
ar
X

iv
:2

10
2.

13
37

0v
1

 [
cs

.D
B

]
 2

6
Fe

b
20

21

Fast Distributed Complex Join Processing

Hao Zhang∗, Miao Qiao†, Jeffrey Xu Yu∗, Hong Cheng∗

∗The Chinese University of Hong Kong

{hzhang, yu, hcheng}@se.cuhk.edu.hk
†The University of Auckland

{miao.qiao}@auckland.ac.nz

Abstract—Big data analytics often requires processing complex
join queries in parallel in distributed systems such as Hadoop,
Spark, Flink. The previous works consider that the main bottle-
neck of processing complex join queries is the communication cost
incurred by shuffling of intermediate results, and propose a way
to cut down such shuffling cost to zero by a one-round multi-
way join algorithm. The one-round multi-way join algorithm
is built on a one-round communication optimal algorithm for
data shuffling over servers and a worst-case optimal compu-
tation algorithm for sequential join evaluation on each server.
The previous works focus on optimizing the communication
bottleneck, while neglecting the fact that the query could be
computationally intensive. With the communication cost being
well optimized, the computation cost may become a bottleneck. To
reduce the computation bottleneck, a way is to trade computation
with communication via pre-computing some partial results,
but it can make communication or pre-computing becomes the
bottleneck. With one of the three costs being considered at a
time, the combined lowest cost may not be achieved. Thus the
question left unanswered is how much should be traded such
that the combined cost of computation, communication, and pre-
computing is minimal.

In this work, we study the problem of co-optimize communi-
cation, pre-computing, and computation cost in one-round multi-
way join evaluation. We propose a multi-way join approach
ADJ (Adaptive Distributed Join) for complex join which finds
one optimal query plan to process by exploring cost-effective
partial results in terms of the trade-off between pre-computing,
communication, and computation.We analyze the input relations
for a given join query and find one optimal over a set of query
plans in some specific form, with high-quality cost estimation
by sampling. Our extensive experiments confirm that ADJ

outperforms the existing multi-way join methods by up to orders
of magnitude.

I. INTRODUCTION

Join query processing is one of the important issues in

query processing, and join queries over relations based on

the equality on the common attributes are commonly used

in many real applications. Large-scale data analytics engines

such as Spark [1], Flink [2], Hive [3], F1 [4], Myria [5],

use massive parallelism in order to enable efficient query

processing on large data sets. Recently, data analytics engines

are used beyond traditional OLAP queries that usually consist

of star-joins with aggregates. Such new kind of workloads [6]

contain complex FK-FK joins, where multiple large tables are

joined, or where the query graph has cycles, and has seen many

applications, such as querying knowledge graph [7], finding

triangle and other complex patterns in graphs [8], analyzing

local topology around each node in graphs, which serves

as powerful discriminative features for statistical relational

learning tasks for link prediction, relational classification, and

recommendation [9], [10].

However, data analytics engines process complex joins by

decomposing them into smaller join queries, and combining

intermediate relations in multiple rounds, which suffers from

expensive shuffling of intermediate results. To address such

inefficiency, one-round multi-way join HCubeJ is proposed

[11], which requires no shuffling after the initial data ex-

change. The one-round multi-way join processes a join query

in two stages, namely, data shuffling and join processing. In

the data shuffling stage, HCubeJ shuffles the input relations

by an optimal one-round data shuffling method HCube [12],

[13]. In the join processing stage, HCubeJ uses an in-memory

sequential algorithm Leapfrog [14] at each server to join

the data received. It can be seen in Fig. 1(a) that the one-

round multi-way join outperforms the multi-round binary join

significantly, regarding the number of shuffled tuples, for

complex join queries.

However, the one-round multi-way join algorithm has a

deficiency, since it puts communication cost at a higher

priority to reduce than the computation cost by considering

the communication cost as the dominating factor, which is

not always true. The main reason is that the computation of

complex multi-way join can be inherently difficult. We tested

the communication-first strategy of HCubeJ in our prototype

system using optimized HCube for data shuffling and Leapfrog

for join processing. As shown in the first two bars for each

of the two queries (Q5 and Q6 in Sec.VII-A) in Fig. 1(b), the

communication cost can be small, but the computational cost

can be high. Overall, the performance may not be the best as

expected.

In this paper, we study how to reduce the total cost by

introducing pre-computed partial results with communication,

computation, and pre-computing cost being considered at

the same time. As shown in Fig. 1(b), by our approach,

we can reduce the computation cost significantly with some

additional overhead for communication and pre-computing

cost. This problem is challenging since we may cause one

cost larger when we reduce the other cost, and the search

space of potential pre-computed partial results is huge. The

main contributions are given as follows.

• We identify the performance issue of processing Q using

HCubeJ due to the unbalance between computation and

communication cost, and propose a simple mechanism

http://arxiv.org/abs/2102.13370v1

(a) One-Round Vs Multi-Round (b) Comm-First Vs Co-Opt

Fig. 1: Comparisons using two join queries, Q5 and Q6

(refer to Sec.VII-A), over the LJ dataset (refer to Table I).

Here, “Comm” denotes communication cost, “Comp” denotes

computation cost, “Pre+Comm” denotes pre-computing cost

plus computation cost.

to trade computation cost with communication and pre-

computing cost such that the total cost is reduced for a

multi-way join query Q.

• We study how to effectively find cost-effective pre-

computed partial results from overwhelmingly large

search space, and join them and the rest of relations in

an optimal order. To find such an optimal query plan, we

reduce the search space of query plans to filter ineffective

query plans early, and propose a heuristic approach to

explore cost-effective pre-computed partial results and

join orders.

• We propose a simple yet effective distributed sampling

process with a theoretic guarantee to provide accurate

cardinality estimation for query optimization.

• We implement a prototype system ADJ and propose

several implementation optimizations that significantly

improve the performance of HCube, reduce the stor-

age cost, and eliminate some redundant computation of

HCubeJ.

• We conducted extensive performance studies, and confirm

that our approach can be orders of magnitude faster than

the previous approaches in terms of the total cost.

The paper is organized as follows. We give the preliminary

of this work, and discuss HCube, Leapfrog algorithms, and

the main issues we study in this work in Section II. We

outline our approach in Section III, and discuss how to perform

cardinality estimation via distributed sampling in Section IV.

In Sec V, we discuss the implementation optimization of our

prototype system. Section VI, we discuss the related work,

and in Section VII we report our experimental studies. We

conclude our work in Section VIII.

II. PRELIMINARIES

A database D is a collection of relations. Here, a rela-

tion R with schema {A1, A2, · · · , An} is a set of tuples,

(a1, a2, · · · , an), where ai is a value taken from the domain

of an attribute Ai, denoted as dom(Ai), for 1 ≤ i ≤ n.Below,

we use attrs(R) to denote the schema (the set of attributes) of

R. A relation R with the schema of attrs(R) is a subset of the

Cartesian product of dom(A1) × dom(A2) × · · · × dom(An)

Hypergraph

of Query Q

a b

c
d e

R1

R2

R3

R4

R5

R1 R2 R3 R4 R5

D (Database)

cba

1

1

2

2

2

2

2

1

1

1

1

4

da

1

2

3

1

1

1

1

4

dc

1

2

1

2

1

1

2

2

eb

3

4

5

4

2

2

2

1

ec

4

5

3

4

1

1

2

2

Fig. 2: The hypergraph of query Q (Eq (2)), and an example

of database D

21 2

cba da

1

2

3

1

1

1

1

4

dc

1

2

2

2

eb

3

4

5

2

2

2

ec

3

4

2

2

R1 T1 T2 T3

T4

T5

1

a

21

ba

21 2

cba

dcba

1

2

2

2

2

2

1

1

edcba

3

4

3

4

1

1

2

2

2

2

2

2

2

2

2

2

1

1

1

1

(a) (b)

R2 R4 R5

R3

Fig. 3: (a) The tuples shuffled to server S0 with hypercube

of coordinate (0, 0, 0, 0, 0). (b) Leapfrog at the server S0 with

hypercube of coordinate (0, 0, 0, 0, 0)

for Ai ∈ attrs(R). We focus on natural join queries (or simply

join queries). A natural join query, Q, is defined over a set of

m relations, R = {R1, R2, · · · , Rm}, for m ≥ 2, in the form

of

Q(attrs(Q)) :- R1(attrs(R1)) ⊲⊳ · · · ⊲⊳ Rm(attrs(Rm)). (1)

Here, the schema of Q, denoted as attrs(Q), is the union

of the schemas in R such as attrs(Q) = ∪Ri∈Rattrs(Ri). For

simplicity, we assume there is an arbitrary order among the

attributes of Q, denoted as ord, and Ai denotes the i-th attribute

in ord. We also use R(Q) to denote the set of relations in Q. A

resulting tuple of Q is a tuple, τ , if there exists a non-empty

tuple ti in Ri, for every Ri ∈ R, such that the projection

of τ on attrs(Ri) is equal to ti (i.e., Πattrs(Ri)τ = ti). The

result of a join Q is a relation that contains all such resulting

tuples. A join query Q over m relations R can be represented

as a hypergraph H = (V,E), where V and E are the set of

hypernodes and the set of hyperedges, respectively, for V to

represent the attributes of attrs(Q) and for E to represent the

m schemas. As an example, consider the following join query

Q over five relations,

Q(a, b, c, d, e) :- R1(a, b, c) ⊲⊳ R2(a, d) ⊲⊳ R3(c, d) ⊲⊳

R4(b, e) ⊲⊳ R5(c, e)
(2)

Its hypergraph representation H is shown in Fig. 2 together

with the 5 relations. Here, V = attrs(Q) = {a, b, c, d, e}, and

E = {e1, e2, e3, e4, e5} for e1 = attrs(R1), e2 = attrs(R2),
e3 = attrs(R3), e4 = attrs(R4), and e5 = attrs(R5). In the

following, we also use V (H) and E(H) to denote the set of

hypernodes and the set of hyperedges for a hypergraph H .

A. Leapfrog and HCube Join Algorithms

We discuss HCubeJ [11] to compute join queries in a

distributed system over a cluster of servers, where the database

D is maintained at the servers disjointly. HCubeJ is built on

two algorithms, namely, HCube [12], [13] and Leapfrog [14],

where HCube is a one-round communication optimal shuffling

method that shuffles data to every server in the cluster,

and Leapfrog is a fast in-memory sequential multi-way join

algorithm to process the join query at each server over the

data shuffled to it. For a join query Q over m relations,

R = {R1, R2, · · · , Rm}, HCube is proven in theory to be

the optimal method in worst-case sense for transmitting the

tuples to servers such that each server can evaluate the query

on its own without further data exchange. Leapfrog [14] is

proven in theory to be the optimal method in worst-case sense

to evaluate a join query Q, while binary join could be sub-

optimal. Also, Leapfrog is an iterator-based algorithm, which

leaves little footprint in memory when processing the query.

LeapFrog Join [14] is one of the state-of-the-art sequential

join algorithms for a join query Q over m relations, R =
{R1, R2, · · · , Rm} (Eq. (1)). Let attrs(Q) be the schema of Q
for n = |attrs(Q)|. Leapfrog is designed to evaluate Q based

on the attribute order ord using iterators. Let ti be an i-tuple

that has i attributes of A1 to Ai. The Leapfrog algorithm is to

find the ti+1 tuples by joining the tuple ti with an additional

Ai+1 value recursively until it finds all n attribute values for

Q.

The Leapfrog algorithm is illustrated in Algorithm 1 for

a given-input i-tuple ti. The initial call of Leapfrog is with

an empty input tuple t0. Below, we explain the algorithm

assuming that the input is a non-empty i-tuple, ti, for i > 1.

Let Ri+1 be the set of relations R in Q if R contains the

(i+1)-th attribute Ai+1 in order such as Ri+1 = {R | Ai+1 ∈
R and R is a relation appearing in Q} (line 4). To find all

Ai+1 values that can join the input i-tuple ti, denoted as

val(ti → Ai+1), (line 5), it is done as follows. Here, for

simplicity and without loss of generality, we assume Ri+1 =
{R,R′}. First, for R, let As be all the attributes that appear in

both attrs(R) and attrs(ti), it projects the Ai+1 attribute value

from every tuple t ∈ R that can join with the i-tuple on all

the attributes As. Let Ti+1 be a relation containing all Ai+1

values found. Second, for R′, repeat the same, and let T ′
i+1

be a relation containing all Ai+1 values found. The result of

val(ti → Ai+1) is the intersection of Ti+1 and T ′
i+1. At line 6-

7, for every value, v, in val(ti → Ai+1), it calls Leapfrog

recursively with an (i+1)-tuple, ti+1 = ti‖v, by concatenating

ti and v. At line 1-2, If i = |attrs(Q)|, the tuple ti is emitted

through the iterator. It is important to note that the main cost

of Leapfrog is the cost of the intersections.

Example 1: Fig. 3(b) shows the steps of Leapfrog on the

server S0 with relations as shown in Fig. 3(a). The input for

the initial Leapfrog call is with an empty tuple t0. Assume the

order among attrs(Q) (e.g., ord is a ≺ b ≺ c ≺ d ≺ e).

First, Leapfrog will project the values for the first attribute a
by attempting to join with t0. At the server S0, both relations,

R1 and R2, have the attribute a. Since t0 is empty, it projects

{1} from R1 and projects {1, 4} from R2, the result of the

intersection is {1} as shown in the relation T 1, whose schema

is {a}, in Fig. 3(b).

Second, for the tuple t1 = (1) in T 1, it calls Leapfrog in

which the 2nd attribute b in order is considered. Note that

both relations, R1 and R4, have the attribute b. By joining

the tuples in R1 with t1 = (1), it projects the b attribute

value, {2}, with R1 since the corresponding tuple t ∈ R1 can

join with the input tuple t1 on the attribute a, and it projects

the b attribute values, {2}, with R4, since it does not have

the attribute a to join with t1. The intersection of b attribute

values from the two relations is {2}, as shown in the relation

T 2 on the schema (a, b) in Fig. 3(b). The new t2 to be used

in the next Leapfrog call becomes (1, 2) on the schema (a, b).
Fig. 3(b) shows the results for T 1 to T 5 by Leapfrog at

the server S0. Here, the join result for the hypercube assigned

is in T 5. It is worth noting that Leapfrog is implemented as

a series of iterator to avoid the recursive function call, and

every newly generated tuple ti+1 ∈ T i+1 is used immediately

to generate tuples ti+2 without being stored in memory.

HCube Shuffle [12], [13] is one of the state-of-the-art commu-

nication methods to evaluate a join query Q in a distributed

system by shuffling data in one-round. The main idea is to

divide the output of a join query Q into hypercubes with

coordinates, and assign one or more hypercubes to one of

the N∗ servers to process by shuffling the tuples, whose hash

values partially matches the coordinate of the given hypercube,

to the server. Given a vector p = (p1, p2, · · · , pn), where pi
is the number of partitions for the attribute Ai under ord, and

n = |attrs(Q)|, hypercubes of P = p1 × · · · × pn dimension

are constructed. It is worth mentioning that P can be larger

than N∗. Here, a hypercube is identified by an coordinate of

C = (c1, ..., cn) of [p1] × · · · × [pn], where [l] represents the

range from 0 to l − 1. Each machine can be assigned one or

more hypercubes. HCube distribute tuples of each relation to

machines via shuffling by hashing. For example, let’s assume

p = (1, 2, 2, 1, 1), which specifies four hypercubes with coor-

dinates (0, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 1, 1, 0, 0).
The first tuple, (1, 2,1), that appears at the top in the relation

R1(a, b, c), will be shuffling to the servers that are assigned

hypercube with coordinate (0, 0, 0, ⋆, ⋆), since ha(1) = 0,

hb(2) = 0, hc(2) = 0, where hAi
means the hash function

hi for attribute Ai, and ⋆ means any integer.

Example 2: Consider the join query Q (Eq. (2)) and the

5 relations in Fig. 2. Here, attrs(Q) = {a, b, c, d, e}. Let

P = N∗ = 4, assume the order among the attributes of

Q is ord = a ≺ b ≺ c ≺ d ≺ e. Suppose the vector

p = (p1, p2, p3, p4, p5) = (1, 2, 2, 1, 1) is obtained by the

optimizer, where pi denotes the number of partitions for the

attribute Ai. For example, p1 is for the attribute a because a
is the first attribute in ord. The hypercubes based on p are

[1] × [2] × [2] × [1] × [1]. Note that [l] represents a range

from 0 to l − 1. The 4 hypercubes to be assigned to the 4

servers, S0, S1, S2, and S3 are hypercubes with coordinate

C0 = (0, 0, 0, 0, 0), C1 = (0, 0, 1, 0, 0), C2(0, 1, 0, 0, 0), and

C3 = (0, 1, 1, 0, 0), The tuples in any of the 5 relations will be

sent to some hypercubes. Here, suppose that a hash function,

hi(·), is designed for the i-th attribute A, and the hash function

is of hi(x) = x%pi for this example. The first tuple, (1, 2, 1),

that appears at the top in the relation R1(a, b, c), will be sent

to the servers with hypercubes with coordinate (0, 0, 0, ⋆, ⋆),

Algorithm 1: Leapfrog(ti, Q)

Input: an i-tuple ti, the query Q
Output: tuples of Q emitted through iterators

1 if i = |attrs(Q)| then

2 Emit(ti);

3 else

4 let Ri+1 be the set of relations R in Q if R
contains the (i+1)-th attribute Ai+1 in order;

5 find all Ai+1 values that can join the input tuple ti,
denoted as val(ti → Ai+1);

6 for each attribute value v in val(ti → Ai+1) do

7 Leapfrog(ti‖v, Q);

 Q → Q2

a

d

R1

R2

R3 R4⋈R5

R1 R2 R3

D‘ (Database)

cba

1

1

2

2

2

2

2

1

1

1

1

4

da

1

2

3

1

1

1

1

4

dc

1

2

1

2

1

1

2

2

c

b

e

R4⋈R5

ecb

4

5

5

3

4

4

1

1

1

2

2

2

2

2

1

2

2

1

Fig. 4: A query candidate Qi which gets the same result of Q
in Fig. 2 by replacing R4 and R5 with R4 ⊲⊳ R5

since ha(1) = 0, hb(2) = 0, hc(2) = 0, where hAi
means

the hash function hi for attribute Ai, and ⋆ means any integer.

The tuples of the 5 relations that are sent to the server S0 are

shown in Fig. 3(a).

After HCube completes its shuffling by hashing, each server

can compute the data assigned to it using an in-memory multi-

way join algorithm independently, i.e., Leapfrog, and the union

of the results by the servers is the answer for the join query

Q.

Remark. Given the two main costs, namely, communication

cost (shuffling cost) and computation cost, HCubeJ is de-

signed to puts the communication cost at a higher priority

and minimizes the communication cost first by optimizing p.

There is no concern from HCube on the computation cost of

Leapfrog, which does its best to process the query Q over the

data shuffled to it.

However, the query Q could be inherently computationally

difficult, and the communication cost may not be the dominat-

ing factor in distributed join processing as shown in Fig. 1(b).

A key question we ask is which cost it should minimize.

There are several options, (1) the communication cost, (2) the

computation cost, and (3) the both. HCubeJ takes the first

option. However, It is highly likely that the minimization of

communication cost leads to high computation cost. In this

paper, we study how to optimize query Q by converting it into

an equivalent query Qi with potential higher communication

cost and lower computation cost with some additional pre-

computing cost such that the total cost is minimal.

III. ADAPTIVE MULTI-WAY JOIN

In this paper, we study how to minimize the total cost of

both communication cost and computation cost together with

some additional pre-computing cost. To achieve it, we need a

mechanism that allows us to balance the total costs with the

condition that the mechanism is cost-effective to achieve the

goal of minimization of the total costs.

We discuss our main idea using an example. Consider a join

query as Q = R1 ⊲⊳ R2 ⊲⊳ R3 ⊲⊳ R4 ⊲⊳ R5 (refer to Eq. (2)

for the details) over the database D shown in Fig. 2. Let it

be executed by HCubeJ, where HCube shuffles the database

D, and Leapfrog is deployed on each server to compute the

data shuffled to it. Assume, the system finds out that the time

spent on HCube for shuffling tuples is relatively small, while

a considerable amount of time is spent on Leapfrog on each

server. Furthermore, suppose the system finds out that the

computation cost of Leapfrog can be reduced for the same

query Q if R4 ⊲⊳ R5 has already been joined as one relation

instead. In other words, let Q2 = R1 ⊲⊳ R2 ⊲⊳ R3 ⊲⊳ R45

where R45 = R4 ⊲⊳ R5, instead of executing Q directly, it is

to pre-compute R45 first, then execute Q2. Though it would

be more expensive to do the pre-computing and shuffle the

tuples of R(Q2), which is shown in Fig. 4 (18 integers in

R45, 16 integers in R4 and R5 in total), it is still preferable

to execute the new query Q2 instead of Q to trade the

communication cost and pre-computing cost for computation

cost, which is the bottleneck. The message by this example is:

there is a way to reduce the computation cost at the expense

of increased communication cost with some pre-computing

cost, and it is possible to minimize the total cost by balancing

the computation cost, communication cost, and pre-computing

cost.

We give our problem statement below based on the idea

presented in the example. Consider a join query Q = R1 ⊲⊳
R2 ⊲⊳ · · · ⊲⊳ Rm (refer to Eq. (1)). Let Q be a collection

of query candidates such as Q = {Q1, Q2, · · ·Q|Q|}, where

Qi = R′
1 ⊲⊳ R′

2 ⊲⊳ · · · ⊲⊳ R′
l. Here, Qi is equivalent to Q

such that Qi and Q return same results, attrs(Qi) = attrs(Q),
l ≤ m, and a relation R′

j in R(Qi) is either a relation Rk

in R(Q) or a relation by joining some relations in R(Q).
Let a query plan be a pair (Qi, ord) that consists of a query

candidate Qi ∈ Q, which specifies how to pre-compute

relations, and an attribute order ord for attributes of Qi,

which specifies how to join the relations of new query Qi

using Leapfrog. The problem is to find a query plan such

that the total cost for communication, pre-computing, and

computation is minimized. This problem is challenging due to

the huge search space. For example, there exists 2m possible

combinations of joins to construct a single relation R′
j in total,

where m is the number of relations in Q, and n! possibilities

to order the attributes of Qi.

In this paper, we propose a prototype system (ADJ) that

explores cost-effective query plans from a reduced search

space. The workflow of our system (ADJ) is as follows. First,

we shrink the search space according to an optimal hypertree

T constructed for query Q such that search space of candidate

relations and attribute order ord are reduced based on T . Then,

we explore cost-effective query plans derived from the T by

considering the cost-effectiveness of trading the computation

d

R2

R3

a

c

a b

c

R1

b

c
e

R4

R5!b

!a

!c

Candidate Relations

R45 = R4 ⋈ R5

R23 = R2 ⋈ R3

R1!a

!b

!c

T

Fig. 5: Hypertree T and candidate relations

with communication and pre-computing of each pre-computed

candidate relations with the cost model. The cardinality esti-

mation is done via a distributed sampler. Given an optimal

query plan (Qi, ord), first, for each relation R′
j ∈ Qi that

needs to be joined, we pre-compute and store it. After every

R′
j is computed, we execute Qi = R′

1 ⊲⊳ R′
2 ⊲⊳ · · · ⊲⊳ R′

l. As

shown in Fig. 1(b), our approach can significantly reduce the

total cost.

Next, in Sec III-A, we explain how to reduce the search

space. Then in Sec III-B we show how to explore cost-

effective query plans based on hypertree T . How to estimate

the cardinality via distributed sampling is shown in Sec IV.

A. The Reduced Search Space

To reduce the search space for selecting an optimal query

plan from the collection of query candidates Qi ∈ Q and

possible attribute orders, we only consider a limited number

of joins such that a join (e.g., R4 ⊲⊳ R5) is as small as

possible and could lower join cost of Q. More specifically,

we find query candidates that are almost acyclic queries and

can be easily transformed from Q. Our intuition is that the

computation cost of evaluating an acyclic query is usually

significantly smaller than that of evaluating an equivalent

cyclic query. Thus an almost acyclic query Qi could be easier

to evaluate than Q.

This is done as follows. First, we represent a given join

query Q using its hypergraph representation, H = (V,E).
Second, for the hypergraph H , we find a hypertree represen-

tation, T = (V,E), where V (T) is a set of hypernodes and

E(T) is a set of hyperedges. Recall that, in the hypergraph H ,

a hypernode represents an attribute, and a hyperedge represents

a relation schema. The corresponding hypertree T represents

the same information. (1) A hypernode in V (T) represents a

subset of hyperedges (e.g., relation schemas) in E(H), and it

also corresponds to a potential pre-computed relation, which

can be computed by joining the corresponding relations of

the relation schemas it contains. (2) Hyperedges E(T) of T
is constructed such that the hypernodes in T that contains a

common attribute A, must be connected in the hypertree T .

There are many possible hypertrees for a given hypergraph,

we use the one whose maximal size of the pre-computed

relation of each hypernode is minimal. This requirement

ensures that for any subset of hypernodes V ′(T) ⊆ V (T)
to be pre-computed, the resulting relations do not incur too

much pre-computing and communication overhead in later join

query Qi. We find such a hypertree T using GHD (Generalized

HyperTree Decomposition) [15]. To bound the maximum size

of the pre-computed relation of each hypernode in the worst-

case sense, in theory, we can select the one with minimal fhw

(fractional hypertree width) [16]. Such a hypertree T found

by GHD satisfies that maxv∈V (T) |Rmax|
fhw

is the lowest

among all hypertrees, where |Rmax| = maxR∈R(Q) |R|. In

other words, the size of every pre-computed relation of each

hypernode is upper bounded by |Rmax|
fhw

for the chosen T
and it is the lowest one among all possible T .

Example 3: Consider the join query Q = R1(a, b, c) ⊲⊳
R2(a, d) ⊲⊳ R3(c, d) ⊲⊳ R4(b, e) ⊲⊳ R5(c, e) (Eq. (2)). Its

hypergraph is shown in Fig. 2, and its hypertree T is shown

the leftmost in Fig. 5. For the hypertree T , its hypernodes

are va, vb, vc, where va, vb, and vc, represent R1(a, b, c),
R2(a, d) ⊲⊳ R3(c, d), and R4(b, e) ⊲⊳ R5(c, e), respectively.

The hyperedges {(va, vb), (vb, vc)} ensure 1) T is a hypertree

2) For any attribute A ∈ {a, b, c, d, e}, e.g., a, the hypernodes

that contains it, e.g., va, vb, are connected.

As shown in Example 3, the hypertree T found from the

hypergraph representation for a given join query, Q = R1 ⊲⊳
R2 ⊲⊳ · · · ⊲⊳ Rm, has two implications regarding the reduced

search space to find the optimal Qi = R′
1 ⊲⊳ R′

2 ⊲⊳ · · · ⊲⊳ R′
l,

namely, the number of joins and the attribute order.

Reducing Numbers of Candidate Relations. Instead of

finding any possible joins to replace a single relation R′
j in

Qi, we only consider the joins represented as hypernodes

in the hypertree T . By pre-computing such joins, query Qi

is almost acyclic. Consider the hypertree, T , as shown the

leftmost in Fig. 5 for Q = R1 ⊲⊳ R2 ⊲⊳ R3 ⊲⊳ R4 ⊲⊳ R5. The

hypertree T has three hypernodes that represent R1(a, b, c),
R2(a, d) ⊲⊳ R3(c, d), and R4(b, e) ⊲⊳ R5(c, e), respectively.

Here, R1(a, b, c) is a relation appearing in Q, and there is

no need to join. For the other two hypernodes, there are only

4 choices, namely, not to pre-compute joins, to pre-compute

the join of R2(a, d) ⊲⊳ R3(c, d), to pre-compute the join

of R4(b, e) ⊲⊳ R5(c, e), to pre-compute both joins. In other

words, by the hypertree, T , for this example, we only need to

consider 4 possible query candidates, which decides whether

R23 and R45 should be pre-computed. The search space of

query candidates is significantly reduced to 2|V (T)|.

Reducing Choice of Attribute Orders. Leapfrog needs

to determine the optimal attribute order to expand from i-
tuple to (i+1)-tuple. For a query Q with n attributes for

n = |attrs(Q)|, there are n! possible attribute orders to

consider for any query Qi in Q, which incurs high selection

cost. With the hypertree T , it can reduce the search space

to determine an attribute order following a traversal order

(≺) of the hypernodes of the hypertree, T . Consider any

hypernodes, u and v, in T , where u appears before v (e.g,

u ≺ v) by the traversal order. First, an attribute that appears

in u will appear before any attribute in v that does not appear

in u. Second, the attributes in a hypernode v can vary if

they do not appear in u, and can be determined via [11].For

hypertree T shown in the leftmost of Fig. 5, let’s assume

the traversal order among the hypernodes are va ≺ vb ≺ vc.

A valid attribute order is a ≺ b ≺ c ≺ d ≺ e, and an

invalid attribute order is a ≺ b ≺ e ≺ d ≺ c. The rationale

behind such reduction is that the attributes inside a hypernode

are tightly constraint by each other, while attributes between

two hypernodes are loosely constraint, thus when following a

traversal order, the attributes of A1, ..., An−1 are more likely to

be tightly constraint, which results in less intermediate tuples

t1, ..., tn−1 of T 1, ..., T n−1 respectively during Leapfrog. An

experimental study in Sec. VII confirms such intuition. By

adopting such order, the search space of attribute order is

reduced from O(n!) to O(|V (T)|!), where |V (T)| < n.

B. Finding The Plan

In this section, we discuss how to find a good plan from

the reduced search space.

The Optimizer. Let n∗ = |V (T)|, a naive approach finds

the optimal plan by considering every combination of query

candidates that form from candidate relations and every traver-

sal orders, which are O(2n
∗

× n∗!) plans in total. It is worth

mentioning that calculating the cost for each plan could be

costly as well. Thus finding plans by such a naive approach

is not feasible.

We propose an approach to find good plans by exploring

effective candidate relations in terms of trading the compu-

tation with communication. Recall that, pre-computing candi-

date relations could reduce the computation cost but increase

the communication cost, and bring additional pre-computing

cost. By finding the candidate relations that have a large

positive utility in terms of reducing computation cost, we can

effectively trade the computation cost with communication

cost.

Let C be the set of candidate relations to pre-compute, O be

the traversal orders, costM (C), costC(C), and costiE(C,O)
be the cost of pre-computing cost, communication cost, and

the computation cost of steps that extends to attributes of i-th
traversed nodes in Leapfrog. It is worth noting that in complex

join, the last few steps of Leapfrog usually dominate the entire

computation cost due to a large number of partial bindings to

extend [11], and reducing such cost by pre-computing Rv usu-

ally has maximum benefits in terms of reducing computation

cost. An example is also shown in Fig. 6. Assuming we have

an empty C and empty O. For each candidate relations Rv,

where v ∈ V (T), we try to explore its maximum utility by

setting last traversed node of O to v. Then we compare the

cost of pre-computing Rv and not pre-computing Rv, which

are costM (Rv) + costC(C ∪ Rv) + costn∗E (C ∪ Rv, O) and

costC(C)+costn∗E (C,O) respectively, with the cost of current

optimal candidate relation Rv∗ in terms of cost. We only

consider computation cost last steps of Leapfrog, as it usually

dominates the entire computation cost. After that, we can

proceed to the next round of selecting Ru from the remaining

candidate relations in a similar fashion and determining which

node u the (n− 1)-th traversed node and whether Ru should

be pre-computed.

The detailed procedure is described in Alg. 2. Here, in lines

3-14, we gradually determine all candidate relations and the

traversal order in reverse order. In lines 5-13, we find the

next candidate relations. The if condition in line 6 is used

to ensure that only O that could be extended to valid traversal

Algorithm 2: Optimizer(Q, D)

Input: Query Q
Output: The optimal query plan (Qi, ord)

1 find optimal hypertree T for Q
2 let C = ∅, O = ∅, V = V (T)
3 while V 6= ∅ do

4 C∗ = C, O∗ = O, cost = inf , v∗ = null, i = n∗

5 for v ∈ V do

6 if any two nodes in V \ v are connected then

7 O′ = O.add(v), C′ = C ∪Rv

8 cost′ = costC(C) + costiE(C,O
′)

9 cost′′ =
costM (Rv) + costC(C

′) + costiE(C
′, O′)

10 if cost′ < cost then

11 C∗ = C, O∗ = O′, cost = cost′,
v∗ = v

12 else if cost′′ < cost then

13 C∗ = C′, O∗ = O′, cost = cost′′,
v∗ = v

14 i = i− 1, V.remove(v∗), C = C∗, O = O∗

15 convert C,O.reverse() to Qi, ord
16 return (Qi, ord);

 0

 0.2
 0.4

 0.6
 0.8

 1

WB AS WT LJ EN OK

% of total

(n)th
(n-1)th

rest

(a) Q5

 0

 0.2
 0.4

 0.6
 0.8

 1

WB AS WT LJ EN OK

% of total

(n)th
(n-1)th

rest

(b) Q6

Fig. 6: Percentages of intermediate tuples to extends during

traversing n− th node, (n− 1)− th node, and the rest of the

node using two join queries, Q5 and Q6 (same as Fig. 1).

order, which is described in the last section, is considered.

In lines 7-13, we compare the cost of pre-computing Rv

and not pre-computing Rv with the cost of current optimal

candidate relation Rv∗ . Notice that, in i-th iteration, we only

need to compute the costiE(C
′, O′), as the computation cost

of costi
′

E(C
′, O′) is the same for all candidates relations for

i′ > i.

Lemma 1: Cost of Alg. 2 is O(12 (2n
∗)(2n∗−1)L), and L is

a large constant factor that is related to the cost of estimating

the costM , costC , and costE .

Computing the Cost. Next, we discuss how to compute

pre-computing cost costM , communication cost costC , and

computation cost of i− th step in Leapfrog costE . We focus

on computing costC and costE , as costM is just a combination

of costM and costE .

costC(C) measures the communication cost of shuffling

relations of Rv ∈ C and remaining relations of u ∈ V (T)
that are not pre-computed Ru in terms of seconds needed to

transmit them across servers. Let us denote such collection of

relations by RC . Recall that HCube has a parameter p, which

determines the numbers of partitions on attribute A ∈ attrs(Q)
and is related to how tuples are shuffled to each servers.

Given a p, for each relation R ∈ RC , each tuple t ∈ R
will be sent to dup(R, p) =

∏

A∈attrs(Q)\attrs(R) pA servers

following the rules of HCube, where pA denotes numbers of

partitions on attribute A. And, we can represent costC(C)

as

∑
R∈RC

|R|×dup(R,p)

α
, where α is the number of tuples

transmitted per seconds. Here, p is a parameter of HCube

and it needs to be optimized to minimize costC(C) under

the constraints 1) numbers of partition for each attribute

should ≥ 1; 2) on average, the total amount of data a server

received should be less than memory size M of the server,

which translates to M −
∑

R∈Qi
|R| × frac(R, p) ≥ 0. Here,

frac(R, p) denotes the average percentage of R will be sent

to a server, which is 1∏
A∈attrs(R) pA

. The optimization program

is as follows:

minimize costC(C)
s.t. p − 1 ≥ 0

M −
∑

R∈Qi
size(R)× frac(R, p) ≥ 0

(3)

By solving above optimization program, we can obtain

costC(C) =
∑

R∈RC
|R| × dup(R, p).

costiE(C,O) measures the computation cost of steps that

extends attributes of i-th traversed nodes in Leapfrog. Recall

that Leapfrog gradually extends i-tuple ti ∈ T i to (i + 1)-th
tuples ti+1, (i + 2)-th tuples, ..., n-th tuples. As single node

v ∈ V (T) might contains several attributes, and extending one

node v might corresponds to extending several attributes, for

simplicity, we use T vi to denote the tuples of partial binding

of attributes are from v1, v2, ..., vi, where vi is the i-th

traversed node. Thus, we can represent the cost of extending

attributes of i-th traversed nodes in Leapfrog, costiE(C,O),

as
|Tvi−1 |
βi×N∗ , where |T vi−1 | is the numbers of partial bindings

whose attributes are from v1, ..., vi−1, βi is numbers of partial

bindings extended per seconds per server, and N∗ is the

number of servers. Notice that βi can be significantly higher

if vi is pre-computed.

costM measures the pre-computing cost of Rv. Let λ(v)
be the relations of a node v in V (T), costM consists of the

communication cost of shuffling λ(v) and computation cost

of ⊲⊳ λ(v), which can be computed using above methods for

computing costC(C) and costiE(C,O).
In the above calculation, α can be regarded as a constant

that measures the communication performance of the cluster.

More specifically, we can measure it by randomly generating

tuples of size k, which is to be shuffled to random servers

in the cluster, and recording the time t to shuffling k tuples

to their destination, where α = k
t
. β can be estimated by

sampling some partial bindings, extending them, and taking

the average of their extending time. More specifically, if vi is

pre-computed, the main cost of extending a partial binding is

querying the trie for candidate values, thus βi is a constant that

can be pre-measured as k
t

by recording the time t to perform k

query on a trie of size |Rvi |. It is worth noting that we can pre-

measure βi on trie of various sizes. If vi is not pre-computed,

we set βi by reusing statistics gathered during sampling, which

is to be explained in the next section. More specifically, let

the total numbers of extension performed during sampling be

k and aggregated extension time be t, we set βi = k
t
.

IV. ESTIMATING CARDINALITY VIA DISTRIBUTED

SAMPLING

In this section, we discuss how we perform cardinality esti-

mation via distributed sampling and why we choose sampling-

based approaches to estimate cardinality.

Why Sampling. An accurate cardinality estimation is crucial

for the optimizer to choose a good query plan [17]. Currently,

there are two styles to do cardinality estimation: 1) sketch-

based approaches 2) sampling-based approaches.

Theoretical [18] as well as empirical [17] work has shown

that existing sketches-based approaches, which utilize fixed-

size, per-attribute summary statistics (histograms) with strong

assumptions (uniformity, independence, inclusion, ad hoc con-

stants) to estimate cardinalities, often return estimations with

large errors, especially on complex joins with more than 2 re-

lations. Such error has been shown to lead to sub-optimal plans

that are up to 102 slower than optimal plans in empirical study

work [17]. For sampling-based approaches, promising result is

shown in [19] that sampling-based approaches could produce

estimations that are orders of magnitude more accurate than

sketch-based approaches in a reasonable time by performing

a sequence of index join with samples. In summary, sketch-

based approaches often incur less overhead than sampling-

based approaches when performing estimations, but sampling-

based approaches usually return estimations with much fewer

errors.

As our work targets complex join, which usually is long-

running tasks and the additional cost brought by sampling

is negligible compared to its benefits in reducing queries’

running time, we choose to estimate cardinality via sampling.

Estimating Cardinality Via Sampling. Given a query Q,

whose result is T , we want to estimate |T |. Let TA=a be result

tuples in T whose value on attribute A is a, we can express

T as follows.

|T | =
∑

a∈val(A)

|TA=a| = |val(A)| × |TA=a| (4)

where val(A) is the collection of values of A in T , and

|TA=a| =
∑

a∈val(A) |TA=a|

|val(A)| . Suppose |val(A)| is known, then

we need to estimate |TA=a| to obtain an estimation of |T |.
To estimate |TA=a|, let a be a randomly selected value from

val(A). Let X be the random variable that is |TA=a|, and µ
= E[X] = |TA=a|.

Suppose we wish to estimate µ. We simply choose k

independent values a1, a2, ..., ak from val(A) with associated

random variables X1, X2, ..., Xk. Define X̄ = 1
k

∑

i<k Xi as

our estimate. The generalized Chernoff-Hoeffding bounds [20]

give gurantees on X̄ , as follows.

Lemma 2: Let X1, X2, ..., Xk be independent random vari-

ables with Xi ∈ [0, b], where b is the maximum values Xi

can take. Define X̄ = 1
k

∑

i<k Xi. Let µ = E[X]. Then for

p ∈ [0, 1], we have

PR{
∣

∣X̄ − µ
∣

∣ ≥ pb} ≤ 2exp(−2kp2)

Hence, if we set k = ⌈−0.5p−2ln(2/δ)⌉, then PR{
∣

∣X̄ − µ
∣

∣ >
pb} < δ. In other words, for k samples, with confidence at least

1 − δ, the error rate, which measures the deviation of E[X̄]
in terms of b is at most p.

In practice, we can easily obtain val(A) by performing

intersections over relations of Q that contains A in their

schemas, which is
⋂

R∈Q∧A∈attrs(R)

ΠAR. We can obtain |TA=a|

for any a chosen from A by performing an Leapfrog starting

from A with attribute on A being fixed as a, which obtains

TA=a.

Distributed Sampling. A naive approach parallelize the sam-

pling process described above by utilizing HCube directly.

More specifically, it first shuffling the relations of Q into

servers using HCube such that each server can perform the

sampling on its own based on tuples on it, then on each server,

the sampling process described in the above paragraph is per-

formed. However, such naive approaches would shuffle many

unnecessary tuples during HCube, as only a small fraction of

val(A), and performing Leapfrog for them probably will not

involve all tuples of every relation in Q.

We can reduce such costs by reducing the database first

before all relations in it are shuffled by HCube. First, we find

all relations R in a database whose schema contains A, and

compute a projected relation for each of them ΠAR,R ∈ R.

Then, for all R ∈ R, we shuffle their ΠAR such that we can

compute the intersection of them and obtain val(A). Then,

from val(A), we randomly select some samples S′. Next, we

reduce the original database by performing semi-join between

S′ and R ∈ R to filter unpromising tuples. Finally, we shuffle

the reduced database instead of the original database, and

perform sampling on it.

V. IMPLEMENTATION

We implemented a prototype system in Spark, which is the

de-facto platform to perform large scale analytic tasks.

Optimizing HCube. Previously, HCube is implemented as a

sequence of map and reduce stage [12], where map stage

marks the destination coordinate for each tuple and reduce
stage shuffles each tuple to their corresponding servers. Such

implementation suffers from significant performance loss due

to overwhelming amount of tuples being shuffled. To reduce

the cost of HCube, the key is to reduce the cost of expensive

shuffling. A solution is to pull the tuples in blocks from remote

machines directly instead of shuffling tuples one by one, which

bypass shuffling process. The new HCube proceed in two

steps:

• Group all tuples from the same relation and with the same

hash values under the HCube’s hash function into a block

and tagged that block with that has values.

• For each server, it pulls the entire block of each relation

whose hash values “fits” its own coordinate in blocks

from remote machines.

We next use an example to better illustrate the idea.

Example 4: Let’s take query in Fig. 2 whose share p =
(1, 2, 2, 1, 1), which result in four servers with coordinate

(0, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 1, 1, 0, 0). For the

relation R3 with schema R3(c, d), its tuples will be split into

two blocks, where (1, 1), (1, 2) will be in block B(0, 0), and

(2, 1), 2, 2 will be in block B(1, 0) as their hash value for c, d
is 1, 0 and 0, 0 respectively. And, the servers with coordinate

(0, 0, 0, 0, 0), (0, 1, 0, 0, 0) will pull block B(0, 0) as their

coordinate on c and d is 0, 0. Similarly, servers with coordinate

(0, 0, 1, 0, 0), (0, 1, 1, 0, 0) will pull block B(1, 0).
A further benefit that this new HCube implementation has is

that it allows us to do some preprocessing works on a block

level. More specifically, we can reduce the cost of constructing

the trie of local database in each machine by pre-build the trie

for each block of every relation.

VI. RELATED WORK

Our work is related to previous works from three areas:

multi-way join on a single machine, distributed multi-way join,

and cardinality estimation.

Multi-Way Join on a Single Machine. Optimizing the com-

putation cost of a multi-way join has been studied for decades.

Traditional multi-way join [21] is based on relational algebra

(RA) — an RA expression of a multi-way join represents a

sequence of binary joins, i.e., sort-merge join. The recently

emerged AGM bound [22], [23] on the worst-case output

size of a multi-way join provides a standard to evaluate the

computation efficiency of a join algorithm. In the worst-case,

using traditional binary joins is suboptimal while worst-case

optimal join algorithms such as NPRR [24], Generic Join [25],

Leapfrog[14] are optimal. To improve the efficiency of worst-

case optimal join algorithm for general case rather than worst-

case, EmptyHeaded [26] combines binary join and worst-case

optimal join via tree decomposition [15], [16], and yannakakis

algorithm [27], which improves the computation efficiency at a

great cost of memory consumption. To overcome the memory

issue of the EmtpyHeaded, CacheTrieJoin [28] is proposed,

which incorporates multi-level cache into Leapfrog. However,

it is difficult to set the size of the cache for each level and the

total amount of the cache.

Distributed Multi-Way Join. Traditional multi-way join in

the distributed platform such as Spark [1], consists of a

sequence of distributed binary joins, such as distributed sort-

merge join. They suffer from high communication cost for

shuffling intermediate results when processing complex join

queries. Such heavy communication cost can be reduced by

one round multi-way join method HCube [12], [13], which

avoid shuffling of intermediate results. The combination of

HCube and Leapfrog forms the HCubeJ [11], which processes

the complex join queries effectively. However, when commu-

nication cost has been well optimized, the computation cost

becomes the new bottleneck. Also, simply combining HCube

Q1 Q2 Q3 Q4 Q5 Q6

Q7 Q8 Q10 Q11Q9

Fig. 7: Queries

Dataset WB AS WT LJ EN OK

|R| (×106) 13.2 22.1 50.9 69.4 183.9 234.4
Size (MB) 101.5 169.3 388.2 529.2 1370.0 1788.1

TABLE I: Datasets.

and optimized version of Leapfrog, such as CachedTrieJoin,

helps little, as it prioritizes the memory usage for HCube over

memory usage for CacheTrieJoin. Compared to previous work,

we trying to co-optimize pre-computing, communication, and

computation cost via introducing effective partial results.

Cardinality Estimation. The estimation of cardinality meth-

ods can be roughly classified into two classes: 1) sketches

based, which use statistics of the database to estimate the

cardinality of the query, see [17] as an entry, 2) sampling-

based, which estimates the cardinality by sampling over the

database according to query, see [29], [19] as an entry. It has

been shown that the estimation of the sketch-based method

could be orders of magnitude deviate from the ground truth

[19], [17] on complex join.

VII. EXPERIMENTS

A. Setup

Queries. We study complex join queries used in the previous

work [11], [28], [8]. The queries used are for subgraph queries

with nodes in the range of 3-5 nodes. The queries studied are

shown in Fig. 7. We report the experimental studies for the

representative queries from Q1 to Q6, which are not easy to

compute. We omit the results for Q7 to Q11, as they can be

computed fast, and the performance of these queries are very

similar among the approaches being tested.

Q1 :- R1(a, b) ⊲⊳ R2(b, c) ⊲⊳ R3(a, c)

Q2 :- R1(a, b) ⊲⊳ R2(b, c) ⊲⊳ R3(c, d) ⊲⊳ R4(d, a) ⊲⊳ R5(a, c)

⊲⊳ R6(b, d)

Q3 :- R1(a, b) ⊲⊳ R2(b, c) ⊲⊳ R3(c, d) ⊲⊳ R4(d, e) ⊲⊳ R5(e, a)

⊲⊳ R6(b, d) ⊲⊳ R7(b, e) ⊲⊳ R8(c, a) ⊲⊳ R9(c, e)

⊲⊳ R10(a, d)

Q4 :- R1(a, b) ⊲⊳ R2(b, c) ⊲⊳ R3(c, d) ⊲⊳ R4(d, e) ⊲⊳ R5(e, a)

⊲⊳ R6(b, e)

Q5 :- R1(a, b) ⊲⊳ R2(b, c) ⊲⊳ R3(c, d) ⊲⊳ R4(d, e) ⊲⊳ R5(e, a)

⊲⊳ R6(b, e) ⊲⊳ R7(b, d)

Q6 :- R1(a, b) ⊲⊳ R2(b, c) ⊲⊳ R3(c, d) ⊲⊳ R4(d, e) ⊲⊳ R5(e, a)

⊲⊳ R6(b, e) ⊲⊳ R7(b, d) ⊲⊳ R8(c, e)

Datasets. Following [11], [28], we construct the database

using the real large graph, where each graph is regarded as a

relation with two attributes. The statistic of the graphs is shown

in Table I. For each “test-case” that consists of a database and

a query, the database is constructed by allocating each relation

of the query with a copy of the graph. We select 6 commonly

used graphs from various domains. WB (web-BerkStan) is a

web graph of Berkeley and Stanford. AS (as-Skitter) is an

internet topology graph, from traceroutes run daily in 2005.

WT (wiki-Talk) is a Wikipedia talk (communication) network.

LJ (com-LiveJournal) is a LiveJournal online social network.

EN (en-wiki2013) represents a snapshot of the English part

of Wikipedia as of late February 2013. OK (com-Orkut) is

an Orkut online social network. Their statistical information

is listed in Table I. EN can be downloaded from the link 1,

while the rest of the graphs can be downloaded from SNAP2.

Competing Methods. We compare ADJ with four state-of-

the-art multi-way join methods in the distributed environment.

• SparkSQL [1]: The state-of-the-art multi-round multi-way

join framework on Spark, which performs multi-way join

based on decomposing the query into smaller join queries,

and combining intermediate relations in a pairwise way.

• HCubeJ [11]: The state-of-the-art one-round multi-way

join framework that utilizes a one-round shuffling method

HCube and the worst-case optimal join Leapfrog

• HCubeJ+ Cache [28]: The state-of-the-art one-round

multi-way join framework that utilizes a one-round shuf-

fling method HCube and adopt an optimized Leapfrog

with cache[28].

• BigJoin [8]: The state-of-the-art multi-round distributed

multi-round multi-way join framework, which parallelizes

Leapfrog.

Evaluation Metrics. We used wall clock time to measure the

cost of an algorithm with the time of starting up the system

and loading the database into memory excluded. If an approach

failed in a test-case due to insufficient memory, the figure will

show a space instead of a bar in the corresponding location

of the figure. If an approach failed in completing the test-case

within 12 hours, we show a bar reaching the frame-top.

Parameter Setting. We set α of ADJ by pre-measuring the

communication performance of the cluster based on Sec. III-B.

We set the numbers of samples to be 105 as it achieves a

balance between accuracy and cost based on our experiments.

We set β based on Sec. III-B for each test-case by reusing

statistics during sampling of each test-case. For competing

methods, we use their default settings.

Distributed Settings. All experiments are conducted on a

cluster of a master server and 7 slave servers (2 × Intel Xeon

E5-2680 v4, 176 gigabytes of memory, interconnected via

10 gigabytes Ethernet). All methods are deployed on Spark

2.2.0. For Spark, we create 28 workers from 7 slave servers,

where each worker is assigned 7 cores and 28 gigabytes of

memory. Each core of the worker can be assigned a hypercube

in HCube.

1http://law.di.unimi.it/webdata/enwiki-2013/
2https://snap.stanford.edu/data/index.html

https://snap.stanford.edu/data/index.html

 1x109
 1x1010
 1x1011
 1x1012
 1x1013
 1x1014
 1x1015

(W
B,
Q 4
)

(A
S,
Q 4
)

(L
J,
Q 4
)

(W
T,
Q 4
)

(E
N,
Q 4
)

(O
K,
Q 4
)

(W
B,
Q 5
)

(A
S,
Q 5
)

(L
J,
Q 5
)

(W
T,
Q 5
)

(E
N,
Q 5
)

(O
K,
Q 5
)

(W
B,
Q 6
)

(A
S,
Q 6
)

(L
J,
Q 6
)

(W
T,
Q 6
)

(E
N,
Q 6
)

(O
K,
Q 6
)

Invalid-Max
Valid-Max

All-Selected
Valid-Selected

Fig. 8: Effectiveness of attribute order pruning.

B. The Performance of ADJ

In this section, we investigate the performance of ADJ.

Effectiveness of Attribute Order Pruning. In this test, we

compare the number of intermediate tuples generated during

Leapfrog under valid attribute order and invalid attribute order

on test-cases using Q4−Q6 over all datasets. We omit Q1−Q3,

as their intermediate tuples are constant under any attribute

order. The results are shown in Fig. 8, where Invalid-Max

denotes the attribute order that results in the maximum number

of intermediate tuples among all invalid orders. Valid-Max
denotes the attribute order that results in the maximum number

of intermediate tuples among any valid attribute orders. All-
Selected denotes the attribute order selected by HCubeJ

[11], which select the attribute order from all attribute order.

Valid-Selected denotes the attribute orders selected by ADJ.

It can be seen that in terms of the maximum number of

intermediate tuples produced, valid attribute orders perform

better than invalid attribute orders across all test-case. Also,

we can see that selecting the attribute order from only valid

attribute orders can produce a better attribute order than

considering all attribute orders. This experiment confirms that

the effectiveness of our heuristic in selecting good attribute

orders and pruning non-effective attribute orders.

Effectiveness of Optimizations on HCube. In this test, we

compare the effectiveness of the techniques proposed for

optimizing the performance of HCube. We denote the orig-

inal HCube implementation by Push, our optimized HCube

implementation by Pull, and our optimized HCube implemen-

tation with tries pre-constructed by Merge. We run test-cases

that consist of all datasets and query Q2, and compare the

communication cost and cost, where the results are shown

in Fig. 9. In terms of communication cost, Pull and Merge

outperform Push by up to two orders of magnitude. And,

Merge outperforms Pull, as the block that contains one trie,

which can be implemented using three arrays, are easier to

serialize and deserialize than the block that contains many

tuples. In terms of computation cost, Push and Pull are similar,

and Merge outperforms the other two methods by up to an

order of magnitude as tries has already been pre-constructed

before HCube. This experiment shows that our proposed

techniques for HCube can significantly reduce communication

and some computation cost.

Cost and Accuracy of Sampling Process. In this test, we

show that a relatively small amount of samples is enough for

100
101
102
103
104

WB AS WT LJ EN OK

time(sec)

(a) Communication

100
101
102
103
104

WB AS WT LJ EN OK

time(sec)

(b) Computation

Fig. 9: Comparison of different implementation of HCube. .

 0
 100
 200
 300
 400
 500
 600

103 104 105 106 107

time(sec)

Q4
Q5
Q6

(a) Time

1

5

10

15

20

103 104 105 106 107

Q4
Q5
Q6

(b) Max D

Fig. 10: Cost and accuracy of Sampling Process

an accurate estimation of cardinality. For an query Q whose

result is T , let the real cardinality of T be |T | and the estimated

one be ˜|T |. Let D = max(˜|T |,|T |)

min(˜|T |,|T |)
be an indicator that measures

their relative difference, which means the close D is to 1,

the better. We conduct experiments on test-cases that consist

of dataset LJ and query Q4, Q5, Q6. For each test-case, we

vary the numbers of samples from 2 ∗ 102 to 107 and plot

the maximum relative difference of all estimated cardinality

and the aggregated sampling time. The results are shown in

Fig. 10. We can see that after the sampling budget is increased

beyond 104, the maximum relative difference converges to

1, which indicates there is almost no difference between the

estimated value and real value. In terms of sampling cost,

before 106 sampling budget, the cost stays almost the same.

This experiment confirms the efficiency and accuracy of our

sampling-based cardinality estimation approach.

The Cost and Effectiveness of Co-optimization. In this test,

we show that co-optimization can effectively trading the com-

putation with communication with a low query optimization

cost, which includes the cost of sampling. We conduct ex-

periment on test-cases that consist of datasets AS, LJ,OK and

queries Q4, Q5, Q6, and measures the cost of Optimization,

Pre− Computing, Communication, Computation and Total.

The results are shown in Table II-Table IV. From them, we

can see that on almost all test-cases, when Co− Optimization

strategy is used, with a mildly increased Pre− Computing

and Communication cost, the Computation cost is drasti-

cally reduced. Also, there are test-cases such as (OK, Q6),
whose Communication cost decreases as well. The reason

is that introducing pre-computed relation increases the size

of the input database, but also changes the query itself

and alters share p of HCube, which could result in smaller

Communication cost. From Table II-Table IV, it also can be

seen that although Optimization cost of Co− Optimization

strategy is consistently larger than Optimization cost of

Communication− First Optimization strategy, it is still small

compared to the total cost. This experiment confirms the

 5
 10
 15
 20
 25

1 5 10 15 20 2528

(a) Q1

 5
 10
 15
 20
 25

1 5 10 15 20 2528

(b) Q2

 5
 10
 15
 20
 25

1 5 10 15 20 2528

(c) Q3

 5
 10
 15
 20
 25

1 5 10 15 20 2528

(d) Q4

 5
 10
 15
 20
 25

1 5 10 15 20 2528

(e) Q5

 5
 10
 15
 20
 25

1 5 10 15 20 2528

(f) Q6

Fig. 11: Speed-up factor of ADJ under difference workers

under 1 to 28 workers .

effectiveness of Co− Optimization strategy and relatively low

query Optimization cost of Co− Optimization strategy.

Scalability. In Fig 11, we show the speedup of our system

when varying the number of workers of Spark from 1 to 28
on test-cases that consist of LJ, and all queries. It can be

seen that our system has a near-linear speed up on query

Q2, Q3, Q4, Q6. For query Q1, the scalability is limited as

it is a rather simple query, and the overhead of the systems

gradually becomes the dominating cost. For query Q5, its

limited scalability is due to the skewness, where the “last

straggler” effect plays a bigger role in determining the elapsed

time.

C. Comparison with Other Join Approaches

In this section, we compare ADJ against state-of-the-art

methods.

Varying Dataset. In this test, we compare each method on

test-cases where the queries are fixed to Q1, Q2, Q3. The

results are shown in Fig. 12 (a)-(c). It can be seen that multi-

round methods SparkSQL and BigJoin fail on many of the

queries due to overwhelming intermediate results, while one-

round methods successfully tackle most of the queries as the

shuffling of intermediate results are avoided. Also, BigJoin is

better than SparkSQL as the worst-case optimal join Leapfrog

it parallelizes generates less intermediate tuples. Also, it can

be seen that with the increase the input database size, HCubeJ,

HCubeJ+ Cache, spent more portion of time on HCube,

and on test-case (LJ, Q3), (EN, Q3), (OK, Q3), they have

a difficult time shuffling the tuples using original HCube

implementation. In comparison, ADJ can successfully process

all test-cases and spent significantly less time when shuffling

the relations on test-cases that involve complex queries such

as Q3 or large dataset EN,OK.

Varying Query. In this test, we compare each method on

test-cases where the datasets are fixed to AS, LJ,OK. The

results are shown in Fig. 12 (d)-(e). For SparkSQL, it can only

handle Q1 and failed on all other queries due to overwhelming

intermediate results. And, BigJoin can only handle Q1 and

Q2. For Q1 − Q3, HCubeJ and HCubeJ+ Cache performs

similarly, and ADJ has a large lead due to the optimized

HCube. For Q4 −Q6, HCubeJ+ Cache performs better than

HCubeJ, and HCubeJ+ Cache has similar performance to

ADJ on dataset AS as AS is relatively small and there is

abundant remaining memory on each server to use for caching.

On LJ dataset, HCubeJ+ Cache is significantly outperformed

by ADJ, as HCubeJ+ Cache is a method that prioritizes

communication cost over computation cost, and uses up all

memory for shuffling and storing the tuples during HCube,

which leaves little memory for caching. On OK dataset,

both HCubeJ and HCubeJ +Cache failed, as the original

HCube implementation shuffles too many tuples, which causes

memory-overflow. It can be seen that in almost all test-

case ADJ can effectively balance the computation cost and

communication cost by adopting a co-optimization strategy.

VIII. CONCLUSION

This paper studies the problem of co-optimize communica-

tion and computation cost in a one-round multi-way join eval-

uation and proposes a prototype system ADJ for processing

complex join queries. To find an effective query plan in a huge

search space in terms of total cost, this paper study how to

restrict the search space based on an optimal hypertree T and

how to explore cost-effective query plans based on hypertree

T . Extensive experiments have shown the effectiveness of

various optimization proposed in ADJ. We shall explore co-

optimize computation, pre-computing, and communication for

a query that consists of selection, projection, and join.

ACKNOWLEDGEMENT

This work is supported by the Research Grants Council

of Hong Kong, China under No. 14203618, No. 14202919

and No. 14205520, No. 14205617, No. 14205618, and NSFC

Grant No. U1936205.

REFERENCES

[1] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, and M. Zaharia, “Spark
SQL: Relational Data Processing in Spark,” in Proc. of SIGMOD’15,
pp. 1383–1394, 2015.

[2] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache flink: Stream and batch processing in a single
engine,” IEEE TCDE, vol. 36, no. 4, 2015.

[3] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,
P. Wyckoff, and R. Murthy, “Hive: a warehousing solution over a map-
reduce framework,” Proc. of VLDB’09, vol. 2, no. 2, pp. 1626–1629,
2009.

[4] J. Shute, S. Ellner, J. Cieslewicz, I. Rae, T. Stancescu, H. Apte,
R. Vingralek, B. Samwel, B. Handy, C. Whipkey, E. Rollins, M. Oancea,
K. Littlefield, and D. Menestrina, “F1: a distributed SQL database that
scales,” PVLDB, vol. 6, no. 11, pp. 1068–1079, 2013.

[5] J. Wang, T. Baker, M. Balazinska, D. Halperin, B. Haynes, B. Howe,
D. Hutchison, S. Jain, R. Maas, P. Mehta, et al., “The myria big data
management and analytics system and cloud services.,” in CIDR’17,
2017.

[6] Y.-M. N. Nam, D. H. Han, and M.-S. K. Kim, “Sprinter: A fast n-ary
join query processing method for complex olap queries,” in Proceedings

of the 2020 ACM SIGMOD International Conference on Management

of Data, pp. 2055–2070, 2020.

[7] B. Elliott, E. Cheng, C. Thomas-Ogbuji, and Z. M. Ozsoyoglu, “A com-
plete translation from sparql into efficient sql,” in Proc. of IDEAS’09,
pp. 31–42, 2009.

[8] K. Ammar, F. McSherry, S. Salihoglu, and M. Joglekar, “Distributed
Evaluation of Subgraph Queries Using Worst-case Optimal Low-
memory Dataflows,” PVLDB, vol. 11, no. 6, pp. 691–704, 2018.

Co− Optimization(sec) Communication − First Optimization(sec)

Optimization Pre− Computing Communication Computation Total Optimization Communication Computation Total

Q4 107 12 66 1276 1461 3 21 > 43200 > 43200
Q5 90 24 50 907 1071 4 36 > 43200 > 43200
Q6 63 12 19 18 112 4 47 30426 30477

TABLE II: The comparison between co-optimization and communication-first optimization strategy in AS dataset

Co− Optimization(sec) Communication − First Optimization(sec)

Optimization Pre− Computing Communication Computation Total Optimization Communication Computation Total

Q4 106 22 132 1282 1542 8 62 > 43200 > 43200
Q5 132 44 103 222 501 9 112 > 43200 > 43200
Q6 105 22 147 350 624 12 204 > 43200 > 43200

TABLE III: The comparison between co-optimization and communication-first optimization strategy in LJ dataset

Co− Optimization(sec) Communication − First Optimization(sec)

Optimization Pre− Computing Communication Computation Total Optimization Communication Computation Total

Q4 218 71 712 13214 14215 37 1050 > 43200 > 43200
Q5 265 142 422 877 1706 46 1566 > 43200 > 43200
Q6 278 71 1189 516 2054 42 2067 > 43200 > 43200

TABLE IV: The comparison between co-optimization and communication-first optimization strategy in OK dataset

100
101
102
103
104

WB AS WT LJ EN OK

time (sec)

(a) Q1

100
101
102
103
104

WB AS WT LJ EN OK

time (sec)

(b) Q2

100
101
102
103
104

WB AS WT LJ EN OK

time (sec)

(c) Q3

100
101
102
103
104

Q1 Q2 Q3 Q4 Q5 Q6

time (sec)

(d) AS

100
101
102
103
104

Q1 Q2 Q3 Q4 Q5 Q6

time (sec)

(e) LJ

100
101
102
103
104

Q1 Q2 Q3 Q4 Q5 Q6

time (sec)

(f) OK

Fig. 12: Comparison of methods by varying datasets or queries

[9] N. N. Liu, L. He, and M. Zhao, “Social temporal collaborative ranking
for context aware movie recommendation,” ACM TIST, vol. 4, no. 1,
pp. 1–26, 2013.

[10] R. A. Rossi, L. K. McDowell, D. W. Aha, and J. Neville, “Transform-
ing graph data for statistical relational learning,” Journal of Artificial

Intelligence Research, vol. 45, pp. 363–441, 2012.

[11] S. Chu, M. Balazinska, and D. Suciu, “From Theory to Practice: Efficient
Join Query Evaluation in a Parallel Database System,” in Proc. of

SIGMOD’15, pp. 63–78, 2015.

[12] F. N. Afrati and J. D. Ullman, “Optimizing Multiway Joins in a Map-
Reduce Environment,” TKDE, vol. 23, no. 9, 2011.

[13] P. Beame, P. Koutris, and D. Suciu, “Communication steps for parallel
query processing,” in Proc. of SIGMOD’13, pp. 273–284, 2013.

[14] T. L. Veldhuizen, “Leapfrog triejoin: A simple, worst-case optimal join
algorithm,” arXiv preprint arXiv:1210.0481, 2012.

[15] G. Gottlob, N. Leone, and F. Scarcello, “Hypertree Decompositions and
Tractable Queries,” Journal of Computer and System Sciences, vol. 64,
no. 3, pp. 579–627, 2002.

[16] G. Gottlob, G. Greco, N. Leone, and F. Scarcello, “Hypertree Decom-
positions: Questions and Answers,” in Proc. of PODS’16, pp. 57–74,
2016.

[17] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neu-
mann, “How good are query optimizers, really?,” PVLDB, vol. 9, no. 3,
pp. 204–215, 2015.

[18] Y. E. Ioannidis and S. Christodoulakis, “On the propagation of errors in
the size of join results,” in Proc. of SIGMOD’1991, pp. 268–277, 1991.

[19] V. Leis, B. Radke, A. Gubichev, A. Kemper, and T. Neumann, “Cardi-

nality estimation done right: Index-based join sampling.,” in CIDR’17,
2017.

[20] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” in The Collected Works of Wassily Hoeffding, pp. 409–426,
1994.

[21] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G.
Price, “Access Path Selection in a Relational Database Management
System,” in Proc. of SIGMOD’1979, pp. 23–34, 1979.

[22] A. Atserias, M. Grohe, and D. Marx, “Size Bounds and Query Plans for
Relational Joins,” in Proc. of FOCS’08, pp. 739–748, 2008.

[23] M. Grohe and D. Marx, “Constraint Solving via Fractional Edge
Covers,” ACM Trans. Algorithms, vol. 11, no. 1, pp. 4:1–4:20, 2014.

[24] H. Q. Ngo, E. Porat, C. Ré, and A. Rudra, “Worst-case Optimal Join
Algorithms: [Extended Abstract],” in Proc. of PODS’12, pp. 37–48,
2012.

[25] H. Q. Ngo, C. Ré, and A. Rudra, “Skew strikes back: new developments
in the theory of join algorithms,” ACM SIGMOD Record, vol. 42, no. 4,
pp. 5–16, 2014.

[26] C. R. Aberger, A. Lamb, S. Tu, A. Nötzli, K. Olukotun, and C. Ré,
“EmptyHeaded: A Relational Engine for Graph Processing,” ACM Trans.

Database Syst., vol. 42, no. 4, pp. 20:1–20:44, 2017.
[27] M. Yannakakis, “Algorithms for Acyclic Database Schemes,” in Proc.

of VLDB’1981, pp. 82–94, 1981.
[28] O. Kalinsky, Y. Etsion, and B. Kimelfeld, “Flexible caching in trie joins,”

arXiv preprint arXiv:1602.08721, 2016.
[29] Y. Chen and K. Yi, “Two-Level Sampling for Join Size Estimation,” in

Proc. of SIGMOD’17, pp. 759–774, 2017.

	I Introduction
	II Preliminaries
	II-A Leapfrog and HCube Join Algorithms

	III Adaptive Multi-way Join
	III-A The Reduced Search Space
	III-B Finding The Plan

	IV Estimating Cardinality Via Distributed Sampling
	V Implementation
	VI Related work
	VII Experiments
	VII-A Setup
	VII-B The Performance of ADJ
	VII-C Comparison with Other Join Approaches

	VIII Conclusion
	References

