

## http://researchspace.auckland.ac.nz

#### ResearchSpace@Auckland

### **Copyright Statement**

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

#### General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the <u>Library Thesis Consent Form</u> and <u>Deposit Licence</u>.

#### **Note : Masters Theses**

The digital copy of a masters thesis is as submitted for examination and contains no corrections. The print copy, usually available in the University Library, may contain corrections made by hand, which have been requested by the supervisor.

# Extracellular polymers of *Acidovorax temperans*

# Björn D. Heijstra

A thesis submitted in partial fulfillment of the requirements of the degree of Doctor of Philosophy in Biological Sciences The University of Auckland New Zealand August 2010

## Abstract

All modern wastewater treatment systems rely on microbial processes for water clarification, with some 70% of systems utilising some form of the activated sludge process. This thesis describes an investigation into the extracellular polymers of a consistent member of the activated sludge microbial community: *Acidovorax temperans*.

Several types of polymers are present on the cellular surface of *A. temperans* which were hypothesised to play a role in cellular and cell-surface interactions. The two morphotypes of *A. temperans* (Hpos and Hneg) were proposed to enable the study of these extracellular polymers in wastewater treatment related processes, such as biofilm formation and flocculation. The initial aim of this research was to chemically characterise and compare the exopolysaccharides produced by the two morphotypes. The results are described in Chapter Three; it was found the Hpos strain consistently produced exopolysaccharides in greater abundance, although exopolysaccharides from both strains shared a similar monosaccharide composition, which in turn, was nutrient dependent.

Due to subsequent findings of large amounts of extracellular DNA in EPS fractions, it was further hypothesised that extracellular DNA is utilised as a structural element in biofilm formation by *A. temperans*. This is described in Chapter Four; enzymatic breakdown of extracellular DNA resulted in impaired biofilm formation. In addition, the presence of Type IV pili was also essential for cellular attachment to surfaces, while the underlying binding mechanism was concluded to be electrostatic. These results add further to the recently emerging notion that extracellular DNA could function as a structural molecule outside the cell.

To date, this is the first reported study on an extracellular DNA and Type IV pili combined attachment mechanism. In addition, this thesis describes the most detailed study to date on exopolysaccharides from a member of the *Comamonadaceae*. An obvious function for *Acidovorax* in the activated sludge environment was not indicated

by these studies on the presence, function and composition of extracellular polymers. However the discovery that eDNA and Type IV pili mediate cell-cell and cell-surface attachment in this organism provides a fertile starting point for investigating the contribution of these interactions to initiation and promotion of flocculation in activated sludge systems.

## Acknowledgements

This PhD project would not have been possible without the funding secured by Dr. S. Turner to support the extensive Bacterial Eco-Genomics research program of which this PhD research was an integral part. I am greatly appreciative for the scientific advice and academic guidance provided during my time in her laboratory. In addition, the very enjoyable and stimulating work environment created by this research group resulted in many great memories and good friends.

I would also like to thank my co-supervisor, Professor Philip Harris, for academic guidance and assistance in the polysaccharide analysis and interpretation.

Essential personal funding was provided by The University of Auckland through a Doctoral Scholarship for which I am very grateful to receive. In addition to this, several contributions and financial awards were secured for conference attendance, most notably the SBS travel fund, the American Society of Microbiology (ASM), the International Society for Microbial Ecology (ISME), the New Zealand Microbiological Society (NZMS) and the Doctoral PReSS account administered by the University of Auckland.

The list of past and present members of the Turner lab group is extensive and several long term members deserve special mention; Dr. Franz Pichler for experimental work on the eDNA subject, manuscript writing guidance and exciting electroporation times. Dr. Charis Shepherd, for proofreading this thesis at incredible pace and for being a great friend. Caroline Brown for isolating the CB2 strain as well as being a great fellow PhD student and aspiring cheese-maker. Duane Knight, in his role as lab manager, kept the laboratory functioning like a well oiled machine, many thanks for all the support! Dr. Sinead Leahy (Agresearch/Auckland University) for the assembly of the *A. temperans* genome and assisting with sequence related inquiries and Dr. Quanfeng Liang and Razel Blaza for constructing the *A. temperans* GFP strain. Dr. Svetlana Boycheva, Dr. Clark Ehlers, Kristi Biswas, Kelvin Lau, Danushka Galappaththige and Anna Lau all contributed to this study through discussions and providing enjoyable times in the laboratory, at conferences, the Leigh marine lab, Bethells and outside under the trees.

I would also like to thank the head of the Microbiology group, Associate Professor Gillian Lewis, whose enthusiasm for the wonderful world that is microbiology has no boundaries, very inspirational indeed. Other people that contributed or assisted in this research are: Collaborators at Agresearch, especially Dr. Silas Villas-Boas for performing a preliminary GC-MS analysis on polysaccharides. Dr. Bronwen Smith, Sreeni Pathirana and Abdullah Lim (Chemistry department) for allowing time on the gas chromatograph and assisting me in the initial monosaccharide analysis. Dr. Geoff Beresford (NZ Racing Laboratory Services, Auckland) for providing access to the NIST05 Masspec database. Dr. Adrian Turner for enhancing the experience that is Electron Microscopy, interesting discussions and sharing his enthusiasm for this exciting field and also for cutting thin sections of glass containing specimens. Justin Goh for cutting thin sections of embedded biofilm. Iain McDonald for excellent photography in Figure 4.2, 4.6, 4.8 and 4.12. Catherine Hobbis for assistance with Cryo-SEM operation. Dr. Ian Sims at Industrial Research Limited in Lower Hutt for the methylation analysis and very informative discussions. Yves Hsieh for carbohydrate isolation discussions. Martin Middleditch for the MALDI-ToF analysis of DNase I and for sharing his expertise on any protein related discussion/research path. Lastly, my good friend Dr. Bertus Beaumont, for extensive inspirational scientific (and beyond) discussions.

I also would like to thank Dr. Judy O'Brien and Selvan Reddy for giving me the opportunity to teach and tutor many other students, very entertaining times indeed.

I owe a big thank you to my current employer Dr. Sean Simpson of LanzaTech and colleagues, for allowing me to finish my unfinished business.

On the social side of PhD life: I thank all supportive members of the SBS Surfclub for their contributions and also Prof. Joerg Kistler for instantly supporting the initiative. Core fanatic saltwater, SBS associated, members are: Louis, Matt, Schannel, Todd, Shelley, and Brendon. I also would like to thank my business partner Richard Bunker for the joint Univend business and the cold hard cash we made, sometimes.

For their unfailing support, far away behind the scenes I would like to thank my parents, Eduard and Jacqueline. They support my goals which, unfortunately, at this stage, puts considerable distance between us. My two sisters, Thamar and Manon for their interest in my pursuits. I also want to thank the McKinnons, for helping to keep a roof over my head and providing a family away from home. Lastly my fantastic wife Sharleen, for her great love, absolutely fantastic baking, extensive support throughout this project and her believe and determination that helped me get to where I am today. Cloggies can do it.

## **Table of Contents**

| ABSTRACT          | Ι   |
|-------------------|-----|
| ACKNOWLEDGEMENTS  | III |
| TABLE OF CONTENTS | VI  |
| ABBREVIATIONS     | X   |
| LIST OF FIGURES   | XI  |
| LIST OF TABLES    | XV  |

## **1 GENERAL INTRODUCTION**

| 1.1 | The biofi | Im mode    | e of life                                                  | 1  |
|-----|-----------|------------|------------------------------------------------------------|----|
| 1.2 | Wastewa   | ater treat | tment                                                      | 4  |
|     | 1.2.1     | Activated  | d sludae                                                   | 4  |
|     |           | 1.2.1.1    | Microbial flocs                                            | 5  |
|     |           | 1.2.1.2    | Cell-cell interactions                                     | 6  |
|     |           | 1.2.1.3    | Surface attachment                                         | 7  |
| 1.3 | Acidovo   | rax temp   | perans                                                     | 8  |
|     | 1.3.1     | Ecology    | of Acidovorax in activated sludge                          | 9  |
|     |           | 1.3.1.1    | A, temperans phenotype variation                           | 10 |
|     |           | 1.3.1.2    | Genome sequence                                            | 10 |
|     |           |            |                                                            |    |
| 1.4 | Exopolys  | sacchari   | des (EPS)                                                  | 11 |
|     | 1.4.1     | Introduct  | ion                                                        | 11 |
|     | 1.4.2     | Gram-ne    | gative cell wall                                           | 12 |
|     |           | 1.4.2.1    | Lipopolyssacharide                                         | 13 |
|     |           | 1.4.2.2    | Lipid A                                                    | 14 |
|     |           | 1.4.2.3    | Core oligosaccharide                                       | 14 |
|     |           | 1.4.2.4    | The O-specific polysaccharide (EPS)                        | 14 |
|     | 1.4.3     | Generall   | y accepted functions of bacterial EPS                      | 16 |
|     |           | 1.4.3.1    | Cell-cell recognition, aggregation and structural function | 17 |
|     |           | 1.4.3.2    | Viral infection/antibiotics                                | 19 |
|     |           | 1.4.3.3    | Nutrition                                                  | 19 |
|     | 1.4.4     | Commer     | cial polysaccharides                                       | 19 |
|     | 1.4.5     | EPS of c   | losely related proteobacteria                              | 20 |
|     |           | 1.4.5.1    | Pseudomonas                                                | 20 |
|     |           | 1.4.5.2    | Rhizobium                                                  | 22 |
|     |           | 1.4.5.3    | Betaproteobacteria                                         | 22 |
|     |           | 1.4.5.4    | Ralstonia                                                  | 22 |
|     |           | 1.4.5.5    | Burkholderiales                                            | 23 |
|     |           | 1.4.5.6    | Leptothrix                                                 | 24 |
|     |           | 1.4.5.7    | Comamonadaceae                                             | 25 |
|     |           | 1.4.5.8    | Summary of EPS compositional studies                       | 26 |

|   |            | 1.4.6                                                                   | Carbohydrate analysis                                                                                                                                                                                                                          | 26                                           |
|---|------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
|   | 1.4        | Researc                                                                 | h Objectives                                                                                                                                                                                                                                   | 29                                           |
| 2 | MAT        | ERIALS                                                                  | AND METHODS                                                                                                                                                                                                                                    | 30                                           |
|   | 2.1        | General                                                                 | buffers and solutions                                                                                                                                                                                                                          | 30                                           |
|   | 2.2        | Microbio<br>2.2.1<br>2.2.2<br>2.2.3<br>2.2.4<br>2.2.5<br>2.2.6<br>2.2.7 | logical methods<br>Bacterial strains and culture conditions<br>Bacterial growth conditions<br>Optical density measurements<br>Glycerol stock preparation<br>Media<br>Gram stain<br>Biofilm assay                                               | 31<br>31<br>32<br>32<br>32<br>33<br>33       |
|   | 2.3        | General<br>2.3.1<br>2.3.2<br>2.3.3<br>2.3.4<br>2.3.5                    | nucleic acids techniques<br>Agarose gel electrophoresis<br>Preparation of plasmid DNA<br>Nucleic acid quantification<br>RNA isolation<br>Genome sequence and random mutagenesis                                                                | 34<br>34<br>34<br>34<br>34<br>35             |
|   | 2.4        | Microsco<br>2.4.1<br>2.4.2<br>2.4.3                                     | Dpe analysisLight microscopyFluorescent microscopyElectron microscopy2.4.3.1Preparation TEM grids2.4.3.2Preparation of bacterial cells for TEM viewing2.4.3.3Embedding of cells in resin2.4.3.4Immuno-labeling of thin sections2.4.3.5Cryo SEM | 36<br>36<br>36<br>36<br>37<br>37<br>38<br>38 |
|   | 2.5        | Protein v                                                               | visualisation and quantification                                                                                                                                                                                                               | 39                                           |
| 3 | ANA<br>PRO | LYSIS (<br>DUCED                                                        | <b>DF EXTRACELLULAR POLYSACCHARIDES<br/>BY <i>Acidovorax temperans</i> CB2</b>                                                                                                                                                                 | 41                                           |
|   | 3.1        | Introduct<br>3.1.1                                                      | tion<br>EPS in activated sludge                                                                                                                                                                                                                | 41<br>42                                     |
|   | 3.2        | Aim                                                                     |                                                                                                                                                                                                                                                | 45                                           |
|   | 3.3        | Material                                                                | s and Methods                                                                                                                                                                                                                                  | 47                                           |
|   |            | 3.3.1                                                                   | EPS Production, harvest and purification<br>3.3.1.1 Bacterial growth<br>3.3.1.2 EPS harvest<br>3.3.1.3 Total carbohydrate assay                                                                                                                | 47<br>47<br>47<br>48                         |

| <ul> <li>3.3.2 Analysis of monosaccharide composition of a state of the state of th</li></ul> | sition 49<br>49<br>y on monosaccharides 50<br>arides to alditol acetates 50<br>) of alditol acetates 51<br>s spectrometry (GC-MS) of 52<br>52<br>53                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.4Results3.4.1A. temperans CB2 growth character3.4.2Light microscopy3.4.3Transmission electron microscopy (3.4.4EPS isolation, purification and recover3.4.4.1Cell growth3.4.4.2EPS isolated and purification3.4.4.3EPS recovery3.4.4.4EPS purification3.4.5Thin layer chromatography of hydro3.4.6Gas chromatography (GC)3.4.6.1Monosaccharide compositi3.4.6.2Analysis of the carbohydra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 55         ristics       55         TEM)       56         very       59         ion       60         lysed EPS       66         rion       70         tion       72         ate composition of the media       73 |
| <ul> <li>3.4.7 Combined gas chromatography-mas</li> <li>3.4.8 Linkage analysis</li> <li>3.4.9 Identification of candidate genes inv<br/>nucleotide sugars</li> <li>3.4.9.1 Glycosyl transferases</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ss spectrometry (GC-MS) 75<br>77<br>rolved in the formation of<br>79<br>81                                                                                                                                        |
| <ul> <li>3.5 Discussion</li> <li>3.5.1 Microscopy</li> <li>3.5.2 EPS isolation and properties</li> <li>3.5.3 EPS composition</li> <li>3.5.4 EPS structure determination</li> <li>3.5.5 EPS related genomic analysis</li> <li>3.5.6 Phase variation</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 83<br>84<br>85<br>86<br>88<br>89<br>90                                                                                                                                                                            |
| THE OCCURRENCE AND FUNCTION OF EX<br>PRODUCED BY <i>Acidovorax temperans</i> CB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CTRACELLULAR DNA292                                                                                                                                                                                               |
| <ul> <li>4.1 Introduction</li> <li>4.1.1 Genetic structure of Type IV pili</li> <li>4.1.2 Acidovorax motility phenotypes</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 92<br>94<br>96                                                                                                                                                                                                    |
| 4.2 Aim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 97                                                                                                                                                                                                                |
| <ul> <li>4.3 Materials and methods</li> <li>4.3.1 Culture conditions</li> <li>4.3.2 Cell attachment assays</li> <li>4.3.3 MALDI-ToF protein analysis of DNa</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 98<br>98<br>98<br>se I 99                                                                                                                                                                                         |

4

|     | 4.4           | Results  |               |                          |                                        | 100   |
|-----|---------------|----------|---------------|--------------------------|----------------------------------------|-------|
|     |               | 4.4.1    | DNase effect  | t of biofilm f           | ormation in microtiter plates          | 100   |
|     |               | 4.4.2    | DNase activi  | ty                       |                                        | 103   |
|     |               | 4.4.3    | Divase purity | /<br>onzvmos or          | o coll viability                       | 104   |
|     |               | 4.4.4    | Attachment t  | o alass wor              |                                        | 100   |
|     |               | 4.4.6    | Disruption of | attached c               | ells with DNase                        | 108   |
|     |               | 4.4.7    | Effect of DNa | ase on attac             | ched cells                             | 109   |
|     |               | 4.4.8    | Mechanism of  | of eDNA att              | achment                                | 110   |
|     |               | 4.4.9    | Role of elect | rostatic inte            | ractions in attachment                 | 113   |
|     |               | 4.4.10   | Relationship  | of eDNA to               | cell density and viability             | 113   |
|     |               |          | 4.4.10.1      | Growth cur               | ve                                     | 115   |
|     |               | 4.4.11.  | VISUAIISATION | of attachm               | ent structures                         | 117   |
|     |               |          | 4.4.11.1      | Eluoroscon               | scopy<br>t microscopy                  | 112   |
|     |               |          | 4.4.11.2      | 4 4 11 2 1               | Visualisation of eDNA                  | 119   |
|     |               |          | 4.4.11.3      | Transmissi               | on electron microscopy                 | 120   |
|     |               |          |               | 4.4.11.3.1               | Antibody labeling                      | 121   |
|     |               |          | 4.4.11.4      | Cryo SEM                 | visualisation of the attachment matrix | 123   |
|     |               |          |               | 4.4.11.4.1               | DNase treatment                        | 126   |
|     | 4 5           | Discussi | <b>~</b> ~    |                          |                                        | 100   |
|     | 4.5           |          |               | a ta idantifu            | ONA mediated attachment                | 128   |
|     |               | 4.5.1    | Bole of eDN   | $\Delta$ in $\Delta$ tom | Perane CB2 Biofilm formation           | 120   |
|     |               | 453      | Attachment t  | n alass woo              |                                        | 130   |
|     |               |          | 4.5.3.1       | Addition of              | DNase                                  | 131   |
|     |               | 4.5.4    | Concentratio  | on and sour              | ce of extracellular DNA                | 133   |
|     |               | 4.5.5    | Mechanism of  | of attachme              | nt                                     | 135   |
|     |               | 4.5.6    | Microscopic   | analysis of              | attachment networks                    | 137   |
|     |               |          |               |                          |                                        |       |
| 5   | CON           | CLUDIN   | IG DISCU      | ISSION                   |                                        | 141   |
|     | 5.1           | Introdu  | ction         |                          |                                        | 141   |
|     | 5.2           | Charac   | terisation o  | f extracell              | ular polysaccharides                   | 141   |
|     | 5.3           | EPS co   | mposition a   | and prope                | rties                                  | 142   |
|     |               |          | •             |                          |                                        |       |
|     | 5.4           | The oc   | currence an   | nd functior              | n of extracellular DNA                 | 145   |
|     | 5.5           | Preven   | tion of attac | chment                   |                                        | 147   |
|     | 5.6           | DNA ve   | ersus EPS     |                          |                                        | 148   |
|     | 5.7           | Final co | onclusion     |                          |                                        | 149   |
| חרי |               |          |               |                          |                                        | . – - |
| KE  | EFERENCES 150 |          |               |                          |                                        | 150   |

# Abbreviations

| AS     | <u>A</u> ctivated <u>S</u> ludge                                                            |
|--------|---------------------------------------------------------------------------------------------|
| AHL    | <u>A</u> cyl <u>h</u> omoserine <u>L</u> actone                                             |
| NTHI   | <u>N</u> on <u>typeable</u> <u>Haemophilus</u> <u>Influenzae</u>                            |
| AFM    | <u>A</u> tomic <u>F</u> orce <u>M</u> icroscopy                                             |
| AHL    | <u>A</u> cyl <u>h</u> omoserine <u>L</u> actones                                            |
| Bcc    | <u>B</u> urkholderia <u>C</u> epacia <u>C</u> omplex                                        |
| BOD    | <u>B</u> iological <u>O</u> xygen <u>D</u> emand                                            |
| CAZY   | <u>C</u> arbohydrate <u>A</u> ctive <u>E</u> nzyme <u>D</u> atabase                         |
| CF     | <u>Cystic</u> <u>F</u> ibrosis                                                              |
| CFU    | <u>C</u> olony <u>Forming U</u> nits                                                        |
| CLSM   | <u>C</u> onfocal <u>L</u> aser <u>S</u> canning <u>M</u> icroscopy                          |
| DLVO   | <u>D</u> erjaguin- <u>L</u> andau- <u>V</u> erweij- <u>O</u> verbeek Theory                 |
| DNase  | <u>D</u> eoxyribo <u>n</u> ucle <u>ase</u>                                                  |
| DO     | Dissolved oxygen                                                                            |
| eDNA   | <u>E</u> xtracellular <u>DNA</u>                                                            |
| EDTA   | <u>E</u> thylene <u>d</u> iamine <u>t</u> etraacetic <u>A</u> cid                           |
| EI     | Electron Impact                                                                             |
| EPS    | <u>E</u> xopoly <u>s</u> accharide / <u>E</u> xtracellular <u>P</u> oly <u>s</u> accharides |
| ERMA   | New Zealand Environmental Risk Management Authority                                         |
| FID    | <u>F</u> lame <u>Ionisation Detector</u>                                                    |
| FISH   | <u>F</u> luorescent <u>in situ hybridisation</u>                                            |
| GalA   | Galacturonic <u>a</u> cid                                                                   |
| Galf   | <u>Gal</u> acto <u>f</u> uranose                                                            |
| GalM   | <u>Gal</u> actose <u>M</u> utarotase                                                        |
| GalN   | <u>G</u> alactosamine                                                                       |
| GC     | <u>G</u> as <u>C</u> hromatography                                                          |
| GC-FID | Gas Chromatography-Flame Ionisation Detector                                                |
| GC-MS  | <u>G</u> as <u>C</u> hromatography- <u>M</u> ass <u>S</u> pectrometry                       |
| GLC    | <u>G</u> as- <u>L</u> iquid <u>C</u> hromatography                                          |
| GLC    | <u>G</u> as- <u>L</u> iquid <u>C</u> hromatography                                          |
| GlcN   | <u>Gl</u> u <u>c</u> osamine                                                                |
| GT     | <u>G</u> lycosyl <u>t</u> ransferase                                                        |
| GW     | <u>G</u> lass <u>W</u> ool                                                                  |

| Hneg                | <u>H</u> alo <u>neg</u> ative                                                                                                                                                         |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hpos                | <u>H</u> alo <u>pos</u> itive                                                                                                                                                         |
| JGI                 | Joint Genome Institute                                                                                                                                                                |
| KDO                 | 3-deoxy-D-manno-octulosonic acid                                                                                                                                                      |
| LPS<br>MALDI-ToF MS | <u>L</u> ipopoly <u>s</u> accharide<br><u>M</u> atrix <u>A</u> ssisted <u>L</u> aser <u>D</u> esorption <u>T</u> ime- <u>o</u> f- <u>F</u> light <u>M</u> ass<br><u>S</u> pectrometry |
| MS                  | <u>Mass</u> <u>Spectrometry</u>                                                                                                                                                       |
| MurNAc              | <u>N</u> - <u>ac</u> etyl <u>mur</u> amic acid                                                                                                                                        |
| NETs                | <u>N</u> eutrophil <u>e</u> xtracellular <u>t</u> raps                                                                                                                                |
| NMR                 | <u>N</u> uclear <u>M</u> agnetic <u>R</u> esonance                                                                                                                                    |
| NTHI                | <u>N</u> on <u>t</u> ypeable <u>H</u> aemophilus <u>I</u> nfluenzae                                                                                                                   |
| ОМ                  | Outer Membrane                                                                                                                                                                        |
| р                   | <u>P</u> yranose                                                                                                                                                                      |
| PG                  | <u>P</u> eptidoglycan                                                                                                                                                                 |
| pН                  | Potenz <u>H</u> ydrogen                                                                                                                                                               |
| PHA                 | <u>P</u> oly <u>h</u> ydroxyl <u>a</u> lkanoates                                                                                                                                      |
| PM                  | <u>P</u> lasma <u>m</u> embrane                                                                                                                                                       |
| RAS                 | <u>R</u> eturned <u>A</u> ctivated <u>S</u> ludge                                                                                                                                     |
| RNase               | <u>R</u> ibo <u>n</u> ucle <u>ase</u>                                                                                                                                                 |
| rRNA                | <u>R</u> ibosomal <u>R</u> ibo <u>n</u> ucleic <u>A</u> cid                                                                                                                           |
| SDS                 | <u>S</u> odium <u>D</u> odecyl <u>S</u> ulfate                                                                                                                                        |
| SDS-PAGE            | Sodium Dodecyl Sulphate–Polyacrylamide Gel Electrophoresis                                                                                                                            |
| SEM                 | Scanning Electron Microscopy                                                                                                                                                          |
| SN                  | <u>S</u> uper <u>n</u> atant                                                                                                                                                          |
| TCA                 | <u>T</u> ri <u>c</u> arboxylic <u>A</u> cid                                                                                                                                           |
| TEM                 | <u>Transmission Electron Microscopy</u>                                                                                                                                               |
| TFA                 | <u>T</u> ri <u>f</u> luoroacetic <u>A</u> cid                                                                                                                                         |
| TLC                 | <u>T</u> hin <u>L</u> ayer <u>C</u> hromatography                                                                                                                                     |
| TMS                 | O- <u>t</u> ri <u>m</u> ethyl <u>s</u> ilyl ethers                                                                                                                                    |
| TMV                 | <u>T</u> obacco <u>M</u> osaic <u>V</u> irus                                                                                                                                          |
| und-P               | <u>und</u> ecaprenyl <u>P</u> hosphate                                                                                                                                                |
| WWTP                | <u>W</u> aste <u>w</u> ater <u>T</u> reatment <u>P</u> lant                                                                                                                           |

# **List of Figures**

|              |                                                                            | Page |
|--------------|----------------------------------------------------------------------------|------|
| Figure 1.1:  | Contemporary model for biofilm formation.                                  | 2    |
| Figure 1.2:  | Schematic of the activated sludge wastewater treatment process.            | 4    |
| Figure 1.3:  | Diagram of the variation of free energy in relation to increasing particle |      |
|              | separation according to the DLVO theory.                                   | 7    |
| Figure 1.4   | Phenotypic differences between A. temperans CB2 Hpos and Hneg              |      |
|              | phenotypes.                                                                | 10   |
| Figure 1.5:  | Major components of a typical Gram-negative cell wall.                     | 13   |
| Figure 1.6:  | Composition of Gram negative cell wall.                                    | 16   |
| Figure 1.7:  | Primary Xanthan gum polymer unit.                                          | 20   |
| Figure 1.8:  | Primary EPS structure Ralstonia pickettii.                                 | 22   |
| Figure 1.9:  | Primary EPS structure of Burkholderia cepacia.                             | 23   |
| Figure 1.10: | Primary EPS structure of Leptothrix cholodnii.                             | 24   |
| Figure 1.11: | Phylogenetic neighbourhood joining tree showing relationships among        |      |
|              | members of the family Comamonadaceae.                                      | 25   |
| Figure 3.1:  | Molecular structure of Zooglan.                                            | 43   |
| Figure 3.2:  | Gram stained A. temperans Hpos.                                            | 55   |
| Figure 3.3:  | TEM image of <i>A. temperans</i> Hpos.                                     | 56   |
| Figure 3.4:  | TEM image of <i>A. temperans</i> Hpos.                                     | 57   |
| Figure 3.5:  | TEM of a thin section of an A. temperans Hpos colony.                      | 58   |
| Figure 3.6:  | Cell harvest from agar plates after 7 days incubation.                     | 60   |
| Figure 3.7:  | Agarose gel (1%) loaded with EPS purification fractions.                   | 61   |
| Figure 3.8:  | EPS purification recoveries.                                               | 63   |
| Figure 3.9:  | Freeze dried EPS isolated from A. temperans Hpos.                          | 65   |
| Figure 3.10: | TLC of hydrolysed EPS isolated from A. temperans Hpos.                     | 67   |
| Figure 3.11: | TLC of hydrolysed RNA.                                                     | 69   |
| Figure 3.12: | Chromatogram of the monosaccharide standard reference mixture.             | 70   |
| Figure 3.13: | Two chromatograms of alditol acetates derived from EPS.                    | 72   |
| Figure 3.14: | Monosaccharide composition of A. temperans EPS.                            | 73   |
| Figure 3.15: | Four chromatograms of alditol acetates derived from acid hydrolysed        |      |
|              | medium.                                                                    | 74   |
| Figure 3.16: | Comparison of the monosaccharide composition of the media and EPS.         | 75   |
| Figure 3.17: | Electron Impact mass spectra of the alditol acetates derived from the      |      |
|              | monosaccharides; ribose, rhamnose, glucose.                                | 76   |
| Figure 3.18: | Electron Impact mass spectrum of D-mannitol hexaacetate.                   | 77   |

| Figure 3.19: | Schematic representation of pathways and corresponding genes involved        |     |
|--------------|------------------------------------------------------------------------------|-----|
|              | in the conversion of glucose 1-phosphate into nucleotide sugars.             | 80  |
| Figure 3.20: | Genomic location and orientation of the two main clusters                    |     |
|              | of glycosyl transferases located in the A. temperans genome.                 | 81  |
| Figure 3.21: | Phylogenetic dendogram showing the position of A. temperans among the        |     |
|              | type strains of recognised Acidovorax and related species.                   | 82  |
| Figure 4.1:  | Genetic distribution and organisation of Type IV pili biogenesis genes in A. |     |
|              | temperans CB2 plus four other Betaproteobacteria.                            | 95  |
| Figure 4.2:  | The influence of DNase on biofilm formation of A. temperans CB2 Hpos.        | 100 |
| Figure 4.3:  | Quantification of unattached cells and crystal violet-stained biofilm.       | 101 |
| Figure 4.4:  | Microscopy images of A. temperans CB2 Hpos biofilm formation after 23        |     |
|              | hours of growth.                                                             | 102 |
| Figure 4.5:  | DNase digestion of DNA and RNA in R2A broth.                                 | 104 |
| Figure 4.6:  | Coomassie blue stained 12% SDS protein gel loaded with DNase I.              | 105 |
| Figure 4.7:  | CFU counts of A. temperans cultures after 30 min enzymatic treatment.        | 106 |
| Figure 4.8:  | The influence of DNase on the attachment of A. temperans to glass wool.      | 107 |
| Figure 4.9:  | The effect of DNase on the establishment of A. temperans attachment to       |     |
|              | glass wool.                                                                  | 108 |
| Figure 4.10: | Effect of broth supplements on A. temperans CB2 Hpos attachment to           |     |
|              | glass wool.                                                                  | 109 |
| Figure 4.11: | Transmission electron microscopy of A. temperans Type IV pili.               | 110 |
| Figure 4.12: | A. temperans Halo distribution on a nutrient gradient agar plate.            | 111 |
| Figure 4.13: | A. temperans pilB mutant impaired attachment to glass wool.                  | 112 |
| Figure 4.14: | Influence of magnesium and sodium chloride A. temperans attachment           |     |
|              | to glass wool.                                                               | 113 |
| Figure 4.15: | Incubation and culture age for eDNA, CFU and live/dead measurments           | 114 |
| Figure 4.16: | A. temperans viable counts.                                                  | 115 |
| Figure 4.17: | Relationship between live/dead ratio and eDNA concentration.                 | 116 |
| Figure 4.18: | Relationship between eDNA concentration and ghost count.                     | 117 |
| Figure 4.19: | Glass wool attached and DNase treated culture.                               | 118 |
| Figure 4.20: | Glass wool attached cells stained with fluorescent live/dead stain.          | 118 |
| Figure 4.21: | A. temperans GFP strain attached to a glass wool fibre.                      | 119 |
| Figure 4.22: | A. temperans GFP strain stained with ethidium homodimer-2.                   | 120 |
| Figure 4.23: | Negatively stained A. temperans CB2 indicating vesicles.                     | 121 |
| Figure 4.24: | Thin section of A. temperans attached to glass wool.                         | 121 |
| Figure 4.25: | Thin section of A. temperans attached to glass wool, antibody labeled.       | 122 |
| Figure 4.26: | TEM image of tobacco mosaic virus (TMV).                                     | 122 |

| Figure 4.27: | Thin section of A. temperans, antibody labeled.               | 123 |
|--------------|---------------------------------------------------------------|-----|
| Figure 4.28: | Cryo SEM of A. temperans CB2 attached to glass wool, 69x.     | 124 |
| Figure 4.29: | Cryo SEM of A. temperans CB2 attached to glass wool, 350x.    | 123 |
| Figure 4.30: | Cryo SEM of A. temperans CB2 attached to glass wool, 5,000x.  | 125 |
| Figure 4.31: | Cryo SEM of A. temperans CB2 attached to glass wool, 25,000x. | 125 |
| Figure 4.32: | Cryo SEM of A. temperans CB2 attached to glass wool, 2 min    |     |
|              | DNase treated, 1,500x.                                        | 126 |
| Figure 4.33: | Cryo SEM of A. temperans CB2 attached to glass wool, 2 min    |     |
|              | DNase treated, 10,000x.                                       | 126 |
| Figure 4.34: | Cryo SEM of A. temperans CB2 attached to glass wool, 10 min   |     |
|              | DNase treated, 3,500x.                                        | 127 |
| Figure 4.35: | Cryo SEM of A. temperans CB2 attached to glass wool, 10 min   |     |
|              | DNase treated, 15,000x.                                       | 127 |

# 0.6 List of Tables

|            |                                                                           | Page |
|------------|---------------------------------------------------------------------------|------|
| Table 1.1: | Glycosyl linkages of $\beta$ -D-glucopyranose reported in the literature. | 27   |
| Table 2.1: | Commonly used reagents and buffers.                                       | 30   |
| Table 2.2: | Organisms used in this study.                                             | 31   |
| Table 2.3: | Media used in this study.                                                 | 33   |
| Table 2.4: | SDS polyacrylamide gel electrophoresis (SDS-PAGE) solutions.              | 40   |
| Table 3.1: | Dry weight recovery of EPS.                                               | 62   |
| Table 3.2: | EPS purification results.                                                 | 64   |
| Table 3.3: | Purified EPS fractions.                                                   | 65   |
| Table 3.4: | Monosaccharides found in EPS hydrolysate.                                 | 68   |
| Table 3.5: | Order of elution for the reference alditol acetate mixture.               | 71   |
| Table 3.6: | Glycosyl linkages in A. temperans EPS.                                    | 78   |
| Table 3.7: | A. temperans genes involved in formation of nucleotide sugars.            | 80   |
| Table 3.8: | Abundance of glycosyltransferase family genes, across four closely rel    | ated |
|            | sequences.                                                                | 83   |
| Table 4.1: | A. temperans Tn5 pili mutants.                                            | 112  |