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Parkinson’s disease (PD) is a complex neurodegenerative disease with a range of causes and
clinical presentations. Over 76 genetic loci (comprising 90 SNPs) have been associated with
PD by the most recent GWAS meta-analysis. Most of these PD-associated variants are
located in non-coding regions of the genome and it is difficult to understand what they are
doing and how they contribute to the aetiology of PD. We hypothesised that PD-associated
genetic variants modulate disease risk through tissue-specific expression quantitative trait loci
(eQTL) effects. We developed and validated a machine learning approach that integrated
tissue-specific eQTL data on known PD-associated genetic variants with PD case and control
genotypes from the Wellcome Trust Case Control Consortium. In so doing, our analysis
ranked the tissue-specific transcription effects for PD-associated genetic variants and
estimated their relative contributions to PD risk. We identified roles for SNPs that are
connected with INPP5P, CNTN1, GBA and SNCA in PD. Ranking the variants and tissue-
specific eQTL effects contributing most to the machine learning model suggested a key role in
the risk of developing PD for two variants (rs7617877 and rs6808178) and eQTL associated
transcriptional changes of EAF1-AS1 within the heart atrial appendage. Similarly, effects
associated with eQTLs located within the Brain Cerebellum were also recognized to confer
major PD risk. These findings were replicated in two additional, independent cohorts (the UK
Biobank, andNeuroX) and thuswarrant furthermechanistic investigations to determine if these
transcriptional changes could act as early contributors to PD risk and disease development.

Keywords: Parkinson’s disease, heart atrial appendage, SNCA, PD-SNPs, tissue specific eQTL, machine leaning,
GBA, Brain Cerebellum

INTRODUCTION

Parkinson’s disease (PD) is a complex neurodegenerative disease with a range of causes and clinical
presentations. The diagnosis of PD is based on the presence of the cardinal motor symptoms
(bradykinesia; muscular rigidity; 4–6 Hz resting tremor; postural instability) (Clarke et al., 2016).
Genome wide association studies (GWAS) have identified human genetic variants that are associated
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with the risk of developing PD (Spencer et al., 2011; Nalls et al.,
2019). In the most recent PD GWAS meta-analysis, Nalls et al.
(2019) identified 90 independent single nucleotide polymorphisms
(SNPs) that are significantly associated with PD risk. There are an
additional 290 PD-associated GWAS SNPs (279 in non-coding and
11 in coding regions) listed in the GWAS catalog. However, it is
difficult to understand how these variants confer PD risk because
the majority of the PD SNPs are located in non-coding regions of
the genome (Visscher et al., 2012, 2017; Farrow et al., 2021).

Non-coding SNPs have been shown to be enriched at
regulatory loci and can act as expression quantitative trait loci
(eQTLs) (Duggal et al., 2014; Fadason et al., 2017, 2018; Delaneau
et al., 2019; Yu et al., 2019). eQTLs typically explain a fraction of
the variation in mRNA expression levels for target genes, either in
cis (<1 Mb apart in the linear sequence) or trans (>1 Mb apart or
located on a different chromosome). Regulatory variants
(i.e., eQTLs) can impact different genes in different tissues,
making it challenging to determine how SNPs convey risk for
a phenotype. Determining the relative contributions of the eQTLs
to the risk of developing a disease would help identify the eQTL-
gene-tissue combinations that convey the risk associated with the
variant (Ho et al., 2021). We have demonstrated that the three-
dimensional structure of the genome can be used to help identify
eQTL-gene pairs and thus the biological pathways that putatively
contribute to disease etiology (Aguet et al., 2017; Schierding et al.,
2020). Yet, approaches that calculate relative estimates of the
tissue specific contributions that SNPs make to disease
development remain elusive.

We reasoned that if PD-associated SNPs contribute to disease
development through gene regulatory effects, then the tissue-
specificity of these eQTLs may be an important consideration for
the aetiology of the disease (Aguet et al., 2017; Ongen et al., 2017; Ho
et al., 2021). Therefore, we developed a machine-learning predictor
model for PD disease status that utilises and selects SNPs (without
eQTLs in GTEx) and tissue-specific eQTL data, for case and control
cohorts, to reveal the tissue-specific regulatory effects that are
associated with PD risk. Briefly, we used a matrix of: 1) PD-
associated SNPs that act as eQTLs, 2) the genes regulated by
these eQTLs; 3) the tissues in which the eQTL effects were
observed; and 4) SNPs that do not have eQTLs in GTEx to build
a logistic predictor that was validated using genotype data from three
independent studies (Spencer et al., 2011; Nalls et al., 2014; Bycroft
et al., 2018). The logistic predictor model that had the highest PD
predictive ability, was trained and selected using theWellcome Trust
Case Control Consortium (WTCCC) cohort. The predictor model
was then validated using two datasets derived from the UK Biobank
(Bycroft et al., 2018) and NeuroX-dbGap (Nalls et al., 2014). Our
predictor ranked the relative contributions that six non-eQTL PD
SNPs, and eQTLs that modulated gene regulation specifically within
the heart atrial appendage as making the largest contributions to PD
risk development.

METHODS

Workflow for developing the PD predictor model-1 and -2
(Figure 1).

Generation of Tissue Specific PD eQTL
Reference Table
GWAS SNPs associated with PD (n � 290, p-value < 1.0 ×
10−5; Supplementary Table S1) were obtained from the
GWAS catalogue (www.ebi.ac.uk/gwas, downloaded
August 27, 2020). This SNP set included young adult-
onset Parkinsonism SNPs (Siitonen et al., 2017) and the
90 SNPs identified by the most recent meta-analysis by
Nalls et al. (2019). The PD associated SNPs were analysed
by CoDeS3D and mapped to their tissue-specific eQTL
effects for creating a PD eQTL reference table
(Supplementary Material).

WTCCC Cohort Cleaning and Genotype
Imputation
The PD genotype dataset was acquired from theWTCCC (Request
ID 10584) and were imputed by Sanger imputation service (https://
imputation.sanger.ac.uk) (Supplementary Material).

Creation of a Weighted WTCCC PD
Genotype eQTL Effect Matrix
We created a matrix that combined individual genotypes with the
eQTL effects for the PD-associated SNPs (Supplementary
Material) which contains three groups of data fields:

1. Individual sample information
2. Individual sample PD-associated SNP genotype (SNP minor-

allele count) weighted by GTEx tissue-specific eQTL
normalised effect sizes (NES)

3. Individual PD-associated SNP genotype for the SNPs without
known eQTL effects

Generation, Training, and Validation of the
Regularised Logistic Regression Models
(Model-1 and Model-2)
We created two regularised logistic regressionmodels (see below):
for model-1 from a weightedWTCCC PD genotype eQTL matrix
for all 290 SNPs (GWAS catalogue) and for model-2 from a
weighted WTCCC PD genotype eQTL matrix for the subset of 90
SNPs (Nalls et al., 2019).

We developed a regularised logistic regression predictor that
incorporated a: 1) Mann-Whitney U tests in combination with
Benjamini-Yekutieli (BY) procedure for controlling False
Discovery Rate (FDR); and 2) multivariate prediction step
with regularization that considers all features in context and
removes redundant information, to identify the best combination
of features for prediction of PD.

Calculation of Tissue-Specific
Contributions to PD Risk
The 50 PD regularised logistic regression predictors created from
the five repeats of 10-fold cross-validation were used to test the

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 12 | Article 7854362

Ho et al. Machine Learning Parkinson’s Disease Risk

http://www.ebi.ac.uk/gwas
https://imputation.sanger.ac.uk/
https://imputation.sanger.ac.uk/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


predictive power of the models created with the optimised
predictor hyperparameters. Tissue-specific contributions to the
PD risk were extracted from each of the 50 PD regularised logistic
regression predictors as the sum of the absolute values of the
model weights associated with each tissue.

Validation of Model-1 and Model-2
The generalising PD predictive power of models-1 and -2 was
validated by testing on two independent test datasets derived
from the UK Biobank (30 test cohorts) and NeuroX-dbGap
genotype data (Supplementary Material).

FIGURE 1 |Cartoon illustrating data integration and workflow for regularised logistic regressionmodelling undertaken in this manuscript. (A) Schematic diagram for
data integration used to rank disease risk features. (B) Workflow used to create the two regularised logistic regression predictor models for PD.
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Data Analysis
All statistical tests were performed with Scikit-learn (version
0.23.2) (Abraham et al., 2014), and tsfresh (version 0.16.0)
(Christ et al., 2018). Polygenic Risk Scores were calculated by
R (version 3.2.3) with pROC library (Robin et al., 2011; R Core
Team, 2014).

RESULTS

PD-Associated SNPs Are Tissue Specific
eQTLs for 1,334 eGenes
We hypothesised that PD SNPs modulate disease risk through
tissue-specific eQTL effects (i.e., eQTL-eGene) (Aguet et al., 2017;
Ongen et al., 2017). We analysed 290 PD-associated GWAS SNPs
(Supplementary Table S1) for spatial eQTL interactions
(Ramani et al., 2016; Fadason et al., 2017; Pal et al., 2019)
across 49 GTEx tissues (Aguet et al., 2017). 231 of the 290
(79.7%) PD SNPs tested were involved in 18,041 tissue-specific
eQTL associations (Benjamini–Hochberg FDR < 0.05 (Benjamini
andHochberg, 1995); Supplementary Table S2), regulating 1,334
eGenes across the 49 GTEx tissues. Gene ontology analysis
(David Functional Annotation) (Jiao et al., 2012) identified
that the regulated genes were significantly enriched for
intracellular signal transduction, antigen processing and
presentation of peptides, among other pathways
(Supplementary Table S3).

Modelling Genotype Data to Identify the
Genetic Risk Associated With
Tissue-Specific eQTL Effects for PD
Disease Status
Understanding the impacts and complex networks associated
with eQTLs is challenging. We hypothesised that regularised
logistic regression models could be used to identify and rank
the tissue-specific eQTLs that were significant contributors to
PD risk.

We integrated the CoDeS3D eQTL analysis of the 290 PD
SNPs with the genotype data for individuals within the
WTCCC(Burton et al., 2007) PD cohort (4,366 individual
samples: 1,698 cases and 2,668 controls; methods) (Spencer
et al., 2011). Of the 290 PD SNPs, 281 SNPs were present in
the WTCCC data. This resulted in the generation of a PD-SNP
derived weighted WTCCC PD genotype eQTL effect matrix
containing 17,829 tissue-specific eQTL-eGene pairs (227 SNPs,
1,310 eGenes, 49 tissues) and 54 (of the 281) SNPs that had no
known eQTL effects following our CoDeS3D analysis.
Uninformative features for PD prediction were removed using
a Mann-Whitney U test (McKnight and Najab, 2010) (FDR
<0.05) (Methods). After filtering, 11,288 PD SNP derived
features (53 SNPs, 245 eGenes, 49 tissues) remained within
the relevant attribute subset of the weighted WTCCC PD
genotype eQTL effect matrix.

To test the effectiveness of the Mann-Whitney U test filter, we
generated a PD and type 1 diabetes (T1D) SNP derived eQTL

effect matrix using a mixed set of 290 PD and 313 T1D-associated
SNPs and integrating with the WTCCC PD cohort genotypes
(Supplementary Table S4). The PD + T1D SNP derived tissue-
specific eQTL effect matrix included 25,052 SNP related data
fields (556 SNPs, 1927 eGenes, 49 tissues). After the Mann-
Whitney U test filtering (FDR <0.05), 11,147 of the data fields
(45 SNPs, 209 eGenes, 49 tissues) were selected using PD as the
phenotypic outcome. Only one of the 313 (0.32%) T1D-
associated SNP, rs1052553, remained following the Mann-
Whitney U test filtering. Although rs1052553 has not
previously been associated with PD in GWA studies, it has
been implicated in PD as part of a PD risk haplotype (Tobin
et al., 2008; Wider et al., 2010). Therefore, these results confirm
that the Mann-Whitney U test filters uninformative data while
preserving valuable PD information for our modelling.

We created regularised logistic regression models for PD risk
using the Mann-Whitney U test filtered PD variant derived eQTL
effect matrix (11,288 PD-SNP derived features [53 SNPs, 245
eGenes, 49 tissues]). The AUCs of the 50 PD regularised logistic
regression predictors had a mean of 0.565 (distributed from 0.516
to 0.637) and a standard deviation of 0.024 (generated with the
optimised predictor model hyperparameters by five repeats of 10-
fold cross validation). The final PD predictor model (model-1)
was trained using the entire WTCCC PD cohort. After the Mann-
Whitney U test filtered WTCCC PD variant derived eQTL effect
matrix contained 17,829 variant derived features. Model-1
selected 827 tissue-specific eQTLs and six SNPs with no eQTL
effect (Supplementary Table S5). Model-1 had an enhanced
diagnostic ability as represented by an AUC of 0.627 obtained
using the training data.

We validated the predictive power of model-1 using two
independent PD cohorts (UK Biobank (Bycroft et al., 2018)
(30 datasets of 923 cases and 1,456 controls) and NeuroX-
dbGap (Nalls et al., 2014, 2015)). Model-1 was validated in
both cohorts, producing mean AUCs of 0.572 and 0.571 in the
UK BioBank and NeuroX-dbGap cohorts, respectively. These two
validation results are highly consistent and within the range of the
model AUCs (0.516–0.637) estimated by the 50 optimised logistic
regression predictor models.

eQTLs Specific to the Heart Atrial
Appendage Contribute to Genetic Risk
in PD
We used the magnitude of the model weights (coefficients) for the
genetic features, grouped by tissue-specificity of the effects, in the
logistic regression model-1 as proxies for the contribution of the
features to PD risk.

Six SNPs that had no identified eQTL effects (from CoDeS3D
analysis of GTEx) made the most significant group contribution
(18% of the total model weight) to the risk of PD development
(Table 1; Figure 2). The six non-eQTL SNPs are: rs117896735,
rs144210190, rs35749011, rs12726330, rs356220 and rs5019538
(Table 1). Note that the GTEx study (Aguet et al., 2017) removed
rs356220 and rs5019538 from the tissue-specific eQTL data as
part of their QC processing. Therefore, we were unable to test if
rs356220 and rs5019538 were eQTLs. rs117896735 also has no
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eQTL effect information found in GTEx database. The other
three SNPs (rs144210190, rs35749011 and rs12726330) were not
detected by CoDeS3D to have spatial eQTL and eGene
interactions within the Hi-C libraries used in this study.

For the top six contributing SNPs to the model, our analyses
did not identify any spatial eQTL interactions. The SNPs that are
in high linkage disequilibrium (r2 > 0.8) with these six SNPs also
did not have significant spatial eQTLs. However, previous
research has shown connections between these SNPs and three
well-known PD-associated genes (INPP5F, GBA, SNCA)
(Siddiqui et al., 2016; Berge-Seidl et al., 2017; Riboldi and Di
Fonzo, 2019; Cao et al., 2020), and an additional gene (CNTN1).
rs117896735, the top contributor to model-1, is an intronic
variant of INPP5F and has previously been identified as eQTL
for INPP5F transcript levels (the IPDGC locus browser (Grenn
et al., 2020)).

The next most significant contributions to the risk of PD
development involved eQTLs that affected the Heart Atrial
Appendage (9%) and Brain Cerebellum (4%; Figure 2). The
substantia nigra is viewed as a central brain region in PD yet
eQTL gene regulation specific to the substantia nigra contributed

∼1.5% of the risk of PD development. We repeated the calculation
of the tissue-specific contribution ranking using data from the 50
optimised predictor models, generated with model-1’s
hyperparameters by five repeats of 10-fold cross validation
(randomizing the full Mann-Whitney U test filtered PD
variant derived eQTL effect matrix),. Again, SNPs lacking
known eQTL effects, Heart Atrial Appendage, and Brain
Cerebellum were identified as the top three genetic
contributors to the risk of PD development (Figure 3).

Fifteen eQTLs contributed to the Heart Atrial Appendages
contribution to the risk of developing PDmeasured in model-1
(Table 1). Notably, the two biggest eQTL contributors,
rs7617877 and rs6808178, each accounted for approximately
3% of the total model weight. rs7617877 and rs6808178 are in
high linkage disequilibrium (R2 � 0.86) (Machiela and
Chanock, 2015) within European populations. rs7617877
and rs6808178 do not show detectable spatial regulatory
associations with their nearest genes and instead both act as
eQTLs for a gene >13 Mb downstream, EAF1-AS1, in the Heart
Atrial Appendage. EAF1-AS1 is a long antisense non-coding
RNA gene transcribed in antisense to EAF1, that undergoes an
isoform switch, and has a significantly different transcript
usage in the brains of patients with Parkinson’s disease
(Dick et al., 2020). Interestingly, rs6808178 also acts as a
Heart Atrial Appendage eQTL for TMEM161B-AS1
(Table 1), which has also been implicated in
neurodegeneration (Boros et al., 2020).

Creating a PD Logistic Regression
Predictor Model Using the 90 SNPs From
the PRS Calculated by Nalls et al.
In the latest PD GWAS meta-analysis, Nalls et al. (2019)
identified 90 SNPs that contribute to a PRS model for PD risk.
We therefore sought to understand the PD risk contribution that
was specific to these 90 SNPs and created a logistic regression
predictor model using only this subset. 88 of the 90 variants
passed quality control (post-imputation data cleaning and quality
checking). The 88 SNPs were integrated with the WTCCC PD
genotype data to create a PD SNP derived eQTL effect matrix of
WTCCC individual samples (4,366 individual samples: 1,698
cases and 2,668 controls). The PD SNP derived eQTL effect
matrix contained 3,206 features consisting of related tissue-
specific eQTL-eGene pairs (76 SNPs, 518 genes, 49 tissue
types) and 12 SNPs that lacked CoDeS3D detectable eQTL
effects. Mann-Whitney U test filtering (FDR < 0.05) left 920
features (12 SNPs, 95 genes, 49 tissue types) that were used in the
subsequent logistic regression modelling (Abraham et al., 2014).
Model training was repeated using the optimised predictor
hyperparameters and the eQTL effect matrix for the full
WTCCC cohort to create predictor model-2. Model-2 achieved
in-sample PD prediction with an AUC � 0.604 using 311 features
(12 SNPs, 46 genes, 49 tissue types) (Supplementary Table S6)
that included 308 tissue-specific eQTLs and three SNPs without
known eQTL effects.

We determined the tissue-specific distribution for the 50
predictors that were created with model-2’s hyperparameters.

TABLE 1 | SNPs identified as being the main contributors to model-1. a) SNPs
with no detected eQTL effects, and b) eQTL effects within the Heart Atrial
Appendage. The model weight is the coefficient assigned to each variant or eQTL
in the logistic regression predictor model-1. “*” indicates the non eQTL SNP is in
the 90 SNPs of Nalls et al.

a)

SNP (no detected eQTLs) Model weight

*rs117896735_A 0.42436
rs1442190_A 0.40106
*rs35749011_A 0.24949
rs12726330_A 0.18701
rs356220_T 0.17507
*rs5019538_G −0.08418

b)

Tissue eQTL (rsID_major
allele)

Gene Model
weight

Heart_Atrial_Appendage rs7617877_A EAF1-AS1 0.28996
Heart_Atrial_Appendage rs6808178_T EAF1-AS1 0.25261
Heart_Atrial_Appendage rs6808178_T TMEM161B-

AS1
0.16339

Heart_Atrial_Appendage rs11707416_A P2RY12 0.01163
Heart_Atrial_Appendage rs26431_G EIF3KP1 0.0089
Heart_Atrial_Appendage rs17577094_G RP11-

259G18.3
0.00703

Heart_Atrial_Appendage rs365825_G RP11-
259G18.3

−0.00467

Heart_Atrial_Appendage rs17577094_G LRRC37A4P −0.00434
Heart_Atrial_Appendage rs17577094_G KANSL1-AS1 0.0036
Heart_Atrial_Appendage rs8070723_G RP11-

259G18.3
−0.00294

Heart_Atrial_Appendage rs365825_G LRRC37A4P 0.00237
Heart_Atrial_Appendage rs365825_G KANSL1-AS1 −0.00128
Heart_Atrial_Appendage rs17577094_G DND1P1 0.00116
Heart_Atrial_Appendage rs17577094_G MAPK8IP1P2 0.00058
Heart_Atrial_Appendage rs199515_G RP11-

259G18.3
−0.00011
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The results we observed were consistent with what we
observed using model-1 (Figure 4). Specifically, three SNPs
(rs117896735, rs35749011 and rs5019538) with no
identifiable eQTL effects (Table 2) and the eQTLs within
the Heart Atrial Appendage were the top contributors to the
risk of developing PD (Figure 4 and Table 2). The three non-
eQTL SNPs appeared in both Model-1 and Model-2 and were
observed to have similar effect sizes (both magnitude and
direction) across both models. Also consistent with model-1,

model-2 identified rs6808178 as the top eQTL contributing to
the Heart Atrial Appendage signal.

The PRS using the 290 PD SNPs calculated for the WTCCC
cohort (AUC � 0.634) was within the range of those calculated for
model-1 (AUC � 0.516–0.637) using the weighted genotype
eQTL matrix. Greater variation was observed for the 90 PD
SNP PRS (AUC � 0.667) when compared to that calculated by
model-2 (AUC range 0.504–0.631) using the weighted genotype
eQTL matrix for the WTCCC cohort.

FIGURE 2 | The rank order of tissue-specific risk contributions to risk of developing PD calculated using model-1. Tissue PD risk contributions were the sum of the
absolute values of the model weights (coefficients) of the features used in the logistic regression predictor (model-1) according to their tissues. The SNPs/eQTLs that
contributed to each category are listed (Supplementary Table S5).
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FIGURE 3 | The rank order of tissue-specific risk contributions calculated across 50 predictor models created from randomised modelling and model-1’s
hyperparameters. The tissue ranking was consistent with that observed for model-1.

FIGURE 4 | The group contributions of 50 predictors created with model 2 hyperparameters by five repeats of 10 fold cross-validation.
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DISCUSSION

The mechanisms by which PD-associated genetic variants (Nalls
et al., 2014; Escott-Price et al., 2015; Lill et al., 2015; Visscher et al.,
2017) contribute to disease risk and development have not been
fully elucidated. Yet, it is critical that we identify the mechanisms
by which they impact on PD because this will allow patient
stratification and the development of therapeutics that target
disease progression and not just pathology. We used machine
learning to understand the genetic architecture of PD risk, by
identifying and ranking the pivotal risk variants and tissue-
specific eQTL effects that contribute to such risk. Curated PD-
associated SNPs from the GWAS catalogue (MacArthur et al.,
2017) were analysed to identify their tissue-specific eQTL effects.
Regularised logistic regression predictor models that evaluated
PD risk were built and validated across three independent case:
control cohorts (Spencer et al., 2011; Nalls et al., 2014; Bycroft
et al., 2018). Model-1 (generated from 290 SNPs) identified six
SNPs without known eQTL effects and the SNP modulated gene
regulation within the Heart Atrial Appendage as being the major
contributors to the predicted risk of developing PD. A second
model (Model-2) that was generated using only 90 SNPs (Nalls
et al., 2019) (which were previously identified to have the greatest
predictive power with a PRS analysis) confirmed a subset of the
top predictors we observed with model-1. Collectively, our results
confirm roles for SNPs that are significantly connected with
INPP5P, CNTN1, GBA and SNCA in PD and separately
suggest a key role for transcriptional changes within the heart
atrial appendage in the risk of developing PD. Effects associated
with eQTLs located within the Brain Cerebellum were also
recognized to confer major PD risk in the more extensive
model (model-1) consistent with current hypotheses suggesting
the Brain Cerebellum plays a role in PD development (Wu and
Hallett, 2013; Seidel et al., 2017; Riou et al., 2021).

INPP5F is a known risk gene for PD (Cao et al., 2020) that
regulates STAT3 intracellular signalling pathways (Kim et al.,
2014) and has functional roles in cardiac myocytes and axons
(Zhu et al., 2009; Zou et al., 2015). rs1442190 is an intronic
variant withinCNTN1, a known risk gene for dementia with Lewy
bodies (Guerreiro et al., 2018; Chatterjee et al., 2020) that encodes
a cell adhesion protein, which is important for axon connections
and nervous system development (Anderson et al., 2018).
rs35749011 and rs12726330 are linked to the well-known PD-
associated gene GBA (Berge-Seidl et al., 2017) through strong
linkage disequilibrium connections (R2 � 0.77 (Machiela and
Chanock, 2015)) with rs2230288 (Berge-Seidl et al., 2017; Mata
et al., 2017), a missense coding variant located within GBA.
rs35749011 has eQTL effects on GBA gene identified by the
IPDGC database (Grenn et al., 2020). The final two SNPs,
rs356220 and rs5019538, are located downstream of SNCA.
SNCA encodes α-synuclein, which is central to PD
pathogenesis (Siddiqui et al., 2016). The IPDGC database
(Grenn et al., 2020) indicates that rs5019538 has eQTL effects
on SNCA. Notably, rs356220 had the strongest association to PD
in the original WTCCC GWAS (Spencer et al., 2011). Therefore,
there is sufficient evidence that has previously associated these six
variants with PD through connections to PD risk genes.

Allele Specific Regulatory Changes in the
Heart Atrial Appendage Confer PD Risk
We identified that eQTLs specific to the heart atrial appendagemake
a reproducible and substantial (second highest) contribution to the
risk of developing PD. The heart atrial appendage is a trigger site of
atrial fibrillation (AF) (Di Biase et al., 2010) and highly associated
with hypertension and stroke (Hart and Halperin, 2001; Stöllberger
et al., 2003; Turagam et al., 2018; Du et al., 2020). Notably, none of
the heart atrial appendage eQTLs we identified have been previously
associated with cardiac health or atrial fibrillation by GWAS (GWAS
catalog, November 2, 2021). However, the genes on the opposite
strands to the two antisense genes (i.e., TMEM161B-AS1 and
KANSL1-AS1) have been previously implicated in regulating
cardiac rhythm with zebrafish model (i.e., TMEM161B
(Koopman et al., 2021)) and congenital heart defects in humans
(i.e.,KANSL1 (Koolen et al., 2016; León et al., 2017)). However, there
is a growing body of research indicating a close relationship between
cardiovascular health and PD development (Awerbuch and Sandyk,
1994; Ascherio and Tanner, 2009; Fang et al., 2018; Scorza et al.,
2018; Hong et al., 2019; Potashkin et al., 2020). The eQTL
rs11707416 and its regulated eGene P2RY12 have been
implicated in the brain blood barrier maintenance functions of
microglial cells (Andersen et al., 2021). Moreover, AF has been
strongly related to early-stage PD (Hong et al., 2019). Moreover,
Moon et al. identified that patients with PD have an increased risk of
AF, with a threefold increased risk (HR: 3.06, 95% CI: 1.20–7.77) of
AF in younger PD patients (age: 40–49 years) (Han et al., 2021).
Observations of a cross-sectional PD patient cohort have identified
abnormal blood flow patterns in brains (Teune et al., 2014) and it is
argued that AF-associated perturbation of the brain blood supply
networks promotes tissue inflammation and damage leading to PD
pathogenesis (Junejo et al., 2020).

TABLE 2 | SNPs identified as being the main contributors to model-2. a) SNPs
with no detected eQTL effects, and b) eQTL effects within the Heart Atrial
Appendage. The model weight is the coefficient assigned to each variant or eQTL
in the logistic regression predictor model-2.

a)

SNPs
(no detected eQTLs)

Model weight

rs117896735_A 0.54172
rs35749011_A 0.47224
rs5019538_G −0.04028

b)

Tissue eQTL (rsID_major
allele)

Gene Model
weight

Heart_Atrial_Appendage rs6808178_T EAF1-AS1 0.53154
Heart_Atrial_Appendage rs26431_G EIF3KP1 0.0079
Heart_Atrial_Appendage rs504594_A HLA-DQA2 −0.00333
Heart_Atrial_Appendage rs62053943_T RP11-

259G18.3
−0.0014

Heart_Atrial_Appendage rs62053943_T DND1P1 −0.00092
Heart_Atrial_Appendage rs62053943_T KANSL1-AS1 −0.00064
Heart_Atrial_Appendage rs62053943_T LRRC37A4P 0.00061
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Amongst the 15 eQTL features that combined to make the
Heart Atrial Appendage’s contribution to the risk of developing
PD (Tables 1, 2), eQTL up-regulation of EAF1-AS1 (a long non-
coding mRNA) made the greatest contribution. EAF1-AS1 has
different isoforms some of which overlap EAF1 and COLQ
(collagen like tail subunit of asymmetric acetylcholinesterase).
Elevated EAF1-AS1 transcript levels have previously been
identified by differential gene expression analyses in brain
tissue samples from PD patients (Dick et al., 2020). It is
interesting to speculate that the impact of this change is
mediated through the interaction of EAF1-AS1 with EAF1.
Notably, EAF1 has been associated with both neural
development (Liu et al., 2013) and TGF-β signalling (Liu
et al., 2017), which is a key pathway in many cardiac
physiological processes (Yousefi et al., 2020). As such, the
deregulation of EAF1-AS1 might impact on cardiac health.
However, the anti-sense overlap is limited to the 3′ UTR of
EAF1 (UCSC Genome browser GRCh38/hg38). Therefore, we
propose that future studies should investigate the regulatory
impacts of EAF1-AS1 on EAF1 and the consequences of
alterations in expression levels on heart function and PD
disease. We contend that understanding this relationship may
help to decipher the complex interactions connecting
cardiovascular fitness and PD pathogenesis.

Similar to our work, Li et al. (2019) used linkage
disequilibrium score regression (LDSC) analysis (Finucane
et al., 2015, 2018) to identify enrichments of PD risk signals
in six GTEx (Aguet et al., 2017) central nervous system tissues.
However, three subsequent studies using LDSC have failed to
reproduce Li et al.’s results (Gagliano et al., 2016; Reynolds et al.,
2019; Bryois et al., 2021). LDSC focuses on measuring the risk
enrichment of genes uniquely expressed in each GTEx tissue
(Finucane et al., 2015, 2018). By contrast, our model does not
assume unique tissue expression. Rather, it identifies the risk
associated with the PD-SNP, or the expression of all genes
modulated specifically by PD SNPs in different or multiple
GTEx tissues. We therefore hypothesise that the fact that Li
et al. did not identify any signals in heart tissues is likely due to the
differences in the assumptions underlying the methodologies.

What are the Functions of the Six SNPs for
Which We Identified No eQTLs?
It should not be ignored that Model-1 (generated from 290
SNPs) identified six SNPs without known eQTL effects as
making the greatest contribution to PD risk. A subset of
these SNPs (rs117896735, rs35749011 and rs5019538) were
confirmed in Model-2. Given the contribution of these SNPs
to the models, it is interesting to speculate on the function(s) of
these SNPs with respect to PD risk. As noted earlier, several of
the SNPs are connected to well-known PD-associated genes
(INPP5F, GBA, SNCA) (Siddiqui et al., 2016; Berge-Seidl et al.,
2017; Riboldi and Di Fonzo, 2019; Cao et al., 2020). It remains
possible that these SNPs may be eQTLs for these genes at
different developmental stages, or in tissues or cell types that
are not represented in the datasets we used in this study.
Consistent with this, the top contributor to model-1 is an

intronic variant of INPP5F that has previously been
identified as an eQTL for INPP5F transcript levels (the
IPDGC locus browser (Grenn et al., 2020)). However, the
inclusion of these SNPs in the models did not assume a
functional impact on transcription. As such, the SNPs may
impact on PD risk through processes or functions that: 1) do not
require the formation of spatially constrained eQTls; 2) affect
transcript levels by another mechanism (e.g., DNA methylation
and protein-protein interactions) (Ryan and Matthews, 2005;
Volkov et al., 2016); or 3) function through another as yet
uncharacterized mechanism. While we are currently unable to
further expand on the function(s) of these SNPs, the significant
contributions they make to PD require further experimental
investigation.

What Are the Limitations of Our Study?
We acknowledge several limitations within our work. Firstly,
our models were not generated for use in clinical screening and
the predictivity is clearly insufficient for such applications.
Rather, our objective was to construct models that enabled the
determination of the relative SNP-gene-tissue contributions to
PD risk in individuals, using recognized PD-associated SNPs
identified in population level association studies. We also
acknowledge that the individuals in the included datasets
are predominantly of European descent, and thus the
significance of our findings are limited to this ethnicity.
One limitation that impacts the vast majority of PD
research is the lack of consistency in diagnostic criteria
from one cohort to the other, and our study is not exempt
from this.

The limitations within our study do not detract from the
strengths of our model which included the fact that contributing
features were: 1) validated across three independent cohorts; 2)
easily identifiable; and 3) consistently identified genomic
regions that are unanimously recognised as being associated
with PD (e.g., SNCA).

Our approach provides a significant advance over other
previously reported methods. The novelty revolves around the
ability of our method to: 1) rank the contributions that SNPs
make to a phenotype through regulatory changes; 2) identify the
tissues in which these changes are occurring; and 3) include effects
from variants that do not have detectable eQTLs in the reference
library that is used in the assay. Finally, the consistency between
models and ability to filter extraneous SNPs (e.g., T1D eQTLs) out of
the final predictor is another strength of this study. The higher
predictive power observed for model-1 (Supplementary Table S7)
may be explained by the observation that the final model included
more features (827 vs 308). However, given that model-1 leveraged
290 PD-associated SNPs, the result also suggests that the 90 SNPs,
originally identified as part of theNalls et al. PRS analysis (Nalls et al.,
2019), do in fact contain the major genetic components that are
associated with the risk of developing PD. Therefore, while other
genetic signals clearly remain to be identified, the finding that both
models consistently identified the same SNPs and heart atrial
appendage eQTLs as the top contributors to the risk of
developing PD further confirms the significance of these
observations.
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Conclusion
In conclusion, we applied machine learning algorithms to rank the
pivotal variants and tissue-specific eQTL effects that may contribute
to the risk of developing PD by integrating PD-associated SNPs with
information on genome organisation, tissue-specific eQTLs and the
genotypes of PD cases and controls. Across our two models we
consistently identified the same SNPs and heart atrial appendage
eQTLs, linked to EAF1-AS1 regulation, as the top contributors to the
risk of developing PD. It could be argued that the lack of significant
findings in established PD tissues (e.g., the substantia nigra) indicates
that our models did not identify the biologically significant variants.
However, studies show that disease associated SNPs are enriched in
enhancer elements (GTEx Consortium, 2021) and it is widely
recognized that pathology does not necessarily equate to the root
cause of the PD. Rather the etiology of PD, and other movement
disorders, is consistent with life-long contributions from early
developmental changes. As such, we contend that our results,
which replicate across three independent biological cohorts,
provide insights into the non-motor multi-tissue features/processes
(non-motor PD) that collectively, or singularly contribute to an
individual’s progression to motor symptoms (motor PD) with age
(Mhyre et al., 2012; Schapira et al., 2017). Future experiments should
test the putative tissue specific enhancer activities we have identified
using luciferase enhancer assays within edited human cell-lines that
are isogenic except for the change of interest. Validation of the
biological significance of the tissue level processes could then be
addressed using tissue organoids and humanized animal models.
These analyses should be performed in parallel with prospective
studies that include analyses of the ever-expanding datasets (pulse
oxygen levels, heart rate and blood pressure) that are being collected
by wearable BioActive devices (e.g., Galaxy watch, Fitbits) Validation
of our findings will provide insights into high value therapies for the
prevention or delay of PD development.
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