar-phosphate backbone is shown in black,
the bases are represented in color and the hydrogen bonds by dashed lines. The diagram is reproduced from
Biochemistry, 4 th edition by L. Stryer. ¹¹
Scheme 1.4. Working principle of a molecular beacon DNA sensor. ^{8, 13}
Scheme 1.5. Schematic of a biotin-avidin binding surface-attached DNA sensor. ¹⁷
Scheme 1.6. Schematic of a MB sensor immobilized on a gold substrate. ¹⁴
Scheme 1.7. The process involved in the operation of a DNA hybridization sensor: base-pair recognition, signal
transduction and readout. Reproduced from Wang et al. ²²
Scheme 1.8. Schematic of direct electrochemical detection of DNA hybridization using polypyrrole- (pPy)
coated electrode. ³¹
Scheme 1.9. Schematic of indirect detection of DNA hybridization, using a labeled probe. ³¹
Scheme 1.10. A schematic of a core/shell QD structure
Scheme 1.11. A rough schematic of the functionalization-stages of quantum dots: A) a QD as synthesized, B) a
hydrophobic QD (soluble in hexane, toluene and chloroform) and C) a hydrophilic QDs with an excess cap that
makes it soluble in buffers
Scheme 2.1. Synthetic pathway for Ligand 1, 8-thio-3,6-dioxaoctanol
Scheme 2.2. Synthetic pathway for Ligand 2, DBSA ((5-(6,8-Diaza-7-oxo-3-thiabicyclo[3.3.0]oct-2-yl)-N[7-(3-
{[2-(N{7-[5-(6,8-diaza-7-oxo-3-thiabicyclo[3.3.0]oct-2-yl)pentanoylamino]heptyl}-
carbamoyl)ethyl]disulfonyl}propanoylamino)heptyl] pentanamide))25
Scheme 2.3. Schematic of the photoluminescence processes, where S_0 is the ground state, S_1 is the first excited
state and S_2 and S_3 are higher energy singlet states. Reproduced from the Jablonski diagram. ^{81, 82}
Scheme 2.4. Schematic of the working principle of an ATR-FTIR instrument
Scheme 2.5. The principle of a tapping-mode atomic force microsope (AFM), reproduced from Friedbacher et
al. ⁸⁴ The sample, symbolized as circles, is scanned by a piezoelectric translator
Scheme 2.6. The geometry of specular reflection, where θ_i is the angle of incidence, θ_r is the angle of reflection;
K_i , K_r and K_t are the intensities of the incident, reflected and transmitted radiation, respectively
Scheme 2.7. A general cyclic voltammogram, where $E_{p,c}$ and $E_{p,a}$ are the cathodic and anodic peak potential and
$I_{p,c}$ and $I_{p,a}$ are the cathodic and anodic peak currents, respectively. ²⁶
Scheme 2.8. A vector diagram describing the relationship between total- (Z) , real- (Z') and imaginary- (Z'')
impedance
Scheme 2.9. An equivalent circuit model that includes a solution resistance (R_s) in series with a parallel circuit
containing a constant phase element (<i>CPE</i>), the charge transfer resistance (R_{ct}) and Warburg impedance (W_0) 62
Scheme 2.10. An example of a Nyquist plot, with the imaginary impedance plotted against the real impedance,
for a simple electrochemical system. <i>w</i> represents the frequency

Scheme 3.1. Steps for investigating the quenching of a Cy3-dye and CdSe/ZnS quantum dots by an unmodifie	d
and a m-PEG-modified Au surface	67
Scheme 4.1. A schematic (not to scale) illustration of the experiment performed with polarized neutron	
reflectometry. For NR experiments at ANSTO Cr was used as the adhesive layer between silicon and gold,	
whereas Fe was used in PNR experiments to achieve magnetic contrast. H represents the external and B the	
internal magnetic fields applied in PNR 1	00
Scheme 5.1. Ligands used for functionalization of the CdSe/ZnS QDs. 1.A) Ligand 2, 1.B) Ligand 1 (see chap	ter
2.1.2.2 and 2.1.2.1, respectively, for details), 2) dihydrolipoic acid (DHLA) and 3) thioglycolic acid	
(mercaptoacetic acid (MAA)) 1	32
Scheme 5.2. Schematic illustration of the fabrication of the optical QD-labeled sensor: 1) Immobilization of	
HPP and m-PEG molecules to the gold substrate, 2) attachment of CdSe/ZnS QDs through a biotin-avidin or a	n
amide bond and 3) hybridization with complementary target ODN 1	36
Scheme 5.3. Schematic illustration of the fabrication of the electrochemical QD-labeled sensor: 1)	
Immobilization of HPP and m-PEG molecules to the gold electrode, 2) attachment of CdTe QDs through an	
amide bond and 3) hybridization with complementary DNA 1	42

List of Tables

Table 2.1. Summary of the synthesized ODN sequences used in the sensor designs. 29
Table 2.2. Summary of the ODN sequences used for the characterization of the melting behavior of the HPP and
its targets
Table 2.3. Summary of the conditions determining reversible, quasi-reversible and irreversible reaction probed
by cyclic voltammetry. ²⁷
Table 3.1. Peak assignments for the mSAM sample, containing m-PEG and the biotinylated probe, HPP-1. ¹⁰⁶ . 75
Table 3.2. Summary of the computed melting temperatures for HPP-4 and its fully complementary (cDNA and
long cDNA), one-base mismatch (1MM-std, -center and -end) and non-complementary targets (NC and NC-2),
respectively. The annotation "Probe" is used to highlight that the simulation does not take end-modifications into
account and thus the predicted T_m is the same for all the probes used
Table 3.3. Summary of the experimentally determined melting temperatures for the studied HPPs and their fully
complementary (cDNA and long cDNA), one-base mismatch (1MM-std, -centre and -end) and non-
complementary targets (NC and NC-2), respectively
Table 4.1. Summary of layer thickness and volume fraction values for the investigated SAMs, derived from a 2-
layer model fit of the reflectivity data (Platypus, ANSTO). *A 1-layer model was applied for the m-PEG- and
HPP only SAMs
Table 4.2. Summary of layer thickness and volume fraction values, at different temperatures or after
hybridization, for a HPP SAM, derived from a 1-layer model fit of the polarized neutron reflectivity data (NG-1
reflectometer, NCNR)
Table 6.1. Summary of the experimentally determined detection limits for the various sensors. The detection
limit was extracted from the experimental data, and defined as the lowest concentration, within the dynamic
range of the sensor ($R > 0.900$), where a response could be observed. The sensitivity was determined as the slope
of the linear relationship range of response vs. concentration

List of Symbols and Abbreviations

heta	Angle
\overline{P}	Average height
α	Charge transfer coefficient
ε	Extinction coefficient
ω	Frequency
μ	Micro, 10 ⁻⁶
Ω	Ohm
Κ	Radiation intensity
η	Refractive index
ρ	Scattering length density
σ	Surface roughness
v	Sweep rate
λ	Wavelength
χ^2	Chi-square (uncertainty)
ΔG	Gibb's free energy
ΔH	Enthalpy
ΔS	Entropy
¹³ C NMR	Carbon nuclear magnetic resonance spectroscopy
¹⁵ N NMR	Nitrogen nuclear magnetic resonance spectroscopy
¹ H NMR	Proton nuclear magnetic resonance spectroscopy
A	Absorbance / Area
A	Adenine
Å	Ångström
a	Atto, 10 ⁻¹⁸
a	Chemical activity coefficient
a.u.	Arbitrary unit
AC	Alternating current
ACCV	Alternating current cyclic voltammetry
AdTSV	Adsorptive transfer stripping voltammetry
AFM	Atomic Force Microscopy
$A_{ m i}$	Atomic weight

ANSTO	Australian Nuclear Science and Technology Organisation
ATR-FTIR	Attenuated total reflection fourier transfom infrared
b_{i}	Scattering length of nucleus i
c	Complementary
С	Concentration
С	Cytosine
С	Speed of light in vacuum
CCD	Charge-coupled device
$C_{\rm d}$	Double layer capacitance
cm	Centimeter
СМ	Contrast matching
Compound A	Biotin N-hydroxysuccinimide ester
Compound B	N-(13-Amino-4,7,10-trio- atridecanyl) biotinamide
Compound C	11-mercaptoundecanoyl- N-hydroxysuccinimide ester
C_{p}	Heat capacity
CPE	Constant phase element
CV	Cyclic voltammetry
Cy3	Indocarboxycyanine
D	Diffusion constant
d	Thickness
Da	Dalton (mass unit)
DC	Direct current
DHLA	Dihydrolipoic acid
DMF	N,N-dimethylformamide
DNA	Deoxyribonucleic acid
$d_{ m p}$	Depth of penetration
DPV	Differential pulse voltammetry
ds	Double-stranded
DSBA/	((5-(6,8-Diaza-7-oxo-3-Ligand 2 thiabicyclo[3.3.0]oct-2-yl)-N[7-(3-{[2-
	(N{7-[5-(6,8-diaza-7-oxo-3- thiabicyclo[3.3.0]oct-2-yl)pentanoylamino]
	heptyl}-arbamoyl)ethyl] disulfonyl}propanoyl- amino)heptyl] pentanamide))
DSC	Differential scanning calorimetry
dT	Thymine deoxyribonucleotide
E	Energy

E°	Standard potential
ECL	Electrogenerated chemiluminescence
EDC	1-Ethyl-3-(3-dimethylaminopropyl) carbodiimde
EDS	Energy-dispersive spectrometry
EIS	Electrical Impedance Spectroscopy
F	Faraday's constant
f	Femto, 10 ⁻¹⁵
FC	Fully complementary
G	Guanine
h	Hour
h	Planck's constant
HAD	Hexadecylamine
НОМО	Highest occupied molecular orbital
HPP	Hairpin probe
HRP	Horseradish peroxidase
Hz	Hertz
Ι	Current
ICCP	Intensified charge couple device
IR	Infrared
IS	Immobilization strategy
$K_{\rm a}^{0}$	The heterogeneous standard charge transfer rate constant
Ligand 1	8-Thio-3,6-dioxaoctanol
ln	The natural logarithm
LUMO	Lowest unoccupied molecular orbital
т	Mass
m	Milli, 10 ⁻³ / multiplet / meter
М	mol l^{-1} / mega 10^6
MAA	Mercaptoacetic acid
MB	Molecular beacon
MCB	4-Mercaptobutan-1-ol
MCH	6-Mercapto-1-hecanol
ML	Monolayer
MM	Mismatch
m-PEG	Methyl poly(ethylene glycol)

mSAM	Mixed self-assembled monolayer
MUA	11-Mercaptoundecanoic acid
n	Amount
n	Nano, 10 ⁻⁹
N_{A}	Avogadro's number
NC	Non-complementary
NCNR	NIST Center for Neutron Research
NDL	National Device Laboratories
NIST	National Institute of Standards and Technology
NMR	Nuclear magnetic resonance spectroscopy
NN	Nearest-neighbor
NP	Nanoparticle
NR	Neutron reflectrometry
ODN	Oligonucleotide
р	Pico, 10 ⁻¹²
Р	Power of transmitted radiation
P_0	Power of incident radiation
PBS	Phosphate buffered saline
PCR	Polymerase chain reaction
m-PEG	methyl-Poly(ethylene glycol)
PEO	Poly(ethylene oxide)
Pi	Height at each measured point
p_{i}	Mass density
PL	Photoluminescence
PNR	Polarized neutron reflectometry
pPy	PolyPyrrole
q	Quadruplet
QD	Quantum dot
$Q_{\rm z}$	Momentum transfer
R	Resistance
R	The universal gas constant
R _a	Rougness average
$R_{\rm ct}$	Charge transfer resistance
$R_{ m f}$	Faradic impedance

RMS	Root mean square
RNA	Ribonucleic acid
rpm	Revolutions per minute
R _s	Solution resistance
S	Singlet
SAM	Self-assembled monolayer
SEM	Scanning electron microscopy
SLD	Scattering length density
SS	Single-stranded
SSC	Saline-sodium citrate
STM	Scanning tunneling microscopy
Т	Temperature
Т	Thymine
t	Triplet
TEM	Transmission electron microscopy
TGA	Thioglycolic acid
T _m	Melting temperature
TM	Tapping-mode
ТОР	Tri-n-octylphosphine
ТОРО	Tri-n-octylphosphine oxide
UV-vis	Ultraviolet-visible spectroscopy
V	Potential
V	Volt
vf	Volume fraction
W_0	Warburg impedance
Y	Admittance
Ζ	Total impedance
Z	Zepto, 10 ⁻²¹
Z'	Real impedance
Ζ''	Imaginary impedance