http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
GEOLOGY AND LANDSLIDES
OF THE EASTERN TE AUTE DISTRICT,
SOUTHERN HAWKES BAY

JARG REIN PETTINGA

In fulfillment of the requirements for the
Degree of Doctor of Philosophy in Geology,
Department of Geology, University of Auckland

April 1980
'Clear and trustworthy sections are very rare in the sea cliffs, gigantic slips generally forming the coastline, the ground being disturbed in some cases as far as half a mile inland, the whole being, during wet weather, in constant movement. The best section of these rocks is seen along the shore from Waimirima Bluff to near the mouth of the Mokomokoura.'

From a 'Report on Country between Cape Kidnappers and Cape Turnagain'

by Alexander McKay (1875)
FRONTISPIECE

Aerial Oblique View southward from N141/250040 of the St Lawrence-Hawea Valley system. To east (left) lies the Silver Range; to west (right) the Makara Ridge comprising part of the Elsthorpe Anticline, western limb. Note entrenched meandering Hawea Stream (foreground to middle distance).

(Photograph by Noel Trustrum (MWD))
ABSTRACT

A succession of Upper Cretaceous to Quaternary sedimentary strata of the East Coast Deformed Belt is subdivided into 12 formations. Three unconformities and two stratigraphic breaks of uncertain character are recognised.

Upper Cretaceous sedimentation is typified by an influx of clastic detritus. A progressive fining upward sequence is represented by Paleocene and Eocene formations. Total stratigraphic thickness is small, reflecting a tectonically quiescent period and environment of deposition which was probably deepwater, continental slope.

The East Coast Deformed Belt, a tectonically active and structurally complex zone since Oligocene times is interpreted as the accretionary sediment prism in the arc-trench gap of the obliquely convergent plate margin. The Waimarama-Mangakuri Coastal High and Elsthorpe Anticline are located over a deep-seated thrust zone. Both are characterised by complexly folded and thrust-faulted Upper Cretaceous to Miocene sequences. Thrusts commonly are accompanied by mélange and crush zones. The 'coastal high' developed during Upper Oligocene and Miocene times. The Elsthorpe Anticline formed as an offshoot from this during Upper Pliocene-Lower Pleistocene times.

Deformation has occurred progressively since Oligocene times. A sporadically preserved early phase, recognised in east-west trending structures and inverted sequences, followed by imbricate thrust faulting along the dominant northeast-southwest structural grain are present within the 'coastal high'.

The narrow elongate thrust zones are separated by broad, shallow synclinal basins in which thick flysch sequences accumulated unconformably on older strata during Neogene times. These basin sequences have, in part, subsequently been incorporated into the imbricate accretionary margin. Little evidence exists to suggest that major transcurrent faulting has been important in coastal Southern Hawkes Bay.

Mount Kahuranaki, a limestone klippe, is located to the east of a change in axial trend of the Elsthorpe Anticline, and is genetically related to this. It formed as the result of a gravity glide from the anticlinal crest onto the eastern flank.
A large-scale Regional-Slump which developed during Quaternary time involves the progressive eastward downfaulting and rotation of large blocks of land extending over 20 km in length, incorporating much of the Waimarama-Mangakuri Coastal High. Only the head of the slump is exposed on land. Its extent offshore to the east is unknown. Large 'parasitic' landslides involve the crown of the western (main scarp) margin of the slump.

Soft rock lithologies encountered are typical of the Belt, and with bedrock structure are important controlling factors on slope failure. The main associations recognised between failure type, lithology and structure are:

a) Earthflows, debris-flow slides, mudflows, and creep on Upper Cretaceous and Lower Tertiary alternating sandstone and carbonaceous mudstone, glauconitic sandstone and bentonitic mudstone. Complex folding, intense fracturing, shearing and development of crush or mélangé zones on thrust faults has reduced much of the soft rock to 'soil'.

b) Rotational slide-earthflow, regolith slides, clayflows on massive mudstones and thinly bedded mudstones-sandstones of Middle Tertiary age. These sequences are tightly folded and thrust faulted.

c) Large planar slides (block and wedge glides) occur in a Middle to Upper Miocene flysch succession which is gently folded and moderately faulted. The slides occur on bedding planes in conjunction with steeply dipping primary fractures.

d) Sheet and regolith slides are widespread irrespective of lithology.

Important controls on precipitation and near-surface groundwater conditions are exerted by the moderate to steep relief and the limestone-capped Maraetotara Plateau. Permeability contrasts both within bedrock and soil masses are recognised as primary factors influencing slope failure.

Severe earthquakes and regional uplift are common and widespread in the tectonically active East Coast Deformed Belt (eg Napier, 1931). Lowering of base levels in conjunction with regional (tectonic) uplift is related to successive generations of slope failures. Landslides belong to an old (relict) or a new (rejuvenated) landscape, each of which is composed of several erosion surfaces.

Slope failure susceptibility is assessed in terms of bedrock and soil failures. Five critical control parameters (based on landform and bedrock characteristics) are given susceptibility ratings, which are related to a rating scale of slope failure susceptibility.
TABLE OF CONTENTS

PART ONE: INTRODUCTION

<table>
<thead>
<tr>
<th>CHAPTER ONE: INTRODUCTION</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Location</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Access</td>
<td>1</td>
</tr>
<tr>
<td>1.3 Geologic Framework</td>
<td>3</td>
</tr>
<tr>
<td>1.4 Aim of the Study</td>
<td>3</td>
</tr>
<tr>
<td>1.5 Methodology</td>
<td>3</td>
</tr>
<tr>
<td>1.6 Presentation</td>
<td>7</td>
</tr>
<tr>
<td>1.7 Previous Work</td>
<td>8</td>
</tr>
<tr>
<td>1.7.1 Published</td>
<td>8</td>
</tr>
<tr>
<td>1.7.2 Unpublished Open-File Petroleum Reports</td>
<td>9</td>
</tr>
<tr>
<td>1.8 Physiographic Summary</td>
<td>9</td>
</tr>
<tr>
<td>1.9 Climate</td>
<td>10</td>
</tr>
<tr>
<td>1.10 Landuse</td>
<td>11</td>
</tr>
<tr>
<td>1.11 Aerial Photographs</td>
<td>13</td>
</tr>
<tr>
<td>1.12 Base Maps</td>
<td>14</td>
</tr>
</tbody>
</table>

PART TWO: STRATIGRAPHY

<table>
<thead>
<tr>
<th>CHAPTER TWO: LOWER CRETACEOUS TO LOWER EOCENE STRATIGRAPHY</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Introduction</td>
<td>15</td>
</tr>
<tr>
<td>A: RED ISLAND FORMATION (new formation)</td>
<td>19</td>
</tr>
<tr>
<td>2.2 Introduction</td>
<td>19</td>
</tr>
<tr>
<td>2.3 Previous Work</td>
<td>19</td>
</tr>
<tr>
<td>2.3.1 Comment</td>
<td>24</td>
</tr>
<tr>
<td>2.4 Lithology</td>
<td>24</td>
</tr>
<tr>
<td>2.5 Distribution</td>
<td>24</td>
</tr>
<tr>
<td>2.6 Paleontology</td>
<td>25</td>
</tr>
<tr>
<td>2.7 Environment of Deposition</td>
<td>26</td>
</tr>
<tr>
<td>B: WAIMARAMA FORMATION (new formation)</td>
<td>27</td>
</tr>
<tr>
<td>2.8 Introduction</td>
<td>27</td>
</tr>
<tr>
<td>2.9 Previous Work</td>
<td>27</td>
</tr>
<tr>
<td>2.10 Distribution and Lithology</td>
<td>29</td>
</tr>
<tr>
<td>2.10.1 Te Wainohu Member (new member)</td>
<td>29</td>
</tr>
<tr>
<td>(Introduction, Distribution and Lithology)</td>
<td>32</td>
</tr>
<tr>
<td>2.10.2 Te Ahua Member (new member)</td>
<td>33</td>
</tr>
<tr>
<td>(Introduction, Distribution and Lithology)</td>
<td>35</td>
</tr>
<tr>
<td>2.10.3 Te Puku Member (new member)</td>
<td>37</td>
</tr>
<tr>
<td>(Introduction, Distribution and Lithology)</td>
<td>40</td>
</tr>
<tr>
<td>2.10.4 Huarau Member (new member)</td>
<td>40</td>
</tr>
<tr>
<td>(Introduction, Distribution and Lithology)</td>
<td>45</td>
</tr>
<tr>
<td>2.11 Contact Relationships</td>
<td>45</td>
</tr>
<tr>
<td>2.12 Paleontology</td>
<td>45</td>
</tr>
<tr>
<td>2.13 Petrology</td>
<td>45</td>
</tr>
<tr>
<td>2.14 Sedimentology</td>
<td>45</td>
</tr>
<tr>
<td>2.14.1 Sedimentary Structures (Bedding and Lamination)</td>
<td>55</td>
</tr>
<tr>
<td>2.14.2 Diagenetic Features</td>
<td>56</td>
</tr>
<tr>
<td>2.15 Concretions</td>
<td>57</td>
</tr>
<tr>
<td>2.16 Waimarama Formation - Mode and Environment of Deposition</td>
<td>57</td>
</tr>
</tbody>
</table>
C: TAPUWAEROA FORMATION (Lillie 1953)
2.17 Introduction 59
2.18 Previous Work 59
2.19 Distribution and Lithology 61
2.19.1 Stratigraphic Relationships 61
2.19.2 Reference Section of the Tapuwaeroa Formation; Coastal Slopes Southwest of Red Island 63
2.19.3 Waimarama-Ocean Beach Area 66
2.19.4 Cape Huara Section 67
2.19.5 Kairakau Area 67
2.19.6 The Elsthorpe Anticline 67
2.20 Sedimentology 68
2.21 Environment of Deposition 69
2.22 Whole Rock Analyses 69

D: WHANGAI FORMATION (Lillie 1953)
2.23 Introduction 71
2.24 Previous Work 71
2.25 Distribution and Lithology 71
2.25.1 Reference Section of the Tukutahuna Facies 73
2.25.2 """" Tunui Facies 74
2.25.3 """" Kaikopu Facies 74
2.25.4 Elsthorpe Anticline Outcrops 75
2.25.5 Gilray Gully-track Outcrop: Coast Northwest of Red Island 75
2.25.6 Shore Platform Exposure near Red Island 77
2.25.7 Te Rahui to Taupata Coastal Outcrops 77
2.26 Paleontology 79
2.27 Whole Rock Analyses 79
2.28 X-ray Diffraction Analyses 81
2.29 Petrology 81
2.30 Sedimentology and Environment of Deposition 83
2.30.1 Kaikopu Facies 83
2.30.2 Tukutahuna and Tunui Facies 83
2.30.3 Summary 85
2.30.4 Diagenetic Features 86

E: MACKINTOSH FORMATION (new formation)
2.31 Introduction 86
2.32 Previous Work 86
2.33 Distribution and Lithology 87
2.33.1 Type Locality - South end of Waimarama Beach 88
2.33.2 Gilray Gully-track Outcrop: Coast Northwest of Red Island 89
2.33.3 Te Rahui to Taupata Coastal Outcrops 91
2.33.4 Inland Outcrops of the Mackintosh Formation 92
2.34 Paleontology 92
2.35 Whole Rock Analyses 93
2.36 X-ray Diffraction Analyses 93
2.37 Petrology 95
2.38 Sedimentology 95
2.39 Origin of the Bentonitic Mudstones 99

CHAPTER THREE: MID-Eocene to Lower Miocene Stratigraphy 102
3.1 Introduction 102

A: RARATU FORMATION (new formation)
3.2 Introduction 102
3.3 Previous Work 102
3.4 Distribution and Lithology 104
3.5 Contact Relationships 108
3.6 Paleontology and Environment of Deposition 108
3.7 Comment 108

...
CHAPTER FOUR: MIDDLE TO LATE MIOCENE STRATIGRAPHY: THE MAKARA FORMATION (new formation)

4.1 Introduction 148
4.2 Previous Work 148
4.2.1 Comment 152
4.3 Distribution and Lithology 152
4.3.1 Motoroa Member (new member) (Introduction, Distribution and Lithology) 152
4.3.2 Hawea Member (new member) (Introduction, Distribution and Lithology) 155
4.3.3 General Discussion 158
4.4 Contact Relationships 166
4.5 Paleontology 168
4.6 X-ray Diffraction Analyses 168
4.7 Sedimentology and Environment of Deposition 169

CHAPTER FIVE: PLEIOCENE STRATIGRAPHY: TE AUTE FORMATION (Lillie 1953) 172

5.1 Introduction 172
5.2 Previous Work 172
5.3 Distribution and Lithology 174
5.3.1 Maraetotara Member (new member) (Introduction, Distribution and Lithology) 174
5.3.2 Mokoheka Member (new member) (Introduction, Distribution and Lithology) 179
5.3.3 Awapapa Member (new member) (Introduction, Distribution and Lithology) 179
5.3.4 Kairakau Member (new member) (Introduction, Distribution and Lithology) 181
5.3.5 General Discussion 183
5.4 Contact Relationships 185
5.5 Paleontology 187
5.6 Sedimentology 191
5.7 Environment of Deposition 197
7.9.3 Synthesis: A Favoured Hypothesis
7.9.4 Comment on the Geometry of the Bentonitic Mélange Zone

CHAPTER EIGHT: THE KAIRAKAU-WAIMARAMA REGIONAL SLUMP
8.1 Introduction
8.2 Geologic and Morphologic Evidence
8.3 Parasitic Landslides
8.4 Discussion
8.4.1 Anatomy of the Slump

CHAPTER NINE: THE ELSTHORPE ANTICLINE AND ASSOCIATED STRUCTURES
9.1 Introduction
9.2 Previous Work
9.3 Key Locality Descriptions from the Elsthorpe Anticline
9.3.1 Ryan's Ridge Thrust Zone and Adjacent Anticlinal Core Zone
9.3.2 Structure of the Rata Creek Area: Southwest of Mt Kahuranaki
9.3.3 Muddy Creek Section
9.3.4 Multitude Creek
9.4 Minor and Major Thrust Structures on the West Limb of the Elsthorpe Anticline
9.4.1 Minor Thrust Faults
9.4.2 Major Thrust Faulting of the Western Limb
9.5 Comparison of East and West Limb Thickness
9.6 Age of the Elsthorpe Anticline
9.7 Recent Faulting
9.8 New Rangitoto Anticline
9.9 The Patangata Syncline
9.10 The Atua Synclinorium
9.11 Maraetotara Plateau Block Faulting
9.12 Mud Volcanoes
9.13 Possible Hypotheses for the Development of the Elsthorpe Anticlinal Structure
9.13.1 Introduction
9.14 Recent Faulting. Why Tensional?

CHAPTER TEN: ASPECTS OF THE GEOLOGICAL HISTORY OF THE EAST COAST DEFORMED BELT
10.1 Introduction
10.2 Upper Cretaceous-Paleogene
10.2.1 Introduction
10.2.2 Phase I
10.2.3 Phase II
10.2.4 Phase III
10.2.5 Phase IV
10.3 Neogene-Quaternary
10.3.1 Introduction
10.3.2 Phase V
10.3.3 Phase VI
10.3.4 Phase VII
10.4 The Kairakau-Waimarama Regional Slump
10.5 Red Island - Its Structural Implications
CHAPTER FOURTEEN: FAILURES INVOLVING SOILS

14.1 Introduction 476
14.2 Scope of this Chapter 476

14.3 A: SHEET SLIDES (Introduction) 477
14.3.1 Sheet Slide Failures on the Relict Erosion Surface - Hawea Valley 477
14.3.2 Sheet Slide Failures on the Relict Rejuvenated Erosion Surface 480

14.4 Flow Slides 484
14.5 Tunnel Gullying 484
14.6 Scree Slopes, Talus Aprons 487
14.7 Regolith Slides 489
14.8 Terracettes 491

14.9 B: RETROGRESSIVE CLAYFLOW-EARTHFLOW FAILURES 491
14.10 C: ROTATIONAL SLIP-EARTHFLOW FAILURES 495
14.11 D: EARTHFLOWS, DEBRIS SLIDES AND DEBRIS FLOW-SLIDES (Introduction)

14.12 Location of Earthflow and Debris Slide Failures in Study Area
14.13 Earthflow Geometry
14.14 Debris Slide and Debris-flow Slide Geometry
14.15 Mudflows

CHAPTER FIFTEEN: (A) AN APPROACH TO SLOPE FAILURE SUSCEPTIBILITY MAPPING

15.1 Introduction
15.2 A Question of Scale
15.3 The Approach to Engineering-Geologic Mapping taken by Other Workers
15.4 The Approach taken in this Study to Develop a Slope Failure Susceptibility Map
15.5 Check List Parameters; Ratings Applied; and Map Construction
15.5.1 Soil Failures
15.5.2 Bedrock Failures
15.5.3 Map Construction
15.6 Implementation of Slope Failure Susceptibility Mapping in the Upper Ponui and Makara Stream Catchments
15.6.1 Soil Failures
15.6.2 Bedrock Failures

(B) CATCHMENT APPRAISAL: CASE STUDIES

15.7 Introduction
15.8 The Upper Ponui and Makara Stream Catchments
15.8.1 Introduction
15.8.2 Geological Setting
15.8.3 Base Levels
15.8.4 Gullying
15.8.5 Block and Wedge Slope Failures
15.8.6 Sheet and Regolith Slides
15.9 Makara Stream-Western Branch Headwaters
15.10 Upper Te Apiti Stream Catchment
15.11 Upper Waipuka Stream Catchment
15.12 Upper Hawea Stream Catchment
15.13 Upper Puhokio Stream Catchment
15.13.1 Introduction
15.13.2 Geological Setting
15.13.3 Base Levels
15.13.4 Mass Movement and Slope Failure Susceptibility
i) Earthflows
ii) Combination Rotational Slide-Earthflow (involving bedrock)
iii) Regolith Failures and Retrogressive Clayflows
iv) Sheet Slides
15.14 Coastal Catchment Erosion Assessment
15.14.1 Introduction
15.14.2 Slope Failure Susceptibility
15.14.3 Landslide Map
i) Rockfall and Cliff Retreat
ii) Earthflows
iii) Regolith and Sheet Slide Failures
iv) Debris-Flow Slides
v) Other Coastal Mass Movement Features
15.15 USE OF THE PORTABLE SHEAR VANE TO DETERMINE UNDRAINED SHEAR STRENGTH

15.15.1 Introduction

15.15.2 Procedure and Aims

15.15.3 Areas and Failures Studied

15.15.4 Results

i) Waimarama Earthflow

ii) Debris-flow Slide West of Huarau

iii) Debris-flow Slide in Te Onepoto Catchment

iv) McNeill No 3: Debris-Flow Slide

v) Shear Vane Testing in the Upper Ponui and Makara Catchments

15.15.5 Summary and Conclusion on Applicability and Use of Portable Shear Vane

15.16 EARTHQUAKE EFFECTS

15.17 CHRONOLOGY OF LANDSLIDING

15.18 SUMMARY AND CONCLUSIONS

15.18.1 Earthflows, debris-flow slides, mud-flows and progressive creep

15.18.2 Rotational Slide-earthflows, Clayflow-slides and Regolith Slides

15.18.3 Large Planar Slides (block and wedge glides)

15.18.4 Sheet and Regolith Slides

15.18.5 Gullying

15.19 Other Controls on Slope Failure

15.20 Slope Failure Susceptibility

REFERENCES

APPENDICES

I N.Z. Geological Time-Scale

II Rainfall Data

III Representative Rock Samples Submitted

IV Microfaunal Collection

V "Miocene Slope-Basin Sedimentation Along the New Zealand Sector of the Australian-Pacific Convergent Plate Boundary: The Makara Basin" (G J van der Lingen and J R Pettinga)

VI "Mount Kahuranaki, Hawkes Bay, New Zealand: A Klippe Emplaced by Gravity Sliding from the Crest of the Nearby Elsthorpe Anticline" (K B Sporli and J R Pettinga)

VII Red Island Striation Data
2.44a, b Tukutahuna facies, sedimentologic aspects at reference locality
2.45 Basal Mackintosh Formation strata, type locality south end of Waimarama Beach
2.46 Sheared Mackintosh Formation lithofacies in mélangé zone near Te Oneroto
2.47a Mackintosh Formation type locality turbidite sandstone
 (b) Composite column sketch of sandstone bed in (a)
2.48a Unsheared Mackintosh Formation, hillslopes near Red Island
 (b) Composite section of beds in (a)
2.49 Bentonitic mud volcano, Kaikopu Stream
2.50 Mud volcano 'vent'
2.51 Schematic-composite lithologic column, Mackintosh Formation

3.1 Raratu Formation exposure, type locality
3.2 Weber Formation, locality N142/252018
3.3 Stage zonation, Muddy Creek, from Srinivasan (1967)
3.4(a) Geology of Muddy Creek, Raratu Formation type locality
 (b) Cross section EE-FF Muddy Creek
3.5 Generalised composite section of Puhokio Formation, type locality, Waimarama Beach
3.6 Field sketch shore platform Puhokio Formation, type locality, Waimarama Beach
3.7 Geology of Pututaranui area
3.8 Stratigraphic section of Puhokio and Makara Formations contact near Pututaranui
3.9 Basal contact of Makara Formation with Puhokio Formation, near Pututaranui
3.10 Exposure of tuffaceous beds, Puhokio Formation near Waimarama
3.11 Creek exposure, Puhokio Formation
3.12 Tuffaceous bed, Puhokio Formation (N141/249937)
3.13 Massive mudstone Upper Puhokio Formation (N142/357943)
3.14 Pebble conglomerate Puhokio Formation (N142/357917)
3.15 Calcareous glauconitic sandstones interbedded mudstones, basal Puhokio Formation
3.16 Upper Puhokio Formation, west slopes of Whaitirinui Range
3.17 Basal? Puhokio Formation, western Puhokio Valley
3.18 Upper Puhokio Formation, western slopes Whaitirinui Range
3.19 Tuffaceous beds, Puhokio Formation
3.20 Puhokio Formation, type locality tuffaceous sequence of Kuku Rocks
3.21(a) Geology of Rata Creek and tributaries
 (b, c) Cross sections AA-BB, CC-DD of Rata Creek area
3.22 Schematic stratigraphic section Weber and Puhokio Formations, Elsthorpe Anticline
3.23(a) Geology of Multitude Creek area
 (b) Cross section GG-HH, of Multitude Creek area
3.24 Winter shore platform exposure, type locality Puhokio Formation
3.25 Basal Puhokio Formation type locality, debris flow units
3.26 Large clast of Whangai argillite in debris flow, basal Puhokio Formation
3.27 Debris flow, basal Puhokio Formation
3.28 Field sketch of debris flow, basal Puhokio Formation
3.29 Sketch columns of conglomerate and debris beds, Puhokio Formation type locality
3.30 Conglomerate bed, basal Puhokio Formation, type locality
3.31 Alternating glauconitic sandstone-mudstone, Puhokio Formation type locality
3.32 Field sketch of sedimentologic details from glauconitic sandstone beds, basal Puhokio
 Formation, type locality
3.33 Representative ideal turbidites, Puhokio Formation
3.34 Stratigraphic column of Waimarama Reef (Kuku Rocks) upper Puhokio Formation
3.35 Tuffaceous sequence
3.36 Distal turbidites Puhokio Formation, type locality
3.37
8.1 Extent of Kairakau-Waimarama Regional Slump, coastal Southern Hawkes Bay 285
8.2 Simplified cross-sections of Kairakau-Waimarama Regional Slump 289
8.3 Schematic block diagram of Kairakau-Waimarama Regional Slump 289
8.4 Possible hypothetical geometry of entire Kairakau-Waimarama Regional Slump 291

9.1 Main structural elements, Southern Hawkes Bay 295
9.2 Geology of Ryan’s Ridge Thrust Zone and adjacent Elsthorpe Anticline core 297
9.3 Sheared contact of Makara and Raratu Formations (N141/246911) 299
9.4 Kink fold in westward-dipping Makara Formation flysch, Hawea Valley 299
9.5 View of New Rangitoto Anticline east limb 299
9.6 Stereonet plot of averaged sets of small-scale conjugate thrust faults, west limb of Elsthorpe Anticline 301
9.7 Generalised biostratigraphic zonation map of Upper Miocene Makara Formation, Elsthorpe Anticline 303
9.8 Cross-sectional geometry of Makara Basin (from Kingma 1958a) 307
9.9 Recent fault traces, Hawea Valley 310
9.10 Oblique aerial view to southwest of west limb, Elsthorpe Anticline 311
9.11 Oblique aerial view to south, Maraetotara Plateau, showing northeast-southwest, north-south and recent faulting 311
9.12 Oblique aerial view of Mt Kahuranaki 313
9.13(a,b) Schematic sections of New Rangitoto Anticline 315
9.14 Schematic block-faulting pattern of Maraetotara Plateau 317
9.15 Schematic development history of the Elsthorpe Anticline 319
9.16 Piercement structures and basin development according to transcurrent faulting hypothesis of Kingma (1958b) 321

10.1 Proposed Cretaceous-Cenozoic geologic development of North Island from Ballance & Spörli (1979) 326
10.2 Schematic shelf-slope basin model, Waimarama Formation 328
10.3(a-d) Waimarama Formation current directions 330, 331
10.4(a,b) Whangai and Mackintosh Formations, current directions 332
10.5 Hypothetical idealised shelf-slope-basin facies association model for Tapuwaeroa and Whangai Formations 333
10.6 " " " " " Puhokio Formation 337
10.7 Puhokio Formation current directions 339
10.8 Past/present sites of slope basin sedimentation East Coast Deformed Belt 342
10.9 Te Aute Formation current directions 343
10.10 Model of an obliquely convergent plate boundary involving subduction (from Walcott 1978b) 345
10.11(a) Holocene folding and faulting in Hawkes Bay/Wairarapa districts (from Wellman 1971a) 347
(b) Growing folds and active faults offshore from Hawkes Bay land district (from Lewis 1971b) 347

11.1(a-i) Drainage patterns 352
11.2 Proposed hypothetical development of present-day drainage pattern during Quaternary time 355
11.3 Terrace and inclined planar surfaces eastern slopes, Kohinurakau Range 359
11.4 River terraces-Rochfort Road area 359
11.5 Changes forced in stream courses by Cheviot Landslide 361
11.6 Capture of Upper Waipapa Stream catchment by Hawea-and Makara Streams 363
11.7 Capture of Hawea Stream by Tukituki River 365
11.8 Hawea Stream catchment showing relict and rejuvenated landscapes 368
11.9 Relationship of relict and rejuvenated landscapes 369
11.10 Inclined planar surfaces, and relict and rejuvenated landscapes, east of Silver Range 369
11.11 Relict and rejuvenated landscapes, eastern slopes of Silver Range 369
11.12 Panorama view of Silver Range continued from Fig. 11.11 369
11.13 Disposition of inclined planar surfaces associated with Waipapa and Hawea Streams east of watergaps through Silver Range 371
11.14 Relationship of watergaps, inclined planar surfaces, and summit ridge crest of Silver Range 373
11.15 Schematic east-west section of planar surface 373
11.16 Upper Ponui and Makara Stream catchment showing relict and rejuvenated landscapes 373
11.17 Upper Puhokio and Te Aoiti stream " " " " " " " " 375
11.18 Upper Hawea Stream catchment showing relationship of inclined planar surfaces and relict and rejuvenated landscapes
11.19 Upper Makara Stream showing repeated landsliding in relation to relict and rejuvenated landscapes
11.20 Upper Ponui Stream catchment relict and rejuvenated landscapes
11.21 Upper Puhokio Stream catchment " " " "
11.22 Stream rejuvenation and alluviation caused by recent faulting
11.2 Classification of mass movement processes (from Carson and Kirkby 1972)
11.2.2 Velocity profiles for ideal mass movement types (" " " ")
11.3 Terminology of landslide features
11.4 Rate of movement scale

13.1 Waipoapoa Landslide
13.2 Stratigraphic column Waipoapoa Landslide and surrounding area
13.3 Vertical aerial photograph of area surrounding Waipoapoa and Basin Landslides
13.4 Generalised geology of southwest Maraetotara Plateau
13.5 True-scale cross-section W-V of Waipoapoa and Basin Landslides
13.6 Headwall escarpment of Waipoapoa Landslide
13.7 Headwall escarpment from northern extremity looking to southeast
13.8 Headwall escarpment and head area from southern extremity looking to north
13.9 Contoured plots of poles to fractures . . . Waipoapoa Landslide
13.10 Bedrock beneath basal shear plane Waipoapoa Landslide
13.11 View to south along basal shear plane Waipoapoa Landslide
13.12 View from west " " " "
13.13 Aerial oblique view of Basin and Waipoapoa Landslides
13.14 Plan view of Waipoapoa and Basin Landslides
13.15 Ponui Landslide
13.16 Stratigraphic column Lower Ponui Stream
13.17 Basal shear plane Ponui Landslide
13.18 Lateral escarpment, " " " "
13.19 " " " "
13.20 Toe area, Ponui Landslide
13.21 Cross-faults on basal shear plane, Ponui Landslide
13.22 Toe area gullying in colluvium, Ponui Landslide
13.23(a,b) Contoured plots of poles to fractures of lateral escarpment Ponui Landslide
13.24 Flysch succession below basal shear plane, Ponui Landslide
13.25 Lake formed as result of Ponui Landslide
13.26 Site of former wedge slide failure, Lower Ponui Stream
13.27 Amphitheatre Landslide
13.28 " " " " basal shear plane
13.29 " " " "
13.30 Gullying and eastern Amphitheatre Landslide head of Ponui Stream
13.31 Bedrock fractures and sandstone beds below Amphitheatre Landslide basal shear plane
13.32 Basal shear plane, Amphitheatre Landslide
13.33 Geology of Amphitheatre Landslide and surrounding area
13.34 Cross-sectional sketch of Amphitheatre Landslide
13.35 Detail field sketch of basal shear plane Amphitheatre Landslide
13.36 S-Bend Landslide
13.37 Contorted Makara Formation beds, toe S-Bend Landslide
13.38 Schematic cross-sectional sketch S-Bend slump
13.39 Vertical aerial photo of Patangata Landslide
13.40 View of northern Patangata Landslide
13.41 Earthflow and rotational slide-earthflow failures on Piahia Member
13.42 Simplified geological map of Patangata and Cheviot Landslides
14.29 Clayflow-earthflow failure encroaching on relict landscape, Elsthorpe Valley
14.30 Slump-earthflow on relict landscape, Elsthorpe Valley
14.31 Clayflows and regolith-bedrock wedge failures, Rata Creek area
14.32 Rotational-slide-earthflow, upper Puhokia Stream
14.33 Shallow rotational slide-earthflow, Elsthorpe Valley
14.34 Shallow rotational slide-earthflow, Elsthorpe Valley
14.35 Catchment inland from Te Onepoto involved in earthflow and debris-flow slide failure
14.36 Complex rotational slide-earthflow failure northern slope Whaitirinui Range
14.37 Earthflow on Makara Formation terrain inland from Ocean Beach
14.38 Debris-flow slide, coast north of Red Island
14.39 Debris-flow slide U-shape channel exposed inland from Te Onepoto
14.40
14.41 Earthflow on coastal slopes, south end Waimarama Beach
14.42(a,b) Eroding toe of earthflow, south end Waimarama Beach
14.43 Detail view of active basal shear surface, toe of earthflow, south end Waimarama Beach
14.44 Badly eroding coastal terrain east side Whaitirinui Range
14.45 Debris-flow slide, east side Whaitirinui Range
14.46 Junction of two debris-flow slides, east side Whaitirinui Range
14.47 Successive debris-flow slide colluvial tongue deposits, Haurau
14.48 Exposed debris-flow slide channel, west of Te Onepoto
14.49 Mudflow path, tributary of Te Apiti Stream
14.50 Upper section of mudflow, western tributary Te Apiti Stream
14.51 Middle sector of mudflow, west tributary Te Apiti Stream
14.52 Close-up view of mudflow colluvium, clays above liquid limit

15.1 25 hectare counting grid 1:15,000 scale
15.2 Rating arrangement convention; bedrock failure parameters
15.3 Example of rating arrangement convention applied
15.4 Index map Upper Ponui and Makara Stream catchments
15.5(a,b) Ponui and Makara Stream catchment fracture control on gully alignment
15.6 Stereonet plot of poles to dominant conjugate fracture planes and intersection lines controlling gully formation in Upper Ponui and Makara Stream catchments
15.7 Gullying, headwaters of Makara Stream
15.8 Cross-sectional geometry of block glide failure
15.9 Recent block glide, Upper Makara Stream
15.10 Recent block glide, Upper Ponui Stream
15.11 Recent block glide, Upper Ponui Stream
15.12
15.13 Toe of block glide, Upper Makara Stream
15.14 Basal shear plane of block glide Upper Ponui Stream
15.15 Old block glide with later colluvial failure Upper Ponui Stream
15.16 Old block glide, Upper Ponui Stream
15.17 Oblique view of Upper Makara and Ponui Stream catchment
15.18 Large retrogressive block glide, Upper Makara Stream catchment
15.19 Toe area of large failure shown Fig. 15.18
15.20
15.21
15.22 Vertical aerial photograph of the Upper Makara Stream catchment, control area 1 shown
15.23 Vertical aerial photograph of the Upper Ponui Stream catchment, control area 2 shown
15.24 View of large bedding plane slide failure eastern slope Ponui Stream
15.25 Toe of large failure illustrated Fig. 15.24
15.26 Reactivated wedge-slide affecting Kairakau Road
15.27 Vertical aerial photograph of lower Ponui Stream catchment control area 3 shown
15.28 Western Makara catchment view of northern slopes
LIST OF TABLES

1.1 Stratigraphic Reference ... 4
1.2 Unpublished Open-file Petroleum Reports 9
1.3 Summary of Aerial Photographs 12

1.1 Member Subdivision, Lithologic Description and Age Correlation of Waimarama Formation .. 31
1.2 Cretaceous Series and Stage Subdivision based on Macrofossil Species .. 41
1.3 Macrofaunal List ... 42
1.4 Whole Rock Chemical Analyses 62
1.5 Basal Interplanar Distance Variation of Montmorillonite Clays Analyzed .. 94

3.1 CaCO₃ Content of Typical Samples Raratu, Weber and Puhokio Formations .. 108

5.1 Member Subdivision and Lithofacies Description of Te Aute Formation .. 177
5.2 Macrofaunal List ... 188
5.3 Stage and Substage Subdivision based on Phialopecten lineage .. 189

10.1 Upper Cretaceous, Tertiary and Quaternary Sedimentary Phases .. 327

12.1 Mass Movement Classification (after Northey et al. 1974) 385
12.2 Factors Contributing to Slope Instability in Soils and Rocks (from Northey et al. 1974) .. 391
12.3 Unified Soil Classification System (from Earth Manual) 392
12.4 Engineering Use Chart (from Attewell and Farmer 1976) 393
12.5 Atterberg Limits: field tests .. 395
12.6 Plasticity ...
12.7 Soil Strength ...
12.8 Soil Density ..

15.1 Slope Failure Susceptibility Parameters and Ratings: Soil Failures .. 518
15.2 Slope Failure Susceptibility Parameters and Ratings: Bedrock Failures .. 518
15.3 Soil Slope Failure Susceptibility Rating Scale 519
15.4 Bedrock ...
15.5 Shear-vane test results at toe of the Waimarama earthflow .. 567
15.6 Shear-vane test results of basal shear surfaces, Upper Ponui and Makara Stream catchments .. 581

LIST OF MAPS

Map 1, Geology, 1:15,000
Attachment 1B, Cross-sections, 1:15,000
Map 2, Geology, 1:25,000
Attachment 2B, Cross-sections, 1:25,000
Map 3, Coastal Stratigraphy and Structure (Sheet 1), 1:5,000
Map 4, Coastal Stratigraphy and Structure (Sheet 2), 1:5,000
Attachment 5A, Structural Map Te Puku-Te Ahua Section
Attachment 5B, Cross-section Te Puku-Kuku Rocks
Map 6, Coastal Landslide Map, 1:5,000
Map 7, 1:15,000: Upper Ponui and Makara Stream catchments; single factor and slope failure susceptibility maps
Map 8, 1:15,000: Upper Puhokio Stream catchment;
Map 9, Western Makara Stream catchment;
Map 10, 1:63,360: Generalised slope failure susceptibility map.
ACKNOWLEDGEMENTS

Financial support for this research was received from two sources. I would like to thank The National Water and Soil Conservation Organisation and Soil Conservation and River Control Council, Water and Soil Division of Ministry of Works and Development, for providing a contract study bursary held from 1976 to 1978. Under this contract financial support was also received to provide field assistance and equipment, and other materials. A Post-Graduate Scholarship from the University Grants Committee was held from 1976 to 1979.

In particular, I would like to thank my supervisors, Mr Warwick Prebble and Dr Peter Ballance for their continued encouragement and guidance in seeing this project through to completion. I am grateful to Dr Bernhard Spörli for his enthusiastic assistance in unravelling the complex structure encountered. Also Dr Huko Kobe for elucidating the geology of Karamea (Red Island). The company of the foregoing staff in the field during inclement weather and the odd fine day was invaluable in gaining an insight into the geology of the area.

I wish to thank: Assoc-Prof. Jack Grant-Mackie for assisting with macro-fossil identification; Dr Graham Gibson who dated numerous micro-fossil samples; Assoc-Prof. Philippa Black for help with X-ray analyses; Professor Terry Sameshima for assisting with the bentonite analyses and Mr Tom Wilson for completing a number of whole rock analyses.

Discussions were held with the following NZ Geological Survey staff: Dr I Speden, Dr R Katz, Messrs T Grant-Taylor and P Moore. Dr G van der Lingen, Chief Sedimentologist, Christchurch, combined with the author in presenting data collected independently in Southern Hawkes Bay, at the 1979 ANZAAS Congress, Auckland. The paper prepared for this Congress is appended.

I am appreciative of the assistance given by staff officers of the Water and Soil Division, MWD. In particular, Messrs Graham Howard and Peter Walsh for arranging the preparation of base map transparencies. Valuable discussions were also held with Dr John Hawley and Messrs Peter Stephens and Noel Trustrum (Aokautere Science Centre, Palmerston North). A flight over part of the study area in conjunction with staff of the Catchment Condition Survey team, Aokautere, provided a number of the oblique aerial photos used.

Many of the technical staff of the Geology Department (Auckland University) provided assistance and advice. I wish to thank Roy Harris (photography and draughting), Anne Paton (Library), Barry Curham (grinding room), Dave Pryor (Sed. Lab/Pal. Store) and Nan Howett (petrology store, field equipment).

The technical services of Mr A Downing (for producing the majority of black and white photographs) and Ms L Leonard (for last-minute draughting) of the Geology Department (Canterbury University) are very much appreciated.

Special thanks to Messrs Noel Trustrum and Peter Stephens (Aokautere Science Centre) for assistance with colour photography.

For assistance and company in the field I thank Mark Barsdell, Chris Webb, Grant Cardno and Jock Mackintosh. I too, acknowledge the company and hours of discussion with Mark Barsdell, especially during the late evening and weekend hours in the Department.

xx
This project, being field-oriented, relied heavily on the permission for access to property, assistance and information. All this was freely given by the entire farming community and is gratefully acknowledged. In particular, I wish to thank: Garth and Anne Mackintosh ("Balvounie") for providing accommodation, hospitality, many meals and hours of non-geologic chatter; David Mackintosh for providing the opportunity to own a vehicle of remarkable tolerance and reliability; John and Betty McNeill ("Inverary") for accommodation at Waimarama and Maraetotara; Peter and Betty Sherning ("Waimoana") for accommodation; John Aitken ("Wairama") for accommodation and assistance; Jan Graham for accommodation at Waimarama Beach, assistance and the opportunity to take a flight over the coastal district; Frances and Peter Cronin at the Waimarama Store and Camping Ground for assistance, advice and meals; Messrs P Williams ("Waipoapoa Station"), C M and T M Gilray ("Karamea") and D Belcher ("Haumoana") for advice and assistance.

Staff at NZ Aerial Mapping, in particular Messrs Peach and Pearson for assistance with vertical aerial photo coverage, and the preparation of the coast half-tone transparencies used for base maps.

To all those friends, too numerous to mention, who helped in some way, please accept my thanks.

A special thanks to Margaret for typing the manuscript, for her patient help and advice, for proof-reading and colouring maps.

En tenslotte wil ik mijn Moeder bedanken voor haar onvermoeibaar aanmoediging en steun over al deze jaren. (Thanks Mam!)