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Abstract 

All modern wastewater treatment systems rely on microbial processes for water 

clarification, with some 70% of systems utilising some form of the activated sludge 

process. This thesis describes an investigation into the extracellular polymers of a 

consistent member of the activated sludge microbial community: Acidovorax temperans. 

 

Several types of polymers are present on the cellular surface of A. temperans which were 

hypothesised to play a role in cellular and cell-surface interactions. The two morphotypes 

of A. temperans (Hpos and Hneg) were proposed to enable the study of these 

extracellular polymers in wastewater treatment related processes, such as biofilm 

formation and flocculation. The initial aim of this research was to chemically 

characterise and compare the exopolysaccharides produced by the two morphotypes. The 

results are described in Chapter Three; it was found the Hpos strain consistently 

produced exopolysaccharides in greater abundance, although exopolysaccharides from 

both strains shared a similar monosaccharide composition, which in turn, was nutrient 

dependent. 

 

Due to subsequent findings of large amounts of extracellular DNA in EPS fractions, it 

was further hypothesised that extracellular DNA is utilised as a structural element in 

biofilm formation by A. temperans. This is described in Chapter Four; enzymatic 

breakdown of extracellular DNA resulted in impaired biofilm formation. In addition, the 

presence of Type IV pili was also essential for cellular attachment to surfaces, while the 

underlying binding mechanism was concluded to be electrostatic. These results add 

further to the recently emerging notion that extracellular DNA could function as a 

structural molecule outside the cell. 

 

To date, this is the first reported study on an extracellular DNA and Type IV pili 

combined attachment mechanism. In addition, this thesis describes the most detailed 

study to date on exopolysaccharides from a member of the Comamonadaceae. An 

obvious function for Acidovorax in the activated sludge environment was not indicated 
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by these studies on the presence, function and composition of extracellular polymers. 

However the discovery that eDNA and Type IV pili mediate cell-cell and cell-surface 

attachment in this organism provides a fertile starting point for investigating the 

contribution of these interactions to initiation and promotion of flocculation in activated 

sludge systems.   
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