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Abstract
Therapeutic hypothermia (TH) is now a standard treatment 
for infants with moderate-to-severe neonatal encephalopa-
thy (NE), and improves brain damage on neuroimaging and 
neurodevelopmental outcomes. Critically, for effective neu-
roprotection, hypothermia should be started within 6 h from 
birth. There is compelling evidence to suggest that a propor-
tion of infants with mild NE have material risk of developing 
brain damage and poor outcomes. This cohort is increasing-
ly being offered TH, despite lack of trial evidence for its ben-
efit. In current practice, infants need to be diagnosed within 
6 h of birth for therapeutic treatment, compared to retro-
spective NE grading in the pre-hypothermia era. This pres-
ents challenges as NE is a dynamic brain disorder that can 
worsen or resolve over time. Neurological symptoms of NE 
can be difficult to discern in the first few hours after birth, 
and confounded by analgesics and anesthetic treatment. 
Using current enrolment criteria, a significant number of in-
fants with NE that would benefit from hypothermia are not 

treated, and vice versa, some infants receive hypothermia 
when its benefit will be limited. Better biomarkers are need-
ed to further improve management and treatment of these 
neonates. In the present review, we examine the latest re-
search, and highlight a central limitation of most current bio-
markers: that their predictive value is consistently greatest 
after most neuroprotective therapies are no longer effective.

© 2022 The Author(s).
Published by S. Karger AG, Basel

Introduction

Perinatal brain injury from oxygen deprivation (hy-
poxia-ischemia, HI) at birth occurs in 1–4 live-born ba-
bies per 1,000 deliveries at term, and is a leading cause of 
neonatal encephalopathy (NE), and subsequent death or 
disability such as vision and hearing loss, and neurocog-
nitive and behavioral impairments including cerebral 
palsy (CP) [1]. Further, infants with NE who do not de-
velop CP still have lower IQ, perceptual reasoning, and 
verbal comprehension [2]. Therapeutic hypothermia 
(TH) is now routine care for infants with moderate-se-
vere NE, to reduce death or disability [3], but needs to be 
started within 6 h from birth for effective neuroprotec-
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tion. This corresponds with a latent phase after reperfu-
sion from HI that lasts ∼1–6 h, when brain metabolism 
transiently recovers but pathological intracellular mecha-
nisms can be triggered, leading to mitochondrial dys-
function and delayed bulk cell death in the brain from 
∼12 to 72 h [4]. Interestingly, the rates of death or dis-
ability after TH were just 29% in a recent large controlled 
trial, compared with 44% in the first NICHD-NRN cool-
ing trial [5]. This likely reflects multiple factors, including 
better monitoring, greater care to avoid pyrexia, a higher 
proportion of neonates with moderate NE being cooled 
now, greater experience with TH for these sick infants 
and related clinical care, and earlier initiation of TH.

Critically, the need to start TH as soon as possible from 
birth means that rapid identification of infants with NE 
has become a pressing clinical issue. Before TH, the grad-
ing of NE was made in retrospect with serial neurological 
assessments in the first week of life, typically using Sarnat 
staging, adjunct electroencephalograph (EEG) monitor-
ing, and magnetic resonance imaging (MRI) [6]. Instead, 
clinical assessment of possible NE is now conducted with-
in 6 h from birth, in order to start cooling infants as early 
as possible within the therapeutic window for neuropro-
tection. This is challenging, as NE is a dynamic brain dis-
order that evolves over time [7]. Indeed, a small retrospec-
tive study showed that 7 of 11 of infants diagnosed with 
mild NE within 6 h of birth progressed to moderate NE 
later [8]. However, there is compelling evidence that a 
proportion of infants with mild NE have high risk of poor 
neurodevelopmental outcomes [9]. In response, there has 
been therapeutic drift such that ∼38% of these neonates 
are now offered TH [10], despite lack of evidence from 
clinical trials. An ideal biomarker would establish the se-
verity of NE, and determine long-term prognosis in the 
first hours after birth. In addition, it will inform on re-
sponse to treatment for clinical decision-making. In this 
review, we synthesize the latest literature in the field, and 
discuss the merits and limitations of prominent tools and 
potential biomarkers for predicting outcome. All studies 
that were sourced for this review are detailed in Table 1, 
including estimates of predictive value.

Apgar Score

The Apgar clinical assessment of infants’ condition at 
birth is routinely performed in neonatal care, and most 
studies have used it as a pre-qualification criterion for 
TH. This score mainly reflects the extent and duration of 
resuscitation. The score is associated with outcome, but 

at 5 min has low sensitivity and specificity [11]. Histori-
cally, need for continuing resuscitation at 10 min was as-
sociated with worse outcomes. In the NICHD-NRN con-
trolled cooling trial, low 10-min Apgar scores (0–3) were 
associated with death or disability in 64/85 (75%) infants. 
Nevertheless, ∼21% of infants with 10-min Apgar scores 
of 0 survived without disability to school age [12]. Criti-
cally, the risk of death or disability was significantly low-
er in cooled infants with Apgar scores of 0–3, showing 
that prognosis of infants with even very prolonged resus-
citation is improving. By comparison, profoundly de-
pressed 10-min Apgar scores are uncommon in infants 
with mild NE at birth [13].

Neurological Exam

Modified Sarnat and Thompson scoring (SS and TS) 
of infant’s neurological state are very helpful to categorize 
severity of neurological dysfunction into 3 stages of NE; 
mild (I), moderate (II), and severe (III) NE. SS is the pre-
dominant tool for infant qualification for TH [14], where-
as the TS is popular in resource-limited settings, and used 
as adjunct to SS to confirm NE grading or as a qualifying 
factor for TH [15, 16]. Short-term improvement in SS or 
TS are predictive of long-term outcomes [17, 18], and ef-
forts are being made to further refine SS criteria [6].

Nevertheless, the existing methods can be pragmati-
cally useful for identifying risk of disability. In the PRIME 
study, a recent multicenter, prospective study of untreat-
ed mild NE defined as one or more abnormalities on the 
modified Sarnat examination within 6 h of birth but not 
enough to meet criteria for cooling, 7/43 (16%) infants 
had disability at 18–22 months [19]. Only one infant had 
CP and 2 had autism. Notably, 17/43 had Bayley scores 
<85 in one or more of the cognition, motor, or language 
domains. The median total Sarnat score (the sum of the 
subcategories of the modified Sarnat examination) was 
greater in infants who went on to develop disability than 
those who did not (median 7 [IQR, 5–7] vs. median 4 
[IQR, 2–5]) [20]. Although not perfect, a total Sarnat 
score of ≥5 predicted risk of disability with an area under 
the curve of 0.83 (p = 0.004).

Acid-Base Balance

The most common biomarkers for infants with hypox-
ic-ischemic NE are pH and base deficit (BD) obtained 
from cord or neonatal blood. Clinical guidelines for TH 
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generally recommend prequalification cut-off values of a 
pH <7.0 or a base deficit of ≥16 mM. Population-based 
studies indicate that raising the threshold pH <7.1 is less 
specific [21, 22], but would capture more infants with 
moderate to severe NE, and presumptively more mild NE 
[7]. Although the extremes of BD measurement (e.g., BD 
>18 mM or conversely BD <10–12 mM) correlate with 
high and low risk of NE, intermediate BD values have 
variable outcomes [23, 24].

Neurobiochemical Markers

Neurobiochemical markers have been of particular in-
terest for prediction in infants with NE [25]. Most of these 
biomarkers are structural proteins that provide neuronal 
and axonal support, and traumatic events that compro-
mise neuronal integrity can trigger their release into in-
terstitial cell fluid, cerebrospinal fluid (csf) and the circu-
lation [25, 26]. Multiple markers have been examined in 
animal and clinical studies. The focus of this review is on 
the latest clinical research of bedside biomarkers of out-
come.

S100B, NSE, and NfL Neuroproteins
S100 calcium-binding protein-beta (S100B) is ex-

pressed in astroglial and certain neuronal populations, 
and neurofilament light chain protein (NfL) and neuron-
specific enolase (NSE) are a protein filament and glyco-
lytic enzyme found in the neuronal cytoplasm. Small co-
hort studies in normothermia and hypothermia-treated 
infants show these protein concentrations become elevat-
ed in NE and correlate with outcomes [25]. For example, 
higher S100B levels in cord blood at birth from infants (n 
= 13) with moderate-severe NE correlated with acidosis, 
amplitude-integrated EEG (aEEG) pattern and NE sever-
ity, and death or disability at 6 years of follow-up, com-
pared to healthy (n = 21) infants [27]. Elevated CSF-NSE 
levels <72 h of birth were predictive of seizure burden and 
abnormal findings in aEEG, MRI, and neurodevelopment 
in infants with mild-severe NE, with the most accurate 
CSF-NSE cut-off level for poor outcome in survivors be-
ing 108 ng/mL compared with 50 ng/mL in normal in-
fants [28]. In a clinical trial of moderate-severe NE term 
infants, serum S100B and NSE concentrations during 
whole-body cooling (at 0, 12, 24, and 72 h) also correlated 
with basal ganglia, global and cortical damage on MRI (at 
7–10 days), and short-term neurological outcomes [29]. 
Overall, the findings are consistent between studies [25, 
30].

Plasma NfL levels after TH had started, and before and 
after rewarming, were higher in cooled infants with mod-
erate-severe NE and unfavorable outcome on neuroim-
aging than in cases with mild NE and cooled infants that 
had a favorable outcome, with a cut-off level >29 pg/mL 
at 24 h being predictive of unfavorable outcome (sensitiv-
ity 77%, specificity 69%) [31, 32]. Further, cord blood NfL 
and Tau protein levels were elevated in term infants with 
birth asphyxia, although not just in infants that developed 
NE [33]. Other potential biomarkers include monocyte 
chemotactic protein-1, osteopontin, secretoneurin, Ac-
tivin A (AvA), and neuronal exosomes [34, 35]. AvA is a 
member of the transforming growth-factor B super-fam-
ily (TGF-B) with increased csf, serum, and urine levels in 
infants with moderate-to-severe NE compared with mild 
NE and healthy infants [30]. However, recent findings 
suggest that cord blood AvA protein and Acvr2b mRNA 
are not reliable biomarkers [36].

Tau Protein, Ubiquitin C-terminal Hydrolase L1, and 
Oxidative Stress Markers
Tau protein is expressed in neurons, astrocytes, and 

oligodendrocytes, and is a known neurobiomarker for 
neurodegenerative diseases. It has a critical role in micro-
tubule stabilization, and so contributes to cell signaling, 
and synaptic and genomic regulation [26]. Common 
tauopathies such as Alzheimer’s and Pick’s disease are 
characterized by pathological deposition of tau protein in 
the brain [37]. Recent studies suggest that tau protein also 
has predictive value after perinatal HI. Plasma and serum 
tau protein levels within 24 h of birth were higher in in-
fants with severe NE than infants with moderate NE, and 
in cases with poor neuroimaging findings and neurode-
velopmental delay [38, 39]. Interestingly, lower serum tau 
correlated with improved short-term behavioral scores in 
NE infants treated with rEpo (200 IU/kg, daily from 2 to 
10 days of birth) plus therapeutic cooling, compared with 
infants treated with hypothermia alone [40]. Finally, in 
cooled infants, tau protein was a late predictive marker 
(72–96 h) for brain damage on MRI and adverse neuro-
logical outcome [41]. Ubiquitin C-terminal hydrolase L1 
is a neuron-specific, deubiquitinating enzyme that facili-
tates removal of pathological proteins, which helps main-
tain neuronal and axonal health. Like tau protein, its ex-
pression is increased after brain trauma in adult and pe-
diatric patients. However, overall, recent neonatal 
evidence on outcome prediction has been disappointing 
[42–44].

Reactive oxygen species increase during and after HI, 
and can overwhelm neonatal antioxidant mechanisms 
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and lead to oxidative stress and brain damage [4]. Thus, 
oxidative stress markers may be good biomarkers for pre-
diction of outcome [45]. In infants with perinatal asphyx-
ia, malondialdehyde (MDA) and protein carbonyl con-
centrations at birth and at 48 h of life correlated with sei-
zure burden, mortality, and degree of NE (SS grade I vs. 
II vs. III), but not developmental delay [46, 47]. Changes 
before, during, and after TH in lipid peroxidation mark-
ers such as total isoprostanoids and 15(RS)-15-F2t-IsoP 
also correlated with lesions on MRI (at 4–8 days) in in-
fants with NE [48]. Further, superoxide-dismutase and 
MDA levels were elevated at 6–14 h in infants with stage 
II–III NE, whereas vitamin D3 was lower compared with 
healthy control infants [49].

Consistent with this, serum selenium, a glutathione 
peroxidase constituent that is vital to anti-oxidant func-
tion, was reduced within 48 h in newborns with NE, and 
lowest in patients with severe NE [50]. Of note, elevated 
total hydroperoxides were reduced in hypothermia-treat-
ed infants with NE compared with infants that received 
normothermia [51]. Superoxide-dismutase and MDA 
levels also recovered during head cooling for 72 h, and 
were associated with greater scores on the Neonatal Be-
havioral Neurological Assessment (NBNA) at 3, 7, and 10 
days of life, and Bayley-III scores at 8 months of age [52]. 
Of course, this functional improvement likely reflects the 
broad protective effects of hypothermia, rather than be-
ing mediated by anti-oxidant effects. A large prospective 
clinical trial in infants with grade II–III NE is recruiting 
(clinical trials identifier: NCT03162653) that will assess 
the effects of the oxygen free radical scavenger, allopuri-
nol, in addition to TH on death or disability at 2 years of 
age, aEEG, and brain injury on MRI and ultrasound [53]. 
Peroxidation products in blood will also be measured as 
a marker of brain damage.

GFAP and Inflammation Markers
Glial fibrillary acidic protein (GFAP) is the main inter-

mediate filament protein that supports the astroglial cy-
toskeleton. It is specific to the central nervous system and 
is released after HI. Evidence that it can predict neuro-
logical outcome in neonates is mixed, as reviewed [26, 
30]. For example, serum GFAP concentrations were ele-
vated within 6 h of birth and in the first week of life in 
infants with grade II–III NE and abnormal MRI findings 
[54]. Supporting this, increased serum GFAP levels were 
found at 24 and 72 h of life in infants who either died or 
had unfavorable outcome on neuroimaging (at 5–14 
days), with a sensitivity of 87.5% and specificity of 82% at 
rewarming from TH [55]. By contrast, there was no dif-

ference in cord blood GFAP levels within 3 h of birth be-
tween infants born with perinatal asphyxia and NE (n = 
86) and infants who had uncomplicated births (n = 83) 
[42, 56]. Serum GFAP concentration also was not predic-
tive in infants with NE before (<6 h of life) or during TH, 
or in NE infants who did not qualify for TH [41, 43, 57]. 
Overall, these findings suggest that in isolation serum 
GFAP is not a reliable marker for guiding treatment or 
prognosis after NE.

There is consistent evidence that perinatal HI increas-
es cytokine expression in the developing brain and circu-
lation. Elevated levels of tumor necrosis factor-alpha, 
interferon-γ, and various interleukins (IL) such as IL-1ß, 
IL-6, IL-8, IL-10, and IL-13 have been reported in infants 
with NE, and shown to correlate with outcome measures 
[39, 58]. For example, increased plasma IL-6, 8, and 10 
concentrations within 24 h of life predicted death or se-
vere MRI-defined brain damage (at 4–7 days) in infants 
with NE who underwent TH. The combination of these 
biomarkers were more predictive than each of these cyto-
kines alone, with an accuracy of ∼78% [41]. In support of 
this, Pang et al. [59] also reported increased IL-6 and 10 
levels in infants with NE compared with non-NE controls 
(159 vs. 157 infants), with IL-10 elevation within 12 h of 
birth being predictive of NE severity, mortality, and early 
childhood outcomes (OR 2.28, 95% CI: 1.35–3.86) [59]. 
In term infants with NE, serum IL-8 levels on days 1 and 
2 of life also predicted infant death and NE grade II–III, 
whereas changes at 2 and 6–7 days of life in granulocyte-
macrophage-colony-stimulating-factor were associated 
with abnormal MRI findings and Bayley-III scores at 2 
years [60].

Finally, in a follow-up study of  the NICHD random-
ized controlled trial of TH for NE [61], regulated-upon-
activation-normal-T-cell-expressed-and-secreted and 
monocyte chemotactic protein-1 levels were associated 
with death or impairment (OR 0.31, 95% CI: 0.13–0.74, 
and OR 3.70, 95% CI: 1.42–9.61). Increased tumor necro-
sis factor-alpha levels in the first day of life were found in 
infants that died or developed CP [62]. Overall, these 
findings indicate that certain cytokines can be useful bio-
markers for prognosis, but that most cytokine changes 
occur too late for potential neuroprotection therapies to 
be viable.

microRNAs and Transcriptional Markers
Single-stranded microRNAs (miRNA) are non-cod-

ing ribonucleic acid fragments that are ∼22 nucleotides 
in length, and silence gene expression to inhibit protein 
synthesis. Recent research has implicated miRNAs in 
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pathological processes after perinatal HI [63]. For exam-
ple, changes in hsa-miR-374a, miR-210, and miR-199 
correlated with NE severity and neurological outcomes 
[64, 65]. Supporting this, in the Biomarker in Hypoxic-
Ischemic Encephalopathy clinical trial, miR-374a-5p, 
miR-376c-3p, and miR-181b-5p expressions were associ-
ated with perinatal asphyxia and TH eligibility [66]. Fi-
nally, cord blood Fzd4 and Nfat5 mRNA were predictive 
of NE severity (SS III vs. I and II) and long-term func-
tional outcomes [67]. Interestingly, miR-210 antagonist 
treatment reduced microglial inflammation and brain in-
farction in post-hypoxic neonatal rats [68], suggesting 
that miRNAs after perinatal HI are promising biomarkers 
and potential therapeutic targets.

Other Metabolic Markers
Multiple organ dysfunction is almost universal in in-

fants born with NE, with high correlation between sever-
ity of NE and organ impairment during the first 3 days of 
life [69]. Liver enzymes, myocardial proteins, and other 
markers that assess end-organ damage are frequently 
measured in neonatal blood and may support outcome 
prediction. Changes in creatine and creatine kinase, lac-
tate dehydrogenase, alanine aminotransferase, and c-re-
active protein have all shown predictive value in the first 
3 days of life [70–73], whereas Troponin-I levels within 6 
h of birth distinguished mild NE from moderate-to-se-
vere NE [74].

Electrophysiological Monitoring

aEEG and conventional video-EEG have a fundamen-
tal role in the monitoring and management of babies with 
NE. Although video-EEG is the gold standard for seizure 
detection, aEEG has become the method of choice for 
most neonatal centers as it is simpler to implement [75]. 
In a recent meta-analysis of 26 studies, including 1,458 
near-term or term infants, multichannel EEG demon-
strated sensitivity of 0.63 (95% CI: 0.49–0.76), specificity 
of 0.82 (95% CI: 0.70–0.91), and area under the curve 
(AUC) of 0.88, and for aEEG background pattern pooled 
sensitivity, specificity and AUC were 0.90 (95% CI: 0.86–
0.94), 0.46 (95% CI: 0.42–0.51), and 0.78, respectively, for 
predicting an unfavorable neurological outcome in in-
fants with NE treated with TH [76]. The times of moni-
toring in these studies were not reported; however, previ-
ous evidence shows that the positive predictive value of 
an abnormal aEEG is much less at 3–6 h after birth in 
TH-treated infants than normothermic infants [77], pre-

sumptively due to neuroprotection after hypothermia 
[78]. Moreover, aEEG monitoring has limited predictiv-
ity <6 h for mild NE [9]. Continuous and Discontinuous 
Normal Voltage were the predominant background pat-
terns [73, 79], although excessive discontinuity and dis-
rupted sleep-wake cycling are also common in these in-
fants [79, 80]. By contrast, conventional EEG has higher 
accuracy, but requires resources and expertise that may 
not always be available in NICUs [81].

These limitations have renewed interest in novel EEG-
derived biomarkers. Evoked potentials have been noted 
for their usefulness in improving prognosis in small co-
horts of infants that received TH [82], and can be mea-
sured with standard aEEG setups [83]. Other EEG fea-
tures of recent interest for prediction are cortical power 
bursts [84], spectral power and micro-scale transients 
[85–87], and neurovascular coupling [88] in moderate-
to-severe NE, and sharp and diffuse delta waves, mild 
asymmetry, and spectral edge frequency in mild NE [7, 
80].

Modern Neuroimaging

Phosphorus-31 (31P) and proton (1H) magnetic reso-
nance spectroscopic (MRS) measurements in NE neo-
nates are highly predictive of outcome [89–92]. In a pro-
spective trial in term infants (n = 223) treated with TH for 
NE, thalamic N-acetylaspartate (NAA) levels obtained 
with 1H-MRS at a median age of 7 days (IQR; 5–10) had 
higher accuracy (AUC 0.99, 95% CI: 0.94–1.00) than oth-
er clinical measures in predicting neurological outcome 
at 18–24 months of age [91]. In 1H-MRS conducted 18–
24 h after initiating TH, infants with severe NE also had 
lower basal ganglia NAA (0.62 ± 0.08 vs. 0.72 ± 0.05), 
NAA + N-acetylaspartylglutamate (NAAG; 0.66 ± 0.11 
vs. 0.77 ± 0.06), and glycerophosphorylcholine plus phos-
phatidylcholine (GPC + PCh; 0.28 ± 0.05 vs. 0.38 ± 0.06) 
than infants with moderate NE [93].

MRI including diffusion-weighted MRI in the first 
week of life is the preferred method in most centers to as-
sess HI brain injury [94]. Signal abnormalities on conven-
tional T1/T2 weighted images are common in parasagit-
tal regions and white matter, and basal ganglia and thal-
ami in infants with moderate-to-severe NE. In a 
retrospective cohort analysis of 89 infants who had re-
ceived TH, there was no difference in the overall rate of 
MRI injury by grade of NE (Barkovich classification; mild 
NE 54%, moderate NE 54%, severe NE 50%; p = 0.89), 
although basal ganglia/thalamic lesions were more com-
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mon in severe NE (p = 0.03) [95]. However, infants with 
mild NE and subtle MRI abnormalities may benefit from 
more detailed scoring systems [96]. Signal hyperintensity 
in the posterior limb of the internal capsule (PLIC), thal-
ami, and basal ganglia in particular have high predictive 
value for adverse outcomes [97–99], even after TH [100].

The timing of imaging is important for prognostica-
tion. Late MRI scans at a median age of 8 days in TH-
treated infants had 95% sensitivity, 94% specificity, and 
91% positive predictive value for death or disability at 2 
years of age [101]. By contrast, cell death is still develop-
ing in the first days of life and so early brain imaging can 
underestimate the severity of injury [102]. In 12 asphyxi-
ated term infants, MRI during TH at 2–3 days of life was 
predictive of brain lesions at 8–13 days [103]. However, 
visual and quantitative evaluation were required to deter-
mine basal ganglia abnormalities [104]. Diffusion-
weighted and conventional MRI also have high correla-
tion at day 4 and 2 weeks after birth [105]. Other tech-
niques such as diffusion tensor imaging and tractography 
are more advanced and may identify brain lesions earlier 
[94]. Cranial ultrasound and Doppler ultrasonography 
are adjunct technologies for diagnostic imaging, and have 
limited prognostic value [58]. Overall, MRI imaging is a 
fundamental tool for prognosis and informing clinicians 
on treatment response; however, it is not yet useful for 
guiding early neurotherapy.

Some Reflections on Biomarkers

Biomarkers can be helpful in a variety of settings, in-
cluding initial recruitment for treatment within 6 h of 
birth, determining whether infants are responding dur-
ing treatment, and finally, assessment of prognosis after 
the end of treatment for parental counseling and enrol-
ment with developmental support services. Each goal has 
different constraints. Modern imaging and EEG have 
strong, established, albeit not perfect, prognostic value af-
ter the end of treatment, with a relatively wide window in 
which testing is reliable.

By contrast, determining prognosis shortly after peri-
natal HI is critical to guide clinicians in whether or not 
the infant should be offered potentially neuroprotective 
therapies such as TH. There is only a brief window for 
clinical decision-making and thus an optimal biomarker 
must be accessible and rapidly and accurately measur-
able. CSF biomarkers are invasive, and so not practical 
since most infants would not otherwise require a lumbar 
puncture. Similarly, urine markers will be unreliable for 

targeting TH in infants who commonly have oliguria due 
to acute kidney injury after global HI, although they may 
be useful for assessing treatment response and outcome 
prediction. Moreover, it is well known that NE evolves 
over time, with corresponding changes in the infant’s Sar-
nat stage. The pathological brain processes that occur af-
ter perinatal HI are associated with changes in biomarker 
response. Thus, the timing of biomarker acquisition is 
critical, and both their robustness and value likely depend 
on this. Finally, it is important to appreciate that most 
biomarkers have been tested within well-defined cohorts. 
It is likely that their predictive value would be attenuated 
in more diverse cohorts. Given these issues, it is not sur-
prising that only clinical examination and EEG monitor-
ing are widely used at present.

Conclusion

This short review of the literature shows that at present 
none of the proposed biomarkers has been established to 
be better than clinical assessment of NE for identifying 
infants who are likely to benefit from neuroprotective 
treatments. There is still only emerging evidence for bio-
markers to identify mild NE, and so profiling biomarkers 
relative to the deleterious processes that underlie mild NE 
is an important area of future research. Critically, even 
the most promising markers show predictive values at 
time-points that are too late (>6 h from birth) for optimal 
therapeutic interventions. Speculatively, a combination 
of multiple modalities may offer better prognostication. 
Such neonatal scoring systems have shown promise in 
early studies, and their predictive value can likely be fur-
ther improved through machine learning and deep learn-
ing algorithms to better support clinical decision-making 
[106, 107].
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