
Supplementary Material – Squeezing more juice out of
dielectric elastomer generators

1 GENERAL RELATIONSHIPS
The capacitance swing β is defined as the ratio of the capacitance at any time C(t) with respect to the
minimal capacitance C1 (Note that we use index 1, and not 0 for the minimal capacitance, to take into
account that some prestretch might be present in the DEG in the minimal capacitance position, depending
on the configuration.):

β(t) = C(t)/C1, (S1)

with 1 ≤ β(t) ≤ β̂. The capacitance can be expressed as a function of the volume of the dielectric and the
surface of the capacitor:

C(t) =
εS(t)2

Ω
=

εS2
1β(t)

Ω
, (S2)

with ε the permittivity of the material, S the surface of the deformable capacitor at arbitrary time t, and
S1 the minimal surface of the capacitor at the beginning of the cycle, and Ω the volume of the elastomer,
which remains constant during deformation. From equation S2, the surface of the DEG can be expressed as
a function of the capacitance swing as: S(t) =

√
β(t)S1, which in turns enables to express the charge Q

on the DEG as a function of the electric field E and the capacitance swing β:

Q = εSE = ε
√

β(t)S1E (S3)

and consequently, the voltage on the DEG is defined as:

V =
Q

C
=

Ωε
√

β(t)S1E

εS2
1β(t)

=
ΩE

S1

√
β(t)

(S4)

The cycles considered in this contribution are designed to never exceed a maximal electric field Emax.
From Eq. S3, we can establish the relation between the capacitance swing and the charge, which describes
the deformation of the DEG β∗ at which a charge Q∗ leads to the field Emax in the DEG:

β∗ =
Q∗2

ε2S2
1E

2
max

. (S5)

Using the definition of the capacitance swing (Eq. S1), this leads to:

Q∗2

ε2S2
1E

2
max

=
C∗

C1
=

Q∗

V ∗ · C1
=

Q∗Ω

V ∗εS2
1

, (S6)

which finally enables to write the relation between charge and voltage at which the field in the DEG is
equal to Emax:

Q∗ =
ΩεE2

max

V ∗ . (S7)
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In the Q-V plane, this is the equation of a line separating the region with E < Emax on the left, from the
region with E > Emax on the right. The harvesting cycles must be designed to stay on the left side of this
line at any time to guarantee that the electric field remains below the threshold.

2 OPTIMAL TRIANGLE CYCLE
This section presents the equations required to calculate the parameters of the optimal triangle harvesting
cycle.

During the relaxation phase of the DEG (segment (C)-(D), c.f. figure 2 of the article), the DEG capacitor
C is in parallel with the storage capacitor Cs, and the two are isolated from other components. Therefore,
neglecting any leakage, the charge in the system remains constant at a value Qtot. The charge Q stored in
the DEG during the relaxation phase is therefore given by:

Q = Qtot − CsV, (S8)

thus leading to dV/dQ = −1/Cs: the slope of the segment (C)-(D) is inversely proportional to the value of
the storage capacitor.

To find the parameters of the optimal triangle cycle, we first establish the relations that describe the
charge and voltage of the DEG at points 1 and 2 (c.f. Fig. 3 of the article). We use Eq. S3 and S4, taking
into account that β = 1 at point 1, and β = β̂ at point 2, and that the electric field reaches its maximal
value at both points.

Q V

Point 1 Q1 = εS1Emax V1 =
ΩEmax

S1

Point 2 Q2 = εS1Emax

√
β̂ V2 =

ΩEmax√
β̂S1

Table S1. Expression of the charge and voltage of the DEG capacitor at point 1 (relaxed capacitor reaches maximal field) and at point 2 (capacitor at maximal
deformation reaches maximal field).

The slope of segment (C)-(D) is defined as:

V2 − V1
Q2 −Q1

= −

ΩEmax
S1

(
1− 1√

β̂

)
εS1Emax

(√
β̂ − 1

) = − Ω

εS2
1

1√
β̂

= − 1

C1

√
β̂

. (S9)

As the slope of the segment (C)-(D) is related to the value of the storage capacitor Cs, it follows that to
obtain the desired slope, the value of the storage capacitor must be:

Cs = C1

√
β̂. (S10)

To obtain the optimal triangle cycle, one shifts the line (C)-(D) so that is becomes tangent with the maximal
electric field line (Eq.S7). First, we calculate the slope of the maximal field line:

dV

dQ
= −ΩεE2

max

Q2
, (S11)
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and we then find the point Qtg and Vtg at which the slope of the maximal field line is equal to that of the
segment between points 1 and 2:

−ΩεE2
max

Q2
tg

= − Ω

εS2
1

1√
β̂

⇒ Qtg = εEmaxS1
4

√
β̂ (S12)

Vtg =
ΩεE2

max

Qtg
=

ΩEmax

S1
4

√
β̂

(S13)

The relaxation segment (C)-(D) of the optimal triangle has a slope defined by Eq. S9, and must go through
the point Qtg and Vtg. We can therefore establish the equation of the line that defines the segment (C)-(D):

Vtg = − Ω

εS2
1

1√
β̂

Qtg + α (S14)

ΩEmax

S1
4

√
β̂

= − Ω

εS2
1

1√
β̂

εEmaxS1
4

√
β̂ + α (S15)

2ΩEmax

S1
4

√
β̂

= α, (S16)

leading to the relation between charge and voltage for the segment (C)-(D):

V = − Ω

εS2
1

1√
β̂

Q+
2ΩEmax

S1
4

√
β̂

(S17)

With respect to figure 3 of the main manuscript, we need to calculate the intersections of the line describing
segment (C)-(D) with the isocapacitance lines C1 and β̂C1, which describe the charge and voltage present
on the DEG in its relaxed state (point 1’) and at its maximal deformation (point 2’).

For point 1’:

V1′ =
Q1′

C1
=

Q1′Ω

εS2
1

= − Ω

εS2
1

1√
β̂

Q1′ +
2ΩEmax

S1
4

√
β̂

Q1′Ω

εS2
1

1 +
1√
β̂

 =
2ΩEmax

S1
4

√
β̂

Q1′ =
2εEmaxS1

β̂1/4 + β̂−1/4
(S18)

V1′ =
2EmaxΩ

S1

(
β̂1/4 + β̂−1/4

) . (S19)
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For point 2’:

V2′ =
Q2′

β̂C1

=
Q2′Ω

β̂εS2
1

= − Ω

εS2
1

1√
β̂

Q2′ +
2ΩEmax

S1
4

√
β̂

Q2′Ω

εS2
1

 1

β̂
+

1√
β̂

 =
2ΩEmax

S1
4

√
β̂

Q2′ =
2εEmaxS1

β̂−3/4 + β̂−1/4
(S20)

V2′ =
2EmaxΩ

S1

(
β̂1/4 + β̂3/4

) (S21)

The values of the voltage and electric charge at points 1’ and 2’ are summarised in table S2.

Point V Q

1’
2EmaxΩ

S1

(
β̂1/4 + β̂−1/4

) 2εEmaxS1

β̂1/4 + β̂−1/4

2’
2EmaxΩ

S1

(
β̂1/4 + β̂3/4

) 2εEmaxS1

β̂−3/4 + β̂−1/4

Table S2. Voltage and charge values at points 1’ and 2’ (main manuscript figure 3) for the OT cycle.

The value of V2′ defines the voltage at which the charging of the DEG must be stopped, and the charge
and voltage values at points 1’ and 2’ are used to calculate the priming input energy and the output energy,
in order to quantify the net energy gain per cycle. A demonstration that this cycle does indeed correspond
to the optimal triangular cycles contained into the feasible space is given in section 3.5.

3 NON-OPTIMAL TRIANGLE CYCLE
We analyse the quantity of harvested energy if the storage capacitor has a value that is not necessarily the
optimal value. We define the storage capacitor as Cs = γC1, which defines the slope of the relaxation
process. To select the optimal value of the priming voltage, 3 different cases need to be considered (Fig
S1).

1. 0 ≤ γ < 1 (magenta). When γ = 1, point 1’ coincides with point 1. More energy can be harvested
for smaller values of γ if the relaxation curve is pinched at point 1, rather than made tangent with the
maximal electric field line.

2. 1 ≤ γ ≤ β̂ (green). Voltage V2′ is chosen so that the relaxation segment 2’-1’ becomes tangent with
the maximal electric field line. This is the same situation as for the optimal cycle, but with the slope of
the segment imposed by Cs2. Similar equations as presented in section 2 can be derived using γ as an
additional input.
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Figure S1. Different values of the storage capacitor Cs (Cs1 ≤ Cs2 ≤ Cs3) lead to different slopes of the
relaxation line 2’-1’. The charging voltage V2′ can then be chosen to make sure that the maximal field is
reached at one point during the cycle, hence maximising the harvested energy

3. γ > β̂ (turquoise). When γ = β̂, point 2’ coincides with point 2. More energy can be harvested for
larger values of γ if the relaxation curve is pinched at point 2, rather than made tangent with the
maximal electric field line.

The next sections establish the equations required to find the priming voltage V ′
2 and the voltage at the

end of the relaxation V ′
1 for the three different cases. The values are then summarised in table S3.

3.1 0 ≤ γ < 1

We know that the relaxation line has a slope equal to −1/Cs = −1/γC1 and must go through point 1,
i.e. through (Q1, V1). Consequently, the equation of the relaxation line is:

V =− Q

γC1
+ α

V =− ΩQ

γεS2
1

+ α

Forcing the line to go through the point (Q1, V1) (c.f. table S1) enables to identify the value of the
intercept α.

V1 =− ΩQ1

γεS2
1

+ α

ΩEmax

S1
=− ΩεS1Emax

γεS2
1

+ α

α =
ΩEmax

S1

γ + 1

γ
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This leads to the following expression for the relaxation line (segment 2’-1’):

V = − ΩQ

γεS2
1

+
ΩEmax

S1

γ + 1

γ
(S22)

Point 2’ defining the end of priming is obtained by calculating the intersection between the relaxation line
and the isocapacitance line β̂C1: V = QΩ/β̂εS2

1

Q′
2Ω

β̂εS2
1

=− ΩQ′
2

γεS2
1

+
ΩEmax

S1

γ + 1

γ

Q′
2 =εEmaxS1

γ + 1

γ

γβ̂

γ + β̂
(S23)

V ′
2 =

ΩEmax

S1

γ + 1

γ + β̂
(S24)

For this case, the relaxation ends at point 1 (i.e. point 1’= point 1), with the values of voltage and charge
given in table S1.
3.2 1 ≤ γ ≤ β̂

This situation is very similar to the section 2, except that the slope of the relaxation line 2’-1’ is defined
by the value of the storage capacitor. First, we need to find the point (Qtg,Vtg) at which the relaxation line
is tangent to the maximal field line, which happens when the slopes of the two lines are equal. The slope of
the maximal electric field line is given by eq. S11. The slope of segment 2’-1’ is given by:

dV

dQ
= − 1

γC1
= − Ω

γεS2
1

(S25)

Equating Eqs. S11 and S25, and taking into account that the tangent point lies on the maximal field line
described by eq. S7 enables to identify the point (Qtg,Vtg):

Qtg =
√
γεEmaxS1 (S26)

Vtg =
ΩEmax

S1
√
γ

(S27)

The equation of segment 2’-1’ can then be established using its slope (eq. S25):

V = −ΩQ1

γεS2
1

+ α (S28)

The fact it needs to go through the point (Qtg,Vtg) is used to identify the intercept α:

ΩEmax

S1
√
γ

=−
Ω
√
γεEmaxS1

γεS2
1

+ α

α =
2ΩEmax√

γS1
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And therefore, the equation of segment 2’-1’ is given by:

V = − ΩQ

γεS2
1

+
2ΩEmax√

γS1
(S29)

Point 1’ reached at the end of the relaxation process is given by the intersection of segment (C)-(D) with
the isocapacitance straight line with slope 1/C1:

V =− ΩQ

γεS2
1

+
2ΩEmax√

γS1

Q′
1Ω

εS2
1

=− ΩQ′
1

γεS2
1

+
2ΩEmax√

γS1

Q′
1 =2εS1Emax

√
γ

γ + 1
(S30)

V ′
1 =

Q′
1

C1
=

ΩEmax

S1

2
√
γ

γ + 1
(S31)

Point 2’ reached at the end of the priming phase is given by the intersection of segment (C)-(D) with the
isocapacitance straight line with slope 1/β̂C1:

V =− ΩQ

γεS2
1

+
2ΩEmax√

γS1

Q′
2Ω

β̂εS2
1

=− ΩQ′
2

γεS2
1

+
2ΩEmax√

γS1

Q′
2 =2εS1Emax

√
γβ̂

γ + β̂
(S32)

V ′
2 =

Q′
1

β̂C1

=
ΩEmax

S1

2
√
γ

β̂ + γ
(S33)

3.3 γ > β̂

We know that the relaxation line has a slope equal to −1/Cs = −1/γC1 and must go through point 2,
i.e. through (Q2, V2). Consequently, the equation of the relaxation line is:

V =− Q

γC1
+ α

V =− ΩQ

γεS2
1

+ α

Frontiers 7
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Forcing the line to go through the point (Q2, V2) (c.f. table S1) enables to identify the value of the intercept
α.

V2 =− ΩQ2

γεS2
1

+ α

ΩEmax√
β̂S1

=−
ΩεS1Emax

√
β̂

γεS2
1

+ α

α =
ΩEmax

S1


√
β̂

γ
+

1√
β̂


This leads to the following expression for the relaxation line (segment 2’-1’):

V = − ΩQ

γεS2
1

+
ΩEmax

S1

γ + β̂

γ

√
β̂

(S34)

For this case, the relaxation starts at point 2 (i.e. point 2’= point 2), with the values of voltage and charge
given in table S1. Point 1’ defining the end of relaxation is obtained by calculating the intersection between
the relaxation line and the isocapacitance line C1: V = QΩ/εS2

1

Q′
1Ω

εS2
1

=− ΩQ′
1

γεS2
1

+
ΩEmax

S1

γ + β̂

γ

√
β̂

Q′
1 =εEmaxS1

γ + β̂√
β̂ (γ + 1)

(S35)

V ′
1 =

ΩEmax

S1

γ + β̂√
β̂ (γ + 1)

(S36)

3.4 Summary and energy density
Table S3 shows the voltage at the beginning (V2′) and at the end (V1′) of the relaxation part of the cycle

during which voltage boosting occurs, summarising the calculations from the three previous sections. It

can be verified that by using γ =

√
β̂ the values become identical to those for the optimal triangle cycle

(Eqs. S19 and S21). The values from the table can then be used to calculate the priming energy Win, the
stored energy Wout, and the net energy density generated per cycle w:
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V1′ V2′

0 ≤ γ < 1
ΩEmax

S1

ΩEmax

S1

γ + 1

γ + β̂

1 ≤ γ ≤ β̂
ΩEmax

S1

2
√
γ

γ + 1

ΩEmax

S1

2
√
γ

β̂ + γ

γ > β̂
ΩEmax

S1

γ + β̂√
β̂ (γ + 1)

ΩEmax√
β̂S1

Table S3. Voltage value at the end (V1′ ) and at the beginning (V2′ ) of the relaxation phase, as a function of the capacitance swing β̂, and the relative capacitance
of the storage capacitor γ.

Win =
1

2

(
β̂C1 + Cs

)
V 2
2′ =

εS2
1

2Ω

(
β̂ + γ

)
V 2
2′ (S37)

Wout =
1

2
(C1 + Cs)V

2
1′ =

εS2
1

2Ω
(1 + γ)V 2

1′ (S38)

w =
Wout −Win

Ω
=

εS2
1

2Ω2

[
(1 + γ)V 2

1′ −
(
β̂ + γ

)
V 2
2′

]
(S39)

3.5 Proof that the OT cycle represents the optimal cycle
In section 2, we have established the equations of a triangular cycle whose discharge slope was defined

by the line linking the intersection of the maximal field line with the two isocapacitance lines (Figure 3
of the main manuscript). We have called this cycle the optimal cycle, but without demonstrating that it
maximises the harvested energy density. The equations developed in section 3 enables us to show that it is
indeed the case.

Figure S1 shows that the surface of the triangle is maximised when the relaxation (segment 2’-1’) is
tangent with the maximal field line. This is the case Cs2 on the figure, i.e. when 1 ≤ γ ≤ β̂. The harvested
energy density is given by eq. S39. The values of V1′ and V2′ are given in the second row of table S3.
Introducing these values in eq. S39 leads to:

w ∝

(1 + γ) 4γ

(1 + γ)2
−

(
β̂ + γ

)
4γ(

β̂ + γ
)2


w ∝

 4γ

(1 + γ)
− 4γ(

β̂ + γ
)


We can then differentiate with respect to γ and find the maximum or minimum of the function:
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∂w

∂γ
∝

 4

(1 + γ)2
− 4β̂(

β̂ + γ
)2
 = 0

4

(1 + γ)2
=

4β̂(
β̂ + γ

)2
(1 + γ)2 =

(
β̂ + γ

)2
β̂

β̂ + 2β̂γ + β̂γ2 =γ2 + 2β̂γ + β̂2

(β̂ − 1)γ2 =β̂(β̂ − 1)

γ2 =β̂

As γ must be positive, this leads to γ =

√
β̂. The second derivative is negative at that point, which hence

represents a local maximum. Therefore, the area of the harvested triangle is maximised for Cs =

√
β̂C1,

which corresponds to the value of eq. S10.

4 SET-AND-FORGET APPROACH
Figure S2 illustrates the set-and-forget concept in the Q-V plane. The circuit is designed for a set value
of the capacitance swing β̂s. This defines the storage capacitance Cs and therefore the slope of segment
1’-2’, as well as the priming voltage V2′ according to the equations of the optimal triangle cycle (OT). The
obtained cycle is shown in purple. The cycle caused by a deformation amplitude β̂ < β̂s is illustrated in
green. As the priming voltage V2′ is fixed, the priming stops at point 2” and the discharge slope (2”-1”)
is identical to that of segment (2’-1’) due to the fixed value of the storage capacitor. The green triangle
illustrates the energy harvested in this condition, which is much lower than the maximal harvestable energy
for a capacitance swing β̂; the maximal electric field is never reached during the cycle. The figure also
shows in gray dashed line the outline of a cycle with a capacitance swing β̂ > β̂s. In that case, the maximal
electric field Emax is exceeded during the cycle, which must be avoided. Consequently, the harvester must
be designed so that β̂ ≤ β̂s, which can be done by the implementation of a mechanical stop that limits
the deformation of the harvester. Instead of a mechanical stop, the setting point of the circuit β̂s could be
chosen sufficiently high to ensure that the electric field in the device remains lower than Emax. For a normal
distribution of β̂, with a mean value µ and a standard deviation σ, choosing β̂s = µ+ 3σ would ensure that
99.87% of the cycles respect the electric field criteria. However, choosing β̂s significantly higher than the
mean value of the normal distribution leads to a sub-optimal amount of harvested energy (see fig 6 b of the
main article), and consequently, a mechanical stop is the option that should be implemented.

We now calculate the energy harvested per cycle for a capacitance swing β̂ when the harvesting circuit is
optimised for a capacitance swing β̂s, which is illustrated by the green triangle on Figure S2. The voltage
V2′ is that of the OT cycle and given in table S2, when calculated for a capacitance swing of β̂s, and
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Figure S2. Illustration of the set-and-forget-approach on the Q-V plane. The purple triangle illustrates the
OT cycle for a target deformation β̂s that is used to select the storage capacitance and priming voltage. The
green cycle illustrates the energy harvested for a capacitance swing β̂ < β̂s, while the gray dashed lines
outline a cycle for β̂ > β̂s, that must be avoided as the electric field Emax is exceeded.

V2′′ = V2′ . Consequently, the charge at point Q2′′ can be calculated as:

Q2′′ = β̂C1V2′′ = εEmaxS1
2β̂

β̂
1/4
s + β̂

3/4
s

(S40)

Segment 1”-2” has the same slope as segment 1’-2’ (Eq. S9), and the equation of segment 1”-2” is
consequently given by:

V = − Ω

εS2
1

√
β̂s

Q+ α. (S41)

As we know that the line goes through the point Q2′′ and V2′′ , we can calculate the value of the offset α
and write the equation of the discharge line 1”-2”:

V = − Ω

εS2
1

√
β̂s

Q+
ΩEmax

S1

2

(√
β̂s + β̂

)
β̂
5/4
s + β̂

3/4
s

. (S42)

It can be verified that when β̂ = β̂s, the equation of line 1”-2” becomes that of line 1’-2’ given by eq.
S17. With this equation, we can calculate the coordinates of point 1” which is the intersection with the
isocapacitance line C1:

Frontiers 11



Supplementary Material

V1′′ =
Q1′′

C1
=

Q1′′Ω

εS2
1

= − Ω

εS2
1

√
β̂s

Q1′′ +
ΩEmax

S1

2

(√
β̂s + β̂

)
β̂
5/4
s + β̂

3/4
s

Q1′′Ω

εS2
1

√
β̂s + 1√
β̂s

=
ΩEmax

S1

2

(√
β̂s + β̂

)
β̂
5/4
s + β̂

3/4
s

Q1′ = εEmaxS1

2

(√
β̂s + β̂

)
(√

β̂s + 1

)2
4

√
β̂s

(S43)

V1′ =
EmaxΩ

S1

2

(√
β̂s + β̂

)
(√

β̂s + 1

)2
4

√
β̂s

. (S44)

The values of voltage and charge at points 1” and 2” can then be used to calculate the energy invested for
priming and harvested during charge collection, as well as the resulting net energy density generated per
cycle:

Win =
1

2

(
β̂C1 + Cs

)
V 2
2′ =

εS2
1

2Ω

(
β̂ +

√
β̂s

)
V 2
2′′ (S45)

Wout =
1

2
(C1 + Cs)V

2
1′ =

εS2
1

2Ω

(
1 +

√
β̂s

)
V 2
1′′ (S46)

w =
Wout −Win

Ω
= εE2

max

2
(
β̂ − 1

)(√
β̂s + β̂

)
(√

β̂s + 1

)3√
β̂s

. (S47)
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Figure S3. Normalised (with respect to the constant field cycle) average energy density output of the
set and forget cycle for different parameters of the normal distribution of input capacitance swing (mean
value µ and standard deviation σ. This assumes that the set point of the circuit has been optimised to the
parameters of the normal distribution.

It can be verified that when β̂ = β̂s, the eq. S47 is equivalent to the energy density of the OT cycle
(Eq. 5 from the main manuscript). These equations can then be used to calculate the generated energy
for an energy input following a given statistical distribution. Here we consider a normal distribution of
capacitance swing (see the main article). Provided that the circuit set point is chosen at the optimal value for
the input distribution, then the amount of harvested energy can be quite high compared to the ideal constant
electric field (CE) cycle (Figure S3). For the parameter space considered here, it is comprised between
81% and 90% of the maximal harvestable energy amount. Of course, this assumes that the parameters of
the input distribution are known, so that the circuit can be tuned with the right value of β̂s.

5 EXPERIMENTAL VERIFICATION
An LCR meter (Hioki IM3523) was used to establish the relation between the displacement of the central
hub and the capacitance. Five ramps between 10mm and 70mm and back were performed at 2mms−1

(Figure S4). The DEG membrane is not prestretched and has a bit of slack. It requires an initial offset to
become taut. An analytical model of the form

β =

(
x2 +∆R2

x20 +∆R2

)n

(S48)

is fitted to the experimental capacitance swing data to model the relationship between the physical
displacement of the membrane and capacitance swing β. x is the position of the hub with respect to the
neutral position, ∆R is the difference between the membrane outer radius and the hub radius, x0 is the
displacement offset required to keep the membrane taut, and n accounts for non-linearity. If the DEG
deforms like a cone as illustrated on the inset of figure S4, the value of parameter n should be n = 1.
However, stretching the membrane in the radial direction induces a hoop stress, which affects the shape of
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Figure S4. Measured capacitance of the DEG vs. central hub position for five ramps (blue) and fitted
model (red). The corresponding capacitance swing is indicated in the right axis. Inset: parameter of the
model
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Figure S5. Harvesting cycles for capacitance swings between 1.5 and 4.5 and different values of storage
capacitor

the membrane, as visible in figure 8 of the main manuscript. A fit on the experimental data leads to the
following values: ∆R = 22.6 mm, x0 = 11.6 mm and n = 0.72 (R2 value: 0.9992).

Figure S5 shows the harvesting cycles between β̂ = 1.5 to β̂ = 4.5. 5 cycles are performed and displayed
on the graph for each value of β̂ = 1.5. For each group of 5 cycles, the collected energy (surface of the

14
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Figure S6. harvested energy density for each of the cycles of figure S5, relative to the harvestable energy
as defined by the constant field (CE) cycle. For each value of β̂, the relative energy density for the capacitor
value that is the closes match to the optimal value is indicated with a dotted red frame.
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Figure S7. Left: 200 random values of capacitance swing following a normal distribution with parameters
µ = 2.75 and σ = 0.8. Right: histogram of the distribution.

triangle)is calculated and averaged. The energy density (both absolute and normalise) is shown in figure 9d
of the main article. Figure S6 shows the energy density of each combination of deformation and storage
capacitor relative to that of the constant field cycle. The constant field cycles represents the largest amount
of energy that can be collected without exceeding the defined maximal electric field, and figure S6 therefore
shows the fraction of harvestable energy that is effectively collected by the electronic circuit. Each value
of capacitance swing has an optimal value of capacitance swing. On S6, we have highlighted with a red
frame, the energy density corresponding to a capacitor value that is the closes to the optimal value. In the
range of tested capacitance swing, and with the most appropriate storage capacitor, the fraction of collected
energy is in the range of 86% to 98%.

To test a distribution of capacitance swing, a normal distribution is used, with a mean µ = 2.75 and a
standard deviation σ = 0.8. 200 capacitance swing values β̂ are then generated according to this distribution.
Figure S7 shows one of the distributions used for testing. Each test is made with a new random collection
of 200 capacitance swing values, following the same normal distribution.

Figure S8 shows the generated energy density for the 200 normally-distributed capacitance swing values,
for 4 values of storage capacitors.
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Figure S8. Energy density (left axis) and normalised energy density (right axis) generated for 200 cycles
normally distributes with parametersµ = 2.75 and σ = 0.8, for 4 different values of storage capacitor Cs.
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