Interactions between bacteria obtained from stream biofilms

Vidya Joshua Washington

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy,
The University of Auckland, 2010.
Abstract

Pioneer biofilm forming bacteria are those with enhanced surface attachment properties which dominate initial attachment processes when surfaces in streams become available for colonization. These organisms multiply rapidly, promote assemblage development and are present in the mature biofilm community. The purpose of this research was to identify and describe such fresh water biofilm bacteria, and to investigate cell and metabolite-level interactions between these organisms which contribute to mixed community formation.

A subset of bacteria which displayed enhanced colonisation properties was selected from isolates which were well represented in culturable and molecular 16s rRNA gene-based databases of the stream biofilm culture collection. This included two *Janthinobacterium lividum* isolates (JL1 and JL2), *Pseudomonas costantinii* (PC), *Pseudomonas syringae* (PS), and *Serratia plymuthica* (SP) species. Each isolate displayed characteristic properties in terms of mono species biofilm structure in low nutrient media, JL1 (fluffy ball-shaped microcolonies and thin undifferentiated biofilm component), JL2 (thick undifferentiated sheet-like biofilm), PC (tower-shaped microcolonies), PS (sheet-like biofilm with well-organised voids and spaces) and SP (flat undifferentiated biofilm with good surface coverage).

Population-level responses of pioneer biofilm bacteria to co-culture with a second strain were studied in detail using two defined pairs of bacteria. The first pair, SP and JL1 demonstrated that component colonies grew together and allowed ready mixing of individual populations. The pair of SP and PS consistently maintained a clear separation of colony growth zones. Microscopic analysis of cell-level arrangements of SP and JL1 (organisms detected by Gamma and Beta proteobacteria probe specific fluorescent in situ hybridization respectively) showed that both bacteria maintained their mono culture structures in co-culture, and suggests that the presence of a partner did not change the overall macroscopic biofilm appearance of either strain. The co-culture biofilm of SP and PS bacteria (differentially red and green fluorescent protein labelled) showed SP cells restricted to zones within the PS-dominated biofilm, suggesting PS maintained its overall matrix structure at the expense of SP.

Extracellular metabolite profiling of SP and JL1 showed unique profiles in each mono culture. The co-culture included most of the components of the metabolite profiles of each isolate but at reduced levels. Metabolic profiles and reconstructed metabolic pathways based on metabolite output suggest possible cross-feeding in co-culture and a co-operative interaction between isolates. Extracellular metabolites of SP and PS showed differences in mono culture. The co-
culture metabolite profile was more similar to that of PS than SP, and, some molecules were present at levels higher than the PS mono culture. Nature of secreted metabolites and reconstructed metabolic pathways suggest that the interaction between bacteria of this pair was highly competitive and involved the production of inhibitory molecules.

Interspecies interactions amongst bacteria are known to be important in structuring biofilms and this research provides further knowledge into the complex web of inter bacterial interactions that influence the development of multi-species biofilm communities.
Dedication

This thesis is dedicated to my grandmother Smt. Lakshmi Ammal and parents, the late Shri G. V. Ramachandran and Smt. Saraswathy Ramachandran who always encouraged and inspired me to scale greater heights for the pursuit of knowledge. To my in-laws (my ‘in-grace’ set of parents), the late Shri S. G. Washington and Smt. N. S. Washington for their enormous amount of faith in me and for their generous love and support.

To my husband Joshua Washington for my balanced state of mind and for providing the emotional support, especially when deadlines came crashing down.

To our boys Timothy and Vivian for providing the fun and laughter element all along the way.
Acknowledgements

This PhD has truly come together because of the unstinting help and support of many diverse groups of people, without whom this would truly be a difficult task.

Firstly I would like to thank my supervisor Associate Professor Gillian Lewis for her invaluable guidance, support, and for facilitating the incorporation of novel metabolomics approaches into my research. I am thankful to Dr Silas Villas-Boas for co-supervision with the metabolomics component of my research. Thanks are due to Assoc. Prof. David Greenwood for technical assistance with the FTICR and data analyses, and Dr X. X. Zhang with GFP tagging protocols. I am sincerely grateful for the help rendered to me with microscopic imaging techniques, Adrian Turner (fluorescence and electron microscope), and Jacqui Ross with the confocal system. I appreciate the support extended to me by Dr Gavin Lear with ARISA protocols and proof reading of thesis chapter manuscripts. Administrative support provided by Sue Skelly went a long way in helping me focus on the job at hand.

I wish to thank my colleagues from the environmental microbiology and microbial metabolomics lab for their friendship and support. People from the microbial metabolomics group who deserve mention are Raphael Aggio for help with the pathway profiling program, Xavier Duportet with Genespring software, and, Katie Smart, Tiffany Sue, Morgan Han, Sam Kim, Hank, and Farhana Pinu for welcoming me as part of their group. People from the environmental microbiology group who were my comrades every day of this journey deserve special mention; they are Yimin Dong, Jo Smith, Pierre Ancion, Gavin Lear, and Kelly Roberts. These were the people I leant on during the frequent ‘this doesn’t work’ phases. Kelly Roberts was my first point of contact for a brainstorm and troubleshooting over the umpteen coffee breaks we have had together. Kelly was always available for advice (work and other), reading thesis drafts, and peppeing me up when I felt extremely low. Jo Smith’s attention for detail was extremely useful especially during the formatting of my thesis. Friendships extended by Drs Ramesh Chavan and Navdeep Kaur went a long way in keeping up the pace especially during the writing phases. I consider myself very fortunate and blessed to be surrounded by this bunch of lovely people.

I would particularly like to acknowledge my family, my stronghold, for their sustained patience and understanding on a daily basis over the course of this journey. Support and
advice from my husband Joshua Washington provided emotional balance and helped me stay focussed during the long-haul. It gives my heart great joy and pleasure to mention our boys Tim and Viv for pepping me up with their regular doses of humour, music and of course the ‘special’ hugs. Thanks are due to our friends Vipul and Suzanne Kharat, and the church family for ministering to us during this time.

Finally, thanks to the Lord Jesus Christ for placing all these wonderful people around me, and for carrying me when I could not carry on.
CHAPTER 1: GENERAL INTRODUCTION .. 1

1.1 Biofilms – 'where no one stands alone' .. 1

1.2 Influences of bacterial interactions on biofilm structure and function 1
 1.2.1 Beneficial interactions ... 2
 a) Sharing of ‘metabolic burden’ ... 2
 b) Detoxification of recalcitrant molecules .. 3
 c) Nutrition .. 3
 d) Protection ... 4
 e) Communication amongst bacteria via signal molecules 5
 1.2.2 Negative interactions: chemical warfare via antimicrobial agent production ... 7
 a) Bacteriocins .. 7
 b) Antibiotics .. 8

1.3 Stream biofilms and their role in the environment ... 9

1.4 Biofilm formation .. 10
 1.4.1 Primary colonizers: the pioneer biofilm forming bacteria 11
 1.4.2 Secondary colonizers .. 12

1.5 Methods used to identify pioneer colonizers ... 13

1.6 Tools to monitor biofilm structural development .. 14

1.7 Tools to monitor physiological-level relationships between bacteria 15

1.8 Overall aim of the project .. 16
 1.8.1 Research Aims and Objectives .. 16

1.9 Work detailed in this Project .. 18
CHAPTER 2: MATERIALS AND METHODS

2.1 General

2.1.1 Chemical reagents, stock solutions and buffers

2.1.2 Instruments commonly used

2.1.3 Bacterial culture – growth media and storage

2.1.4 Culture preparation for mixed-species biofilm studies for fluorescence microscopy, relative numbers (ARISA), metabolite-level studies

 a) Fluorescent-labelling and confocal microscopy
 b) Composite samples for ARISA-PCR, enumeration of bacteria in co-culture components of biofilm and supernatant, and metabolite-level investigation

2.1.5 Bacterial enumeration using a spread plate technique

 a) Biofilm (cfu/culture replicate) counts
 b) Biofilm supernatant (cfu/ml) counts

2.2 Methods to determine attributes of bacterial isolates

2.2.1 Motility assays of bacterial isolates

2.2.2 Biofilm methods – Crystal violet biofilm assay protocol

2.3 Molecular biology protocols

2.3.1 DNA extraction methods

 a) Direct DNA extraction by heating
 b) Phosphate, SDS, Chloroform-Bead Beater (PSC-B) method for DNA extraction

2.3.2 PCR amplification

2.3.3 Identification of PCR products by agarose gel electrophoresis

2.3.4 Phylogenetic identity of isolates using DNA sequencing

2.3.5 Evaluation of Automated Ribosomal Intergenic Spacer Analysis (ARISA) to estimate relative proportions of bacteria within mixes

 a) ARISA-PCR amplification conditions
 b) Automated Ribosomal Intergenic Spacer Analysis
 c) Quantification of constituent bacterial ARISA-DNA of total in broth mixes
 d) Estimation of relative cell numbers within biofilms

2.3.6 Fluorescent tagging of biofilm bacteria using the mini Tn7 transposon system

 a) Electroporation of the E. coli JM105 culture with the panel of delivery plasmids
 b) Transformation of biofilm bacteria by GFP/RFP bearing E. coli JM105 culture
c) Verifying the insertion of GFP/RFP genes into parental biofilm bacteria...34

2.4 Microscopy methods..34
 2.4.1 Light microscopy..34
 a) Direct microscopic counting (DMC)..35
 2.4.2 U.V. microscopy – DAPI staining...35
 a) Sample preparation...35
 b) DAPI staining..35
 c) U.V. Microscopy...35
 2.4.3 Confocal microscopy methods...36
 a) Fluorescent In situ Hybridization (FISH)..36
 b) Confocal microscopy of biofilms..37
 2.4.4 Transmission Electron microscopy (TEM) methods..38
 a) Preparation of bacteria-coated grids for EM ..38
 b) Transmission Electron Microscopy..39

2.5 Metabolite-level investigation methods..39
 2.5.1 Isolate setup...39
 2.5.2 Pre-processing of extracellular metabolites..40
 a) Spiking with internal standards...40
 b) Estimation of biomass..40
 c) Estimating bacterial numbers in biofilm and supernatant..41
 2.5.3 Gas Chromatography Mass Spectrometry (GCMS) methods...41
 a) Sample derivatization and spectrometry..41
 b) Data analyses..41
 c) Mass profiles of molecules present in sample..42
 d) Identified metabolite lists..43
 2.5.4 Direct Infusion methods – FT-ICR analyses..43

CHAPTER 3: BIOFILM FORMATION BY PIONEER BIOFILM FORMING BACTERIA...44

3.1 Research aims and objectives..45
 3.1.1 Research Aim...45
 3.1.2 Research Objectives...45

3.2 Results..46
Table of Contents

3.2.1 Selection of the starter library of isolates...46
3.2.2 Biofilm forming capability of bacteria..48
3.2.3 Identification and simple description of pioneer biofilm forming bacteria..........................50
3.2.4 Motility mechanisms and appendages of pioneer biofilm bacteria..........................52
 a) Evaluation of surface translocation capabilities of biofilm bacteria........................52
 b) Electron microscopy studies of biofilm bacteria..53
3.2.5 Biofilm comparisons in two low nutrient media..55
 a) Composition of environmentally-relevant media...56
 b) Enumeration of bacteria - direct microscopic count..57
 c) Macroscopic investigations of biofilms formed by pioneer bacteria.................57
 d) Microscopic observation of biofilms formed by pioneer bacterial isolates........51
3.2.6 Investigation of signaling molecules for biofilm formation by pioneer bacterial isolates...64
 a) Protocol..65

3.3 Discussion..67
 3.3.1 Selection of pioneer biofilm forming bacteria and descriptions............................67
 3.3.2 Characteristics of pioneer biofilm forming bacteria...67
 a) How do these bacteria contact surfaces?..68
 b) Bacterial attachment to surfaces..69
 c) Biofilm development and persistence..69
 3.3.3 Increased biofilm formation by bacteria cultured in stream water..............73

CHAPTER 4: CELL-LEVEL INTERACTIONS BETWEEN PIONEER BIOFILM FORMING BACTERIA..75

4.1 Research Aims and objectives..75
 4.1.1 Research Aim..75
 4.1.2 Research objectives...75

4.2 Results..76
 4.2.1 Macro scale responses of bacteria in co-culture on agar-based media..............76
 a) Experimental protocol: species mixing...76
 b) Response of *Serratia plymuthica* to co-culture...87
 4.2.2 Cell-level co-culture studies using fluorescently labelled organisms...............90
 a) Methodology development..90
 b) Green fluorescent protein labelling using the Mini Tn7 transposon...............90
 c) Fluorescent in situ hybridization (FISH) protocol for labeling bacteria.................96

x
4.2.3 Microscopic evaluation of mixed-species biofilm formation
 a) Modification of bacterial numbers in each co-culture to enable
evaluation of the interaction... 97
 b) Time point for observation of interactions in mixed-species
 biofilms... 97
 c) Spatial cell-level arrangements within co-culture biofilms................. 97
4.2.4 Quantification of component bacteria in mixed-species biofilms........ 103
 a) Counts of component bacteria within the co-cultured biofilm............. 103
 b) Tracking population demographics in a 2-species biofilm using
 Automated Ribosomal Intergenic Spacer Analysis (ARISA)................. 104
4.3 Discussion.. 110
 4.3.1 Methods used... 110
 a) Agar plate-based co-culture... 110
 b) Cell-level fluorescent labeling with GFP/RFP or FISH probes............. 110
 c) Estimation of relative bacterial numbers in co-culture....................... 111
4.3.2 Microbial interactions in co-culture... 112
 a) Macroscale interactions... 113
 b) Microscale interactions... 115
4.3.3 Interpreting relationships between bacteria of each mix.................... 116

CHAPTER 5: INTERACTIONS BETWEEN PIONEER BIOFILM BACTERIA
BASED ON METABOLITE PROFILING TECHNIQUES 120

5.1 Introduction... 120
 5.1.1 Aims and Objectives... 121
5.2 Results.. 122
 5.2.1 Quantification of bacteria contributing to extracellular metabolites.... 122
 5.2.2 Extracellular metabolite profiles... 124
 a) Direct Infusion of extracellular metabolites... 124
 b) Raw GCMS metabolite profiles... 128
5.2.3 GCMS data: Identified metabolite lists.. 137
5.2.4 Specific pathways associated with metabolite differences.................... 141
 a) Significant differences between pathway lists of mono
 and mixed-cultures... 149
5.3 Discussion... 151
 5.3.1 Extracellular metabolite profiling of bacterial co-cultures.................. 151
 a) Relative numbers of bacteria in each co-culture................................. 151
 5.3.2 Extracellular metabolite analysis methodology................................. 152
 a) Direct Infusion methods... 153
Table of Contents

b) GCMS methods provided better separation of data................................. 154
c) Identified metabolites in monocultures... 155
d) Integration with intracellular data will enhance data interpretation... 160

5.3.3 Pathway regulation appears different between the 2 co-cultures........... 160
5.3.4 Inferring relationships between bacteria based on interactions demonstrated in co-cultures................................. 163

CHAPTER 6: CONCLUDING DISCUSSION ... 166

6.1 Extending our understanding to a multi-species community................................. 166
 6.1.1 Characteristic properties of pioneer biofilm forming isolates....................... 167
 a) Heterogeneity in biofilm structure... 167
 b) Characteristic extracellular metabolite profiles.. 170
 6.1.2 Nature of interactions between component bacteria................................. 173
 a) Positive interactions... 173
 b) Negative interactions... 174
 c) Addition of a third strain reduces the degree of competition between two bacteria... 176
 d) Differentiation by Serratia plymuthica in co-culture.. 177

6.2 Conclusions... 180

APPENDICES

Appendix 1: Primer design for confirmation of GFP-transformation of bacterial cultures with the mini Tn7 system... 182
 A1.1 Primer design using database of known related organisms................ 182
 A1.2 Amplification of GFP insert and product detection............................... 184

Appendix 2: Direct infusion mass spectrometry data.. 185

Appendix 3: Lists of identified metabolites from GCMS methods............................. 191

Appendix 4: Comparison of JL1 and PS isolate metabolic pathways based on extracellular identified metabolites.. 195

REFERENCES.. 196
LIST OF FIGURES

Chapter 1
1.1 An aquatic microbial food web showing the important role of the biofilm and linkages between bacteria and other organism... 9

Chapter 3
3.1 Occurrence of candidate bacteria selected to be part of a starter library of isolates........ 47
3.2 Crystal violet stained biofilms of starter library isolates evaluated at 3, 24 and 48 hours.. 49
3.3 Assessment of motility mechanisms exhibited by bacterial isolates 53
3.4 TEM images of pioneer biofilm forming bacteria .. 54
3.5 Crystal violet stained mono species biofilms of bacterial isolates in low-nutrient media.. 59
3.6 Biofilm biomass estimates of mono species biofilms in low nutrient media............... 60
3.7 DAPI-stained biofilm of isolate SP showing bacteria covered by a layer of extracellular polymer... 61
3.8 DAPI stained mono species biofilms of all pioneer biofilm forming bacteria on day 5.. 62
3.9 Morphological appearance of a biofilm of isolate Serratia plymuthica cultured in stream water on day 7 and 19... 64
3.10 Isolate setup used for the detection of signal acyl homoserine lactone molecules by pioneer biofilm forming bacteria... 66

Chapter 4
4.1 Bacterial culture on solid media to allow observation of mixing.............................. 77
4.2 Macro scale interactions of isolates SP and JL1 on agar-based media......................... 79
4.3 Macro scale interactions of isolates SP and JL2 on agar-based media......................... 81
4.4 Macro scale interactions of isolates SP and PC on agar-based media 83
4.5 Macro scale interactions of isolates SP and PS on agar-based media 85
4.6 Scanning electron microscopy image of an ‘erose’ structure.. 88
4.7 GFP tagging of biofilm bacteria using mini Tn 7 transposition.................................... 93
4.8 Mono species biofilms of isolates PS (GFP-pAKN104) and SP (RFP-pAKN132)........ 95
4.9 Confocal microscopy images of mono and mixed-culture biofilms of JL1 and SP bacteria labeled using FISH probes. .. 99
4.10 Confocal microscopy images of mono and co-culture biofilms of GFP and RFP labeled PS and SP bacteria .. 101
4.11 Biofilm bacterial counts as colony forming unit (cfu) per culture replicate in mono and mixed-culture on day 0 and 4 ... 104
4.12 Electropherograms of ARISA-PCR DNA fingerprint profiles of mix 1 (SP+JL1 strains) ... 106
4.13 Standard graphs of ARISA-DNA of mixes of isolates SP and JL1 108

Chapter 5

5.1 Direct Infusion mass spectrometry data of ions identified from metabolites of two bacterial co-cultures .. 125
5.2 Visualization of raw GCMS data of MCF derivatized metabolites 130
5.3 Comparison of raw GCMS data of MCF derivatized metabolites of mix (SP and JL1 isolates) and mix 2 (SP and PS strains) ... 132
5.4 Visualization of raw GCMS data of TMS derivatized metabolites 134
5.5 Comparison of raw GCMS data of TMS derivatized metabolites of mix (SP and JL1 isolates) and mix 2 (SP and PS strains) ... 136
5.6 Significant metabolic pathways (p < 0.005) likely to be activated in mix 1 (SP+JL1 strains) ... 145
5.7 Significant metabolic pathways (p < 0.005) likely to be activated in mix 2 (SP+PS strains) ... 148
LIST OF TABLES

Chapter 2
2.1 Routinely used bacteriological media... 20
2.2 Composition of swim, swarm and twitch media used in the motility assay........... 24
2.3 Details of reagents used for PSC-B DNA extraction.. 26
2.4 Panel of delivery plasmids available with the miniTn7 transposon system............. 31

Chapter 3
3.1 Starter library of stream biofilm isolates for testing of surface attachment properties.. 48
3.2 Crystal violet absorbances (A650) of starter library isolates at 3, 24 and 48 h in R2A broth.. 49
3.3 Identity of pioneer biofilm forming bacteria and colony descriptions.................. 51
3.4 Chemical analyses of low-nutrient media used for bacterial biofilm formation......... 56
3.5 Significant differences (t test p < 0.05) in biofilm biomass for each isolate between two low-nutrient media... 60
3.6 Quorum sensing signal (QSS) production by pioneer biofilm forming bacteria.... 66

Chapter 4
4.1 Responses of pioneer biofilm forming bacteria when cultured with isolate Serratia plymuthica... 78
4.2 Minimum inhibitory concentration (MIC) of gentamicin for biofilm bacteria........ 91
4.3 Conditions at which transconjugants of biofilm bacteria were selected................. 93
4.4 Identifying reliable GFP/RFP plasmids for tagging bacteria for mixed-species biofilm investigation... 94
4.5 ARISA fingerprint profiles of bacteria belonging to each co-culture.................... 105

Chapter 5
5.1 Enumeration of bacteria (cfu per culture replicate) in mix 1 (SP+JL1) and mix 2 (SP+PS) on day 0 and after 4 days of culture.. 123
5.2 Direct infusion spectra of ions detected in mix 1 (SP+JL1 strains)............................ 126
5.3 Direct infusion spectra of ions detected in mix 2 (SP+PS strains)............................ 127
5.4 Significantly different (p < 0.05) identified metabolites in bacterial media of mix 1 (SP+JL1 strains) .. 138

5.5 Significantly different (p < 0.05) identified metabolites in bacterial media of mix 2 (SP+PS strains) .. 140

5.6 Significant (p<0.005) up and down regulated metabolic pathways (36) predicted for bacterial cultures of mix 1 (SP+JL1 strains) ... 143

5.7 Significant up and down regulated metabolic pathways (p<0.005) predicted for bacterial cultures of mix 2 (SP+PS strains) ... 147

5.8 Statistical t‐test values obtained from comparisons of metabolic pathway lists of mono and co‐cultures, and between each mix .. 150

Appendices
A1.1 Key to primers listed in table A1.2 .. 183

A1.2 Details of bacterium‐specific forward primers trialled for use with the Tn7R reverse primer for confirmation of GFP-insert .. 184

A2.1 Direct infusion spectra of ions detected in mix 1 (SP+JL1 strains) .. 185

A2.2 Direct infusion spectra of ions detected in mix2 (SP+PS strains) .. 188

A3.1 Significantly different (p < 0.05) identified metabolites in spent culture of mix 1(SP+JL1 strains) .. 191

A3.2 Significantly different (p < 0.05) identified metabolites in spent culture of mix 2 (SP+PS strains) .. 193

A4.1 Comparison of JL1 and PS isolate metabolic pathways based on extracellular identified metabolites ... 195