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Abstract. Random, multi�eld functions can set generic expectations for landscape-style
cosmologies. We consider the in
ationary implications of alandscape de�ned by a Gaussian
random function, which is perhaps the simplest such scenario. Many key properties of this
landscape, including the distribution of saddles as a function of height in the potential,
depend only on its dimensionality, N , and a single parameter,
 , which is set by the power
spectrum of the random function. We show that for saddles with a single downhill direction
the negative mass term grows smaller, relative to the average mass, asN increases, a result
with potential implications for the � -problem in landscape scenarios. For some power spectra
Planck-scale saddles have� � 1 and eternal, topological in
ation would be common in these
scenarios. Lower-lying saddles typically have large� , but the fraction of these saddles which
would support in
ation is computable, allowing us to identi fy which scenarios can deliver
a universe that resembles ours. Finally, by drawing inferences about the relative viability
of di�erent multiverse proposals we also illustrate ways in which quantitative analyses of
multiverse scenarios are feasible.
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1 Introduction

Some of the most fundamental questions in physics and cosmology come together in dis-
cussions of the hypothetical string landscape. This complex and di�cult-to-specify function
couples the many scalar degrees of freedom found in 
ux-compacti�ed string theory. It can,
in principle, contain a vast collection of minima each of which represents a potentially unique
con�guration of \low energy" (i.e. sub-string scale) physics in which the vacuum energy or
cosmological constant is �xed by the value of the landscape potential at the minimum [ 1].
The landscape can be \populated" by a wide variety of cosmological mechanisms, including
classical rolling, stochastic �eld evolution, quantum tunneling or classical transitions [2{ 9].

The possible existence and properties of the landscape can be explored by direct analyses
of relevant stringy constructions and via more general consistency considerations such as those
leading to the swampland hypotheses [10, 11] and weak gravity conjecture [12]. However,
many properties of the landscape are portrayed as a consequence of its complexity, rather
than its detailed form. Consequently, a further option is to use multidimensional random
functions as proxies for the landscape itself. This strategy has been pursued in a variety
of ways [13{ 18] but perhaps the most conceptually straightforward is to directly investigate
the properties of extrema of random functions in O(100) dimensions [19{ 24], after noting
that these points will determine both the likely range of vacuum energies and in
ationary
trajectories.

In Ref. [25] we considered the distribution and properties of minima in a landscape
modeled by an N -dimensional Gaussian random function.1 For a number of interesting
scenarios,P(� > 0), where � is the vacuum energy, can be vanishingly small, tothe extent
that in a landscape with 10500 minima it is highly unlikely that even one of them has a
positive vacuum energy. This paper examines the in
ationary mechanisms that can operate
in Gaussian random landscapes. The range of in
ationary dynamics supported by a landscape

1The term \Gaussian random �eld" is common in the mathematica l literature; we refer to random functions
to avoid confusion with the N scalar �elds which are the independent variables of the land scape potential.
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will be re
ected in the distributions of the eigenvalues of the Hessians. In the vicinity of an
extremum these eigenvalues are the squares of the masses of the N �elds. One of the most
interesting scenarios will be saddles with a single downhill direction, which we call `1-saddles'.
As we will show, the expected magnitude of the downhill eigenvalue, relative to the expected
mean of the uphill eigenvalues, decreases asN increases. Consequently, landscape cosmologies
may have the ability to soften the in
ationary � problem by virtue of their dimensionality,
independently of their detailed construction.

Many properties of the potential depend on just two parameters, the dimensionality N
and one additional parameter, 
 (de�ned in Ref. [32] and Section 2.1), where 0 < 
 < 1.
When 
 is close to unity the potential is strongly layered[26]; that is, the type of an extremum
is increasingly correlated with the value of the potential at which it is found. Consequently,
for large N and 
 close to unity the number of 1-saddles at positive values of the potential
is vanishingly small. However, when
 is small 1-saddles remain relatively plentiful at larger
energies, including those at which typical maxima are found. For any given potential, 
 can
be computed from its power spectrum (again de�ned in Ref. [25] and Section 2.1); a small
value of 
 is associated with a near scale-free spectrum.

While Ref. [25] analyzed the distribution of minima, this paper examines the properties
of saddles which support either slow roll or topological in
ation. Moreover, Ref [25] is
concerned with only the relative signs of minima, a quantity that is unchanged by rescalings.
In contrast, in
ationary dynamics depends on the physical magnitudes of the (downhill)
slopes and heights of saddles and we will need to examine their properties more carefully.
To set these free parameters consistently with broad physical expectations for a landscape
potential we specify that the typical height of the landscape and its correlation length are
both roughly Planckian. We consider three simple power spectra: Gaussian; and \red"
and \blue" power-laws. In the latter cases the amplitude of the Fourier spectrum of the
landscape potentials is tilted towards large and short scales in �eld space, respectively. Even
these simple models require subtle handling: if we de�ne theaverage value of the potential
energy V 2 to be unity, we will see that the height of a typical peak scales as

p
N . However,

the in
ationary consequences of a Gaussian landscape will depend on whether the typical
magnitude of the potential is Planckian, or whether the typical peaksare at the Planck scale.
Conversely, we �nd that saddles supporting simple slow-roll in
ation [ 27{ 30] are rare { but
not vanishingly so { and that many saddles at Planck scale energies would support topological
in
ation [ 31].

The detailed implications of these results and actual predictions for in
ationary observ-
ables would depend on further assumptions about the measureproblem in the multiverse.
However, we will be able to draw inferences about the viability of di�erent multiverses pro-
posals, either via an appeal to self-consistency or becauseviable scenarios are so rare that
our speci�c universe cannot be plausibly produced within a given landscape proposal. Con-
sequently, this work shows that quantitative analyses of some multiverse scenarios are in fact
possible.

The rest of the paper is structured as follows: we will start by describing the properties
of Gaussian random function and our notation in Section2. In Section 3 we delineate the
properties of the landscape that depend only onN and 
 ; in Section 4 we show how to tie
the dimensionless quantities in a random function to the physical scales of the landscape for
three simple power spectra and compute the resulting properties of their 1-saddles. Section5
summarises the in
ationary consequences of these �ndings,and we conclude in Section6.
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2 Cosmology in a Gaussian Random Landscape

We consider a \landscape" scenario in whichN � O (100) scalar �elds � i (\moduli") interact
via a potential V (� ), which is taken to be a statistically homogeneous and isotropic (in �eld
space) Gaussian random function, with mean of zero. This Gaussian random function is
unbounded and statistically invariant under the mapping V ! � V . This means for example
that the probability an extremum with a given value of V is a local minimum is equal to
the probability that an extremum at � V is a local maximum, or P(min jV ) = P(maxj � V ).
The overall shape of a given realisation of a Gaussian randomfunction is invariant under
rescalings of the function and its arguments. However, a Gaussian random function has a
characteristic magnitude such that excursions well above this value are exponentially unlikely.
This value de�nes a physical scale: roughly speaking it willbe the \height" of the landscape.

Our analysis of the properties of random landscapes builds on Ref. [25]. The speci�c
methodology is partially based upon anN dimensional generalization of the well-known
Bardeen, Bond, Kaiser and Szalay [32] treatment of the peaks of three dimensional random
functions.

2.1 Notation

We begin by summarising our notation and laying out key de�nitions.

ˆ n-saddle: a saddle withn downhill directions.

ˆ � i : the �rst derivative of V in the i th direction, or @V=@�i . By de�nition, it is zero at
an extremum.2

ˆ � ij : the Hessian ofV , or the second derivative ofV in the i; j directions, @2V=@�i @�j .

ˆ N : the dimension of the landscape; typicallyN � O(100).

ˆ � (j� 1 � � 2j) = hV (� 1)V (� 2)i : the two-point correlation function, a measure of how
much knowledge ofV at � 1 reveals about its value at� 2. A low correlation implies little
knowledge. For statistically homogeneous and isotropic Gaussian random landscapes
only the distance between the two points matters; hence the absolute value sign. � (j� 1 �
� 2j) is necessarily maximum at� 1 = � 2.

ˆ P(k): the power spectrum of the Gaussian random function. It canbe de�ned as the
Fourier transform of the correlation function, or:

� (j� 1 � � 2j) =
1

(2� )N

Z
dN kP(k)eik �(� 1 � � 2 ) (2.1)

ˆ � n : moments of the power spectrum, de�ned by

� 2
n =

1
(2� )N

Z
dN k(k2)n P(k) : (2.2)

2This is consistent with Refs [25, 32] but overlaps with the usual notation for the second slow rol l parameter.
However, since we focus on saddles with a single downhill direction the slow-roll � never has a subscript.
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The �rst three moments satisfy [25]:

hV Vi = � 2
0 ;

h� i � j i =
1
N

� ij � 2
1 ;

hV � ij i = �
1
N

� ij � 2
1 ;

h� ij � lm i =
1

N (N + 2)
� 2

2(� ij � lm + � il � jm + � im � j l ) :

(2.3)

In the above hi indicates an ensemble average and the two terms in each average are
understood to be evaluated at the same point in �eld space. Consequently, � 2

0 is the
variance of V , given that it has zero mean.

ˆ � � V=� 0: the dimensionless potential.

ˆ � i : dimensionless eigenvalue(s) of the Hessian at an extremumin a basis in which � is
diagonalized. � i � + � ii =� 2.3 Without loss of generality, we can order the eigenvalues
such that � 1 � � 2 � : : : � � N . At minima, all � i � 0; a 1-saddle has� 1 � � 2 �
: : : � N � 1 > 0 > � N .

ˆ x i : a linear combination of the � i [25], de�ned as

x1 = �
1
� 2

X

i

� ii = �
X

i

� i ; xn = �
1
� 2

n� 1X

i =1

(� ii � � nn ) = �
n� 1X

i =1

(� i � � n ) ; (2 � n � N ) :

which will provide more compact expressions for the probability densities (Eq. 2.6).

ˆ 
 � � 2
1=(� 0� 2): In combination with N this parameter fully speci�es many of the

properties of a Gaussian random potential [25, 32]. A potential whose power spectrum
extends over a narrower range of scales will have a larger value of 
 , as well as fewer
minima at positive values of V .

2.2 Probability Distributions of Extrema

The expected number density ofextrema of a Gaussian random function is [25, 32]

hnextrema i = A
Z

� 1 � � 2 :::� � N

G � e� Q d� d N x (2.4)

where A is a constant which absorbs the change of variables betweenx i and � i , plus the
overall normalisation. The integrand in Eq. 2.4 can be interpreted as an unnormalized
likelihood for extrema, as a function of the � i and � . The factor G is4

G =

 
NY

i

j� i j

! 0

@
Y

i<j

j� i � � j j

1

A ; (2.5)

3The positive sign likewise continues the convention of previous work [25].
4We have inserted absolute value signs for � i , which did not matter in Ref. [ 25] because all eigenvalues

were positive then.
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where the second product drives the \eigenvalue repulsion"that is a common feature of
random matrices. Finally, Q has the generic form

2Q = x2
1 +

(� � 
x 1)2

1 � 
 2 +
NX

n=2

N (N + 2)
2n(n � 1)

x2
n +

N
� 2

1

NX

i =1

� i
2 +

NX

i;j ;i>j

N (N + 2)( � ij )2

� 2
2

(2.6)

At any extremum � i = 0, so the fourth term in Eq. 2.6 vanishes. We can pick axes such that
� ij = 0 for i 6= j , eliminating the �nal term in Q.

Eq. 2.4 provides the number density of extrema. We restrict this to minima by mod-
ifying the region of integration to � 1 � � 2 : : : � � N > 0. For 1-saddles, we adopt instead
� 1 � � 2 : : : � 0 � � N . These choices select di�erent classes of extrema butQ has only its
�rst three terms in all cases. With this tweak the computatio nal machinery developed in
Ref. [25] adapts smoothly to the current analysis. The properties ofa landscape are de�ned
by its power spectrum, but key insight is provided by 
 , the only parameter that depends on
the power spectrum in Eq. 2.4. It can be shown that 0 < 
 < 1 [25]; a landscape with smaller

 has more \�ne structure" than one with large 
 , and a less sharply peaked distribution of
minima as a function of � .

The integral above implicitly de�nes a likelihood,

L (� 1; � � � � N ; �; 
 ) =

 
NY

i

j� i j

! 0

@
Y

i<j

j� i � � j j

1

A e� Q : (2.7)

We can then compute quantities like the probability density of 1-saddles as a function of� ,

p(� j
; 1-saddle)d� =

R
L (� 1; � � � � N ; �; 
 )d� 1 � � � d� N

R�1
1 d�

R
L (� 1; � � � � N ; �; 
 )d� 1 � � � d� N

d� (2.8)

where the integration volume is consistent with the constraints on the � i . In Ref. [25]
we showed how to construct a numerical, Gaussian approximation5 that marginalises over
uninteresting parameters to obtain quantities such as the distribution of peaks as a function
of � . However, up to their normalisation, these distributions are well-approximated by the
maximal value of the \raw" likelihood for given value(s) of t he parameter(s) of interest, as
illustrated in Fig. 1, and these are simpler and numerically cheaper to obtain. Given that this
analysis deals primarily with qualitative results, we work with the maximised likelihoods in
what follows, rather than the similar distributions that fo llow from integrating out extraneous
variables.

3 General Landscape Properties

We proceed by determining the region of the parameter space (
 , N and the total number
of vacua) in which we can expect any 1-saddles to be \above thewaterline". If 10 500 is
a rough rule of thumb for the number of minima we expect a landscape to support, the

5We implemented this using the Mathematica FindMaximum command. A further transformation to
map the � i into the full real line allowed the use of the QuasiNewton method (which does not handle
maximisation on a constrained domain, as currently impleme nted), which improved performance dramatically
for larger N . This is e�ectively the Broydon-Fletcher-Goldfarb-Shann o algorithm, which is also implemented
in SciPy [33].
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1.0

Figure 1 . The likelihood for the most probable 1-saddle obtained by maximisingL (Eq. 2.7) with
respect to the � i separately for each value of� (red) and the distribution found after integrating over
the � i (blue) using the Gaussian approximation. The left curve hasN = 50 and the right curve has
N = 20, with 
 = 0 :5, and arbitrary normalisation.

expected number of 1-saddles isN � 10500 [16], or about 10502 if N is of order 100, which
is close enough to 10500 to be functionally equivalent.6 The 1-saddles have a single downhill
direction, so they are \almost minima", and will be rare for p arameter choices at which
minima are rare. Fig. 2 shows the relative likelihood of 1-saddles as a function ofV and 
 ,
for four di�erent values of N ; we see that for N & 200 there is a large range of values of

 for which we would not expect any 1-saddles at positive values of V in simple landscape
scenarios, mirroring the result previously found for minima [25].

Looking at the eigenvalue distributions, � appears just once in Eq. 2.7 { in the factor
Q (Eq. 2.6). Therefore the maximum likelihood value of � for any 1-saddle is

� = 
x 1 ; (3.1)

irrespective of the value ofx1. Maximising the likelihood with respect to x i we obtain both
the most likely value of � at which to �nd a 1-saddle as well as the most likely eigenvalues. At
the peak likelihood, the eigenvalue distribution is independent of 
 [25]. By de�nition, x1 is
the sum of the eigenvalues, sox1 = N �� where �� is the mean of the dimensionless eigenvalues
of the Hessian matrix. These are related to the mass terms of the scalar �elds in the vicinity
of the extremum, or m2

i = � 2� i . This allows us to write down a relationship between the
value of the potential and the average mass of the �elds at themost probable extrema

�m2 =
� 2

� 0

V
N


(3.2)

where �m2 = � 2�� .
A landscape has two key scales: a height; and a \width", whichcan be de�ned in

terms of a correlation length. The average height of the landscape is related tohV 2i = � 2
0

6We are primarily interested in large di�erences in logarith mic probabilities; this also means that residual
errors in our maximisation algorithms [ 25] can be safely ignored.
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Figure 2 . Likelihood of a 1-saddle as a function of
 and V=jVmax j, where Vmax is the value of V at
which the most 1-saddles are located. The plots are forN of 50 (top left), 100, 200 and 300 (bottom
right). The contours show log10 L ; the lowest lying contour is at 10� 500. As N and 
 increase the
fraction of 1-saddles with V > 0 decreases.

(Eq. 2.3). The string landscape is expected to reach Planckian energies, which suggests that
� 0 � M 4

P . The number density ofmaxima is a function of � . In Fig. 3 (left) we show the most
probable value of� at a maximum. We see that this value scales as

p
N and the constant of

proportionality increases with 
 . Consequently, setting� 0 to M 4
P implies that most maxima

of the potential will be classically inaccessible (i.e. atV > M 4
P ) or, more allegorically, the

mountaintops of the landscape will always be in the clouds. Likewise, given theV ! � V
symmetry, this scenario would have few classically stable minima. Alternatively, choosing
� 0 � M 4

P =
p

N ensures that a typical maximum hasV � M 4
P so most maxima are classically

accessible.7 Looking at Fig. 3 (right) we see that the mean dimensionless eigenvalue at

7Note that for this choice the root-mean-square energy density of the landscape is M 4
P =

p
N per Eq. 2.3.
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Figure 3 . (Left) The value of V at the point of maximum likelihood for maxima is shown as a
function of N , for (from bottom to top) 
 = 0 :25, 0:5 and 0:95. The results have been divided byp

N to illustrate their scaling behaviour. (Right) The mean dimensionless eigenvalue �� at the most
probable 1-saddle is plotted as a function ofN ; it is independent of 
 and scales as approximately
1=

p
N .

N
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0
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0

100

200
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�

- 0.50 - 0.20 - 0.10 - 0.05

Figure 4 . Ratios of the downhill eigenvalue to the average of the uphill eigenvalues, as a function
of N and 
 , for typical 1-saddles. The lefthand plot shows the ratio at V = 0; the righthand plot at
V = jVmax j, where Vmax is the most likely value of V for a 1-saddle. For small
 and large N these
ratios can be on the order of 10� 2.

1-saddle scales (roughly) as 1=
p

N .
Figure 4 highlights an interesting feature of the 1-saddles: the \downhill" eigenvalue

(relative to the average uphill eigenvalue) at the most likely 1-saddle decreases asN is
increased or
 decreased. This is the 
ip-side of eigenvalue repulsion { too large a gap between
the smallest positive eigenvalue and the negative eigenvalue is disfavoured by the third term
in Eq. (2.6). In Fig. 5 we show an approximation to the most probable distribution of all the
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Figure 5 . Approximate most probable eigenvalue distributions for 1-saddles. The upper left, upper
right and lower left plots are for Vmax , the most likely value of V for a 1-saddle,V = 0 and V = jVmax j.
Because 1-saddles are `almost minima',Vmax is negative. It can be seen that asV increases the
positive eigenvalues accumulate near zero, while the downhill eigenvalue increases (i.e., the downhill
direction becomes progressively steeper). Conversely, on the lower right we show � (� ). In this case
the distribution is largely independent of V ; the distributions at V = �j Vmax j (which are not plotted)
are essentially identical.

eigenvalues8 for 1-saddles at representative choices ofN and 
 . For parameter combinations
where 1-saddles are very unlikely the positive eigenvalues\pile up" at zero, and the downhill
eigenvalue becomes larger, while for more probable 1-saddles we get a Wigner semicircle with
deviations at very small values of� (compare Fig. 8 in [25] and Figs. 8 and 9 in [19]). Note
that this is solely a statement about the relative sizes of the most likely eigenvalues so it is
thus independent of rescalings of the potential and �elds.

In the absence of other information, one might expect that the single downhill direction
of a 1-saddle would have a slope similar to a typical uphill direction. The fact that this
is not the case is a non-trivial property of Gaussian random landscapes. Physically, this is
a mechanism by which random landscape cosmologies could address the� -problem, as this
amounts to the need for a \small mass" relative to a fundamental scale which, on the face of
it, represents a tuning [34, 35].

In this paper we have chosen to focus on 1-saddles. This is partly a pragmatic decision
since e�ective single-�eld models are much simpler to analyse. However, the in
ationary

8These plots are constructed from the di�erences between the most likely eigenvalues; at � i the probability
density is roughly proportional to 1 =(� i +1 � � i ) and we show the negative eigenvalue as an e�ective� -function.
Consequently, as plotted, � (� ) can stop short of � = 0 and does not intersect the x-axis at large � .
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Figure 6 . We plot the ratio of the largest positive and largest (or only) negative eigenvalues for
saddles with 1,2 or 3 downhill directions (bottom to top), � = 0 and 
 = 0 :5. The ratios scale roughly
as 1=

p
N . Note that � = 0 is a good approximation to potential values needed for a \realistic"

in
ationary epoch, given the constraints on the gravitational wav e background.

properties of ann-saddle depend strongly on its largest downhill eigenvalueand Fig. 6 shows
the ratios of the largest positive eigenvalue to the largestnegative eigenvalue for 1-, 2- and
3-saddles, a quantity which increases with the number of downhill directions. For V > 0 n-
saddles will be more numerous than 1-saddles. However, for most cases of interest successful
in
ation will require a rare saddle at which the steepest eigenvalue is atypically small { and
getting several eigenvalues that are all smaller than this critical threshold will require a more
extreme excursion than with a single eigenvalue, providingfurther motivation for our choice.

4 Saddles, Scales and Dimensions

We now consider in
ation in this prototype landscape. Both slow-roll and topological in
a-
tion require saddles that satisfy 
atness criteria, which in a single �eld approximation are
described in terms of the slow roll parameters

� =
M 2

P

2

�
V 0

V

� 2

; (4.1)

� = M 2
P

V 00

V
: (4.2)

where M P is the Planck Mass, andV is the value of the potential. For in
ation to occur,
both parameters must be small.9 At a saddle, � is guaranteed to vanish becauseV 0 = 0. In
our notation � is

� = M 2
P

�� 2

�� 0
(4.3)

In other words, � depends on the moments of the power spectrum� 0 and � 2, the dimensionless
downhill eigenvalue � , and the dimensionless potential value� .

To assess the likely value of� we need to �rst specify a power spectrum. We are looking
for small � and a bounded correlation length, L , which is the typical separation in �eld

9Strictly speaking, only � needs to be small for in
ation, but sustained in
ation with � > 1 requires a
special potential.
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space at which the values of the landscape are e�ectively uncorrelated. Loosely speaking,
knowledge of the landscape at a given point will provide verylittle information about the
landscape at points further away than L . On physical grounds, other than at special points,
it is unlikely that the landscape is correlated on scales much larger than M P { it would imply
many sub-Planckian terms yield a consistent sum on super-Planckian scales. Consequently,
our choices for the free parameters in the power spectra willneed to re
ect this expectation.

Generally, L is inversely correlated with � . From the de�nitions (see Section 2.1), it
is clear that � 2

0 = � (0), the peak of the correlation function. Di�erentiating Eq . 2.1 with
respect to � , we also have that � 2

1 / � d2�=d� 2 (evaluated at the point j� 1 � � 2j = 0). A
correlation function that decreases quickly (corresponding to larger d2�=d� 2 and thus larger
� 1) would also have a shorter correlation length. On the other hand, � is proportional to � 2.
For �xed 
 = � 2

1=� 0� 2 < 1, a decrease in� 2 requires a corresponding decrease in� 1,10 and
thus an increasing correlation length.

Nonetheless, this is not a hard no-go theorem, and� only needs to be of the order 10� 2,
rather than exponentially suppressed. To get a sense of how di�erent power spectra control
expectations for � we examine three representative examples { a Gaussian spectrum; and
red and blue power-law spectra. We can compute� 0 and � 2 for these cases, from which we
obtain � as a function of V and the other parameters.

4.1 Gaussian Power Spectrum

The Gaussian power spectrum11 can be de�ned via a Gaussian correlation function

� (� ) = U2
0 e� � 2=2L 2

=
1

(2� )N

Z
dN kP(k)eik �� (4.4)

where U0 is the amplitude of the Gaussian andL is the correlation length. The Fourier
transform of a Gaussian is a Gaussian, so the power spectrum is also Gaussian. The� 2

n
are [19]

� 2
n =

2n U2
0

L 2n

�[ n + N
2 ]

�[ N
2 ]

; (4.5)

which gives


 =

r
N

N + 2
; (4.6)

� 2

� 0
=

1
L 2

p
N (2 + N ) : (4.7)

These two expressions depend only the number of dimensions and the correlation length,
L , which is a free parameter. However, a landscape with a Gaussian power spectrum has a
vanishingly small number of 1-saddles at positive values ofV , since
 is not a free parameter
and tends to large values asN increases. ForN = 100, 
 � 0:990. Given the results of
the previous Section (Fig. 2) we expect that the odds of a given saddle being \above the
waterline" are small. For this speci�c example they about 1 in 101197, so even with 10502

1-saddles the odds are roughly 1 in 10695 a single 1-saddle will be found at positiveV . This

10 Note that � 0 cannot change because it is �xed to the root mean square energy of the landscape { M 4
P or

M 4
P =

p
N .

11 Note that a Gaussian random function is one where the value of the function at any point is drawn from
a Gaussian distribution. In this case the power spectrum is also Gaussian.

{ 11 {



20 40 60 80 100 120 140
N

20

40

60

80

100

120

140

� L2

MP
2

Figure 7 . The most probable value of the slow-roll in
ation parameter � multipled by L 2=M 2
P , as a

function of the number of dimensionsN for a Gaussian power spectrum. We plot this quantity for
three di�erent � : � = 0 :1; � = 0 :5, and � = 0 :9 (top to bottom).

result is fully analogous to the conclusions previously drawn in Ref. [25] about the viability
of a landscape with a Gaussian power spectrum based on the number of minima.

As an illustrative exercise, we can still determine the mostlikely value of � as a function
of V . Using Equations4.3and 4.7and the most probable downhill � calculated by maximizing
Eq. 2.7, we plot the most probable values of� as a function of N in Fig. 7. As expected,
with larger � the most probable value of � is smaller. Of course, choosing a large value of
L would drive � toward small values. However, this would be an unphysical choice for the
correlation length that e�ectively smuggles a tuning into th e setup.

4.2 Power-law power spectrum

The power-law power spectrum is
P(k) = Ak � n (4.8)

whereA is a constant. The integral over all k is divergent so we impose cuto�s; for the \red"
case with P(k) = 0 for k < k cut , while for the opposite \blue" case P(k) = 0 for k > k cut .
The power-law power spectrum thus has three parameters:A, n, and kcut ; A sets the overall
scale, whilen and kcut control the properties of the landscape.

For a red cuto�, the moments of the power spectrum are:

� 0 =
1

(2� )N=2

s
Ak N � n

cut

n � N
(n > N ) ; (4.9)

� 1 =
1

(2� )N=2

s
Ak 2+ N � n

cut

n � N � 2
(n > N + 2) ; (4.10)

� 2 =
1

(2� )N=2

s
Ak 4+ N � n

cut

n � N � 4
(n > N + 4) ; (4.11)

from which we �nd


 =

p
(n � 4 � N )(n � N )

n � N � 2
: (4.12)
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Figure 8 . We plot 
 for the red power-law power spectrumP(k) = Ak � n as a function of � . We see
that 
 can take any value, and for su�ciently small � it will be close to zero.

This equation is valid only if n > N + 4. We see that 
 does not depend onkcut but does
depend onn. Writing n = N + 4 + � , 
 =

p
� (4 + � )=(2 + � ) and the resulting relationship is

shown in Fig. 8. As can be seen, while
 is �xed by N for the Gaussian power spectrum, a
power-law can generate all values of
 , but smaller values of 
 require a near-
at spectrum.

Using the moments of the power spectrum, we can calculate�

� = M 2
P

�
�

k2
cut

r
4 + �

�
: (4.13)

We set kcut by examining the correlation function. By de�nition, the co rrelation function is
the Fourier transform of the power spectrum, Eq. 2.1. Performing the integral yields

� (j� 1j) =
A

(2� )N

Z 1

kcut

dkkN � n� 1(� 1k)1� N=2JN=2� 1(� 1k) (4.14)

where J is the Bessel function of the �rst kind, and we have used translation invariance to
set � 2 = 0. This integral can be evaluated (via Mathematica) to give

� (j� j) =
A

(2� )N

1
�[ n=2]

2� n� N=2k� n
cut �

� N �
�

N � n
2

�
�

�
2N (kcut � )n � 2n (kcut � )N �[ n=2]1 ~F2

�
N � n

2
;

N � n
2

+ 1 ;
N
2

; �
1
4

k2
cut �

2
��

(4.15)

where 1 ~F2 is a regularized generalized hypergeometric function. Plots of this function for
representative parameter values are given in Fig.9; the correlation length is roughly the
distance to the point where� becomes sensibly zero, and this grows withN if kcut is constant.
On the other hand, with kcut =

p
N the correlation length tends to a �xed value near unity12

at large N , consistent with expectations for a landscape. We therefore adopt kcut =
p

N=M P

in what follows.
Figure 10 shows the range of� produced by a red power-law power spectrum for three

di�erent scenarios: � = 10 � 12, � = 1 and � =
p

N . The �rst case corresponds to the
rough upper bound on� for a \realistic" period of cosmological in
ation, given th e observed

12 For this speci�c choice is it is around 2.5, but the parametri c scaling with N is su�cient for our needs.
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Figure 9 . The normalized correlation function (y-axis) as a function of � , for (from bottom to top)
N = 3, 5, 10 and, 20 with � = 0 :1. Left: the normalized correlation function with kcut = 1. Right:
the normalized correlation function with kcut =

p
N .
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Figure 10 . Most likely values of � with � = 1 and � =
p

N (top), and � = 10 � 12 (bottom) for a red
power-law power spectrum. The light and heavy dashed lines correspond to regions above which the
likelihood of �nding a 1-saddle is 1 in 10250 and 1 in 10500 relative to the likelihood for � = �

p
N .
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constraint on the cosmological gravitational wave background [36]. The typical value of � is
very large, a consequence of the� in the denominator of � . The � = 1 and � =

p
N cases

correspond to saddles atV � M 4
P , depending on whether we constrain the typical magnitude

of V or the typical peak of V to be Planckian, as discussed in Section3. These choices
correspond to setting � 0 � M 4

P and � 0 � M 4
P =

p
N , respectively. In both cases the expected

values of � are not as large, and in the latter typical values of� can be less than unity.
While there are values ofN and 
 for which we don't expect any 1-saddles with� � 0,

the power-law spectrum can produce a full range of
 . In order to identify parameter values
for which the vast majority of 1-saddles are at negativeV we overplot contours at which the
likelihood of a given 1-saddle occurring at a positive valueof � is (roughly) 1 in 10250 and 1
in 10500. For � =

p
N there is a range of parameter space withN � O (100) where saddles

are plentiful but � is at the lower end of its range, including regions with� < 1.
The analysis of the blue spectrum follows a similar course tothe red case, albeit with a

less satisfying conclusion. The moments are

� 0 =
1

(2� )N=2

s
Ak N � n

cut

N � n
(n < N ) ; (4.16)

� 1 =
1

(2� )N=2

s
Ak 2+ N � n

cut

N � n + 2
(n < N + 2) ; (4.17)

� 2 =
1

(2� )N=2

s
Ak 4+ N � n

cut

N � n + 4
(n < N + 4) ; (4.18)

from which we get


 =

p
(n � 4 � N )(n � N )

N � n + 2
; (4.19)

valid only if n < N . An analogous substitution to that used with the red cuto�, n ! N � �
yields 
 =

p
� (4 + � )=(� + 2), an exact match to the expression found for the red cuto� and

� again measures the departure from 
atness. Putting in the expressions for the moments,

� = M 2
P

�
�

k2
cut

r
�

4 + �
: (4.20)

In this case, the correlation function is

� (j� j) =
A

(2� )N

Z kcut

0
dkkN � n� 1(� 1k)1� N=2JN=2� 1(� 1k) (4.21)

=
A

(2� )N 2� N=2kN � n
cut �

�
N � n

2

�

1 ~F2

�
N � n

2
;

N � n
2

+ 1 ;
N
2

; �
1
4

k2
cut �

2
�

: (4.22)

We can again setkcut =
p

N=M P , as the correlation function has the same scaling
behaviour with N . However the width of the correlation function now also shows a signi�cant
dependence on� and becomes arbitrarily large as� approaches zero, as shown in Figure11.
Physically, this is associated with the power spectrum being increasingly weighted toward
modes with very small k, introducing a long-range coherence into the landscape. Wecould
suppress this with either a second cut at smallk, leading to results similar to the red case,
or by setting larger and larger values ofkcut as � decreases, which would increase� as well.
Alternatively, we can exclude scenarios with� . 2 or 
 .

p
3=2 � 0:866.
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Figure 11 . We plot the correlation function for the blue power-law power spectrum, for N = 50 and
(from the top) with � = 0 :5; 1; 2; 4 and 10, andkcut =

p
50. For small � the correlation length can be

arbitrarily large { but for su�ciently large � it tends to a �xed value.

Keeping kcut =
p

N=M P , independent of � , and not introducing a second cut at small
k, we show the most likely values of� from a blue power-law power spectrum with the three
� values in Fig. 12. Requiring 
 & 0:866 excludes all the regions of the parameter space with
smaller � which do not also have very small numbers of 1-saddles withV > 0.

5 In
ationary Consequences

Given the above results we restrict attention to landscapeswith a red spectrum in what
follows. From Fig. 10 we see that the most probable saddles at cosmologically-interesting
values of � . 10� 12 do not produce viable in
ation. However, in
ation will be po ssible at
rare, anomalously 
at, saddles. We can quantify this by maximising the likelihood (Eq. 2.7)
for speci�ed values of � and �xed, small values of the downhill eigenvalue, which yields an
approximate probability distribution for the downward slo pes of 1-saddles. This is shown in
Fig. 13 for � = 10 � 12; 
 = 0 :1; N = 100. The general shape of the plot is largely independent
of the speci�c parameter choices, but the fraction of 1-saddles which can support in
ation
decreases with
 . For moderate values of
 , viable 1-saddles areO(10) orders of magnitude
less probable than typical 1-saddles. For larger
 , 1-saddles of all kinds will be rare at positive
V and the fraction of these with � < 1 decreases rapidly when
 & 0:5. As a consequence, the
number of viable saddles at large
 is further supressed, relative to the situation at small 
 .

Looking at the G factor in the likelihood expression shows that in this regime the
likelihood is controlled by the proportionality of the like lihood to each of the individual
eigenvalues. The bottom plot of Fig. 10 suggests that in order to get � < 0:01 for a saddle
which could have generated the cosmologically relevant phase of in
ation, we need a� N that
is about � 15 orders of magnitude less probable than the peak� (which is the � used to
generate this plot). In a landscape with � 10500 minima we can expect a similar number of
1-saddles, so this 15-order di�erence is insigni�cant, provided that 
 is relatively small.

Of course, successful in
ation requires more than a suitable saddle which is 
at enough
to produce a su�cient amount of in
ation { the in
aton must se ttle into a minimum just
far enough above zero to satisfy constraints on the dark energy density. Assessing this
quantitatively would require the construction of a joint pr obability distribution for adjacent
extrema, which is beyond the scope of this work. However, if we ask that there exists a
cosmologically viable 1-saddle in the basin of attraction of a mininimum with a suitably
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Figure 12 . Most likely values of � with � = 1 and � =
p

N (top) and � = 10 � 12 (bottom) for a
blue power-law spectrum. The light and heavy dashed lines correspond to regions above which the
likelihood of �nding a 1-saddle is 1 in 10250 and 1 in 10500 relative to the likelihood for � = �

p
N ;

regions excluded by requiring� & 2 are \greyed out"; no domains with small � and non-vanishing
number of minima survive the combined cuts.

small vacuum energy, the expected number of successful regions is

(10� 12 � Nsaddle� P(� > 0jviable 1-saddle))� (10� 123 � Nminima � P(� > 0jminimum)) : (5.1)

The factors of 10� 12 and 10� 123 represent the ratios of the energy densities of the in
ationary
epoch and dark energy to the Planck scale, respectively. This number is much smaller than
the odds of getting either a workable in
ationary saddle or a viable vacuum energy on their
own. Multiplying the probabilities by these factors assumes the probability density for � is
uniform between 0 and 1. However, since the width of the full probability density function
for � is O((0:1 � 10)M P ) this approximation will be correct to a few orders of magnitude,
which is su�cient here. However, note that the speci�c in
at ionary trajectory will likely
be modi�ed by higher order terms in the e�ective potential as t he �eld rolls away from the
saddle, given that the simple inverted quadratic will quickly reach negative values.

In addition to slow-roll, topological in
ation is also a pos sibility in the landscape. This
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Figure 13 . (Left) The likelihood of a saddle with �xed eigenvalue for � = 10 � 12; 
 = 0 :1; N = 100.
On the vertical axis is the log-likelihood with the most probable eigenvalue normalized to 0. On the
horizontal axis is log(� 100), the log of the downhill eigenvalue in dimensionless units. We can see that
even a very small eigenvalue of 10� 15 is still only O(10) orders of magnitude less likely than the most
probable eigenvalue. (Right) The relative log-likelihood of a 1-saddle with � = 10 � 15 (thus providing
� < 1) compared to the most probable value of� , as a function of 
 , for � = 10 � 12; N = 100. For
small 
 , these viable 1-saddles are� 10� 14 orders of magnitude less probable than the most probable
1-saddle, but they get less probable with increasing
 .

was originally described with reference to the prototype potential [ 31]

V (� ) =
g
4

(� 2 � � 2)2 (5.2)

which supports a classical domain wall solution, over which� varies (spatially) between � �
and � [37]. The key condition for topological in
ation to occur is tha t the domain wall must
be wider than the Hubble radius. The �eld is required to be continuous and therefore the
domain wall cannot causally decay, so there will be a permanent \patch" of spacetime in
which V � V0 = g� 4=4 (where V0 is the peak value of the potential) leading to eternal
in
ation at the centre of the defect. The Hubble radius is 1=H or H � 1

0 =
p

3M P =V1=2
0 .

The domain wall is a static solution with the gradient energy o�set against the potential
energy, so the Klein-Gordon equation has the form [37]

1
2

�
@�
@x

� 2

= V (� ) : (5.3)

For the prototype single-�eld potential above, there is an exact solution

� (x) = � tanh
� r

g
2

� x
�

: (5.4)

where x is the spatial coordinate. However, we can also write it in the form

� (x) =

s
jV 00

0 j
V0

tanh

 r
jV 00

0 j
2

x

!

(5.5)

where V 00
0 is

V 00
0 =

d2V
d� 2

�
�
�
�
� =0

: (5.6)
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This can be understood as an approximate expression for a �eld con�guration at any 1-saddle,
where V 00is the second derivative of the potential in the downhill direction.

Taking the width of the defect to be
p

2=jV 00
0 j, we can write a criterion for eternal

in
ation at a 1-saddle

jV 00
0 j .

2
3

V0

M 2
P

: (5.7)

Given that eternal in
ation is taking place [ 38] the portion of the defect near the peak can
only respond to the peak of the potential, suggesting that the approximation will be self-
consistent.

The above expression is equivalent to� < 2=3. We saw in Figure 10 that such values
of � are possible with the red power-law power spectrum for largeenough V . We also saw
in Figure 13 that such values are possible for smallerV if we go far enough into the tail
of the distribution for � . Note that the condition for topological in
ation, � < 2=3, is
less restrictive restrictive than the observational constraint on slow-roll in
ation � � 0:01
and therefore topological in
ation will be more common than slow-roll in
ation in such a
landscape.

6 Discussion

We have examined the in
ationary properties of simple Gaussian random landscape models,
with either Gaussian or power-law spectra. The only scenario that is consistent with physical
expectations { that is, with non-vanishing numbers of 1-saddles and without long-range (i.e.
super-Planckian) correlations in �eldspace is the red power-law. It is conceivable that even if
the detailed form of the landscape cannot be obtained, generic properties such as the power-
spectrum might be derivable from physical considerations,so these results may potentially
be used to constrain landscape scenarios.

Separately, we have seen that the slope in the single downhill direction leading away
from a 1-saddle decreases withN , relative to the uphill directions. This behaviour re
ects
the deeper result that large gaps in the eigenvalue distribution of the Hessians of random
landscapes are disfavoured, this is in constrast to the better-known phenomenon of eigenvalue
repulsion. The eigenvalues want to be separate, but not too separate. This is a nontrivial
result, insofar as it was not obvious from the outset that the one downhill eigenvalue would
e�ectively decrease with N . As a consequence it appears that the� -problem of single �eld
in
ation may be softened if this scenario is assumed to be embedded in a larger landscape.
That said, we did not encounter scenarios for which� becomes arbitrarily small whenN �
O(100). The examination of the � -problem in more complex scenarios, such as those where
the potential is a nontrivial function of a Gaussian random function (or several functions)
rather than simply a single Gaussian random �eld, will be a fruitful topic for further work.

For values of V at which 1-saddles are plentiful, the eigenvalue distribution depends
only weakly on V . Consequently (recalling that � / �=V ) the expected value of� becomes
larger in rough proportion to 1=V { so for V . 10� 10M 4

P the typical 1-saddle is far too steep
to support in
ation. 13 However, as shown in Figs.10 and 13, even if V � M 4

P a nontrivial
fraction of saddles can have suitable values of� . Saddles with large positiveV will be rarer
than those with smaller V , but their typical � -values will be smaller. An interesting extension

13 Recall that for cosmologically viable hilltop in
ation [ 39] the potential is much wider than it is high; these
saddles are much narrower than their typical height.
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of this work would be to look more carefully at the joint distr ibution for the density of saddles
as a function of � and V , as a precursor to building a measure for the landscape.

Anthropic \solutions" to the cosmological constant problem explain the present-day
value of the vacuum energy by noting that if it was substantially larger than the observed
value, structure formation, and thus the existence of observers, would be suppressed. How-
ever, there is no similar bound on an in
ationary scale.14 For our universe, observational
constraints on the gravitational wave background suggest that 0 < V . 10� 10M 4

P [36]. Given
that the likelihood will not change dramatically as V changes by 10� 10M 4

P it follows that in
a multiverse with a nontrivial number of 1-saddles at positive V , the \typical" in
ationary
1-saddle will haveV > 10� 10M 4

P and this yields a stochastic gravitational wave background
inconsistent with our Universe. To whatever extent that thi s constitutes a prediction of this
scenario, it is arguably disfavoured { but not excluded { by observations.

We have focused on the properties of the landscape potential. However, the hypothesis
underlying this work is that the landscape supports a cosmological multiverse, a vast number
of causally disconnected pockets of spacetime. While we cannot make direct observational
tests of a multiverse hypotheses, this analysis demonstrates that it may be possible to place
non-trivial quantitative constraints on speci�c landscap e proposals by demonstrating that
they cannot be expected to provide a single viable in
ationary 1-saddle. These considera-
tions immediately eliminated random landscapes with a Gaussian power spectrum, and made
those with a blue power-law spectrum appear inconsistent without the introduction of a tun-
ing. Furthermore, as noted above, even the surviving scenario with a red power-spectrum
may \predict" a gravitational wave background at odds with p resent cosmological observa-
tions. The nontrivial nature of these results illuminates ways in which it is possible to draw
quantitative inferences about speci�c multiverse proposals.
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