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Abstract

Therapeutic hypothermia (TH) is now a standard treatment
for infants with moderate-to-severe neonatal encephalopa-
thy (NE), and improves brain damage on neuroimaging and
neurodevelopmental outcomes. Critically, for effective neu-
roprotection, hypothermia should be started within 6 h from
birth. There is compelling evidence to suggest that a propor-
tion of infants with mild NE have material risk of developing
brain damage and poor outcomes. This cohort is increasing-
ly being offered TH, despite lack of trial evidence for its ben-
efit. In current practice, infants need to be diagnosed within
6 h of birth for therapeutic treatment, compared to retro-
spective NE grading in the pre-hypothermia era. This pres-
ents challenges as NE is a dynamic brain disorder that can
worsen or resolve over time. Neurological symptoms of NE
can be difficult to discern in the first few hours after birth,
and confounded by analgesics and anesthetic treatment.
Using current enrolment criteria, a significant number of in-
fants with NE that would benefit from hypothermia are not

treated, and vice versa, some infants receive hypothermia
when its benefit will be limited. Better biomarkers are need-
ed to further improve management and treatment of these
neonates. In the present review, we examine the latest re-
search, and highlight a central limitation of most current bio-
markers: that their predictive value is consistently greatest
after most neuroprotective therapies are no longer effective.
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Introduction

Perinatal brain injury from oxygen deprivation (hy-
poxia-ischemia, HI) at birth occurs in 1-4 live-born ba-
bies per 1,000 deliveries at term, and is a leading cause of
neonatal encephalopathy (NE), and subsequent death or
disability such as vision and hearing loss, and neurocog-
nitive and behavioral impairments including cerebral
palsy (CP) [1]. Further, infants with NE who do not de-
velop CP still have lower IQ, perceptual reasoning, and
verbal comprehension [2]. Therapeutic hypothermia
(TH) is now routine care for infants with moderate-se-
vere NE, to reduce death or disability [3], but needs to be
started within 6 h from birth for effective neuroprotec-
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tion. This corresponds with a latent phase after reperfu-
sion from HI that lasts ~1-6 h, when brain metabolism
transiently recovers but pathological intracellular mecha-
nisms can be triggered, leading to mitochondrial dys-
function and delayed bulk cell death in the brain from
~12 to 72 h [4]. Interestingly, the rates of death or dis-
ability after TH were just 29% in a recent large controlled
trial, compared with 44% in the first NICHD-NRN cool-
ing trial [5]. This likely reflects multiple factors, including
better monitoring, greater care to avoid pyrexia, a higher
proportion of neonates with moderate NE being cooled
now, greater experience with TH for these sick infants
and related clinical care, and earlier initiation of TH.

Critically, the need to start TH as soon as possible from
birth means that rapid identification of infants with NE
has become a pressing clinical issue. Before TH, the grad-
ing of NE was made in retrospect with serial neurological
assessments in the first week of life, typically using Sarnat
staging, adjunct electroencephalograph (EEG) monitor-
ing, and magnetic resonance imaging (MRI) [6]. Instead,
clinical assessment of possible NE is now conducted with-
in 6 h from birth, in order to start cooling infants as early
as possible within the therapeutic window for neuropro-
tection. This is challenging, as NE is a dynamic brain dis-
order that evolves over time [7]. Indeed, a small retrospec-
tive study showed that 7 of 11 of infants diagnosed with
mild NE within 6 h of birth progressed to moderate NE
later [8]. However, there is compelling evidence that a
proportion of infants with mild NE have high risk of poor
neurodevelopmental outcomes [9]. In response, there has
been therapeutic drift such that ~38% of these neonates
are now offered TH [10], despite lack of evidence from
clinical trials. An ideal biomarker would establish the se-
verity of NE, and determine long-term prognosis in the
first hours after birth. In addition, it will inform on re-
sponse to treatment for clinical decision-making. In this
review, we synthesize the latest literature in the field, and
discuss the merits and limitations of prominent tools and
potential biomarkers for predicting outcome. All studies
that were sourced for this review are detailed in Table 1,
including estimates of predictive value.

Apgar Score

The Apgar clinical assessment of infants’ condition at
birth is routinely performed in neonatal care, and most
studies have used it as a pre-qualification criterion for
TH. This score mainly reflects the extent and duration of
resuscitation. The score is associated with outcome, but
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at 5 min has low sensitivity and specificity [11]. Histori-
cally, need for continuing resuscitation at 10 min was as-
sociated with worse outcomes. In the NICHD-NRN con-
trolled cooling trial, low 10-min Apgar scores (0-3) were
associated with death or disability in 64/85 (75%) infants.
Nevertheless, ~21% of infants with 10-min Apgar scores
of 0 survived without disability to school age [12]. Criti-
cally, the risk of death or disability was significantly low-
er in cooled infants with Apgar scores of 0-3, showing
that prognosis of infants with even very prolonged resus-
citation is improving. By comparison, profoundly de-
pressed 10-min Apgar scores are uncommon in infants
with mild NE at birth [13].

Neurological Exam

Modified Sarnat and Thompson scoring (SS and TS)
of infant’s neurological state are very helpful to categorize
severity of neurological dysfunction into 3 stages of NE;
mild (I), moderate (II), and severe (III) NE. SS is the pre-
dominant tool for infant qualification for TH [14], where-
as the TS is popular in resource-limited settings, and used
as adjunct to SS to confirm NE grading or as a qualifying
factor for TH [15, 16]. Short-term improvement in SS or
TS are predictive of long-term outcomes [17, 18], and ef-
forts are being made to further refine SS criteria [6].

Nevertheless, the existing methods can be pragmati-
cally useful for identifying risk of disability. In the PRIME
study, a recent multicenter, prospective study of untreat-
ed mild NE defined as one or more abnormalities on the
modified Sarnat examination within 6 h of birth but not
enough to meet criteria for cooling, 7/43 (16%) infants
had disability at 18-22 months [19]. Only one infant had
CP and 2 had autism. Notably, 17/43 had Bayley scores
<85 in one or more of the cognition, motor, or language
domains. The median total Sarnat score (the sum of the
subcategories of the modified Sarnat examination) was
greater in infants who went on to develop disability than
those who did not (median 7 [IQR, 5-7] vs. median 4
[IQR, 2-5]) [20]. Although not perfect, a total Sarnat
score of 5 predicted risk of disability with an area under
the curve of 0.83 (p = 0.004).

Acid-Base Balance
The most common biomarkers for infants with hypox-

ic-ischemic NE are pH and base deficit (BD) obtained
from cord or neonatal blood. Clinical guidelines for TH
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generally recommend prequalification cut-off values of a
pH <7.0 or a base deficit of 216 mM. Population-based
studies indicate that raising the threshold pH <7.1 is less
specific [21, 22], but would capture more infants with
moderate to severe NE, and presumptively more mild NE
[7]. Although the extremes of BD measurement (e.g., BD
>18 mM or conversely BD <10-12 mM) correlate with
high and low risk of NE, intermediate BD values have
variable outcomes [23, 24].

Neurobiochemical Markers

Neurobiochemical markers have been of particular in-
terest for prediction in infants with NE [25]. Most of these
biomarkers are structural proteins that provide neuronal
and axonal support, and traumatic events that compro-
mise neuronal integrity can trigger their release into in-
terstitial cell fluid, cerebrospinal fluid (csf) and the circu-
lation [25, 26]. Multiple markers have been examined in
animal and clinical studies. The focus of this review is on
the latest clinical research of bedside biomarkers of out-
come.

S100B, NSE, and NfL Neuroproteins

S100 calcium-binding protein-beta (S100B) is ex-
pressed in astroglial and certain neuronal populations,
and neurofilament light chain protein (NfL) and neuron-
specific enolase (NSE) are a protein filament and glyco-
lytic enzyme found in the neuronal cytoplasm. Small co-
hort studies in normothermia and hypothermia-treated
infants show these protein concentrations become elevat-
ed in NE and correlate with outcomes [25]. For example,
higher S100B levels in cord blood at birth from infants (n
= 13) with moderate-severe NE correlated with acidosis,
amplitude-integrated EEG (aEEG) pattern and NE sever-
ity, and death or disability at 6 years of follow-up, com-
pared to healthy (n = 21) infants [27]. Elevated CSF-NSE
levels <72 h of birth were predictive of seizure burden and
abnormal findings in aEEG, MRI, and neurodevelopment
in infants with mild-severe NE, with the most accurate
CSF-NSE cut-off level for poor outcome in survivors be-
ing 108 ng/mL compared with 50 ng/mL in normal in-
fants [28]. In a clinical trial of moderate-severe NE term
infants, serum S100B and NSE concentrations during
whole-body cooling (at 0, 12, 24, and 72 h) also correlated
with basal ganglia, global and cortical damage on MRI (at
7-10 days), and short-term neurological outcomes [29].
Opverall, the findings are consistent between studies [25,
30].

Neurobiomarkers in NE

Plasma NfL levels after TH had started, and before and
after rewarming, were higher in cooled infants with mod-
erate-severe NE and unfavorable outcome on neuroim-
aging than in cases with mild NE and cooled infants that
had a favorable outcome, with a cut-off level >29 pg/mL
at 24 h being predictive of unfavorable outcome (sensitiv-
ity 77%, specificity 69%) [31, 32]. Further, cord blood NfL
and Tau protein levels were elevated in term infants with
birth asphyxia, although not just in infants that developed
NE [33]. Other potential biomarkers include monocyte
chemotactic protein-1, osteopontin, secretoneurin, Ac-
tivin A (AvA), and neuronal exosomes [34, 35]. AvA is a
member of the transforming growth-factor B super-fam-
ily (TGE-B) with increased csf, serum, and urine levels in
infants with moderate-to-severe NE compared with mild
NE and healthy infants [30]. However, recent findings
suggest that cord blood AvA protein and Acvr2b mRNA
are not reliable biomarkers [36].

Tau Protein, Ubiquitin C-terminal Hydrolase L1, and

Oxidative Stress Markers

Tau protein is expressed in neurons, astrocytes, and
oligodendrocytes, and is a known neurobiomarker for
neurodegenerative diseases. It has a critical role in micro-
tubule stabilization, and so contributes to cell signaling,
and synaptic and genomic regulation [26]. Common
tauopathies such as Alzheimer’s and Pick’s disease are
characterized by pathological deposition of tau protein in
the brain [37]. Recent studies suggest that tau protein also
has predictive value after perinatal HI. Plasma and serum
tau protein levels within 24 h of birth were higher in in-
fants with severe NE than infants with moderate NE, and
in cases with poor neuroimaging findings and neurode-
velopmental delay [38, 39]. Interestingly, lower serum tau
correlated with improved short-term behavioral scores in
NE infants treated with rEpo (200 IU/kg, daily from 2 to
10 days of birth) plus therapeutic cooling, compared with
infants treated with hypothermia alone [40]. Finally, in
cooled infants, tau protein was a late predictive marker
(72-96 h) for brain damage on MRI and adverse neuro-
logical outcome [41]. Ubiquitin C-terminal hydrolase L1
is a neuron-specific, deubiquitinating enzyme that facili-
tates removal of pathological proteins, which helps main-
tain neuronal and axonal health. Like tau protein, its ex-
pression is increased after brain trauma in adult and pe-
diatric patients. However, overall, recent neonatal
evidence on outcome prediction has been disappointing
[42-44].

Reactive oxygen species increase during and after HI,
and can overwhelm neonatal antioxidant mechanisms
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and lead to oxidative stress and brain damage [4]. Thus,
oxidative stress markers may be good biomarkers for pre-
diction of outcome [45]. In infants with perinatal asphyx-
ia, malondialdehyde (MDA) and protein carbonyl con-
centrations at birth and at 48 h of life correlated with sei-
zure burden, mortality, and degree of NE (SS grade I vs.
IT vs. IIT), but not developmental delay [46, 47]. Changes
before, during, and after TH in lipid peroxidation mark-
ers such as total isoprostanoids and 15(RS)-15-F,-IsoP
also correlated with lesions on MRI (at 4-8 days) in in-
fants with NE [48]. Further, superoxide-dismutase and
MDA levels were elevated at 6-14 h in infants with stage
II-IIT NE, whereas vitamin D3 was lower compared with
healthy control infants [49].

Consistent with this, serum selenium, a glutathione
peroxidase constituent that is vital to anti-oxidant func-
tion, was reduced within 48 h in newborns with NE, and
lowest in patients with severe NE [50]. Of note, elevated
total hydroperoxides were reduced in hypothermia-treat-
ed infants with NE compared with infants that received
normothermia [51]. Superoxide-dismutase and MDA
levels also recovered during head cooling for 72 h, and
were associated with greater scores on the Neonatal Be-
havioral Neurological Assessment (NBNA) at 3,7, and 10
days of life, and Bayley-III scores at 8 months of age [52].
Of course, this functional improvement likely reflects the
broad protective effects of hypothermia, rather than be-
ing mediated by anti-oxidant effects. A large prospective
clinical trial in infants with grade II-IIT NE is recruiting
(clinical trials identifier: NCT03162653) that will assess
the effects of the oxygen free radical scavenger, allopuri-
nol, in addition to TH on death or disability at 2 years of
age, aEEG, and brain injury on MRI and ultrasound [53].
Peroxidation products in blood will also be measured as
a marker of brain damage.

GFAP and Inflammation Markers

Glial fibrillary acidic protein (GFAP) is the main inter-
mediate filament protein that supports the astroglial cy-
toskeleton. It is specific to the central nervous system and
is released after HI. Evidence that it can predict neuro-
logical outcome in neonates is mixed, as reviewed [26,
30]. For example, serum GFAP concentrations were ele-
vated within 6 h of birth and in the first week of life in
infants with grade II-III NE and abnormal MRI findings
[54]. Supporting this, increased serum GFAP levels were
found at 24 and 72 h of life in infants who either died or
had unfavorable outcome on neuroimaging (at 5-14
days), with a sensitivity of 87.5% and specificity of 82% at
rewarming from TH [55]. By contrast, there was no dif-
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ference in cord blood GFAP levels within 3 h of birth be-
tween infants born with perinatal asphyxia and NE (n =
86) and infants who had uncomplicated births (n = 83)
[42, 56]. Serum GFAP concentration also was not predic-
tive in infants with NE before (<6 h of life) or during TH,
or in NE infants who did not qualify for TH [41, 43, 57].
Overall, these findings suggest that in isolation serum
GFAP is not a reliable marker for guiding treatment or
prognosis after NE.

There is consistent evidence that perinatal HI increas-
es cytokine expression in the developing brain and circu-
lation. Elevated levels of tumor necrosis factor-alpha,
interferon-vy, and various interleukins (IL) such as IL-113,
IL-6,IL-8, IL-10, and IL-13 have been reported in infants
with NE, and shown to correlate with outcome measures
[39, 58]. For example, increased plasma IL-6, 8, and 10
concentrations within 24 h of life predicted death or se-
vere MRI-defined brain damage (at 4-7 days) in infants
with NE who underwent TH. The combination of these
biomarkers were more predictive than each of these cyto-
kines alone, with an accuracy of ~78% [41]. In support of
this, Pang et al. [59] also reported increased IL-6 and 10
levels in infants with NE compared with non-NE controls
(159 vs. 157 infants), with IL-10 elevation within 12 h of
birth being predictive of NE severity, mortality, and early
childhood outcomes (OR 2.28, 95% CI: 1.35-3.86) [59].
In term infants with NE, serum IL-8 levels on days 1 and
2 of life also predicted infant death and NE grade II-III,
whereas changes at 2 and 6-7 days of life in granulocyte-
macrophage-colony-stimulating-factor were associated
with abnormal MRI findings and Bayley-III scores at 2
years [60].

Finally, in a follow-up study of the NICHD random-
ized controlled trial of TH for NE [61], regulated-upon-
activation-normal-T-cell-expressed-and-secreted  and
monocyte chemotactic protein-1 levels were associated
with death or impairment (OR 0.31, 95% CI: 0.13-0.74,
and OR 3.70,95% CI: 1.42-9.61). Increased tumor necro-
sis factor-alpha levels in the first day of life were found in
infants that died or developed CP [62]. Overall, these
findings indicate that certain cytokines can be useful bio-
markers for prognosis, but that most cytokine changes
occur too late for potential neuroprotection therapies to
be viable.

microRNAs and Transcriptional Markers

Single-stranded microRNAs (miRNA) are non-cod-
ing ribonucleic acid fragments that are ~22 nucleotides
in length, and silence gene expression to inhibit protein
synthesis. Recent research has implicated miRNAs in
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pathological processes after perinatal HI [63]. For exam-
ple, changes in hsa-miR-374a, miR-210, and miR-199
correlated with NE severity and neurological outcomes
[64, 65]. Supporting this, in the Biomarker in Hypoxic-
Ischemic Encephalopathy clinical trial, miR-374a-5p,
miR-376¢-3p, and miR-181b-5p expressions were associ-
ated with perinatal asphyxia and TH eligibility [66]. Fi-
nally, cord blood Fzd4 and Nfat5 mRNA were predictive
of NE severity (SS III vs. I and II) and long-term func-
tional outcomes [67]. Interestingly, miR-210 antagonist
treatment reduced microglial inflammation and brain in-
farction in post-hypoxic neonatal rats [68], suggesting
that miRNAs after perinatal HI are promising biomarkers
and potential therapeutic targets.

Other Metabolic Markers

Multiple organ dysfunction is almost universal in in-
fants born with NE, with high correlation between sever-
ity of NE and organ impairment during the first 3 days of
life [69]. Liver enzymes, myocardial proteins, and other
markers that assess end-organ damage are frequently
measured in neonatal blood and may support outcome
prediction. Changes in creatine and creatine kinase, lac-
tate dehydrogenase, alanine aminotransferase, and c-re-
active protein have all shown predictive value in the first
3 days of life [70-73], whereas Troponin-I levels within 6
h of birth distinguished mild NE from moderate-to-se-
vere NE [74].

Electrophysiological Monitoring

aEEG and conventional video-EEG have a fundamen-
tal role in the monitoring and management of babies with
NE. Although video-EEG is the gold standard for seizure
detection, aEEG has become the method of choice for
most neonatal centers as it is simpler to implement [75].
In a recent meta-analysis of 26 studies, including 1,458
near-term or term infants, multichannel EEG demon-
strated sensitivity of 0.63 (95% CI: 0.49-0.76), specificity
of 0.82 (95% CI: 0.70-0.91), and area under the curve
(AUC) of 0.88, and for aEEG background pattern pooled
sensitivity, specificity and AUC were 0.90 (95% CI: 0.86-
0.94),0.46 (95% CI: 0.42-0.51), and 0.78, respectively, for
predicting an unfavorable neurological outcome in in-
fants with NE treated with TH [76]. The times of moni-
toring in these studies were not reported; however, previ-
ous evidence shows that the positive predictive value of
an abnormal aEEG is much less at 3-6 h after birth in
TH-treated infants than normothermic infants [77], pre-

Neurobiomarkers in NE

sumptively due to neuroprotection after hypothermia
[78]. Moreover, aEEG monitoring has limited predictiv-
ity <6 h for mild NE [9]. Continuous and Discontinuous
Normal Voltage were the predominant background pat-
terns [73, 79], although excessive discontinuity and dis-
rupted sleep-wake cycling are also common in these in-
fants [79, 80]. By contrast, conventional EEG has higher
accuracy, but requires resources and expertise that may
not always be available in NICUs [81].

These limitations have renewed interest in novel EEG-
derived biomarkers. Evoked potentials have been noted
for their usefulness in improving prognosis in small co-
horts of infants that received TH [82], and can be mea-
sured with standard aEEG setups [83]. Other EEG fea-
tures of recent interest for prediction are cortical power
bursts [84], spectral power and micro-scale transients
[85-87], and neurovascular coupling [88] in moderate-
to-severe NE, and sharp and diffuse delta waves, mild
asymmetry, and spectral edge frequency in mild NE [7,
80].

Modern Neuroimaging

Phosphorus-31 (*'P) and proton (H) magnetic reso-
nance spectroscopic (MRS) measurements in NE neo-
nates are highly predictive of outcome [89-92]. In a pro-
spective trial in term infants (n = 223) treated with TH for
NE, thalamic N-acetylaspartate (NAA) levels obtained
with '"H-MRS at a median age of 7 days (IQR; 5-10) had
higher accuracy (AUC 0.99, 95% CI: 0.94-1.00) than oth-
er clinical measures in predicting neurological outcome
at 18-24 months of age [91]. In '"H-MRS conducted 18-
24 h after initiating TH, infants with severe NE also had
lower basal ganglia NAA (0.62 + 0.08 vs. 0.72 + 0.05),
NAA + N-acetylaspartylglutamate (NAAG; 0.66 + 0.11
vs.0.77 £ 0.06), and glycerophosphorylcholine plus phos-
phatidylcholine (GPC + PCh; 0.28 + 0.05 vs. 0.38 + 0.06)
than infants with moderate NE [93].

MRI including diffusion-weighted MRI in the first
week of life is the preferred method in most centers to as-
sess HI brain injury [94]. Signal abnormalities on conven-
tional T1/T2 weighted images are common in parasagit-
tal regions and white matter, and basal ganglia and thal-
ami in infants with moderate-to-severe NE. In a
retrospective cohort analysis of 89 infants who had re-
ceived TH, there was no difference in the overall rate of
MRI injury by grade of NE (Barkovich classification; mild
NE 54%, moderate NE 54%, severe NE 50%; p = 0.89),
although basal ganglia/thalamic lesions were more com-
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mon in severe NE (p = 0.03) [95]. However, infants with
mild NE and subtle MRI abnormalities may benefit from
more detailed scoring systems [96]. Signal hyperintensity
in the posterior limb of the internal capsule (PLIC), thal-
ami, and basal ganglia in particular have high predictive
value for adverse outcomes [97-99], even after TH [100].

The timing of imaging is important for prognostica-
tion. Late MRI scans at a median age of 8 days in TH-
treated infants had 95% sensitivity, 94% specificity, and
91% positive predictive value for death or disability at 2
years of age [101]. By contrast, cell death is still develop-
ing in the first days of life and so early brain imaging can
underestimate the severity of injury [102]. In 12 asphyxi-
ated term infants, MRI during TH at 2-3 days of life was
predictive of brain lesions at 8-13 days [103]. However,
visual and quantitative evaluation were required to deter-
mine basal ganglia abnormalities [104]. Diffusion-
weighted and conventional MRI also have high correla-
tion at day 4 and 2 weeks after birth [105]. Other tech-
niques such as diffusion tensor imaging and tractography
are more advanced and may identify brain lesions earlier
[94]. Cranial ultrasound and Doppler ultrasonography
are adjunct technologies for diagnostic imaging, and have
limited prognostic value [58]. Overall, MRI imaging is a
fundamental tool for prognosis and informing clinicians
on treatment response; however, it is not yet useful for
guiding early neurotherapy.

Some Reflections on Biomarkers

Biomarkers can be helpful in a variety of settings, in-
cluding initial recruitment for treatment within 6 h of
birth, determining whether infants are responding dur-
ing treatment, and finally, assessment of prognosis after
the end of treatment for parental counseling and enrol-
ment with developmental support services. Each goal has
different constraints. Modern imaging and EEG have
strong, established, albeit not perfect, prognostic value af-
ter the end of treatment, with a relatively wide window in
which testing is reliable.

By contrast, determining prognosis shortly after peri-
natal HI is critical to guide clinicians in whether or not
the infant should be offered potentially neuroprotective
therapies such as TH. There is only a brief window for
clinical decision-making and thus an optimal biomarker
must be accessible and rapidly and accurately measur-
able. CSF biomarkers are invasive, and so not practical
since most infants would not otherwise require a lumbar
puncture. Similarly, urine markers will be unreliable for

10 Dev Neurosci
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targeting TH in infants who commonly have oliguria due
to acute kidney injury after global HI, although they may
be useful for assessing treatment response and outcome
prediction. Moreover, it is well known that NE evolves
over time, with corresponding changes in the infant’s Sar-
nat stage. The pathological brain processes that occur af-
ter perinatal HI are associated with changes in biomarker
response. Thus, the timing of biomarker acquisition is
critical, and both their robustness and value likely depend
on this. Finally, it is important to appreciate that most
biomarkers have been tested within well-defined cohorts.
It is likely that their predictive value would be attenuated
in more diverse cohorts. Given these issues, it is not sur-
prising that only clinical examination and EEG monitor-
ing are widely used at present.

Conclusion

This short review of the literature shows that at present
none of the proposed biomarkers has been established to
be better than clinical assessment of NE for identifying
infants who are likely to benefit from neuroprotective
treatments. There is still only emerging evidence for bio-
markers to identify mild NE, and so profiling biomarkers
relative to the deleterious processes that underlie mild NE
is an important area of future research. Critically, even
the most promising markers show predictive values at
time-points that are too late (>6 h from birth) for optimal
therapeutic interventions. Speculatively, a combination
of multiple modalities may offer better prognostication.
Such neonatal scoring systems have shown promise in
early studies, and their predictive value can likely be fur-
ther improved through machine learning and deep learn-
ing algorithms to better support clinical decision-making
(106, 107].
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