

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the <u>Library Thesis Consent Form</u> and <u>Deposit Licence</u>.

Note : Masters Theses

The digital copy of a masters thesis is as submitted for examination and contains no corrections. The print copy, usually available in the University Library, may contain corrections made by hand, which have been requested by the supervisor.

THE ARCHAEOLOGICAL POTENTIAL OF INFORMAL LITHIC TECHNOLOGIES: A CASE STUDY OF ASSEMBLAGE VARIABILITY IN WESTERN NEW SOUTH WALES, AUSTRALIA

By

Matthew J. Douglass

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Anthropology, The University of Auckland, 2010

Abstract

This thesis addresses the research potential of informal lithic technologies through a case study of surface deposits from western New South Wales (NSW), Australia. The defining characteristic of the lithic remains of the region is a dearth of formalized patterning. As a consequence, researchers have historically equated these remains with a casual approach to lithic technology where it is often assumed that artefacts were produced on an as needed basis.

This apparent simplicity is in marked contrast to the demanding environment of the region. Water and food resources are extremely limited and historic observations indicate that Aborigional populations coped with these conditions by employing strategies of land use based on short-term occupations and high mobility. It is therefore an anomaly that populations living under such conditions would be so unconcerned with the organization of their technology.

An exploration of this anomaly guides the research presented in this thesis. Was the organization of Aboriginal lithic technology truly simple or instead is the perception of simplicity an artefact of previous interpretation? The goals of this thesis go beyond questioning the perception of simplicity to the larger question of how informal technologies can be used to understand past behavioural organization.

To investigate these questions, this thesis makes use of an abundance of assemblage data gathered by the Western NSW Archaeological Programme. The results of this research indicate that while the vast surface record of the region may present what appears to be a largely undifferentiated record, contextualization shows that Aboriginal occupation of the region was anything but uniform. Chronologies developed through extensive radiocarbon dating demonstrate that periods of increased

Ι

aridity are correlated with decreased evidence of Aboriginal occupation, thus suggesting territorial reorganization in the face of environmental deterioration.

The study of lithic technological organization and the curation concept provide a theoretical perspective with which to explore the possibility for similar dynamism in the largely informal lithic technologies of the study region. While current studies of stone artefact curation are largely based on retouched tools, the curation process may exist in the absence of retouch. A methodology based on the quantification of cortical surface area is presented as one means through which curation without retouch may be explored. This methodology is based on the principles of solid geometry and enables comparison between the quantities of cortex observed in lithic assemblages and that which should be present given the size and shape of the stone nodules from which artefacts were produced. Deviations between observed and expected values indicate the effects of artefact transport on assemblage formation.

Application of the cortex methodology indicates that cortex is extensively underrepresented in the NSW assemblages, meaning artefacts were transported away from their place of production. This result is in marked contrast to the perception of Aboriginal technological expedience. Further investigation of the cortex methodology, the development of refined techniques and the completion of additional fieldwork enabled a more in-depth test of the initial result. Viewed from a variety of perspectives, further study supports the initial interpretation.

Utilizing spatial patterning in assemblage cortex proportions, the data for this study are then used to investigate the scale of Aboriginal mobility. Interpretation of this patterning provides insights into the organization of land use at a landscape scale and thus demonstrates a greater appreciation of the potential for informal lithic technologies to inform on the organization of the past.

Π

Acknowledgements

Many People have helped in the completion of this thesis and I would like to thank all of them for their support. Some deserve special mention. First and foremost, I would like to thank Simon Holdaway for inviting me to join the Western New South Wales Archaeological Programme and for being a constant source of support and inspiration to this research. I must also acknowledge the great help he and his family have been to my family during our stay in New Zealand. Trish Fanning has been a source of help and encouragement and was instrumental to the completion of my fieldwork. Thanks to LuAnn Wandsnider both for fostering my interest in surface archaeology and for her continued support throughout the years.

Harry Allen and Peter Sheppard have generously read and commented upon multiple drafts related to my thesis research. This work has also benefitted greatly from discussions with Jack Harris, Harold Dibble and Peter Bleed.

Thanks in General to the Western New South Wales Archaeological Programme and to Simon, Trish and Justin Shiner for granting access to the WNSWAP database.

Thanks to the Wilcannia Aboriginal community for their support. I would particularly like to recognize Walrpa Thompson, Murray Butcher, Robert, Peter and Travis Hunter, Badger Bates and Gerald Quayle for their warm hospitality while in Barkindji country.

Thanks to the staff at the Fowlers Gap Arid Zone Research Station, rangers at Paroo-Darling National Park and to the Harvy and Harrison families at Pine Point and Langwell stations for allowing me to revisit the WNSWAP study locations, and for their assistance while in the field.

III

Many of the students and staff of the department of Anthropology at the University of Auckland provided assistance including, Bruce Floyd, Sam Lin, Daniel Parker, Shezani Nasoordeen, Thom Barker and Tim Mackrell.

A University of Auckland International Doctoral Scholarship funded the majority of this research. University of Auckland Research Fund and Faculty of Arts Research Fund Grants provided additional funding for field work.

Finally, I would like to thank my family for their continued support. Special thanks are owed to my wife Christie and young son Parker for making my research at Fowlers Gap a family affair. Those two weeks were the finest I have yet to spend in the field.

Abstract	I
Acknowledgements	III
Chapter One	
Introduction to the study	1
1.1 Introduction	2
1.2 Thesis Organization	4
Chapter Two	
Archaeology and Environment of Western New South Wales	9
2.1 Introduction	10
2.2 Overview of the Study Region	12
2.3 The Archaeological Record of Western New South Wales	12
2.3.1 Australian Flaked Stone Artefacts	18
2.4 Environmental Overview	24
2.5 Lithic Raw Material Availability	31
2.6 Conclusion	35
Chapter Three	
Formation of the Archaeological Record	36
3.1 Introduction	37
3.2 A Brief Overview of Archaeological Formation	
3.3 Geomorphic Context and Recent Landscape History of Western NSW	41
3.3.1 Recent Geomorphological History of the Study Region	44
3.4 The Surface Archaeological Record of Arid Australia	47
3.5 Summary	48
Chapter Four	
Contextualizing the Australian Surface Archaeological Record	49
4.1 Introduction	50
4.1.1 Developing a Chronology for Surface Archaeological Deposits	51
4.1.2 Flake stone Survey and Analysis	53
4.2 Study Areas and Assemblages	56
4.2.1 Sturt National Park	59
4.2.2 Fowlers Gap	62
4.2.3 Paroo-Darling National Park	69

Table of Contents

4.2.4 Burkes Cave	71
4.2.5 Pine Point and Langwell Stations	73
4.3 Conclusion	76
Chapter Five	
Time Averaged Assemblages and Technological Organization	77
5.1 Introduction	78
5.2 Interpretive Potential of Time-Averaged Deposits	79
5.3 Western NSW Occupation Histories	81
5.4 Summary	
5.5 The Study of Lithic Technological Organization	90
5.6 Conclusion	97
Chapter Six	
Quantification of Cortical Surface Area as Curation Proxy	99
6.1 Introduction	100
6.2 An Alternative Proxy Measure of the Curation Process	100
6.2.1 Background to the Methodology	103
6.2.2 Adaptation of the Cortex Method	105
6.2.3 Testing the Model	111
6.3 Results	112
6.4 Discussion	117
6.5 Conclusion	124
Chapter Seven	
Additional Methods	127
7.1 Introduction	128
7.2 Further Evaluation of Existing Cortex Methodology	130
7.2.1Experimental Methods	131
7.2.2 Assessing Infield Data Quality	132
7.2.3 Assessing Cortex Ratio Reliability	140
7.3 Refinement of Estimates of Average Nodule Size	146
7.3.1 Attributes Recorded	149
7.3.2 Regression Analysis	169
7.4 An alternative Approach to the Measurement of Cortex	180
7.4.1 The Wolman Pebble Count	
7.5 Conclusion	

Chapter Eight

Additional Fieldwork	
8.1 Introduction	
8.2 Field Methods	
8.2.1 The Identification of Cores	
8.2.2 Core Sampling	
8.2.3 Minimum Analytical Nodule Analysis	194
8.2.4 Stone Raw Material Survey	
8.3 Field work at the WNSWAP study areas	
8.3.1 Fowlers Gap	
8.3.2 Paroo-Darling	
8.3.3 Pine Point Langwell	211
8.4 Summary	217
Chapter Nine	
Results of the Test of Cortex Patterning	
9.1 Introduction	
9.2 Results of Field Methodologies	
9.2.1 Estimated Average Nodule Weight	
9.2.2 Raw Material Size Variation	222
9.2.3 A Consideration of Cobble Selection	
9.3 Summary	
9.4 Recalculated Cortex Ratios	
9.5 Alternate Examination of Cortex Proportions	234
9.6 Summary and Conclusion	244
Chapter Ten	
Implications and Conclusion	247
10.1 Introduction	
10.2 Western New South Wales Technological Organization	249
10.2.1 Is this Curation?	252
10.3 Cortex Patterning and Landscape Organization	
10.3.1 Spatial Patterning in Cortex Proportions	257
10.4 Implications of Cortex for Understanding Aboriginal Land Use	
10.5 Landscape Archaeology at Rutherfords Creek, NSW	270
10.5.1 Rutherfords Creek Cortex Proportions	277

10.6 Conclusion	
Bibliography	
Appendix One: WNSWAP Artefact Definitions	312
Appendix Two: WNSWAP Artefact Attribute Definitions	314

List of Figures

Figure 2.1 Landscape View onto the Vast, Sparse and Arid Landscape of Western
NSW, Australia11
Figure 2.2 Heat Retainer hearths15
Figure 2.3 Typical Western NSW Examples of Tool Forms that Mark the Emergence of the
Australian Small Tool Tradition16
Figure 2.4 Lithic Scatter
Figure 2.5 Short-term Environmental Variability26
Figure 2.6 Ephemeral Water Features27
Figure 2.7 Western NSW Raw Material Sources
Figure 3.1 Examples of the Abundant Deflated Surface Scatters of Flaked Stone
Found Throughout Western NSW, Australia46
Figure 4.1 The Western NSW Study Region and Location of WNSWAP Study
Areas Described in the Text
Figure 4.2 Stud Creek, Sturt National Park
Figure 4.3 Assemblage Locations within Fowlers Gap Study Area61
Figure 4.4 Paroo-Darling National Park and Study Assemblages
Figure 4.5 Pine Point Langwell Study Area and Study Assemblages72
Figure 5.1 Example of Hearths Clustered Upon a Single Geomorphological Surface
(Paroo-Darling National Park)83
Figure 5.2: Calibrated Radiocarbon Determinations from Dated Hearths in Western
NSW (Holdaway et al. 2005 Fig. 9)
Figure 6.1 Scalene Ellipsoids107
Figure 6.2 Typical Relationship between WNSWAP Assemblage Location and Stone
Raw Material Availability119
Figure 7.1 Comparison between Scanned and Fully Processed Models135
Figure 7.2 Difference between Mechanically Measured and Scanned Cortex Ration
Against the Number of Cores138
Figure 7.3 Histogram of Simulation Cortex Ratios142
Figure 7.4 Plot of Simulation Cortex Ratios against the Flake to Core Ratio142
Figure 7.5 Measurement of Cortex with Mylar Grid152
Figure 7.6 The Relationship between the Percentage of a Core's Surface Without

Cortex and the Percentage of Nodule Mass Lost Amongst the Experimental
Cores
Figure 7.7 The Relationship between the Square Root of Flake Scar Counts Divided
By Core Area and the Percentage of Nodule Mass Lost Amongst the
Experimental Silcrete Cores156
Figure 7.8 The Relationship Between the Square Root of Flake Scar Counts Divided
By Core Area and the Percentage of Nodule Mass Lost Amongst the
Experimental Quartz Cores157
Figure 7.9 Diagram of the Attribute Exploitation Surface
Figure 7.10 The Relationship Between the Log Natural Transformation of
Exploitation Surfaces Divided by Core Area and the Percentage of Nodule
Mass Lost Amongst the Experimental Silcrete Cores
Figure 7.11 The Relationship Between the Log Natural Transformation of
Exploitation Surfaces Divided by Core Area and the Percentage of Nodule
Mass Lost Amongst the Experimental Quartz Cores163
Figure 7.12 Exploitation Surface Interactions
Figure 7.13 The Relationship Between the Square Root of Exploitation Surface
Interactions and the Percentage of Nodule Mass Lost Amongst the
Experimental Silcrete Cores167
Figure 7.14 The Relationship Between the Square Root of Exploitation Surface
Interactions and the Percentage of Nodule Mass Lost Amongst the
Experimental Quartz Cores168
Figure 7.15 The Relationship Between the Residual Values of the Predicted
Percentage Nodule Mass Removed and Non-cortical Proportion for the
Experimental Cores171
Figure 7.16 The Relationship between the Studentized Residual Values of the
Predicted Square Root of the Percentage of Nodule Mass Removed and the
Predicted Square Root of the Percentage of Nodule Mass Removed for the
Experimental Cores174
Figure 7.17 The Relationship Between the Studentized Residual Values of the
Percentage of Nodule Mass Removed and the Predicted Percentage of Nodule
Mass Removed for the Experimental Silcrete Cores
Figure 7.18 The Relationship Between the Studentized Residual Values of the

Percentage of Nodule Mass Removed and the Predicted Percentage of Nodu	ıle
Mass Removed for the Experimental Quartz Cores	179
Figure 7.19 Sample Selection for the Wolman Pebble Count as Applied in this	
Study	185
Figure 8.1 Minimum Analytical Nodule Analysis	196
Figure 8.2 Fowlers Creek (FC) Survey Location	200
Figure 8.3 Mulga Dam (MD) Survey Location	202
Figure 8.4 Nundooka (ND) Survey Location	204
Figure 8.5 Sandy Creek (SC) Survey Location	206
Figure 8.6 Charlton Well (CW) Survey Location	208
Figure 8.7 Round Hill (RH) Survey Location	210
Figure 8.8 Conservation (CN) Survey Location	212
Figure 8.9 Kars One and Two (KZ) Survey Locations	214
Figure 8.10 Silcrete Quarry One (SQ) Survey Locations	216
Figure 9.1 Cumulative Quartz Cobble Percent Larger than Freq. Distributions	225
Figure 9.2 Cumulative Silcrete Cobble Frequency Distributions	226
Figure 9.3 Cumulative Quartz Cobble Percent Larger than Freq. Distributions	237
Figure 9.4 Cumulative Silcrete Cobble Percent Larger than Frequency	
Distributions	238
Figure 9.5 Example of Multiple Cores per Nodule	241
Figure 10.1 Diagram Illustrating the Spatial Relationship between Artefact Transpo	ort
and Cortex Patterning	259
Figure 10.2 Differences in the Tortuosity of Movement Paths	263
Figure 10.3 Daisy-chain Pattern of Land Use (After Binford 1980: Figure 2)	268
Figure 10.4 Leap Frog Pattern of Residential Camp Movement (After Binford 1982	2
Figure Two)	268
Figure 10.5 Views of Rutherfords Creek, April 2006	271
Figure 10.6 Rutherfords Creek Cumulative Silcrete Cobble Percent Larger Than	
Frequency Distributions	275
Figure 10.7 Rutherfords Creek Cortex Ratios	276

List of Tables

Table 6.1 Experimental Silcrete and Quartz Data	111
Table 6.2 WNSWAP Assemblage Cortex Ratios (L) = local (N) = non-local	113
Table 6.3 Cortex Values by Artefact Class (both Mean Cortex Percentage (Cortex	(%)
and Proportion of Total Cortical Surface Area (%CSA) For the Sample of	
Assemblages With Both Silcrete and Quartz Presented in Douglass et al.	
(2008)	114
Table 6.4 Core Reduction Intensity (Core Mass/Total Assemblage Mass)	116
Table 7.1 Summary of 3D scanning data	134
Table 7.2 Test of the Performance of the Experimental Regression Using Addition	nal
Data Not Used in the Development of the Regression Equations	180
Table 7.3 Nodule Mass with Cortical Surface Area and Volume in Proportion to t	hat
Observe in the Lithic Assemblage	182
Table 9.1 Estimated Average Cobble Weight from Sampled Assemblages	221
Table 9.2 Cortex Ratios for Reanalysed Study Assemblages	231
Table 9.3 Position of a Cobble Large Enough to Have Cortex and Volume in	
Proportion to that Measured Amongst Assemblage Artefacts within the	
Natural Size Distribution of Cobbles Found at each Study Area	236
Table 9.4 Comparison Between the Frequency of Cobbles that should be Represent	nted in an
Assemblage if it is Assumed that Assemblages Had No Artefact Transport	t to the
Number of Cores Measured in the Assemblage (Excluding Flake and Bipe	olar Cores)
	236
Table 10.1 Estimated Average Cobble Weight from Rutherfords Creek	274
Table 10.2 Howells Creek Cortex Ratios	281

Chapter One

Introduction to the Study