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Abstract—There is a pressing need for effective pedagogical
methods of manual languages, as evident in the decline of
manual languages such as the New Zealand Sign Language.
Despite being recognized as one of New Zealand’s official
languages, recent censuses have shown that fluent New Zealand
Sign Language signers have been steadily decreasing. There is
a cultural responsibility to preserve such languages, yet the
combination of barriers to acquisition and the limited availability
of effective teaching methods are standing in the way. In light
of this, this paper proposes a computer-assisted sign language
learning system that incorporates virtual reality and validation-
based feedback as tools to implement the experiential learning
model. An implementation in the form of VR-NZSL is presented,
targeting the set of New Zealand Sign Language alphabet. Results
show that a vision-based classification method, using the Leap
Motion Controller, is a scalable, accurate, and usable solution
for feedback-assisted manual language learning. A formative us-
ability evaluation of n=10 participants showed promising results
for engagement, confidence, and memory retention. The results
indicate that virtual reality technology is uniquely situated as
an innovative medium for the self-directed acquisition of manual
languages. It is hoped this work inspires technology researchers
to pursue collaborations with the deaf/Deaf community to de-
sign and develop pedagogical technology solutions for manual
communication.

Index Terms—Educational technology, neural networks, sign
language, virtual reality.

I. INTRODUCTION

Manual communication holds deep cultural and social sig-
nificance across communities; for the deaf or hard of hearing,
manual languages are their primary form of communication.
However, most hearing individuals lack the ability to speak or
understand manual languages, contributing to the communica-
tion gap between the deaf and the hearing. For New Zealand,
this gap is widening. The 2013 census—New Zealand’s most
recent census—revealed 20,235 New Zealanders (roughly
0.5% of the population) possessed the ability to use New
Zealand Sign Language (NZSL), a 16% decrease compared
to 2006 and a 25% decrease compared to 2001 [1].

The 2006 legislation officially recognizing NZSL was a
strong symbolic action, making New Zealand the first country
to make a sign language an official state language. This
action was made possible through the efforts of the Deaf
community of New Zealand, whose members possess a strong
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political identity due to the threat of denied identities [2].
NZSL as a language traces its roots from the British Sign
Language but evolved organically over time since the late
19th century, practically affirmed in 1985 with the introduction
of professional sign language training courses [3]. Following
this, a period of greater acceptance for NZSL took place [3],
culminating in the official recognition of NZSL. However, the
lack of infrastructure to support NZSL acquisition blunted the
effects of the legislation; a survey of 179 Deaf community
members revealed that a weak practical form of education
in the 2015 curriculum was a critical threat to NZSL [4].
An inquiry by the New Zealand Human Rights Commission
aligns with this purveying view, highlighting that technology
could provide such practical support in NZSL education [5].
Regardless of the technological sophistication, a manual lan-
guage learning tool must appreciate the pedagogical barriers
inherent in learning a manual language.

In New Zealand, NZSL was added to the official national
high school curriculum in 2016 [6]; its relative infancy means
the curriculum stands to benefit from exploration into im-
plementations of effective pedagogical theories. Disregarding
such theories could lead to failure in matching curricula
content to practical scenarios. Such threats can be seen through
a survey of tertiary Turkish Sign Language interpretation
students, where an emphasis on theory over practice has led
to curriculum dissatisfaction [7]. The survey revealed that a
lack of computer-assisted tools, visual demonstrations, and
contextual information are causing the dissatisfaction.

Teaching manual languages as a second language follows
a degree of similarity with second language learning theo-
ries [8], [9]. For example, sometimes, learners prefer a self-
directed or distance approach (over face-to-face learning) to
reduce language anxiety [10]. Self-direction in optimizing
one’s learning process is a crucial strategy for dealing with
anxiety and enhancing motivation [10]. The learner thus seeks
out tools and processes to test out their hypotheses and
monitor their progress, personalizing their learning. Effective
self-directed learning should be coupled with pedagogies that
promote autonomous learning, such as task-based pedagogy
and constructivist-oriented frameworks [11], [12].

Constructivism has proven to be promising when applied
to second language learning, fostering autonomy in students
as well as addressing social and interactive skills in learners
[13]. Kolb’s Experiential Learning model lays much of its
philosophical underpinnings in this constructivist school of
thought [14], [15]. Experiential learning manifests when the



learner completes a cycle of four stages: a concrete experience
is practiced, which is then critically reflected upon, through
which abstract hypotheses are conceptualized, which is tested
through active experimentation.

This work proposes that pedagogical tools which promote
self-direction and experiential learning have a strong potential
to lead the forefront of technology-assisted NZSL revitaliza-
tion. In this regard, Computer-Assisted Language Learning
(CALL) [16] serves to be a strong candidate. As the learner
need not be physically co-located with people, these CALL
environments have shown to decrease anxiety and increase
motivation [17], [18]. Despite this, the current climate of
CALL for manual languages have shown an inability to
provide concrete experiences and reflective observation—key
phases of the experiential learning cycle. Research shows
virtual reality (VR) has the potential to sufficiently deliver
these phases [19], [20], [21].

VR’s appeal as an educative medium for concrete expe-
rience comes from its environmental vividness, interactiv-
ity, and complete immersion [19], which can be used to
create realistic and safe learning environments. Furthermore,
VR enables real-time interactivity, indispensable for creating
authentic tasks based on realistic scenarios [20]. All such
factors contribute to VR as a learning tool that adequately
satisfies each phase of the experiential learning cycle [21].
However, with regards to manual languages, further support is
necessary for a comprehensive module in reflection—such as
validation-based feedback. Effective second language learning
requires corrective feedback from teachers or peers [22]. This
paper postulates that such feedback can be simulated through
computer-assisted validation, using the Leap Motion depth-
camera as the input apparatus. As a formative study, the
project will limit the vocabulary scope to the static gestures of
NZSL alphabet. With VR as a medium for facilitating concrete
experiences in addition to feedback as an engine for reflective
observation, this project seeks to establish an innovative and
self-directed experiential learning tool for manual languages.

Driven by the Human Rights Commission’s call to expand
the technological landscape of NZSL education, this research
aims to answer the following questions:

RQ1: Can a reliable and scalable vision-based validation
system be built for the NZSL alphabet?

RQ2: What hand-gesture features are necessary for accu-
rate validation of the NZSL alphabet?

RQ3: How effective is a VR-based approach for the self-
directed acquisition of the NZSL alphabet?

The contributions of this paper include:
• The Digital Experiential Learning for Manual Communi-

cation (DEL-MaC) framework, a digitally-assisted frame-
work for manual language acquisition.

• The VR-NZSL application that implements the above
framework for teaching the static gestures of the NZSL
alphabet.

• Identifying hand features necessary for accurate classifi-
cation of the above gestures.

The paper will first delve into related research surrounding
CALL-based manual language education in Section II. A brief

background of the conceptual and technological foundations
underlying this research is covered in Section III. Section
IV presents the steps taken to implement the VR-NZSL
application. In Section V, the paper will evaluate the work
from two perspectives: classification accuracy and usability.
Section VI will conclude the paper, detailing the practical
impact of the conceptual framework and the limitations of
the current iteration of VR-NZSL.

II. RELATED WORK

Technology has assisted in the acquisition of languages in a
plethora of different forms, such as through readily accessible
online web applications or online courses. A more recent
development has been the integration of virtual reality as a
medium for language learning. Such environments can be used
in conjunction with auxiliary devices, such as depth cameras,
which can promote the interface into the virtual world to be
more seamless.

CALL for manual languages, such as web applications and
online courses, were found to be more relaxing than the
traditional second-language classroom, fostering a sense of
security that is conducive to learning [23], [24]. Participants
of the popular NZSL web application, Learn NZSL, attributed
learning effectiveness towards video-based learning and self-
assessment tests [25]. On a higher level, the participants noted
accessibility, ease of use, and the flexibility in learning at their
own pace as success factors. However, the study highlights that
users were demotivated to return to the site due to the lack of
a validation mechanism. One participant noted that they were
unaware of incorrect signing until notified by an NZSL signer.

Virtual Reality Learning Environments (VRLE) are a subset
of CALL, specialized in facilitating concrete experiences.
Nicoletta et al.’s study [26] explored VR-assisted mathematics
education for hearing-impaired primary school students. The
VRLE involved interacting with a virtual avatar to purchase
candies, applying arithmetic skills in a realistic scenario. Ying
et al.’s VR platform [27] was used in a variety of STEM
contexts, such as in mathematics and engineering (welding).
Ying outlines benefits in safety, convenience, operating and
maintenance costs, teachers required, and self-guidance as the
contributing factors for the efficacy of VRLEs. These VRLE
serves to develop confidence through competence and practice.

With regards to learning languages, a VRLE for English
as a Foreign Language (EFL) was explored in Chen’s study
[28], which consisted of the users learning through a realistic
shopping scenario. The findings showed that listening skills
and realistic scenarios enabled effective language acquisition.
The ability of VRLEs to simulate a culturally-rich environ-
ment allows for learning through cultural immersion [29].
Physical or motivational limitations of being immersed in
the target language’s community can be inundated through
simulating the target language community in a VRLE. A
study by Cheng et al. [30] developed a VRLE for Japanese
foreign language acquisition, hypothesizing VR could improve
language acquisition and stimulate interest in the language’s
culture. Participants stated that the culturally-rich environment
and the ability to look eye-level and talk with the non-playable



characters contributed to an immersive learning experience.
Such responses show the effectiveness of VR in creating an
environmentthat reflects realistic socio-cultural dynamics. A
study on the effectiveness of augmented reality (AR) showed
an improvement in accuracy of signing single words by 35%
when using AR to learn compared to using video-based
material [31]. Although this accuracy was 9% worse than when
sign language interpreters were used for learning the words,
the AR-based accuracy is an impressive feat compared to using
the video-based material.

Recent developments in depth-sensing technology, such as
through the commercially available Kinect and Leap Motion
controllers, have allowed for affordable avenues of intelligent
feature extraction. The Leap Motion controller was utilized by
Khelil et al. to classify 10 gestures of the Arabic Sign Lan-
guage [32] using manually calculated features from the Leap
Motion’s absolute position data, such as the angles between
adjacent fingers and the distance between the fingertips and
the palm. An accuracy of 91.3% was achieved using a Support
Vector Machine classifier, trained with 1000 labeled frames.
Similar accuracies were achieved with Mohandes et al.’s study
[33], which used a different feature set and a Feed-forward
Neural Network classifier. Misclassified signs were attributed
to occlusion of the fingers by the palm or other fingers in the
camera’s field of view. Kumar et al.’s study [34] solves this
problem through the multi-modal use of both Kinect and Leap
Motion cameras, where the Kinect is placed in front of the user
and the Leap Motion is placed beneath the hand. In this way,
occlusion through one camera is compensated by the other
camera. Compared to using single devices, combining both
input features improved the accuracy rate by 5.91%.

III. BACKGROUND

A. Experiential Learning and Constructivist Pedagogy

Experiential learning commits the learner to directly expe-
rience knowledge through the stimulation of their senses in a
contextually-related environment [14], [15]. Kolb formalizes
this definition into the experiential learning model, which
follows a cyclical sequence starting with concrete experience
of the new knowledge, the questioning of existing precon-
ceptions based on the knowledge, using critical reflection to
instill emotion and ownership into the new knowledge, then
extracting value from the consequences of implementing the
knowledge through action. Experiential learning is founded
on constructivism—the theory that knowledge is a result
of a personal reality actively constructed from one’s own
authentic experiences [35], [14]. The learner contextualizes
the constructed knowledge by relating it to existing world-
views or deconstructing existing ones to accommodate the new
knowledge [36]. The constructivist learning approach requires
a context in which learners are able to effectively construct
new knowledge.

B. Virtual Reality

VR is a hardware-independent state of experience within
which the individual feels present through interacting with
a stimulating yet artificial environment. Presence is defined

as the perception of a physical environment, regardless of
how that environment is actually mediated [37]. Presence is
mediated by the ‘Three I’s of VR’ [38], [39], [40]: imag-
ination, interaction, and immersion. Immersion captures the
vividness of the simulation—the richness of the environment’s
formal features to the senses. Vividness can be broken down
into breadth (the number of sensory dimensions that are
simultaneously stimulated) and depth (the resolution from
those sensory channels). Interactivity is defined as the extent
of realism to which the user can map their human actions
to those in the mediated environment. Finally, imagination
leverages the creativity and problem-solving aptitude of the
user. By providing an immersive and interactive environment,
the user can role-play in the artificial scenario [19].

C. Leap Motion Controller

The Leap Motion Controller is an infra-red video camera
that extracts various information from the hands and recreates
them as 3D models. The camera is able to detect hand posi-
tions with an accuracy of 0.7mm under ideal conditions [41].
The Leap Motion’s API is able to provide various features,
such as the rotation of the hands as a quaternion, the grab and
pinch strengths made by the hands, and, crucially, the XYZ-
coordinates of the individual joints of the hands relative to the
position of the camera. The Leap Motion Controller can be
used in conjunction with virtual reality, where the camera is
attached to the front of the headset.

IV. VRSL LEARNING SYSTEM

A. The DEL-MaC Conceptual Framework

The Digital Experiential Learning for Manual Communi-
cation (DEL-MaC) framework serves as the project’s theo-
retical backbone for technologically-aided manual language
acquisition. Utilizing established pedagogical principles into
an implementable framework, DEL-MaC seeks to address the
barriers that manual language learners typically experience.
DEL-MaC is built upon the Experiential Learning model,
incorporating the fundamental phases of concrete experience,
reflective observation, abstract conceptualization, and active
experimentation. This foundation is then used to build a
framework whose components can be delivered through digital
means. The DEL-MaC framework is illustrated in Fig. 1 and
further described below.

1) Abstract Conceptualization: Abstract conceptualization
and concrete experience are modes of grasping experience.
Abstract conceptualization achieves this through subconscious
input processing—personalizing observed input into under-
standable concepts. It can be seen as a passive form of
experience, which is a crucial component for language ac-
quisition through the Input Hypothesis [42]. The hypothesis
asserts that the learner must be given ample opportunity
to observe communication between individuals of the target
language, particularly communication that is comprehensible
to the learner. This could be done in indirect ways, such
as visual cues and body expressions of the signers. Within
a digital medium, input can be provided through videos;



Fig. 1. The core components underlying the Digital Experiential Learning
for Manual Communication (DEL-MaC) framework.

combined with replay controls, the user can gain input on
demand.

Input is primarily visual with manual communication, con-
sisting of two input modes—a first-person perspective and
a second-person perspective; the visual input of one’s own
practice of signing (first-person) is different from the visual
input of observing another person signing (second-person).
The perspectives play different roles in acquisition: the first-
person perspective is required for the learner to easily follow
the gestures, whereas the second-person perspective is instru-
mental in recognizing gestures made by others [43]. Hence,
Visual Breadth of input perspectives becomes necessary. By
becoming familiar with both perspectives, the learner is able
to effectively conceptualize the gestures, providing them with
the ability to both recognize and reproduce the gestures.

Crucially, this period of visual comprehension must occur
before any active participation of the new knowledge, accord-
ing to the Input Hypothesis. Delaying output allows for the
complex and subconscious processing of the target language so
that the learner’s recognition knowledge of gestures develops
before their gesture retrieval knowledge [44]. Once such
concepts are formulated, the learner becomes prepared to test
those concepts within an experiential context.

2) Concrete Experience: Within the phase of concrete
experience, learners actively participate in an immersive
knowledge-building scenario. Rather than seeing concrete ex-
perience as a phase, the framework sees it as an environ-
ment—a context within which the learner is able to actively
experiment with new knowledge and reflectively observe those
outcomes. With language acquisition, a medium of concrete
experience is an opportunity through which culturally-rich
stimuli can be conveyed to the learner. To implement DEL-
MaC, such an environment must be constructed to be immer-
sive and interactive so that the learner can take the role as an
active player in a realistic scenario.

Realistic scenarios can be constructed through task-based
design. Tasks provide the means through which a general
concept can be used in a variety of contexts; the higher the
frequency and diversity of tasks, the greater the necessity
for the learner to generalize the skill. Furthermore, tasks are
fundamentally goal-oriented, which can be used as a marker
for progress—evidence that the learner has met the criteria to
competently apply the skills in the real world [45]. A task-
based approach is thus a suitable framework for the self-

directed learner, whose engagement and continual participation
in the acquisition journey is predicated upon indications in
improvement [11]. When tasks are designed to reflect real
use cases, it is able to provide a context that encourages
constructive learning [20].

3) Active Experimentation: Active experimentation is a
mode of actively transforming experience into learning [46].
Whereas active conceptualization places an emphasis on the
development of theory through input, active experimentation
seeks to test the concepts through the Output Hypothesis. To
produce gestures, the learner must transform the amorphous
and abstract concepts of the gestures into accurate output,
thereby pushing the learner to process the language at a deeper
level [47]. Moreover, prompting output could cause the learner
to notice ‘holes’ in their knowledge, such as identifying which
letters they currently struggle with.

Taking risks and making mistakes are strategies to cope with
the anxiety of language acquisition, provided those mistakes
are inconsequential [10]. Hence, an active experimentation
scenario must minimize the consequences from, or even
encourage, making mistakes. Public speaking in a foreign
language is a major source of anxiety for second language
learners, primarily due to the fear of making mistakes [48];
creating an isolated context to output the target language
without signing to a real person can create an environment for
developing competency without the anxiety from judgment.
Furthermore, for a task to enable active experimentation, the
environment must respond to the user output to show that their
interactions have significance [15]. With a digital environment,
this environmental response can be easily designed, with
the degree of power and frequency of the response easily
calibrated.

4) Reflective Observation: Whereas active experimentation
transforms experience into learning through action, reflective
observation seeks to perform the transformation through re-
flection. It plays a cooperative role with active experimen-
tation [49]—errors made within the experimentation will be
identified and rectified through feedback, filling the ‘holes’ in
their knowledge. The learner is able to then reflect on erro-
neous past hypotheses, compare them with the Retrospective
Feedback received, and restructure their abstract concepts of
the gestures to satisfy the feedback. Hence, within the concrete
experiential context, the learner constantly transitions between
active experimentation and reflective observation.

Feedback is also a crucial mechanism to satisfy the self-
directed learner; the ability to ascertain one’s weaknesses
and strengths in language is a key part of managing self-
directed learning [10]. Indeed, self-direction is predicated
on monitoring of progress and identifying objectives [50],
which can be achieved by feedback and task completion,
respectively. Timely Feedback after task completion increases
learning effectiveness compared to delayed feedback [51].
This is particularly important in learning applications with
game-like characteristics, where the retrospective (yet timely)
feedback needs to be unobtrusive [52].



Fig. 2. Modular overview of VR-NZSL. The setup includes a Leap Motion
controller connected to the VR headset. The front-end consists of 360 teaching
videos and a range of interactive activities, while the back-end largely deals
with validation.

B. VR-NZSL

The VR-NZSL application seeks to implement the DEL-
MaC conceptual framework through three major components:
VR-based 360-video, interactive tasks, and validation-based
feedback. Together, these components form a self-directed and
self-contained tool for learning the static gestures of the NZSL
alphabet. The Leap Motion controller models the user’s hands
inside the VRLE, allowing the user to make gestures within
the VRLE as well as interact with virtual objects or control
the VRLE. Fig. 2 illustrates the overall setup; the front-end
components are described below, while the back-end validation
system is presented in Section IV-C.

1) Setup: The VR-NZSL application uses a mobile VR
setup in conjunction with a computer. While the application is
running within the computer, the VRLE is streamed to the user
through a VR-ready smartphone, attached to the user through
a mobile VR headset, such as the likes of Google Cardboard.
The accelerometer within the mobile phone captures the head
movements of the user, providing the gravity and coordinate
data to the computer. Additionally, the Leap Motion controller
is attached to the front of the headset, where it captures
the hand data. The computer uses these data to render the
stereoscopic view of the VRLE, which is streamed back to
the mobile phone. With the wide availability of VR-ready
smartphones and computers, as well as the affordability of the
Leap Motion controller, it is expected that this hardware setup
is affordable to potential learners of NZSL. The application
is prevented from being a fully-packaged mobile application
due to the lack of a Leap Motion mobile SDK. However, the
Android SDK for Leap Motion is currently in a closed beta
period [53], thus it is expected that a fully mobile VR-NZSL
can be implemented in the near future.

2) 360-video: The 360-video features two fluent NZSL
signers role-playing as part of a private lesson on the NZSL
alphabet, with one actor playing the Teacher and the other a
Student. The video consists of the signers cycling through the
letters, repeating each letter twice with the second try being
a slower rendition. To prevent visual overloading, the signers
sign the letters sequentially, with the Student following the

Teacher. By utilizing two actors, the 360-video can achieve
Visual Breadth. The video camera was positioned by the
shoulder of the Student, hence when he signs the gestures,
the learner views the gesture from a first-person perspective
(Fig. 3(a)), ensuring that the learner can easily follow along.
Conversely, when the Teacher signs the gesture, the learner is
able to see the gesture made from a second-person mirrored
perspective, developing their ability to recognize gestures.
With the aid of video controls (Fig. 3(b)), the user can pause,
skip to the next or previous letter, and ‘loop’ the current letter
so that the video segment of the current letter continuously
repeats.

The 360-video is an implementation of the Abstract Con-
ceptualization phase of DEL-MaC. Through a mostly passive
input processing phase, the learner is given the opportunity to
subconsciously process the observed gestures. They are given
the time to recognize patterns between gestures, aiding in
recall. Hence, a medium for the Input Hypothesis is achieved.
The use of VR as a medium for the 360-video is two-fold.
Firstly, it becomes more cohesive for the learner when coupled
with the interactive VR tasks. More importantly, watching the
360-video in VR offers a greater sense of spatial awareness
and immersion. By placing the Teacher-Student actors in a
virtual world, the learner is immersed into thinking they are
right next to the actors, allowing them to more easily mimic
with the gestures being made as well as making them feel
accustomed to real signers communicating with each other. In
this sense, Visual Breadth is more effectively incorporated into
the application.

3) Interactive Tasks: The interactive task module is com-
posed of three activities: random letter spelling, fruit spelling,
and name spelling. Together, these activities provide Concrete
Experiences within which the user can actively experiment
with the concepts learned in the 360-video. A key aspect of
Concrete Experience is immersion. To maintain immersion, a
hint system was introduced that allows the user to remember
the gesture and continue with the activity unimpeded; when
a user performs the hint gesture, a diagram of the gesture
appears within the VRLE, providing visual aid. Without a hint
system, this immersion is broken when the learner cannot re-
member a gesture, as they would have to temporarily terminate
the task to go back to the 360-video to relearn the gesture.

The random spelling activity involves the user being
prompted to sign random letters that appear in the VRLE.
The activity emphasizes repetition, focusing entirely on imple-
menting the Output Hypothesis by maximizing the efficiency
of outputting gestures, whilst allowing them to familiarize
themselves with the game mechanics of the interactive tasks.
In the fruit spelling activity, the user is tasked with spelling
the names of a set of fruits that are laid out within the VRLE.
The user is instructed to pick up the fruits and place them
on a counter, upon which the name of the fruit appears in the
VRLE. This activity emphasizes interaction and Environmental
Response—within the VRLE, the user is able to appreciate
that their actions in the environment elicit consequences,
providing a sense of meaning into their learning. Additionally,
the task promotes comprehensible and visual association with
the gestures being learned, aiding in recall [42]. The name



(a) Following a first-person demonstration (b) Interacting with gesture video controls

Fig. 3. Stereoscopic views of the 360-video in progress, with the user (a) following the gesture of the first-person demonstration while the second-person
perspective waits, and (b) interacting with hand gesture video controls.

spelling activity places the user in a setting surrounded by 3D
avatars, where they role-play in befriending the avatars through
finger-spelling their names. This activity seeks to replicate a
real use-case of the NZSL alphabet through the medium of a
realistic scenario and environment. As such, the task follows
constructivist instructional principles of simulating realistic
scenarios [20], developing the learner’s confidence in applying
the alphabet in real life.

All tasks are supported by a validating mechanism through
which the user is encouraged to make Reflective Observa-
tions. When the learner attempts a gesture to spell a letter,
the application begins to classify the gestures being made,
providing Timely Feedback. Due to the fact that the Leap
Motion controller captures frames at up to 1000 frames per
second, the classification would commence immediately upon
the task being prompted. Hence, to enhance usability and
responsiveness, the feedback mechanic uses a loading meter,
as shown in Fig. 4. A frame is captured every 0.1 seconds,
upon which it is classified by the validation system. Once
10 such frames of the correct letter have been classified,
the loading meter is completed, upon which the user must
sign the next letter. Incorrect letters do no contribute to
this meter. Meanwhile, the letter that the validation system
thinks the user is making is constantly visible to the user.
Consequently, the feedback system provides to the user a
means to correct their gesture if their gesture is wrong, or
validating the gesture if it is correct, providing Retrospective
Feedback. With this validation system, there is zero penalty
for wrong classifications, aligning with established anxiety-
coping strategies and research that reports fear of failure and
embarrassments are primary causes of anxiety [10], [48].

C. Validation

VR-NZSL uses the feed-forward neural network as its
classification engine for the validation system. Neural net-
works have shown promising accuracy in previous research,
particularly in computer vision classification [33].

1) Recording: The dataset used to train the neural network
was recorded manually, with a total of 24,000 frames being
recorded. To record the data, a Unity application was created
that allows for frames to be labeled with the letter that it
represents. The application provides visual feedback of the

Fig. 4. The name spelling activity: the blue circle represents the loading bar
for validation in progress.

Fig. 5. The NZSL alphabet [54] used in the evaluation. Letters ‘H’ and ‘J’
were excluded as they involve dynamic (moving) gestures.

signer’s hands so that the signer can confirm the Leap Motion
controller is correctly recording the data. Once recorded,
the data is serialized for later use. The recording process
involves informing the application of the letter that is currently
being recorded, followed by the recorder signing the gesture.
A frame is stored every second for 10 seconds—the time
intervals between captures allow the recorder to reposition
their hand, increasing variation in training data. This 10-second
procedure is repeated 100 times, generating 1000 frames for
each letter in total. It is then applied for the 24 static NZSL
gestures (all letters in Fig. 5 except the dynamic letters ‘H’
and ‘J’), amounting to 10 hours of recording.

2) Feature Extraction: Feeding the absolute positions of the
joint positions into the neural network will cause the neural



Table I
FEATURES EXTRACTED FOR THE NEURAL NETWORK AND THEIR

ASSOCIATED NUMBER OF VARIABLES NEEDED TO REPRESENT THEM.

Feature Symbol
Variable

count
Quaternion: Hand Rotation HR 8
Vector: Hand Direction D 6
Vector: Hand Normal N 6
Grab Strength G 4
Pinch Strength P 4
Distance: Fingertip–Palm Center FPD 10
Angle: Adjacent Fingertips AA 8
Angle: Fingertip–Palm Normal FPA 10
Distance: Fingertip–Opposite Hand’s Palm Center FOPD 10
Distance: Fingertip–Opposite Hand’s Fingertips FOFD 25

network to be dependent on the position of the hands relative
to the Leap Motion controller. Two options were available to
make the neural network robust to the hand positions. The
first option would involve having a larger training size with a
deliberate effort to record data at different positions. Another
option was to selectively extract features that are position-
independent. The latter was chosen to minimize effort in
acquiring training data. As there was initially little information
on how much training data would be needed, it was crucial to
make design decisions that could minimize the training data
required by the classifier. The features extracted are shown in
Table I.

Features {D, N, FPD, AA, FPA} were chosen based on a
similar study for Arabic sign language [32], [33]. However,
the studies were based on one-handed gestures, thus features
FOPD and FOFD were added to account for the two-handed
nature of the NZSL alphabet. The remaining features were
added iteratively based on the models’ in-sample recall score;
if a particular letter had very low recall scores, then a feature
was added that could rectify the current model’s weaknesses.

Features {HR, D, N, G, P} are features that are directly
provided by the Leap Motion API. The remaining features
must be manually calculated based on vectors of the hand-
joints’ XYZ-Cartesian coordinates. FPD is calculated for each
finger on each hand as the absolute difference between the
fingertip position and the palm center of the hand in Euclidean
space. AA is calculated for all fingers for each hand as
the angle between adjacent fingers. FPA is calculated for
each finger as the angle between the finger and the palm of
the hand. FOPD is calculated for all fingers on each hand
as the difference in position between the fingertip and the
opposite hand’s palm center. Finally, FOFD is calculated as
the difference in position between fingertips of opposite hands.
The feature values were normalized using a Min-Max scaler
before being used as training data.

3) Architecture Design: The architecture of the neural
network, as illustrated in Fig. 6, consists of the following
layers:

• Input layer with 91 neurons (the same value as the total
number of feature variables in Table I)

• Three hidden layers, each with 400 neurons and using
the rectified linear unit as activation functions.

• Output layer with 24 neurons using the softmax activation

Fig. 6. Architecture of the final neural network model used.

Table II
THREE MEASURES USED TO INDICATE ACCURACY OF THE NEURAL

NETWORK.

Accuracy Measure Symbol Accuracy (%)
Cross-Validated Accuracy of Architecture CVA 98.7
Test Set Recorded by Researchers TRA 95.3
Test Set Recorded by NZSL Professionals TPA 85.6

function, with each neuron representing the static letters
of the NZSL alphabet.

The neural network was trained with 30% validation split, and
20 epochs under a batch size of 512 samples, with a mean
epoch training time of 0.154ms. For the test sets, the final
model took 0.935ms to classify each image, on average. The
network was trained using an nVidia 1080 GTX GPU.

V. RESULTS

A. Classification Evaluation

To analyze the classification performance of the neural
network, three different indicators were used (Table II). CVA
was calculated using a 10-times 10-fold stratified cross-
validation process, where a new neural network with identical
architectures described in Fig. 6 is trained for each fold
iteration. The accuracies for each fold iteration is recorded
and the mean is used to calculate CVA. CVA is an analysis
of the general performance of the architecture, rather than one
specific model. For the final model used in the application,
separate test sets were used, each with 150 frames per letter.
The TRA test set was recorded by the two researchers that
recorded the training set. TPA was independently recorded by
two fluent NZSL signers independent from the study, with
minimal supervision provided during the recording.

All three indicators exhibited high accuracies, giving
promising indications for the reliability aspect of RQ1. Due to
TPA being recorded by signers not involved during the training
of the neural network, it exhibited the lowest accuracy at
85.6%, indicating the model had overfitted to the researchers’
training data. Section V-A5 gives insight into why this over-
fitting occurred. Despite the lower accuracy, the professionals
commented on the high usability of VR-NZSL, barely noticing
the underperformance of the model with the exception of the
worst classified letter, V.



1) Performance Measures of Predictive Models: The per-
formance measures of accuracy and recall are established
performance measures for a model that tries to predict a factor
that can take one of many possible classes (i.e. letters in the
NZSL alphabet) [55]. Accuracy for the i-th class is defined as:

Accuracyi =
TruePositivei + TrueNegativei

Positivei +Negativei

A positive sample is a sample with class i and a negative
sample is a sample that is not class i. A true positive is
a positive sample correctly classified as class i, and a true
negative is a negative sample correctly classified as not class
i. As the equation shows, the numerator is the sum of both
true positives and true negatives for the i-th class. For a given
class i, there are n–1 other classes, each contributing to high
true negative classifications for the i-th class. Consequently,
due to the very high true negative and negative values for a
given class, the accuracy for each class will be very similar
thus it can be a deceptive measure when comparing between
accuracy across different classes.

To account for this, the recall performance measure is used.
For a given class i, recall has the following property:

Recalli =
TruePositivei

Positivei

Recall is sensitive to false negatives (when class i samples
are incorrectly classified as not class i) hence it is a great
measure for identifying letters that are not being correctly
recognized. This measure is a more realistic depiction of the
performances of an individual class thus this measure will be
used when comparing between classes.

Both measures can be reliably calculated using the 10-
times 10-fold stratified cross-validation technique [56]. This
technique is a standard procedure for minimizing bias in
estimates in predictive models.

2) Architecture Development: The architecture was de-
signed using a grid-search cross-validation across different
numbers of layers and neurons. Specifically, up to six layers
were explored with 50, 100, 200, 400, and 1200 neurons
explored for each layer. Finer granularities of 25 and 800
neurons were used for the first layer for exploratory purposes.
A 10-times 10-fold cross-validation was performed for each
combination and the accuracy was recorded. For networks with
five or six layers, the larger numbers of neurons could not be
tested due to memory limitations of the hardware.

Across the combinations explored, three hidden layers with
400 neurons gave the highest cross-validated accuracy at
99.0%, therefore this architecture was chosen to create the
final model. Combinations with a high number of parameters
showed decreasing accuracies; neural networks with a large
number of parameters have a greater tendency to overfit the
data. Although this could be mitigated with a larger training
size, the accuracy for the best combination was already excep-
tional, hence the effort required to record the data to support
deeper neural networks was not justified.

3) Training Size: A performance analysis of models trained
across different training sizes was used to validate whether the
recorded training size was sufficient, as well as to evaluate the

Fig. 7. Facetted line graph showing the iterative exploration of cross-validated
accuracies, facetted across different numbers of layers.

scalability of the manual recording approach. Training sizes
of support = {5, 10, 25, 50, 100, 200, 400, 800} frames per
letter were used in a stratified 10-times 10-fold cross-validation
process. In addition to the method described at the beginning
of Section V-A, each training run of the neural network in-
volved randomly selecting examples of size support, without
replacement, out of the training folds. For each fold, a neural
network with three layers and 400 neurons was trained and the
accuracy against the test fold was recorded. Consequently, for
each training size tested, 100 accuracies were recorded, from
which a 95% confidence interval can be calculated based on
the Central Limit Theorem.

Fig. 8 shows a rapid increase in cross-validated accuracy
for support≤100, after which the rate of improvement grad-
ually plateaus. The original support=1000 is well across the
plateauing area, showing that the training size was more than
sufficient for training the final model. Furthermore, the graph
shows significant diminishing returns after 200 samples per
letter. Proportionally, this would indicate that similar accura-
cies could have been achieved within a two-hour recording
session, as opposed to the original 10 hours; optimizing the
recording application could have further reduced the recording
time. Ultimately, the training size analysis serves to show
the scalability of the recording procedure, which is promising
for further research seeking to expand the vocabulary. Con-
sequently, the scalability aspect of RQ1 has been answered.

4) Feature Importance: An analysis of how each feature
contributed to the final model’s performance was crucial in
answering RQ2. The analysis involved applying a 10-times
10-fold stratified cross-validation on each of the 1024 differ-



Fig. 8. Cross-validated accuracies across different training sizes, with error
bars representing 95% confidence intervals.

Fig. 9. Cross-validated accuracies of the 1024 feature combinations, broken
down by level.

ent combinations of features to extract the accuracies. Once
recorded, the top ten combinations for each combination sizes,
or levels, were identified. The ten combinations were then
tested on using the combined {TRA,TPA} test set to find the
best combination for each level. For this final test stage, the
combined test set was used to train 50 neural networks of
identical architectures and the average accuracies across those
neural networks were taken. This was necessary to mitigate
the randomness in neural network training, as well as to make
the evaluation agnostic to any one specific model for each
combination.

In general, Fig. 9 shows that the more features there are
in a combination, the higher the accuracies and smaller the
spread. This can be explained by the fact that the weaknesses
of one feature can be compensated by the strength of another;
the more variables there are, the greater the effect of this
phenomenon. Table III shows the addition of new feature vari-
ables causing previously misclassified letters to be correctly
classified. For example, feature combination #5 struggled with
the letter ‘R’, but the addition of pinch and grab strengths in
feature combination #6 captures the anatomy of the pinching
and grabbing gestures of the right hand that are necessary to
make an ‘R’ gesture.

FOFD was consistently in the best combination for each
level except in level = 2, suggesting a high feature importance
due to its ubiquity across all levels’ best combination. This
could be attributable to the fact that FOPD requires a large

Table III
THE BEST MODELS FOR EACH LEVEL BASED ON ACCURACY TOWARDS

THE COMBINED {TRA,TPA} TEST SET, AS WELL AS THEIR WORST
CLASSIFIED LETTERS IN TERMS OF RECALL PERFORMANCE.

Feature Combination
Test

Accuracy
(%)

Top 3 Worst
Letters

1: {FOFD} 85.6 F, L, E
2: {AA, FOPD} 89.5 E, R, X
3: {N, FPA, FOFD} 88.5 V, O, T
4: {HR, AA, FPA, FOFD} 90.1 E, X, V
5: {HR, AA, FPA, FOPD, FOFD} 90.3 E, X, R
6: {HR, G, P, AA, FPA, FOFD} 91.0 K, V, E

7:
{HR, G, FPD, AA, FPA, FOPD,

FOFD} 91.4 V, K, R

8:
{HR, D, G, P, AA, FPA, FOPD,

FOFD} 90.4 L, K, O

9:
{HR, D, G, P, FPD, AA, FPA,

FOPD, FOFD} 90.8 L, V, K

10:
{HR, N, D, G, P, FPD, AA, FPA,

FOPD, FOFD} 90.4 V, O, L

number of variables to describe it, as shown in Table I,
as well as FOFD. Feature combination #7 ({HR, G, FPD,
AA, FPA, FOPD, FOFD}) provided the highest accuracy,
answering RQ2. Despite this, most combinations had a similar
accuracy (with the exception of level one combinations), thus
it is entirely possible that the highest accuracy of feature
combination #7 was coincidental due to specific test sets that
were used. Nevertheless, the results show that a small number
of the correct features can be used to achieve similar accuracy,
which is a promising result for future development of manual
gesture hardware with limited feature collection power.

5) Recall of Letters: Analysis of the neural network’s
performance across the different NZSL letters is crucial to
understand the strengths and weaknesses of the Leap Motion
classification system, and hence to answer the reliability
dimension of RQ1. As discussed in Section V-A1, recall is
a suitable performance measure against individual letters. For
the following analysis, test set accuracies will be used in place
of cross-validation, as Section V-A3 indicates the test set is
of sufficient size to generalize to NZSL gestures. The analysis
first focuses on the performance of the final model on the
combined {TRA, TPA} test set in an attempt to make the
analysis independent of the signer. As a means to explore
the relationship between different letters, the analysis also
explores 2nd order and 3rd order recall performances. The
n-th order recall for a given letter is calculated by considering
the top n frequently classified letters as true positives. For
example, if 56% of ‘V’ samples were classified as ‘V’ and
42% were classified as ‘N’, then the 2nd order recall for ‘V’
is the combined 98%. Recalls at different orders can be used
to measure the breadth of classification, indicating whether
a gesture is confused with very few or many other letters.
Furthermore, recalls of the individual letters were compared
between TPA and TRA to analyze the model’s classification
behavior across different individuals.

6) Combined Recall: With the exception of letters such
as L, O and V, Table IV shows that there is generally a
high first-order recall rate across the letters. The second-order
recalls show significantly high improvements from the first-



Table IV
RECALLS ACROSS THE STATIC NZSL ALPHABET AT order = {1, 2, 3}

FOR THE COMBINED TEST DATASET {TRA, TPA}. LETTERS WITH order =
1 RECALL ABOVE 99% HAVE BEEN OMITTED FROM THE TABLE.

Letter Recall (%)
Order=1 Order=2 Order=3

G 95.0 97.3 98.3
I 91.3 96.1 98.7
K 78.7 93.3 95.7
L 61.6 87.1 93.2
M 91.7 95.3 97.0
O 59.0 99.7 100
P 97.4 99.4 100
R 90.3 96.8 98.4
T 93.0 96.0 97.7
U 79.7 96.8 99.4
V 56.7 95.3 99.0
X 84.3 94.3 99.7

Table V
RECALL COMPARISONS BETWEEN TRA AND TPA. LETTERS WITH
RECALL ABOVE 99% FOR BOTH TEST SETS HAVE BEEN OMITTED.

Letter TRA Recall (%) TPA Recall (%)
G 92.0 98.0
I 83.1 100
K 86.0 71.3
L 94.0 31.3
M 90.0 93.3
O 98.7 19.3
P 95.0 100
R 92.7 88.1
T 94.0 92.0
U 88.8 70.0
V 90.0 23.3
X 88.7 80.0

order recall, showing that most poorly performing letters were
primarily confused with one other letter. Generally, letters had
perfect or near-perfect classifications by the third-order recall,
with all third-order recalls being above 93%. This supports the
hypothesis that the final model generally confuses a letter with
very few other letters. However, there is a correlation between
poorly performing letters across the three different orders,
such as letters such as K, L, and M. These letters consist of
similar features with many other letters—particularly L, which
shares the common structural features with M, N, T and the
vowels. These results can serve as a basis for further feature
engineering, where new features could be introduce to target
the worst-performing letters based on recall.

7) Recall of Different Test Datasets: Table V shows that
TPA performs generally worse than TRA across all letters,
particularly for the letters L, O and V, indicating that the
final model has overfitted to the researcher’s data. Whether
this is due to the structural differences of the hands (such as
finger length or width) can be ascertained through analyzing
performances of individual letters, which can give insights into
the types of hand features that the model struggles with. Table
V indicates that the overfitting is attributable to the stylistic dif-
ferences of the gestures in combination with limitations in the
Leap Motion controller’s sensitivity, rather than the structural
differences of the recorders’ hands. The root cause of such
discrepancy is attributable to TPA being signed independently

Fig. 10. Confusion matrix for TPA, with columns as the predicted class and
the rows as the actual class.

Fig. 11. Comparison of the stylistic differences in signing the letter ‘O’
between the TRA (left) and TPA (right) test sets.

by the NZSL professionals, with minimal corrective guidance
from the researchers, leading to the professionals signing in
their own NZSL ‘dialect’. From the confusion matrix in Fig.
10, it can be seen that ‘O’ samples were almost exclusively
confused as ‘I’. From Fig. 11, the misclassifications can be
explained. The gesture ‘O’ involves the right hand’s index
fingertip touching the left hand’s ring fingertip. TRA’s gesture
style involved the left hand’s palm facing the Leap Motion
controller. However, TPA’s ‘O’ gestures were stylistically
different, with the left hand’s palm facing perpendicular to
the Leap Motion controller. This causes the left hand’s index
fingertip occluding the right hand’s index fingertip, causing
the Leap Motion controller to predict that the right hand’s
fingertip is touching the left hand’s middle fingertip (which is
the gesture for ‘I’) instead of the ring fingertip.

‘V’ samples from TPA were the second most misclassified
samples, with 73% of ‘V’ frames being misclassified as ‘N’.
Fig. 12 illustrates how both gestures have similar features.
By inspecting the Leap Motion’s remodeling of ‘V’ and ‘N’,
it is observed that the differences are hardly distinguishable.
TRA’s recall for ‘V’ is much higher than TPA, primarily due
to the researchers making a conscious effort during recording
to separate the right hand’s middle and index fingers to an
unnatural degree so that the Leap Motion controller could
detect the separation. During TPA recording, the recordings
were much more natural, preventing the detection of the
separation and causing the final model to misclassify the
frames as ‘N’. Ultimately, these stylistic differences failed to
be caught by the final model, suggesting that future training



Fig. 12. Comparison of the Leap Motion Controller’s remodeling of V (left)
and N (right) gestures.

samples should aim for broader stylistic variations so that
classifiers can capture such differences. For completeness, the
confusion matrix for TRA is also presented in Fig. 13.

Fig. 13. Confusion matrix for TRA, with columns as the predicted class and
the rows as the actual class.

Through analysis of the neural network’s recall perfor-
mances across the different letters, as well as observations
during development, the following deficiencies of the Leap
Motion controller were identified:

1) The Leap Motion’s sensitivity falls when the hands are
close together, which can cause failure to distinguish
minute details (such as in ‘V’) or even failure to detect
the presence of the hands altogether (such as in ‘G’).
The latter case can be easily rectified through reposi-
tioning the hands but this nevertheless has an impact on
usability.

2) Occlusion causes the Leap Motion to make intelligent,
though less than perfect, estimations on the position
coordinates of occluded joints.

Both deficiencies may be limiting factors for the adoption
of Leap Motion controllers in manual language acquisition.
Despite this, the overall accuracy was considerably high,
enabling practical usability as will be described next.

B. Usability Evaluation

1) Experimental Design: In answering RQ3, the goal of
the VR-NZSL application was to evaluate the effectiveness

of a VR-based DEL-MaC implementation with regards to
self-directed learning, memory retention, and engagement. As
a benchmark for effectiveness, the Learn NZSL web-based
NSZL acquisition platform [57] was used for comparison,
which includes both Learn NZSL Alphabet videos [25] and
Deaf Aotearoa 2D diagrams [54]. Although not strictly a DEL-
MaC implementation, Learn NZSL is nevertheless an effective
self-directed learning tool that is widely available for potential
learners [25]. Participants in the evaluation included 10 hearing
tertiary students and staff with no prior NZSL knowledge. The
participants volunteered to take part in the study hence no
sampling technique was used. Participants were instructed to
learn eight letters (A, G, L, M, N, O, P, R) within the 360-video
module. Afterwards, the participants performed the random
letter task, the fruit-spelling task, and the name-spelling task
(using the same set of eight letters). Once completed, the
participants were tested on their memory retention.

After completing the VR-NZSL module, the participants
were asked to learn a different eight set of letters (D, I, Q,
S, T, U, V, Y) that are anatomically similar to the subset
learned in VR-NZSL phase. The participants were instructed to
memorize those letters, using both the Learn NZSL application
and the alphabet diagram (from Fig. 5) at their discretion.
Once completed, the participants were tested through being
asked to sign the gestures in front of an observer who scored
their performance. For both tests, the score for each letter is
either 0: cannot remember, 0.5: remembered but with obvious
anatomical deviations, and 1: perfect. Hence, the total score
for the test was out of eight points. Both sessions were time-
boxed at 10 minutes. The participants were asked to complete
a Likert-scale post-questionnaire to evaluate their satisfaction,
as well as a set of qualitative questions.

2) Statistical analysis: Table VI indicates promising re-
sults, with all questions showing high responses for the various
usability and perceived effectiveness aspects of VR-NZSL.
The results from Q1 had the lowest mean score with the
largest variability in responses, suggesting that the usability
of the video controls have room for improvement. Buttons
may not be the most intuitive interface with the Leap Motion
controller in a VRLE, thus explorations into alternative video
navigation methods that do not rely on buttons could be
made. Despite this, participants commented on the usefulness
of the ‘loop’ functionality, stating that it was useful for
the difficult gestures that were hard to follow. It was also
encouraging to find that the participants found the overall VR
experience an immersive one; as immersion is a key aspect
in having concrete experiences, the results show that VR-
NZSL satisfactorily implemented the DEL-MaC framework.
The results from Q3 and Q4 directly address Timely Feedback
and Retrospective Feedback components respectively, further
showing that VR-NZSL closely follows DEL-MaC. The re-
sults show Timely Feedback and Retrospective Feedback are
essential mechanisms for the self-directed manual language
learner, as well as the necessity for Reflective Observation in
an Experiential Learning tool.

Table VII presents the self-reported confidence (Q5) and
engagement (Q6) results for the three CALL methods. To see
if participants felt any difference between the three CALL



Table VI
QUESTIONNAIRE RESULTS FOR VR-NZSL EXPERIENCE (5: STRONGLY

AGREE, 4: AGREE, 3: NEUTRAL, 2: DISAGREE, 1: STRONGLY DISAGREE).

Question SD D N A SA x̄ s
Q1. I found the 360-video easy to
navigate and control

0 1 1 6 2 3.9 0.88

Q2. I found the VR environment
immersive

0 0 0 6 4 4.4 0.52

Q3. I can learn NZSL more easily
because I can see my hands in the
VR environment

0 0 1 5 4 4.3 0.67

Q4. I found the application telling
me when I am wrong or right
beneficial to my learning

0 0 0 3 7 4.7 0.48

methods, a Friedman ANOVA repeated-measures test is used.
The difference of the self-reported confidence (Q5) is signifi-
cant across the three groups, X2

r = 10.85, p = 0.00441. The
difference of the self-reported engagement (Q6) is even more
significant across the three groups, X2

r = 15.2, p = 0.0005.
Next, Wilcoxon signed-rank tests are performed between each
pair of CALL methods to understand where the significant
differences are arising. In the case of both confidence and
engagement, it is not possible to calculate an accurate p-
value for the differences between the 2D videos and 2D
diagrams (i.e. insignificant differences). Only in the case of
comparing VR-NZSL to 2D videos, or comparing VR-NZSl
to 2D diagrams, does the Wilcoxon signed-rank test report
significant differences: VR-NZSL vs 2D video confidence
(Z = −2.5205, p < 0.01), VR-NZSL vs 2D diagram
confidence (Z = −2.6656, p < 0.01), VR-NZSL vs 2D video
engagement (Z = −2.8031, p = 0.00512), and VR-NZSL vs
2D diagram engagement (Z = −2.8031, p = 0.00512).

Based on Q5, VR-NZSL is perceived as an effective learn-
ing tool that can be used alone to learn NZSL. In comparison,
participants commented that the Learn NZSL video was too
quick and the perspective was second-person only, making
it difficult to follow along. Additionally, the 2D diagrams
were static images of the final positions of the gesture, hence
participants commented that it was sometimes difficult to
produce the gestures. The participants thus frequently switched
their mode of instruction between the diagram and the video
during the web-based session. The difficulty to follow gestures
directly hinders the actively experimenting learner. Further-
more, answers for Q6 showed very strong evidence that the
VR-NZSL was a more engaging method of learning, with
participants scoring the application around 2 Likert points
higher than the web-based approaches.

All participants found that the fruit activity was the most
engaging task (Q7), commenting that having the ability to
directly ‘hold’ objects within the environment helped them
feel more engaged. This is not too surprising, as the task
incorporated the greatest degree of interaction through carrying
the fruit onto the bench to initiate the spelling game, thereby
manifesting Environmental Response. The result supports the
hypothesis that by maximizing interactivity, the learner feels
a sense of power over their learning process, embodying a
constructivist form of learning. For Q9, One participant noted:

I was having so much fun in the VR that I was

Table VII
COMPARING CONFIDENCE AND ENGAGEMENT FOR THE DIFFERENT CALL

METHODS (5: STRONGLY AGREE, ..., 1: STRONGLY DISAGREE).

CALL method Median Range
Min Max

Q5. I feel confident that I can learn NZSL alphabet using {CALL method} by itself
VR-NZSL 5.0 4 5
Learn NZSL 2D videos 2.5 2 4
Deaf Aotearoa alphabet 2D diagrams 3.0 1 4

Q6. I felt engaged learning NZSL alphabet using {CALL method}
VR-NZSL 5.0 4 5
Learn NZSL 2D videos 3.0 2 3
Deaf Aotearoa alphabet 2D diagrams 3.0 1 4

Table VIII
ENCODING OF POST-QUESTIONNAIRE QUALITATIVE QUESTIONS.

Question Qualitative Encoding
Q7. What was your favorite activity?
Why?

Fruit: Engagement (6), Interaction (4)

Q8. Did you prefer the 360-videos or
the 2D videos? Why?

360-video: Engagement (6), Visual
Breadth (4)

Q9. What were the pros and cons of
the VR approach?

Pro: Immersion (4), Interaction (3),
Usability (3)

Con: Leap Motion Sensitivity (3),
Video Navigation (3), Slow (2), Motion

Sickness (2)
Q10. What were the pros and cons of
learning NZSL using a 2D video?

Pro: Speed (6), Video Controls (4)
Con: Hard to follow (5), No validation

(3), Uninteresting (2)
Q11. What were the pros and cons of
learning NZSL using 2D diagrams?

Pro: Speed (10)
Con: Uninteresting (6), No validation

(3), Hard to follow (1)

motivated to keep learning and complete each task.

Many of the answers in Table VIII followed a similar
theme—that engagement is a precursor to motivation. This
could open up further research regarding gamification for man-
ual language acquisition, which could exploit engagement as
a means to motivate the self-directed learner. For the memory
test, the scores attained by the participants for VR-NZSL
versus the web-based session were not normally distributed, so
a paired t-test could not be carried out. A Wilcoxon signed-
rank test could also not be performed due to the small N
size. As a result, it cannot be determined whether there is any
difference in memory performance between the VR or web-
based sessions. Despite inconclusive statistical significance,
participants commented that visual recall through connections
with fruit objects seemed to contribute to the ease of recalling
gestures. Ultimately, promising evaluations in the self-reported
usability, confidence, and engagement of participants in the
VR-NZSL session serve to reliably answer RQ3, despite no
evidence of significant memory retention difference.

Threats to Validity: External validity regarding memory
effectiveness is jeopardized by the experimental design of
the memory test. Specifically, it is possible that the letters
selected for testing in the VR setting are easier to remember
than those learned in the web-based setting. Furthermore,
participants generally took longer in the VR session than in
the web-based session as they often voluntarily terminated
the latter much earlier than the designated time-box of 10
minutes, possibly due to a loss in engagement. Time may have



affected the memory score of the participant. Furthermore,
the limited sample size of 10 impacts the generalizability of
the experiment. The internal validity of the experiment is also
threatened, particularly with regards to the Likert-scale post-
questionnaire. Participants could have rated the VR-NZSL
higher than the web-based approaches by virtue of the Rosen-
thal effect. By being aware of the background of VR-NZSL,
participants may have been biased towards the novelty of the
project or influenced by the observer-expectancy effect. Due
to the human ethics approval requirements, participation in the
study was voluntary and prohibited collection of demographic
information. Finally, results in terms of perceived effectiveness
and incoming familiarity with NZSL were both self-reported.

VI. CONCLUSION

The lack of digitally-assisted pedagogical tools has con-
tributed to a climate of manual language education that
lacks availability and practical exercises [7]. The paper aims
to tackle this issue by introducing an innovative digitally-
assisted pedagogical framework as a means to acquire manual
languages. A VR-based interpretation of this framework is
manifested in VR-NZSL—a VRLE for the NZSL alphabet
that uses the Leap Motion controller and machine learning as
engines to drive corrective feedback. Despite limitations with
the Leap Motion controller, the validation system has shown
to be reliable, reaching accuracies of up to 99.0% for the static
gestures of the NZSL alphabet. Through the evaluation of the
classifier, reasonable accuracy could be reached within a two-
hour recording time, indicating scalability towards expanding
the classifiable vocabulary. The evaluation also identified the
set of hand features required for accurate classification using
the Leap Motion controller.

While previous researchers have investigated using the Leap
Motion controller for other sign languages (predominantly
the single-handed Arabic sign language), these studies were
done without an emphasis on the pedagogical implications
of the controller. This study focuses on the two-handed New
Zealand sign language with detailed classification evaluations
as well as preliminary evaluations on participants with no
background in sign language. It is hoped this will assist future
sign language recognition systems in pin-pointing the hand
features necessary for accurate classifications. Through the
implementation of the DEL-MaC framework, the VR appli-
cation has been shown to motivate the self-directed learner
by providing engagement and usability, suggesting that the
framework could be a reliable foundation for VR-based edu-
cation. The first implication of this study’s findings reveals that
there is still much-needed advancement of suitable hardware
in order to more accurately capture intricate sign language
gestures. Second, the accuracy differences between TRA and
TPA suggests the existence of possible ‘accents’ when signing
that must be accounted for during model training.

This research leaves room for future expansion in the
following areas. As VR-NZSL is currently limited to the
NZSL alphabet, expanding its recognizable vocabulary is a
potential avenue for future expansion. This will involve time-
dependent models so as to capture the sequence-based motions

of the NZSL vocabulary. Another future expansion is the use
of multiple Leap Motion cameras placed at different angles
in order to remove the effects of occlusion—a key factor
in decreasing the accuracy of the current NZSL iteration.
While this research has shown promising results for simple
single-alphabet gestures, this eventually needs to be extended
to supporting vocabulary with increasing complexity, and
gradually to recognizing the grammatical structure of manual
communication. Through the approach proposed, it is believed
that a valuable contribution has been made towards the digital
revitalization of manual languages.
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