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A B S T R A C T   

Microbial biodiversity monitoring through the analysis of DNA extracted from environmental samples is 
increasingly popular because it is perceived as being rapid, cost-effective, and flexible concerning the sample 
types studied. DNA can be extracted from diverse media before high-throughput sequencing of the prokaryotic 
16S rRNA gene is used to characterize the taxonomic diversity and composition of the sample (known as met
abarcoding). While sources of bias in metabarcoding methodologies are widely acknowledged, previous studies 
have focused mainly on the effects of these biases within a single substrate type, and relatively little is known of 
how these vary across substrates. We investigated the effect of substrate type (water, microbial mats, lake 
sediments, stream sediments, soil and a mock microbial community) on the relative performance of DNA met
abarcoding in parallel with phospholipid fatty acid (PLFA) analysis. Quantitative estimates of the biomass of 
different taxonomic groups in samples were made through the analysis of PLFAs, and these were compared to the 
relative abundances of microbial taxa estimated from metabarcoding. Furthermore, we used the PLFA-based 
quantitative estimates of the biomass to adjust relative abundances of microbial groups determined by meta
barcoding to provide insight into how the biomass of microbial taxa from PLFA analysis can improve under
standing of microbial communities from environmental DNA samples. We used two sets of PLFA biomarkers that 
differed in their number of PLFAs to evaluate how PLFA biomarker selection influences biomass estimates. 
Metabarcoding and PLFA analysis provided significantly different views of bacterial composition, and these 
differences varied among substrates. We observed the most notable differences for the Gram-negative bacteria, 
which were overrepresented by metabarcoding in comparison to PLFA analysis. In contrast, the relative biomass 
and relative sequence abundances aligned reasonably well for Cyanobacteria across the tested freshwater sub
strates. Adjusting relative abundances of microbial taxa estimated by metabarcoding with PLFA-based quanti
fication estimates of the microbial biomass led to significant changes in the microbial community compositions 
in all substrates. We recommend including independent estimates of the biomass of microbial groups to increase 
comparability among metabarcoding libraries from environmental samples, especially when comparing com
munities associated with different substrates.   

1. Introduction 

Microorganisms play crucial roles in all habitats, especially as drivers 
of decomposition and nutrient cycling (Aislabie and Deslippe, 2013). In 

soil and sediments, they constitute the bulk of the biomass (Balestrini 
et al., 2011; Torsvik and Øvreås, 2002). Studies of the composition of 
microbial communities along biotic and abiotic gradients, between 
habitats or in response to experimental treatments or management 
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practices, can help resolve which taxa drive ecosystem processes or are 
affected by environmental stress (e.g., pH, temperature) (Deslippe et al., 
2005; Evans and Wallenstein, 2014). However, to achieve these insights, 
tools that provide reproducible and comparable data are required. Over 
the past decade, the application of next-generation sequencing (NGS) to 
study microbial communities in environmental samples has become 
increasingly popular (Cristescu and Hebert, 2018). Typically, meta
barcoding is utilised, whereby short regions of DNA, especially the 16S 
rRNA gene region, are analysed by high-throughput DNA sequencing, 
followed by taxonomic identification. This approach has the potential to 
characterize complex microbial communities in detail, a significant 
improvement on culture-based approaches, which may characterize 
fewer than 1% of bacteria in a sample (Torsvik et al., 1990). Meta
barcoding is utilised for a range of applications, including monitoring 
the occurrence of taxa of interest, characterising biodiversity (Bohmann 
et al., 2014; Cristescu and Hebert, 2018; Knudsen et al., 2019) and 
examining changes in community structure along environmental gra
dients (Berry et al., 2019; Evans and Wallenstein, 2014; Lacoursière- 
Roussel et al., 2018). Due to its increasing cost-efficiency, particularly 
for the analysis of relatively large numbers of samples, DNA meta
barcoding analysis has become broadly adopted for microbial ecological 
research. 

Despite the widespread use of metabarcoding of the 16S rRNA gene, 
questions about its reliability as a tool for biodiversity assessment 
remain (Bonk et al., 2018; Brooks et al., 2015; Harper et al., 2019). Each 
step of the metabarcoding process can introduce bias (Lear et al., 2018). 
For example, cell lysis and DNA extraction methods are a significant 
source of uncertainty (Dopheide et al., 2019; Hermans et al., 2018). 
Gram-positive bacteria are often thought to be underrepresented in 
metabarcoding studies because the cell wall of Gram-positive bacteria is 
composed of a thick peptidoglycan layer, which is more difficult to lyse 
(Jacobs-Wagner and Cabeen, 2005; Mahalanabis et al., 2009; Martzy 
et al., 2019). During polymerase chain reaction (PCR), parameters like 
the condition of the DNA template, GC-content of the template (Nichols 
et al., 2018), the choice of primers (Elbrecht and Leese, 2015; Parada 
et al., 2016) and polymerases, and the PCR conditions can induce 
amplification biases (Dopheide et al., 2019; Kanagawa, 2003; Kennedy 
et al., 2014). Ideally, each step, from sampling to bioinformatics, re
quires calibration and validation. To this end, the parallel application of 
the workflow to a mock microbial community standard and the sample 
set is frequently used in environmental microbiology (Hermans et al., 
2018). Typically, these mock communities are defined mixtures of 
diverse microbial taxa of varying sizes, GC-content and cell wall 
composition, used as reference standards for metabarcoding to reveal 
whether certain taxa are under- or overestimated during the analysis 
(Hardwick et al., 2017). A further issue concerns the presence of relic 
DNA which can be found in various states of degradation in most en
vironments (Carini et al., 2016). Depending on the environmental con
ditions, relic DNA may persist for many years after cell death. It is co- 
isolated and amplified by polymerase chain reaction (PCR) along with 
DNA derived from living microbes, potentially biasing biodiversity 
assessment (Jo et al., 2019; Lennon et al., 2018). 

While several studies have assessed the effects of sample processing 
methods (e.g., DNA extraction, PCR protocols) on metabarcoding results 
for microbial communities (Bonk et al., 2018; Dopheide et al., 2019; 
Hermans et al., 2018), none have compared metabarcoding and analysis 
of PLFA across substrates from different habitats. Sequencing analyses of 
microbial communities from marine or freshwater sediments and soil or 
microbial mats can provide vastly differing views of their composition 
and structure (Lozupone and Knight, 2007), which is expected due to the 
intrinsically different physicochemical properties of those substrates. 
However, there is cause to suspect that some portion of the variation in 
these microbial communities may be induced by the different protocols 
used to sample and process substrates (Pollock et al., 2018). For 
example, the presence of humic substances (Brooks et al., 2015; Harper 
et al., 2019) and the type and size of particles (Probandt et al., 2018; 

Stoeckle et al., 2017) are known to influence metabarcoding results, but 
the strength and direction of these biases are likely to vary among 
substrates (Buxton et al., 2017). Likewise, relic DNA occurs in all envi
ronments, but its turnover depends on environmental factors such as 
temperature, light exposure, and chemical properties of the substrate. In 
soil, relic DNA can persist for years (Nielsen et al., 2007), whereas the 
degradation to smaller oligonucleotides occurs within days or weeks in 
sediments from freshwater habitats (Carini et al., 2016; Lennon et al., 
2018; Sirois and Buckley, 2019). Several authors have concluded that 
substrate type and environmental factors need to be taken into account 
when using DNA-based techniques (Buxton et al., 2017; Sirois and 
Buckley, 2019; Stoeckle et al., 2017) but to our knowledge, few direct 
comparisons of metabarcoding biases across substrates from different 
habitats exist (Hermans et al., 2018). As a consequence, comparisons of 
multiple metabarcoding studies when samples originate from different 
habitats is currently fraught with uncertainties, even when a universal 
methodology for the sample processing had been applied. 

Phospholipid fatty acid (PLFA) analysis is used to measure microbial 
biomass and community composition, especially in sediments and soils 
(Frostegård et al., 1991; White et al., 1979) but also to characterize 
bacterial communities in water (Glucksman et al., 2000; Green and 
Scow, 2000). PLFAs are a major structural constituent of biological 
membranes, and their fatty acid (FA) components vary in composition 
among taxa. Some PLFAs are specific to a single microbial taxon and can 
therefore be used as taxonomic biomarkers, albeit with low taxonomic 
resolution (Frostegård et al., 2011; Willers et al., 2015; Zelles et al., 
1992). One advantage of PLFA analysis in comparison to molecular 
methods is that it produces quantitative outputs of the PLFAs, which can 
be applied as proxies for the biomass of the microbial groups affiliated 
with their respective biomarkers (Kirk et al., 2004). Secondly, because 
cell membranes are rapidly degraded and metabolised after cell death 
(Dunfield, 2007), the total amount of PLFAs is an important indicator of 
the biomass of living microorganisms (Hill et al., 2000; Zhang et al., 
2019) in a sample. Furthermore, PLFA analysis is not subject to some of 
the biases that affect DNA-based approaches, such as variable amounts 
of relic DNA or humic substances in substrates (Nielsen and Petersen, 
2000). However, while some PLFAs are considered as signature bio
markers, many PLFAs are common across taxa, and some PLFAs that are 
routinely used as biomarkers are found outside their indicated taxon 
(Frostegård et al., 2011; Ruess and Chamberlain, 2010; Willers et al., 
2015; Zelles, 1999). Despite these limitations, the variable concentra
tions of numerous PLFAs provide quantifiable outputs at a resolution 
well suited to distinguish changes in the PLFA profile between samples 
(Ramsey et al., 2006). These advantages make PLFA analysis a useful 
tool to test for biases in sequencing-based approaches that might emerge 
from the various physicochemical properties of different substrates. 

Including measurements of microbial load when examining micro
bial community composition strengthens our ability to compare be
tween substrates and studies. In a study on soils, Zhang et al. (2017) 
quantified bacterial cell numbers by several methods including PLFA 
and applied these absolute estimates to relative abundances from met
abarcoding. They reported that cell estimates correlated well between 
PLFA analysis and other methods of quantification like flow cytometry 
and qPCR (Zhang et al., 2017). Similarly, Vandeputte et al. (2017) 
determined bacterial biomass in stool samples and rarefied the samples 
to equal sampling depth based on their biomass instead of modifying 
metabarcoding read count numbers based on the minimum sequencing 
depth. They proposed that this correction might prove especially useful 
for comparisons of samples obtained from ecosystems with significantly 
different species compositions and biomass (Vandeputte et al., 2017). 
Analogously, PLFA values can be used to correct sequencing read counts 
to obtain absolute abundances of taxa. A difficulty when working with 
sequencing data is that it is inherently compositional, that is, changes in 
the abundance of taxa are always relative, which complicates their 
interpretation. For example, while changes in the relative abundance of 
taxonomic groups are evident, it is not possible to resolve whether this 
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change reflects the growth of one group or the reduction of co-occurring 
taxa in response to treatments or time (Morton et al., 2019). By cor
recting for the initial bacterial load per microbial group, for example 
using PLFA as a proxy for their microbial biomass, count data of 
sequencing reads becomes more valuable for many applications, 
particularly where samples need to be compared across studies. 

Here, we investigate the influence of different substrate types on 
metabarcoding outputs by applying PLFA analysis in parallel. Our 
approach was to test how well PLFA- and metabarcoding-based abun
dance estimates correlate across substrates with different properties. 
Furthermore, we compare two methods of PLFA analysis that differ in 
their number of PLFA biomarkers to examine how the number of PLFA 
biomarkers affect the alignment between PLFA and metabarcoding- 
based data across different substrates. Finally, we demonstrate how 
the quantitative measurement of microbial biomass by PLFA analysis 
can be combined with the relative abundances of microbial taxa ob
tained by 16S rRNA gene metabarcoding to allow for a meaningful 
comparison of samples with different microbial loads. 

2. Methods 

2.1. Sample collection 

To compare the relative ability of metabarcoding of the 16S rRNA 
marker gene and PLFA analysis to characterize bacterial communities 
we sampled five different substrates: forest soil, lake sediment, stream 
sediment, river microbial mats, and stream water (Fig. 1). Soil, stream 
water and stream sediment samples were sampled in the Kelly Stream 
catchment, West Auckland, New Zealand (− 36o53′53.8′ ′S, 
174o32′17.3′′E), as described in Hermans et al. (2019). The Kelly Stream 
catchment comprises of a podocarp-broadleaf forest dominated by kauri 
(Agathis australis (D. Don) Loudon) and includes a ~ 1.4 km reach of a 
stream. Briefly, forest soil samples were collected with a 2.5 cm diameter 
soil corer to a sampling depth of 10 cm, after removing leaf litter and 
plant biomass, and each sample thoroughly mixed in a sealed plastic 
bag. All sampling sites were at least 50 m apart. Microbial cells from 
water samples were obtained by filtering 1 L stream water per sample 
though a 0.22 μm polyvinylidene difluoride filter (Merck Millipore) for 
lipid extraction, whereas for each DNA extraction, 0.6 L of stream water 
was filtered through a 0.22 μm polyethersulfone filter (Merck Millipore). 
Stream sediment samples were obtained by using 50 mL centrifugation 
tubes to scoop surface sediment to a depth of ~5 cm. To obtain benthic 

Fig. 1. Overview of the sampling, processing, and analysis of environmental microbes by phospholipid fatty acid (PLFA) and metabarcoding analyses. SPE = solid- 
phase-extraction, FAME = Fatty acid methyl esters, GC–MS = gas chromatography–mass spectrometry, PCR = polymerase chain reaction, QC = quality control, SV =
sequence variants, MB = metabarcoding. 
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microbial mat samples, a 2 cm2 portion of the mat was scraped from 
rocks in the Hutt River, New Zealand (− 41◦13′60.00”S, 
174◦53′59.99′′E), and each placed into individual 15 mL centrifugation 
tubes, as described in Thomson-Laing et al. (2020). Five replicates were 
obtained at each of the six sites situated along a length of 23 km of the 
Hutt River. Using a sediment core sampler (UWITEC, Mondsee, Austria), 
sediment samples from 12 sites covering the area of Lake Rotorua, 
Canterbury, New Zealand (− 42.24′21’94”S, 173◦34′52.76′′E) were ob
tained. As described in Weisbrod et al. (2020) the top 0.5 cm layer from 
the cores were separated for further processing. Lake sediment samples 
were collected in three replicates at each site. All samples were trans
ported to the laboratory on ice. Subsamples of each substrate were ali
quoted for either DNA extraction or lipid extraction and stored at − 20 ◦C 
until required. Additionally, three replicates of a microbial community 
standard (mock community) consisting of a mix of known composition 
of eight bacterial strains and two yeasts were included as samples 
(ZymoBIOMICS Microbial Community Standard, Zymo Research, US). 

2.1.1. Phospholipid fatty acid analysis 

2.1.1.1. Sample preparation. All samples were lyophilized overnight 
(FreeZone 2.5 L Benchtop Freeze Dryer, Labconco, US) and their dry 
weight determined before applying a high-throughput PLFA method, 
modified from Buyer and Sasser (2012). Briefly, soil, microbial mat and 
sediment samples were weighed directly into 10 mL screw-cap glass 
tubes. For the soil and sediment samples, about 500 mg of substrate was 
used, whereas we used about 50 mg samples of microbial mats to ac
count for their greater biomass contribution per unit weight. Each entire 
filter for the freshwater samples was placed into the screw-cap glass 
tubes for lipid extraction. For the three replicates of the mock commu
nity, 150 μL were measured into the glass tubes. Lipids were extracted 
from each substrate using a chloroform:methanol:phosphate-buffer 
(1:2:0.8, v/v/v, pH 7.4) mixture, that was spiked with the phospho
lipid 1,2-dinonadecanoyl-sn-glycero-3-phosphocholine (Avanti Polar 
Lipids, Inc., US) as an internal standard (2.5 nmol per sample). The 
samples were vortexed, sonicated for 15 min at 35 kHz (Kudos SK_GT 
Heating Ultrasonic Cleaner, Alphatec, NZ) and shaken for 2 h at 25 rpm 
(Rocker II, model 260350, Boekel Scientific, USA). After addition of 
equal volumes of water and chloroform, the lipid-containing phase was 
removed and dried under a stream of nitrogen gas. The total lipid extract 
was dissolved in 1 mL chloroform and fractionated into neutral lipids, 
glycolipids and phospholipids with chloroform, acetone and a 5:5:1 
methanol:chloroform:water solution (Findlay, 2004) on a silica column 
(50 mg silica per column, column capacity = 1 mL, Thermo Fisher, NZ). 
The eluted phospholipids were derivatized by alkaline methanolysis 
(0.1 M KOH, 0.2 mL) to generate fatty acid methyl esters (FAMEs). After 
neutralisation with acetic acid, FAMEs were extracted twice with 0.4 mL 
chloroform and the two extracts combined. The resulting extract was 
concentrated under a nitrogen stream until dry and then dissolved in 75 
μL hexane for further analysis. 

2.1.1.2. Gas chromatography-mass spectrometry (GC–MS). FAMEs were 
separated on a Restek RXi5-Sil (30 m × 0.25 mm × 0.25 μm) capillary 
column in a Shimadzu gas chromatograph equipped with a mass spec
trometer (Shimadzu GC–MS-QP2010 Plus). The injection temperature 
was 260 ◦C and a split ratio of 1:10 was used, with ultra-high purity 
helium as carrier gas at a flow rate of 1.06 mL⋅min− 1 and a linear ve
locity of 39.6 cm⋅s− 1. A linear temperature gradient with an initial oven 
temperature of 140 ◦C increasing to 240 ◦C at a rate of 3 ◦C⋅min− 1, 
followed by a hold of 3 min was applied. The electron impact (EI) mass 
spectrometer operated at an ionisation energy of 70 eV and scanned a 
range from 40 to 600 m⋅z− 1 (0.3 s⋅cycle− 1). GC–MS solutions version 
4.44 (Shimadzu) was used to control the instrument, and for the quali
tative and quantitative analysis of the resulting chromatograms. 

2.1.1.3. Identification of fatty acid methyl esters (FAMEs). FAMEs were 
designated using the ω-reference system as described by Bååth et al. 
(1992) according to the position of the first double bond, counted from 
the methyl end (ω end) of the carbon chain. For a detailed description of 
the designation system and a list of FAMEs resolved in this study, see 
Table S1. 

To identify the FAMEs, the mass spectra and retention times were 
compared with those of 37 commercially available standards (Matreya, 
USA; Nu-Chek, USA). Calibration curves for 25 of these, consisting of 
representatives from each structural group (saturated, isobranched, 
anteiso-branched, cyclic, monounsaturated, polyunsaturated) were 
analysed to obtain the response factor (RF) for each FAME. The RF is 
required to calculate the quantity of the analytes in response to the 
detector used (Dodds et al., 2005), in this case a mass spectrometer. For 
FAMEs that could not be commercially obtained, the RF from the 
structurally most related FAME standard was applied for the correction. 
For each FAME, the ratio of its RF to the RF of the FAME 19:0 was 
calculated to obtain the relative response factor (RRF) of the FAME of 
interest. Because lipid is lost at each step of the PLFA analysis, the RRF is 
required to determine the concentration of the PLFA of interest in the 
original sample. FAMEs were identified using the GC–MS solutions 
version 4.44 (Shimadzu) and the amount of analyte per gram dry weight 
sample was calculated (nmol⋅g− 1 dry weight substrate). For FAMEs that 
could not be identified, we determined the percentage peak area per 
sample to approximate the amount of unidentified FAMEs in each pro
file. It was not possible to calculate the exact amounts in nmol for un
identified FAMEs because an RRF could not be determined for them. 
Therefore, we used the chromatogram peak area to assess the total 
amount of the FAMEs that could not be identified to evaluate how much 
of the PLFA profile remained unused in our analysis and whether this 
value differed among substrates. All calculations were performed in R 
v.3.6.1 (R Core Team, 2016). Although FAMEs are analysed with 
GC–MS, the substances of interests are FAs, derived from extracted 
phospholipids. Therefore, we use only the term PLFA to describe these 
substances hereafter. 

2.1.1.4. Biomarker designation. To assess whether the number of PLFAs 
resolved affects the alignment among PLFA and DNA metabarcoding 
views of microbial community structure, we compared two common 
approaches of PLFA analysis that differed in the number of PLFA bio
markers (Table 1). The first set, hereafter “PLFA1”, is a conservative 
approach that utilizes a small set of clearly designated biomarker PLFAs, 
i.e., those that are both common and abundant in single taxonomic 
groups (Zelles, 1997; Zelles, 1999). The second set, hereafter “PLFA2”, 
contains additional, mostly monounsaturated, FAs. This expanded set of 
PLFAs enables a higher resolution of the PLFA profile by taking into 
consideration the large variability in the composition of microbial 
phospholipids across all taxa. However, a drawback to the inclusion of 
these additional PLFAs is that sample origin must be taken into account 
because the designation of a PLFA as a biomarker for a microbial group 
may differ among substrates. For this reason, the number and designa
tion of biomarkers for set PLFA1 and PLFA2 differ depending on the 
sample origin, which in this study is either forest soil or a freshwater 
ecosystem. For example, typical fungal PLFA biomarkers like 18:2ω6 
and 18:3ω3 are also common in the phylum Cyanobacteria. These PLFAs 
may therefore be used as biomarkers of Cyanobacteria in samples that 
are known to contain negligible fungal biomass. Likewise, 18:1ω7c is a 
well-known biomarker for Gram-negative bacteria in soil but can be 
found in high proportions in members of the phylum Cyanobacteria as 
well. Here, we used 18:1ω7c as a biomarker for Gram-negative bacteria 
in biomarker set PLFA1 for both soil and freshwater samples, and also in 
set PLFA2 for soil. In biomarker set PLFA2 for freshwater samples, the 
PLFA is used for Cyanobacteria (Willers et al., 2015). 

2.1.1.5. Statistical analyses. To compare the microbial biomass of each 
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substrate, we determined the amount of PLFA biomarkers per microbial 
group (Gram-negative, Gram-positive, Actinobacteria and Cyanobac
teria) and of all PLFAs (total PLFA), using the PLFA2 method which 
allowed for the integration of the largest number of PLFAs. For each 
sample, the amounts in nmol per g dry weight substrate of all biomarkers 
per taxonomic group were summed. The mean and standard deviation of 
the total PLFA per substrate were calculated in R 3.6.3 (R Core Team, 
2016). As an indication of potential information loss, we also calculated 
the approximate percentage of the amount of PLFAs that could not be 
identified or those that were identified but could not be placed in any 
biomarker category based on their percentage peak area per substrate. 

2.1.2. 16S rRNA gene metabarcoding analysis 

2.1.2.1. DNA extraction, PCR and sequencing. DNA was extracted from 
each sample aliquot using either the DNeasy PowerSoil DNA Isolation 
Kit (Qiagen, US) or Water DNA Isolation Kit (Qiagen, US) following the 
manufacturers’ protocols with minor changes for soil, stream sediment 
and water as described in Hermans et al. (2016). PCR amplification for 
next generation sequencing was performed using bacterial specific 

primers to obtain a c. 400 base pair (bp) amplicon of the V3-V4 region of 
the 16S rRNA gene. The primers were 341F (5′-TCGTCGGCAGCGTCAG 
ATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3) and 785R (5′-T 
CTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTAT 
CTAATCC-3′) (Herlemann et al., 2011; Klindworth et al., 2012); and 
included Illumina adapter sequences (bold) that are required for 
downstream sequencing. All PCR products were sequenced on the 
Illumina MiSeq platform (Auckland Genomics, New Zealand). For a 
detailed description of the DNA extraction and the PCR parameters of 
the respective substrates, see Hermans et al. (2019), Thomson-Laing 
et al. (2020) and Weisbrod et al. (2020). 

2.1.2.2. Bioinformatics. Bioinformatic analysis of sequence data was 
performed in QIIME2 2019.4 (Bolyen et al., 2019). First, primers and 
adapters were removed using cutadapt (Martin, 2011). DNA sequences 
were denoised and quality filtered with the dada2 algorithm using 
default parameters (Callahan et al., 2017; Callahan et al., 2016). After 
trimming, paired end reads were merged to resolve representative exact 
sequence variants (SVs). Exact sequence variants (also called amplicon 
sequence variants (ASVs)) benefit from a higher resolution than opera
tional taxonomic units (OTUs), utilizing the high quality of modern 
Illumina sequencing techniques and are less prone to spurious sequences 
(Callahan et al., 2016; Edgar, 2017). Samples which contained less than 
5% of the mean read abundance of their respective dataset were 
excluded. A naïve Bayesian classifier was trained on the relevant 16S 
rRNA gene region of the Greengenes database (McDonald et al., 2012), 
and used in taxonomic classification of the SVs. Sequences that were 
ascribed to Archaea, mitochondria or chloroplasts were excluded from 
further analysis. Furthermore, sequences that could not be assigned 
Gram affiliation, either because they were unidentified at the phylum 
level or identified as an undescribed candidate phylum, were removed 
from further analyses. 

2.1.3. Comparison of metabarcoding and PLFA analysis approaches 

2.1.3.1. Ratio of Gram-positive and Gram-negative bacteria (GP:GN). We 
quantified microbial community composition in the different substrates 
by three methods: PLFA1, PLFA2 and 16S rRNA gene metabarcoding 
(MB), generating three views of the microbial community. To evaluate 
how well these three views align across the substrate types, the relative 
abundances of microbial groups were calculated using two different 
approaches. The first was based on the ratio of Gram-positive to Gram- 
negative bacteria (GP:GN) because it is an important metric that is often 
used in microbial studies of soil (Fanin et al., 2019; Fierer et al., 2003) 
and freshwater sediment bacteria (Córdova-Kreylos et al., 2006; 
Rajendran et al., 1994). The use of the GP:GN metric is common in PLFA 
approaches (Fanin et al., 2019; Wang and Wang, 2018), but has more 
recently been applied in metabarcoding approaches (Kumar et al., 2019; 
Orwin et al., 2018). For the 16S rRNA gene metabarcoding data, the 
identification of the Gram affiliation was determined at the phylum 
level, and the relative abundance of both microbial groups was calcu
lated on a per sample basis separately for each method and substrate. For 
PLFA1 and PLFA2 data, we calculated the amount of the relevant PLFA 
biomarker (see Table 1) for both microbial groups and divided it by their 
respective total PLFA, resulting in a proportional view of Gram-positive 
and Gram-negative bacteria with units of mol%. This value was directly 
applied as a proxy for the relative abundance of each microbial group 
(Orwin et al., 2018). A non-parametric Wilcoxon rank sum test was 
applied to assess whether the three different approaches (PLFA1, PLFA2, 
MB) produced different views of the GP:GN in the various substrates. 

2.1.3.2. Mean abundances of microbial groups. Microbial communities 
vary strongly by substrate type. Therefore, the second approach we used 
was designed to evaluate how well PLFA1, PLFA2 and metabarcoding 
views align across substrate types, focused on the relative abundances of 

Table 1 
Phospholipid fatty acid (PLFA) biomarker designation for soil and freshwater 
samples. PLFA1 and PLFA2 represent two common approaches to quantify mi
crobial biomass in environmental substrates. PLFA1 is the more conservative 
approach, which employs only PLFAs as biomarkers that are either unique to, or 
distinctly more common in, a specific taxonomic group. In comparison, the 
PLFA2 set of biomarkers attempts to employ a large proportion of the microbial 
PLFAs to increase the taxonomic resolution per sample. Depending on the 
sample origin and PLFA approach, some PLFA have diverging designations 
(shown in bold).   

Soil Freshwater 
(water or sediment) 

PLFA approach PLFA1 PLFA2 PLFA1 PLFA2 

Bacteria - 
general 
marker 

17:0 14:0 
15:0 
16:0 
17:0 
18:0 

17:0 14:0 
15:0 
16:0 
17:0 
18:0 

Gram-positive 
bacteria 

a15:0 
i15:0 
a16:0 
i16:0 
a17:0 
i17:0 

i15:0 
a15:0 
i16:0 
a16:0 
i17:0 
a17:0 

i15:0 
a15:0 
i16:0 
a16:0 
i17:0 
a17:0 

i15:0 
a15:0 
i16:0 
a16:0 
i17:0 
a17:0 

Gram-negative 
bacteria 

18:1ω7c 
cy17:0 
cy19:0 

2OH10:0 
2OH12:0 
3OH12:0 
2OH14:0 
3OH14:0 
2OH16:0 
3OH16:0 
16:1ω7c 
16:1ω7t 
16:1ω5t 
18:1ω7c 
18:1ω7t 
19:1ω9c 
cy17:0 
cy19:0 

18:1ω7c 
cy17:0 
cy19:0 

2OH10:0 
2OH12:0 
3OH12:0 
2OH14:0 
3OH14:0 
2OH16:0 
3OH16:0 
16:1ω7t 
16:1ω5t 
16:1ω5c 
18:1ω7t 
19:1ω9c 
cy17:0 
cy19:0 

Actinobacteria 10Me16:0 
10Me17:0 
10Me18:0 

10Me16:0 
10Me17:0 
10Me18:0 

10Me16:0 
10Me17:0 
10Me18:0 

10Me16:0 
10Me17:0 
10Me18:0 

Cyanobacteria – – 16:3ω4 
18:2ω6 
18:3ω3 

16:1ω7c 
18:1ω7c 
18:1ω9c 
18:2ω6 
16:3ω4 
18:3ω3 

References (Ahlgren et al., 1992, Bååth et al., 1992, Dijkman et al., 2010,  
Francisco et al., 2016, Frostegård et al., 1993, Willers et al., 2015, 
Zelles, 1997)  
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microbial groups that are differentially represented across habitats. For 
soil samples, we focused on the phylum Actinobacteria, whereas in 
freshwater samples, we quantified the phylum Cyanobacteria. The 
relative abundances of Actinobacteria, Cyanobacteria, Gram-positive 
and Gram-negative bacteria were calculated in a similar way as 
described above. In contrast to the first approach, we deducted the 
contribution of Actinobacteria and Cyanobacteria from the sequence 
read counts from the groups they are affiliated with, i.e., Gram-positive 
bacteria for Actinobacteria and Gram-negative bacteria for Cyanobac
teria. We did this to enhance comparability with the PLFA data, for 
which Actinobacteria and Cyanobacteria were defined by different 
PLFAs than those used as biomarkers of Gram-positive and negative 
bacteria generally. For example, the descriptor “Gram-positive bacteria” 
therefore denotes the remaining Gram-positive bacteria after deducting 
the proportion of Actinobacteria. To estimate the relative abundance of 
microbial taxa for the metabarcoding data set, the number of sequence 
reads per taxonomic group was determined at the phylum level. For each 
sample, we summed sequence reads per taxonomic group and divided 
them by the total number of reads per sample as an estimate of the 
relative abundances of bacterial taxa. For PLFA1 and PLFA2, we calcu
lated the relative abundance of each microbial group in an analogous 
fashion, as per the biomarker affiliation in Table 1. The resulting values 
were applied directly as proxy for the relative abundance of each of the 
microbial groups (Deagle et al., 2019). We applied a non-parametric 
Wilcoxon rank sum test to reveal if the three different approaches yiel
ded significantly different views of the proportional abundances of these 
four taxonomic groups of bacteria. All calculations were done in R3.6.3, 
and the package rstatix used for the statistical tests (Kassambara, 2020). 

2.1.4. PLFA-correction of the relative abundances of major phyla 
The relative abundances of phyla obtained by 16S rRNA gene met

abarcoding do not reflect their absolute abundances. To evaluate if the 
PLFA-derived biomass estimation can be used to improve metabarcod
ing data, we used the amount of PLFA as a proxy for the biomass to 
adjust the relative abundances of the microbial taxa identified in the 
mock community. We defined the PLFA-corrected relative abundance as 
the product of the relative abundance of each genus per corresponding 
microbial group multiplied with the proportion of the biomass of the 
corresponding microbial group. We compared the resulting PLFA- 
corrected abundances to the pre-defined theoretical marker gene 
abundances (hereafter DNAth) of the mock community. To investigate 
the effects of substrate type on the bias of metabarcoding methodology, 
we used the biomass of the microbial groups Gram-positive, Gram- 
negative, Actinobacteria and Cyanobacteria as determined by PLFA1 to 
correct the relative abundances of microbial phyla in the corresponding 
metabarcoding dataset. We defined the PLFA-corrected relative abun
dance as the product of the relative abundance of each phylum per 
corresponding microbial group multiplied with the proportion of the 
biomass of the corresponding microbial group. All PLFA-corrected 
relative abundances were calculated on a per sample basis, and the 
mean values were calculated for each substrate. We compiled PLFA- 
corrected proportions of the ten most abundant phyla per environ
mental substrate and summed the proportions of the remaining phyla 
into the category “other”. 

As a second approach, we focused on how the PLFA-correction 
changed the bacterial composition among samples of a common sub
strate. In this analysis, we only used data from the river microbial mats 
and the lake sediments, for which there were replicates for each sam
pling location (“site”). For each substrate, we calculated the 
metabarcoding-based relative abundances of all phyla and the PLFA- 
corrected relative abundance for each sample as already described. 
We then multiplied the PLFA-corrected relative abundances with the 
total PLFA1 value of the sample and calculated the mean values per 
sampling site. The resulting value is the PLFA-corrected absolute abun
dance which can be used as a proxy for the biomass of the respective 
microbial phyla. 

3. Results 

3.1. Sequence data 

Across all substrates, 113 metabarcoding samples were obtained 
after removal of two samples of insufficient sequencing depth. The 
remaining samples had on average 1089 ± 1089 SVs (mean ± sd) per 
sample, of which an average of 3% SVs were excluded as they were non- 
bacterial. The number of SVs per substrate varied significantly (Kruskal- 
Wallis rank sum test: Х2 = 66.06, df = 4, p < 0.001; Table 2), with 
stream water yielding significantly more SVs than all other substrates. A 
summary of the sequence data per substrate type is shown in Table 2, 
and a detailed overview for each sample is provided in Table S2. 

3.2. PLFA data 

The substrates varied significantly in their PLFA content and com
positions. The total amount of FAs per gram of lyophilized substrate 
varied strongly depending on its origin. Stream water samples had the 
lowest total PLFA content with less than 0.01 ± 0.00 μmol⋅L− 1 (mean ±
sd), followed by stream sediments (0.06 ± 0.05 μmol⋅g− 1) and soil (0.20 
± 0.05 μmol⋅g− 1). The lake sediments had a total PLFA content of 1.18 
± 0.35 μmol⋅g− 1, and microbial mats had the highest PLFA contents at 
4.56 ± 0.25 μmol⋅g− 1. Across all substrates, a total 30 of 35 possible 
microbial PLFA biomarkers were detected but the number of PLFA 
biomarkers differed dramatically among substrates (Table 3). Stream 
water samples contained the smallest number of PLFA biomarkers of all 
environmental substrates with only 4 of 16 possible PLFAs identified for 
PLFA1, and 7 of 34 FAs for PLFA2. Furthermore, only three samples 
contained biomarkers other than the saturated PLFAs, which are in
dicators for bacteria in general. River microbial mats were somewhat 
more diverse in their PLFA composition with 10 of 16 possible FAs 
identified for PLFA1, and 19 of 34 PLFAs for PLFA2. In addition, un
identified PLFAs accounted for an average peak area of 17% of the PLFA 
profiles of river microbial mat samples. In contrast, freshwater sedi
ments and soil samples contained a much greater diversity of PLFAs. 
Lake sediment samples contained 14 of 16 PLFAs for PLFA1 and 27 of 34 
for PLFA2, and unidentified PLFAs constituted about 25% of the peak 
area in those profiles. Similarly, the stream sediment samples contained 
14 of the 16 PLFA1 biomarkers, and 20 of 34 PLFA2 biomarkers, with 
21% of the total peak area comprised of unidentified PLFAs. Soil samples 
contained 12 of the 13 biomarkers used in the PLFA1 methodology and 
we detected 21 of the 29 PLFA2 biomarkers. Soil samples had the largest 
proportion of unidentified PLFAs, comprising, on average, 28% of the 
total PLFA peak area. The mock community samples were the simplest, 
with only 7 of 16 PLFAs present using the PLFA1 methodology, and 12 of 
35 PLFA2 markers. Unidentified PLFAs accounted for an estimated 18% 

Table 2 
Summary of the 16S rRNA gene metabarcoding datasets. For each substrate, the 
number of samples (N), their mean number of sequence variants (SVs), the total 
number of exact sequence variants per substrate and their read counts are 
shown. Different letters in superscript denote significant differences among 
substrates, as determined by a pairwise Wilcoxon rank sum test (Table S3).  

Substrate N Mean SVs 
per 

sample 

Number of 
unique SVs for 
each substrate 

Read counts per 
substrate after removal 
of non-bacterial reads 

River 
microbial 

mats 

23 429a 3523 2,155,029 

Lake sediment 26 1365c 13,636 1,645,925 
Stream 
sediment 

19 768b 9197 473,701 

Soil 28 836ab 17,414 1,076,835 
Stream water 14 2832d 24,682 1,869,716 
‘Zymo’ mock 

community 
3 26 41 302,514  
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of the total peak area in the mock microbial communities. 
The PLFA analysis revealed that the substrates differed strongly in 

their PLFA composition, reflecting differences in the composition of 
their microbial communities (Fig. 2). For example, the biomarkers for 
Gram-negative bacteria were the most abundant PLFAs in soil samples, 
while they were among the least abundant in lake sediment samples 
where Cyanobacterial and general bacterial biomarkers were dominant. 
The most pronounced difference in microbial composition among sub
strates manifested for the phylum Cyanobacteria. For example, in mi
crobial mats the amount of Cyanobacterial biomarkers was up to an 
order of magnitude greater than the mean amount of biomarker for 
Gram-positive and Gram-negative bacteria (Table 3). In contrast, the 

mean amount of the biomarkers from all microbial groups was similar 
for the stream sediment. Substrates also varied with respect to which 
PLFA biomarker was dominant within the set of biomarkers for a mi
crobial group. In the river microbial mats, the polyunsaturated PLFA 
18:3ω3 dominated the Cyanobacterial biomarkers and the overall PLFA 
profile, comprising on average 25.7 mol% of the total PLFA amount. In 
contrast, soil, stream sediment and lake sediment all had a high mean 
content of the saturated PLFA 16:0, a common biomarker for bacteria, 
but differed regarding the relative contents of common mono
unsaturated PLFAs like 18:1ω9t and 16:1ω7 as well as the cyclic PLFAs 
cy17:0 and cy19:0. 

Comparing the total PLFA retained in the PLFA1 and PLFA2 datasets 

Table 3 
Phospholipid fatty acid (PLFA) concentrations for five environmental substrates and a mock microbial community standard.  

Substrate River 
microbial mat 

Lake 
sediment 

Stream sediment Soil Stream water Mock community 

N 24 26 23 28 14 3  
Concentration of PLFA  

____________________________nmol⋅g¡1____________________________ __nmol⋅L¡1__ __nmol⋅mL¡1__ 
Biomarker     

General bacterial biomarkers 
14:0 141.6 ± 60.1 49.0 ± 13.2 0.2 ± 0.8 1.3 ± 1.2 – – 
15:0 24.2 ± 33.9 60.6 ± 50.8 0.1 ± 0.4 2.0 ± 2.1 – – 
16:0 1179.3 ± 653.3 190.3 ± 44.8 13.4 ± 12.5 37.6 ± 18.5 4.02 ± 1.8 65.9 ± 4.4 
17:0 20.2 ± 25.9 35.2 ± 21.4 0.3 ± 0.7 3.2 ± 2.3 – – 
18:0 141.3 ± 85.7 36.7 ± 8.3 4.8 ± 2.8 8.1 ± 3.3 2.2 ± 0.9 9.7‡

SUM 1506.5 ± 768.1 371.9 ± 120.2 18.8 ± 15.7 52.2 ± 24.3 6.2 ± 2.2 70.7 ± 11.2    

Gram-positive bacterial biomarkers 
a15:0 9.9 ± 14.2 93.1 ± 29.6 4.3 ± 6.0 17.1 ± 5.9 0.7‡ 16.2 ± 2.8 
i15:0 153.2 ± 109.8 58.8 ± 29.9 4.8 ± 4.6 19.1 ± 7.1 – 5.7 ± 0.4 
a16:0 – 8.3 ± 22.6 0.3 ± 0.8 – – – 
i16:0 – 30.4 ± 21.6 1.4 ± 1.71 6.6 ± 4.2 0.3‡ 3.0 ± 0.2 
a17:0 12.0 ± 16.7 27.3 ± 10.5 1.5 ± 1.83 8.1 ± 3.9 – 13.8 ± 1.7 
i17:0 12.7 ± 19.0 17.6 ± 8.4 0.9 ± 1.3 5.3 ± 2.3 – 8.8 ± 1.5 
SUM 187.8 ± 127.6 235.6 ± 57.4 13.2 ± 14.5 56.3 ± 15.9 1.0 47.6 ± 6.6    

Gram-negative bacterial biomarkers 
16:1ω5c – 2.6 ± 12.2 – NA – – 
16:1ω5t – 11.0 ± 11.2 – 3.3 ± 5.0 – – 
18:1ω7c – 0.2 ± 1.21 0.5 ± 0.71 4.1 ± 1.3 – – 
16:1ω5 41.0 ± 196.5ur 3.5 ± 11.8ur 3.9 ± 5.4ur – 1.2 ± 1.1ur 28.9 ± 4.7ur 

16:1ω7c NA NA NA 6.1 ± 4.2 NA – 
16:1ω7t 187.8 ± 130.5 64.0 ± 20.4 3.2 ± 6.7 2.1 ± 6.4 – – 
18:1ω7t 5.6 ± 6.1 2.5 ± 2.9 0.6 ± 0.8 4.1 ± 1.3 – – 
19:1ω9c 0.1 ± 0.5 3.7 ± 5.8 – 0.6 ± 0.5 – 19.9 ± 1.9 
cy17:0 13.8 ± 17.1 18.2 ± 17.4 1.6 ± 1.4 6.3 ± 2.5 – 22.7 ± 1.8 
cy19:0 1.1 ± 1.7 2.9 ± 1.3 5.0 ± 4.2 37.0 ± 8.6 0.4‡ 6.9 ± 1.0 

3OH14:0 – 1.8 ± 3.6 – 0.3 ± 1.8 – – 
2OH16:0 – – – 0.1 ± 0.2 – – 

SUM 249.4 ± 207.8 110.2 ± 37.8 14.4 ± 13.9 64.0 ± 14.0 2.0 ± 2.4 78.3 ± 9.5    

Actinobacterial biomarkers 
10Me16:0 – 89.2 ± 78.1 4.6 ± 4.3 14.2 ± 5.5 – – 
10Me17:0 – 1.7 ± 2.7 0.1 ± 0.2 1.9 ± 1.0 – – 
10Me18:0 – 9.1 ± 6.2 0.8 ± 1.3 6.6 ± 2.7 – – 

SUM – 100.1 ± 86.1 5.5 ± 5.1 22.6 ± 6.9 – –    

Cyanobacterial biomarkers 
16:1ω7c 347.0 ± 185.8 226.9 ± 56.1 3.5 ± 4.5 NA 0.79 ± 0.4 – 
18:1ω7c – 0.2 ± 1.21 0.5 ± 0.71 NA – – 
18:1ω9c 157.8 ± 112.7 94.6 ± 27.2 4.4 ± 4.2 NA 0.4 ± 0.2 – 
16:3ω4 337.0 ± 234.2 – – – – – 
18:3ω3 1430.6 ± 1023.5 – – – – – 
18:2ω6 345.0 ± 335.2 44.9 ± 15.6 1.2 ± 1.4 NA 1.0 ± 0.4 – 
SUM 2617.4 ± 1501.8 366.7 ± 80.7 9.6 ± 9.9 NA 1.2 ± 0.9 – 

Total PLFA1 2335.5 ± 1350.2 442.5 ± 178.5 27.2 ± 26.4 130 ± 31.8 1.7 ± 1.4 77.1 ± 9.4 
Total PLFA2 5561.1 ± 2467.5 1184.4 ± 348.3 61.3 ± 54.6 195.1 ± 52.3 6.9 ± 3.2 196.5 ± 27.2 

% peak area of excluded FAs 17.3 ± 6.2 24.7 ± 6.2 20.6 ± 8.1 28.4 ± 9.6 15.5‡ 18.2 ± 4.5 

Notes: NA not applicable: depending on the origin of the substrate, PLFA biomarker have different designation, see designations for PLFA in Table 1. - not detected, ‡

detected in one sample only, ur unresolved identification regarding stereochemistry, 1the values for PLFA 18:1ω7c are given twice in the table, for the phylum 
Cyanobacteria and Gram-negative bacteria, because the PLFA is a designated biomarker for both microbial groups (see Table 1). The hydroxy fatty acids 2OH10:0, 
2OH12:0, 3OH12:0, 2OH14:0 and 3OH16:0 were not detected. 
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revealed how much of the PLFA profile remained unused when applying 
the smaller biomarker set. In soil, the PLFA1 approach covered 66% of 
the total PLFA2 amount, which was the highest coverage in all sub
strates. In contrast, in water only 25% of the total PLFA2 amount was 
also included in PLFA1. All sediments showed intermediate percentages 
of coverage of around 40%. The PLFA1 biomarker set covered 42% of 
the total amount of PLFA measured by the PLFA2 approach in river 
microbial mats, 37% in lake sediments and 44% in stream sediments. A 
more detailed calculation of the percentage areas of the chromatograms 
that were unused is provided in Table S5. 

3.3. Comparison of metabarcoding and PLFA datasets 

3.3.1. Ratio of Gram-positive and Gram-negative bacteria (GP:GN) 
The estimated relative abundances of Gram-positive and Gram- 

negative bacteria varied strongly among substrates, as well as between 
the methods applied for their quantification (Fig. 3 and Table S4). For 
samples of the mock microbial communities, metabarcoding and PLFA 
methods provided similar views of the relative abundances of Gram- 
positive and Gram-negative bacteria. The theoretical relative abun
dance based on the 16S rRNA marker gene (DNAth) for Gram-negative 
bacteria in the mock microbial community was 26.4%; metabarcoding 
and PLFA methods overestimated the relative abundance of Gram- 
negative bacteria by 12 to 27 percentage points. Whereas the PLFA1 

method agreed best with the theoretical value of the proportion of the 
Gram-negative bacteria, assessment by metabarcoding overestimated 
this value by 27 percentage points. However, the metabarcoding mea
surement and that of PLFA2 analysis were similar with values of 54% 
and 51% respectively, meaning both approaches equally overestimated 
the proportion of the Gram-negative bacteria in the mock community. In 
the environmental substrates, metabarcoding and PLFA1 and PLFA2 
methodologies yielded significantly different values of the relative 
abundances of Gram-positive and -negative taxa. For example, the 
proportions of Gram-negative bacteria estimated to be present in the 
environmental samples differed by between 31 and 93 percentage points 
when determined by either metabarcoding or PLFA analysis. In general, 
metabarcoding analysis returned much smaller predicted proportions of 
Gram-positive bacteria (Actinobacteria included) in all environmental 
substrates, and this difference was greatest in river microbial mats (up to 
93 percentage points). In sediments, Gram-positive bacteria (Actino
bacteria included) were predicted to make up less than 6% of the mi
crobial community when assessed by metabarcoding. In contrast, this 
group was assessed to comprise between 42 and 94% of the microbial 
community, depending on the PLFA method and the origin of the sedi
ment. In all substrates, PLFA1 resulted in the highest proportions of 
Gram-positive bacteria, differing most sharply from the metabarcoding 
approach. In contrast, the PLFA2 approach aligned better with the 
relative abundances as estimated by metabarcoding. The removal of SVs 

Fig. 2. Total amount of phospholipid fatty acid (PLFA) biomarker for five microbial groups in each substrate. The amount of the PLFAs for each group of biomarkers 
was calculated in μmol per gram of lyophilized substrate on a per sample basis. Bacterial PLFAs without association to any specific taxonomic group were combined 
in the group “bacteria”. No PLFA biomarker for Actinobacteria could be detected in the microbial mat samples. In soil, the phylum Cyanobacteria was not deter
mined. Horizontal lines show median values, boxes denote the interquartile range (IQR), while whiskers show 1.5*IQR ranges. Outliers are indicated by dots. Note 
different y-axis scales among figure panels. 
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that could not be assigned a Gram status because they could not be 
identified on the phylum level or were affiliated with candidate phyla 
accounted for 3.0 ± 3.8% (mean ± sd) of the total read count (Table S2). 

3.3.2. Mean abundances of microbial groups 
The extent to which metabarcoding and PLFA views aligned differed 

strongly among substrates when the microbial community was parti
tioned into the microbial groups Actinobacteria, Gram-positive bacteria, 
Cyanobacteria and Gram-negative bacteria (Fig. 4). For all substrates, 
the relative predicted abundances of Gram-negative bacteria (Cyano
bacteria excluded from the group) were much higher when calculated 
from metabarcoding data than by one of the PLFA methods. Except for 
samples from river microbial mats, the metabarcoding data suggest that 
Gram-negative bacteria were dominant in all substrates. However, 
Gram-negative bacteria were much less abundant when measured by 
either of the PLFA approaches. For example, in lake sediments, the mean 
relative abundance of Gram-negative bacteria was 5.6% by PLFA1 and 
10% by PLFA2, which is in striking contrast to the view of these samples 
based on the metabarcoding methodology, yielding a mean abundance 
of 83.7% Gram-negative bacteria. Analogously, both the yields of Acti
nobacteria and of Gram-positive bacteria (Actinobacteria excluded) 
were highest when measured by PLFA1, whereas metabarcoding mea
surements resulted in the smallest yields for these two microbial groups. 
In river microbial mats, metabarcoding and PLFA methodologies all 
indicated a strong dominance by members of the phylum Cyanobacteria. 

However, mean percentages ranged from 73.7% (MB) up to 91.6% 
(PLFA1), with the PLFA2 approach indicating an intermediate value of 
86.5%. Overall, our results indicate that metabarcoding and PLFA an
alyses result in highly different compositional data for microbial groups, 
as we demonstrate for the Actinobacteria, Cyanobacteria, Gram-positive 
and Gram-negative bacteria which differ in their estimated relative 
abundances in some instances by up to an order of magnitude. Except for 
Cyanobacteria, the results from the PLFA2 approach aligned somewhat 
better with the metabarcoding data than the PLFA1 approach did. 

3.4. Relative abundances: PLFA-correction of metabarcoding-derived 
estimates of microbial abundances 

The correction of the estimated relative abundances of microbial 
taxa in metabarcoding datasets, which was achieved by applying the 
PLFA-derived proportion of biomass for the corresponding microbial 
group, led to changes in the estimated proportions of the major genera in 
the mock community and also to marked changes in the estimated 
proportions of microbial phyla in all environmental substrates (Figs. 5, 6 
and S1). In the mock community, PLFA1-correction of the meta
barcoding data resulted in relative abundances of genera that were more 
closely aligned with their theoretical values. In the environmental sub
strates, prior to PLFA-correction, the most abundant phyla were all 
Gram-negative bacteria (Fig. 6 and S1). Most notable were the Proteo
bacteria, Bacteroidetes and Verrucomicrobia, especially in lake 

Fig. 3. Mean relative abundances of Gram-positive and Gram-negative bacteria in five substrates as determined using metabarcoding (MB) and phospholipid fatty 
acid (PLFA) analysis. The first bar on the left (DNAth) indicates the true mock community composition (ZymoBIOMICS Microbial Community Standard) which is 
based on the relative abundance of 16S rRNA genes expected to be present for each group (Gram-positive and Gram-negative). The other bars represent the relative 
amount of Gram-positive and Gram-negative bacteria as determined either by MB or by two PLFA approaches (PLFA1, PLFA2) using different sets of PLFAs as 
biomarkers. For each substrate separately, different letters indicate significant differences between the relative abundances of the bacteria as estimated by the 
different methods. Detailed results of the applied Wilcoxon rank sum test are shown in Table S3. 
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sediments, soils and stream sediments. After PLFA1-correction, howev
er, Gram-positive phyla became the most dominant groups in these three 
substrates. For example, in the lake sediment samples, the dominant 
phylum changed from the Gram-negative Proteobacteria to the Gram- 
positive Firmicutes with PLFA1-correction. In soil and stream sedi
ments, the phyla TM7 and Firmicutes increased notably in their abun
dance after PLFA1-correction. However, we observed relatively small 
changes in the composition of microbial communities in river microbial 
mats when we applied PLFA-corrections to metabarcoding dataset. In 
river microbial mats Cyanobacteria remained the dominant group after 
PLFA1-correction, and their estimated abundance increased. PLFA1- 

correction also resulted in an exchange of the next most abundant 
groups from Gram-negative phyla (Proteobacteria and Bacteroidetes) to 
the Gram-positive phyla Firmicutes and TM7 in the river microbial mat 
samples. The results of the application of the PLFA2 data are shown in 
the supplementary material (Fig. S1). Briefly, the correction by PLFA2 
also resulted in an increase in the proportion of the Gram-positive 
bacteria, especially in lake sediments, and in a smaller increase in soil 
and stream sediment samples. Overall, the shifts in the proportions 
generated by PLFA2-correction were smaller to those that resulted from 
the PLFA1-correction, but still considerable. However, the PLFA2- 
correction resulted in an increase in the estimations of the relative 

Fig. 4. The estimated relative abundances of four microbial groups (Actinobacteria, Cyanobacteria, Gram-negative bacteria and Gram-positive bacteria) in four 
substrates as determined by three methods (metabarcoding, PLFA1, PLFA2). Cyanobacteria were excluded from the soil analysis. In river microbial mats, Actino
bacteria could not be detected by PLFA analysis. Horizontal lines indicate median values, boxes denote the interquartile range (IQR), while whiskers show the 
1.5*IQR ranges. Outliers are indicated by dots. ‘ns’ indicates a non-significant difference in the predicted relative abundance of microbial groups between two 
methods as calculated by Wilcoxon rank sum test, all other comparisons are significantly different (see Table S6). 
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abundance of the Cyanobacteria in all freshwater samples, a shift that 
did not occur as notably through PLFA1-correction (see Fig. 5). 

3.5. Absolute abundances: PLFA1-correction of metabarcoding-derived 
abundance estimates to explore variation among samples of a common 
substrate 

To gain insight to how spatial variation in microbial biomass may 
affect metabarcoding views of community composition, we explored 
how PLFA-correction changed the predicted bacterial composition 
among samples in common substrates. We focused on river microbial 
mats and lake sediments, for which we had samples from multiple sites 
(see Table S2 and details in Thomson-Laing et al. (2020) and Weisbrod 
et al. (2020)). The PLFA1-correction of absolute abundances of micro
bial phyla in samples resulted in considerable change in the presumed 
bacterial composition in both substrates (Figs. 7 and 8). In particular, 
differences in total microbial biomass among sites restricted to com
parison of only proportional abundance data led to false conclusions 
regarding the similarity of microbial communities among sampling sites 
in river microbial mats and lake sediments. For example, in river mi
crobial mats, comparison of the bacterial relative abundances among 
sampling sites would lead to the conclusion that the four sites were 
highly similar. However, after combining the metabarcoding results 
with microbial biomass approximation by PLFA1, sites A, B and C 
showed a higher similarity in their bacterial profile, whereas site D 
displayed a significant smaller biomass per dry weight substrate. At site 
D, Gram-positive Firmicutes could not be detected by metabarcoding, 
but were the second most abundant phylum in sites A, B and C (Fig. 7). 
Likewise, in lake sediment samples, the inclusion of the PLFA1 data as a 
biomass proxy resulted in a significant difference in biomass between 
site A and that of sites B, C and D (Fig. 8). This difference reflected a 

pronounced increase in Actinobacterial biomass in site A. In compari
son, the estimated relative abundances of Actinobacteria were similar 
over all four sampling sites before data correction by PLFA1 as a biomass 
proxy. Another difference in the bacterial profile of the sediment sam
ples is the change in proportion of the Cyanobacteria, for which the 
estimated relative abundances differed distinctly among the four 
sampled sites. After PLFA-correction, however, Cyanobacteria showed 
very similar absolute abundances at all sites. Although the relative 
abundances of the measured microbial groups showed different trends 
when compared by PLFA1 and PLFA2, the overall trends when 
comparing the sites per substrate stayed consistent (see supplementary 
Figs. S2 and S3). PLFA2-correction produced identical trends as PLFA1 
in both microbial mats and lake sediments. 

4. Discussion 

We investigated the influence of different substrate types on the 
relative performance of metabarcoding in parallel with PLFA analysis. 
Metabarcoding and two different PLFA approaches were used to esti
mate the composition of the microbial communities of five different 
environmental substrates. The ratios of bacterial groups as determined 
by metabarcoding and PLFA analysis varied widely among substrates, 
and these differences were largest for the Gram-negative bacteria. In 
addition, two different PLFA biomarker sets were used that differed in 
their number of PLFAs to examine if the increased resolution of the 
larger biomarker set would lead to a better alignment of the PLFA-based 
data with the metabarcoding-based data. The PLFA approach based on 
the smaller set of biomarkers (PLFA1) aligned best with the theoretical 
abundance values of a mock microbial community and also aligned well 
with metabarcoding data for the phylum Cyanobacteria in lake sedi
ments. In environmental samples, however, the larger set of biomarkers 
(PLFA2) aligned better with the results from metabarcoding across most 
microbial groups and substrates. In what follows, we discuss these re
sults in more detail and consider how the total biomass of the substrate 
and the particularities of a PLFA profile may influence the resulting view 
of the microbial community composition as determined by PLFA anal
ysis. Despite the wide variation in bias across substrates when gener
ating metabarcoding views of microbial community composition from 
environmental samples, and despite additional considerations imposed 
by methodological choices in PLFA analysis, we argue that insight into 
the biomass of microbial taxa from PLFA analysis can be used to 
constrain the pitfalls of assessing microbial community composition 
from metabarcoding data. 

4.1. Metabarcoding vs PLFA analysis: relative abundances of bacteria 

In all substrates, the estimated relative abundances of Gram-negative 
and Gram-positive bacteria differed significantly among methods. These 
differences were most striking in microbial mats, which consist mainly 
of Gram-negative Cyanobacteria. Compared to other Gram-negative 
bacteria, these microbes contain high proportions of characteristic 
polyunsaturated and monounsaturated PLFAs (Ahlgren et al., 1992; 
Dijkman et al., 2010). Therefore, our approach to calculate the Gram- 
positive and Gram-negative bacteria based on their respective PLFA 
biomarkers only instead of including Cyanobacterial PLFAs as bio
markers for Gram-negative bacteria, does not seem to represent the 
microbial community of microbial mats well. Future studies that wish to 
apply PLFA methodology to correct the metabarcoding-derived bacterial 
composition of microbial mats or of other substrates primarily 
comprised of Cyanobacteria may prefer to include the Cyanobacterial 
biomarkers in calculations of Gram-negative bacterial biomass. Our re
sults from sediment samples, however, reflect those from others studies 
reporting values between 60 and 90% for the percentage abundance of 
Gram-positive bacteria based on PLFA analysis (Wang and Wang, 2018), 
and between 10 and 30% based on metabarcoding data (Lee et al., 2020; 
Wang et al., 2012; Wang and Wang, 2018). In soil, results from 

Fig. 5. Relative abundances of the genera from the mock community before 
and after correction. The theoretical composition of the mock community of the 
ZymoBIOMICS Microbial Standard is shown on the left (DNAth). The estimated 
relative abundances as derived from the metabarcoding are depicted in the 
second bar (MB). The last two bars show the change in genera abundances after 
biomass correction by either PLFA1 or PLFA2 data. Note: the mock community 
did not contain any Actinobacteria or Cyanobacteria. MB = metabarcoding, 
DNAth = theoretical composition of the mock community, based on the marker 
gene count number, PLFA = phospholipid fatty acid, GP = Gram-positive 
bacteria, GN = Gram-negative bacteria. 
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metabarcoding and the PLFA approaches agree better, a result that 
aligns with other soil surveys (Orwin et al., 2018). 

When Cyanobacteria and Actinobacteria were measured indepen
dently from other bacteria, their proportions as determined by meta
barcoding and PLFA aligned better than for the Gram-negative and 
Gram-positive bacteria. In each freshwater substrate, metabarcoding 
and PLFA1 data of the estimated relative abundances of Cyanobacteria 
were similar, regardless of the dominance of Cyanobacteria in the sub
strate (e.g., river microbial mats vs. stream sediment samples). These 
observations indicate that our selection of the PLFA biomarkers for 
Cyanobacteria were a reasonable choice as a biomass proxy in sediments 
and microbial mats from freshwater systems. Furthermore, our findings 
that metabarcoding and PLFA data somewhat align, agrees with others 
studies, e.g., for microbial mats from hot springs dominated by Cyano
bacteria (Zhang et al., 2007). Taken together with other studies, our data 
suggest that metabarcoding methods are likely to underestimate the 
Gram-positive bacteria in environmental samples, and that PLFA ana
lyses can help to provide an estimate of this bias. 

Previous studies evaluating the validity of using metabarcoding of 
the 16S rRNA gene to approximate the biomass of taxonomic groups 
have described several possible biases associated with each step from the 

DNA extraction to the bioinformatic analysis (Bonk et al., 2018; Pollock 
et al., 2018). Biases that have been associated with the Gram status of 
the bacteria are either based on the higher G + C-richness of the DNA of 
Gram-positive bacteria or are ascribed to the structural composition of 
their cells (Frostegård et al., 1999; Nichols et al., 2018). The cell walls of 
Gram-positive bacteria are more difficult to disrupt compared to those of 
Gram-negative bacteria, which is a possible source of DNA extraction 
bias (Miller et al., 1999; Moré et al., 1994; Wu et al., 2010). This could 
have been a significant contributory factor to our observation that 
metabarcoding seems to underestimate the abundance of Gram-positive 
bacteria, regardless of the origin of the samples and the PLFA approach 
against which the metabarcoding data were compared. In addition, 
several other sources of error in metabarcoding exist that might impact 
on the relative abundances of bacterial taxa (Bonk et al., 2018; Dopheide 
et al., 2019; Stoeckle et al., 2017). Extracted DNA templates might be 
amplified with varying efficiency due to factors like mismatches be
tween primers and target DNA templates, the G + C content of the 
template DNA and PCR conditions (Boers et al., 2019; Dopheide et al., 
2019). For example, in metabarcoding studies in marine samples (Par
ada et al., 2016) and soils (Beckers et al., 2016; Thijs et al., 2017) large 
variation in community composition were found due to difference 

Fig. 6. Predicted relative abundances of major phyla in four substrates as determined by metabarcoding only and corrected by the total biomass of the microbial 
groups Actinobacteria, Cyanobacteria, Gram-positive and Gram-negative bacteria. For each substrate, the estimated relative abundances as determined by meta
barcoding (left) and corrected by the estimated relative biomasses of the microbial groups as measured by PLFA1 (right) are compared. GP = Gram-positive bacteria. 
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among primer pairs, with some primers greatly under- or overestimating 
taxa abundances. Similarly, variation in the G + C content of the sub
strates (Laursen et al., 2017) and variation in PCR conditions (Sze and 
Schloss, 2019) can lead to substantial differences in metabarcoding 
views of microbial community composition. Although we found large 
differences in the relative abundances of Gram-positive bacteria in 
samples when determined by either PLFA or metabarcoding, we could 
not determine whether G + C rich (i.e., Actinobacteria) or G + C low 
Gram-positive bacteria (i.e., Firmicutes) were differentially impacted by 
the metabarcoding approach. Our study used a polymerase with low 
error rates when amplifying G + C regions (Nichols et al., 2018), 
therefore pre-emptively decreasing the chance of PCR bias resulting 
from choice of the polymerase (Laursen et al., 2017). Taken together, the 
well-known extraction bias against Gram-positive cells walls seems the 
most parsimonious explanation for the underestimation of this bacterial 
group, as reported in this study. 

In the mock community, 16S rRNA gene metabarcoding and PLFA 
methods provided similar views of the relative abundances of the Gram- 
positive and Gram-negative bacteria, but metabarcoding still under
estimated the abundances of Gram-positive bacteria significantly. In 
contrast, PLFA1 values aligned reasonably well with the theoretical 
values of the relative abundances. Our results from a mock community 
seem to reflect the bias against Gram-positive bacteria, which have been 
described for a range of extraction methods (Hermans et al., 2018), 
including the commercially available extraction kit used in this study. 
For example, the theoretical relative abundance of Gram-negative 

bacteria in a simple mock community was overestimated by about 20 
percentage points when determined by metabarcoding (Hermans et al., 
2018), a value that corroborates our own results. However, we found 
that metabarcoding and PLFA analysis of mock communities aligned 
much better than that of environmental samples which showed stronger 
disagreement between metabarcoding and PLFA values. Interestingly, 
Parada et al. (2016) also reported a stronger bias for Gram-negative 
bacteria in their environmental samples compared to the mock com
munity they used - a result that supports our findings. These discrep
ancies in methodological biases between assessments of the mock 
community and the various environmental samples suggest that the 
inclusion of a simple mock community to identify biases introduced by 
the metabarcoding techniques may be of limited use in environmental 
studies. Mock communities are often included in sequencing approaches 
to test for biases during method development and are a helpful standard 
against which run-to-run variations can be measured (Yeh et al., 2018). 
Readily available, pre-defined mock communities, however, lack the 
complexity of the microbiota of environmental samples. Ideally, mock 
communities should be prepared with the sample in mind, i.e., con
taining a representation of the expected taxa of the specific sample to be 
suitable to test for biases. Because this is seldom feasible for microbial 
community profiling in environmental studies, correction of these data 
following PLFA analysis could help alleviate bias between runs and 
treatments. 

Fig. 7. Relative and absolute abundances of major phyla at sampling sites of river microbial mats. i) relative abundances as estimated by metabarcoding ii) PLFA1 
corrected absolute abundances. The values obtained by PLFA1 for Actinobacteria, Gram-positive bacteria, Cyanobacteria and Gram-negative bacteria were included 
to estimate the absolute abundance of each bacterial phylum. Values are in nmol PLFA per g dry weight of the substrate. Five replicate samples were taken at each 
site. GP = Gram-positive bacteria, GN = Gram-negative bacteria. 
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4.2. PLFA analysis: Influence of biomarker selection and origin of 
substrate 

The measurement of PLFA has long been accepted as a quantitative 
method to determine the biomass of viable microbes in environmental 
samples (Ritz et al., 2009; Watzinger, 2015). Our determination of total 
PLFA content per g of each dry substrate indicated that microbial 
biomass varied by up to two orders of magnitude among the substrates 
studied. These results were not unexpected due to the inherent proper
ties of the substrates and the specific origin of the samples. Whereas the 
stream sediment and the stream water samples, which yielded the lowest 
microbial biomass estimates, originated from an oligotrophic stream 
(Auckland Council, 2018), the lake sediment was sampled from a hy
pertrophic lake known to have frequent bacterial blooms (Wood et al., 
2017). Lastly, microbial mats formed by photoautotrophs are known to 
consist almost entirely of microorganisms (Stahl and Klug, 1996). It is 
therefore consistent that we found the highest PLFA content in these 
samples and that they were dominated by PLFA biomarkers for Cyano
bacteria. Although we can conclude that our results for total microbial 
biomass fall well within expected ranges for the substrates studied and 
agree with published data for soils (de Gannes et al., 2016; Francisco 
et al., 2016) and diverse freshwater sediments (Pratt et al., 2012; Steger 
et al., 2011), PLFA results are inherently influenced by the number and 
selection of PLFA biomarkers. 

While the selection of specific PLFA biomarkers for microbial groups 
is common practice in PLFA approaches (Francisco et al., 2016; Rajen
dran et al., 1994), it is associated with a loss of information from the 

PLFA profile, which has the potential to reduce biological insight. To 
evaluate how much of the PLFA profile remained unused in our analysis, 
we assessed the percent concentration of the PLFAs that could not be 
identified. This allowed us to evaluate if the selection of the biomarker 
PLFAs had the potential to lead to unequal biases across different sub
strates. For example, in soil, an average of 28% of the peak area 
remained unidentified, whereas this value was smaller in the different 
types of sediments, ranging from 17% to 25%. Unidentified PLFAs 
typically consist of a mixture of many structurally different PLFAs, each 
at very small concentrations (Kohring et al., 1994; Zelles, 1997). 
Moreover, these PLFAs are unlikely to be specific to one microbial 
group, but rather present in small quantities in many taxa (Zelles, 1997). 
Therefore, in our study, it is unlikely that resolution of the unidentified 
PLFAs would have substantially altered our view of the overall compo
sition of microbial communities in environmental samples. Neverthe
less, our finding that different quantities of unidentified PLFAs exist in 
different substrates suggests that the comparison of microbial biomass 
among environmental substrates is, at best, semi-quantitative. 

Although the different types of substrates varied greatly in their total 
PLFA content, this did not appear to influence the detectability of PLFAs 
over a threshold value. For example, we only detected 19 PLFA bio
markers in the river microbial mats and 20 in the stream sediments, 
although the total PLFA of the former was more than 90× higher than 
that of the latter. In contrast, 27 biomarkers were detected in the lake 
sediment samples, which had a total PLFA content of only about a fifth of 
the biomass of the river microbial mats. Conversely, in several of the 
oligotrophic stream water samples, we detected only saturated PLFAs 

Fig. 8. Relative and absolute abundances of the major phyla at four sampling sites of lake sediment. i) relative abundances as estimated by metabarcoding. ii) PLFA1- 
corrected absolute abundances. The values obtained by PLFA1 for Actinobacteria, Cyanobacteria, Gram-negative and Gram-positive bacteria were included to es
timate the absolute abundance of each bacterial phylum. Values are in nmol PLFA per g dry weight of the substrate. Three replicates were sampled at each site. GP =
Gram-positive bacteria, GN = Gram-negative bacteria. 

N. Lewe et al.                                                                                                                                                                                                                                    



Journal of Microbiological Methods 188 (2021) 106271

15

(16:0 and 18:0), which are typically found in large proportions in bac
teria (Zelles, 1997). Thus, it appears that 1 L of filtered stream water 
provided insufficient biomass to fully resolve the active microbial 
community in this substrate using PLFA analysis. However, for the 
environmental substrates with sufficient biomass per sample, we 
conclude that the number of PLFAs detected was not strongly influenced 
by the microbial biomass of the sample, but instead depended on the 
microbial community of the substrate type. 

Comparison among studies that employ PLFA analysis is often 
hampered by inconsistencies in the biomarkers used. While some studies 
have identified small numbers of signature PLFAs, for example 10 PLFAs 
as bacterial biomarkers (Orwin et al., 2018), others have employed more 
than 50 PLFAs to assess the composition of microbial communities (Zhao 
et al., 2019). One goal of this study was to evaluate how much the 
interpretation of PLFA profiles varies as a result of the selection of 
biomarkers, and if the substrate type influences this variation. We 
applied two sets of PLFA biomarkers that differed in the number of 
PLFAs resolved and compared the proportions of Gram-positive and 
Gram-negative bacteria by both methods. This revealed that the number 
of PLFAs resolved in a PLFA analysis can lead to significantly different 
views of the composition of a microbial community in all substrates 
tested. Moreover, we showed that the discrepancy between the PLFA 
approaches varies depending on the substrate type. For example, while 
the results of PLFA1 and PLFA2 provided reasonably similar views of the 
Gram-positive bacteria in soil samples (PLFA1: 54% Gram-positive 
bacteria, PLFA2: 46%), the values differed by 13 percentage points for 
the stream sediment, 24 for the lake sediments and a sizeable 51 per
centage points for the river microbial mats. In all substrates, the appli
cation of a larger number of PLFAs as biomarkers in PLFA2 increased the 
amount of resolved PLFAs significantly. Because the PLFA2 approach 
added additional biomarkers for Gram-negative bacteria, the relative 
abundances of Gram-negative bacteria increased in PLFA2 in compari
son to the PLFA1 approach, which lead to a better alignment with the 
metabarcoding data in all substrates. However, the increase of the res
olution due to an increased number of PLFAs differed among the soil and 
freshwater samples. For example, in freshwater samples, the PLFA1 set 
of biomarkers resolved an average of 41% of the total amount of PLFAs 
resolved by PLFA2 in freshwater. This difference between the resolved 
amounts of total PLFAs in PLFA1 and PLFA2 decreased considerably in 
soil, where PLFA1 comprises of 66% of the total amount of resolved FAs 
in PLFA2. This disagreement between soil and freshwater samples sug
gests that a higher resolution of the PLFA method is more beneficial 
when freshwater samples are analysed. Although it contrasts our PLFA 
results based on the mock community, we argue that a wide range of 
biomarkers, encompassing a larger portion of the total PLFA profile, 
should be used to characterize complex microbial communities based on 
their PLFA composition. 

In all freshwater substrates, the differences between the PLFA1 and 
PLFA2-based composition of the bacterial community were driven by 
two specific PLFAs: 16:1ω7t and 16:1ω5, both of which are defined as 
biomarkers for Gram-negative bacteria in method PLFA2. Both PLFAs 
were present in high proportions in these samples, which resulted in a 
prominent increase in the proportion of Gram-negative bacteria as 
assessed using PLFA2. It seems that while the inclusion of a larger 
number of PLFA biomarkers should decrease the loss of information, it 
might also introduce sources of error. For example, the PLFA 16:1ω7 is 
also a prominent constituent of the lipids of diatoms (Dijkman et al., 
2010), which can occur in all sampled substrates, but are mainly found 
in aquatic habitats (Antonelli et al., 2017). Furthermore, the differences 
between PLFA1 and PLFA2 might have been influenced by the amount 
of Cyanobacteria per substrate type. We assessed the biomass of Cya
nobacteria separately from the Gram-negative bacteria in our approach, 
based on polyunsaturated PLFAs and some monounsaturated fatty acids. 
The PLFA 16:1ω7c has been specifically described as a biomarker for 
Cyanobacteria (Potts et al., 1987), whereas its stereoisomer 16:1ω7t has 
been recommended as a biomarker for Gram-negative bacteria in the 

literature (Hill et al., 2000; Zelles, 1999). Some PLFA studies on Cya
nobacteria, however, do not differentiate between the isomers, instead 
naming 16:1ω7 as an important constituent of Cyanobacterial phos
pholipids (Ahlgren et al., 1992). Furthermore, bacteria are known to 
switch between their PLFA stereoisomers depending on the environ
mental conditions (Heipieper et al., 1996; Kaur et al., 2005). In our 
study, 16:1ω7t was notably concentrated in the substrates that had high 
concentrations of 16:1ω7c as well. Taken together, this leads us to sus
pect that the large proportion of Cyanobacteria, in combination with the 
use of the trans isomer of 16:1ω7 for Gram-negative bacteria in general, 
instead of for Cyanobacteria, led to the extreme differences between the 
two PLFA methods when applied to freshwater substrates. Contrast
ingly, Cyanobacteria do not play an important role in surface soil and 
the inclusion of these PLFAs as Gram-negative biomarkers had only a 
small impact on the difference between the profiles of the PLFA1 and 
PLFA2 approaches. We conclude that the origin of the substrate might 
bias the results of PLFA analysis, especially if single taxonomic groups 
dominate the microbial community composition. If this is the case, the 
careful selection of the PLFAs for biomarker analysis becomes important 
to avoid skewed views of the microbial community. 

4.3. Application: Biomass-correction of metabarcoding proportions by 
PLFA 

We combined PLFA data for microbial groups with their relative 
abundances as estimated by a metabarcoding approach. In the mock 
community, the application of the PLFA1-based estimation of the 
biomass led to an improved view of the metabarcoding data. However, 
the mock community did not include Actinobacteria and Cyanobacteria 
which made it impossible for us to evaluate if the additional application 
of the estimated biomasses of these two microbial groups would posi
tively influence the resulting estimates of the PLFA-correction. Our 
application of the PLFA1 values as a biomass-correction factor resulted 
in notable changes in the perceived composition of the microbial com
munity in all environmental substrates. In lake sediments, the PLFA1- 
correction led to a striking change in the identity of the most abun
dant phylum, from Gram-negative Proteobacteria to Gram-positive Fir
micutes, a phylum that can dominate hypertrophic lake sediment (Wood 
et al., 2017; Zhang et al., 2020). In contrast, Cyanobacteria remained the 
dominant group in microbial mats before and after PLFA1-correction of 
the metabarcoding data. In both soil and stream sediment samples, the 
changes in the composition of the microbial community due to the PLFA- 
correction were relatively small. Overall, the changes induced by 
PLFA1-correction were similar to those of PLFA2-correction. However, 
our results highlight that the magnitude of the change of the bacterial 
profile through PLFA-correction depended entirely on the results of the 
PLFA analysis, i.e., how different the respective PLFA values are from 
their metabarcoding data. This observation stresses the importance of 
careful PLFA biomarker selection according to the origin of the sub
strate, as we previously discussed. Nonetheless, we argue that PLFA- 
correction, whether by a small set of PLFA biomarkers, or using a 
more comprehensive set like PLFA2, is a useful tool to deal with the 
pitfalls of compositional data resulting from metabarcoding approaches. 
In both PLFA applications, we were able to resolve relevant trends in the 
absolute abundances of microbial groups that led to distinctly different 
views of the sampling sites. These biomass-based views of the microbial 
community enabled description of the absolute trends among sites in our 
study. 

A variety of methods to quantify bacteria exists, but their applica
bility depends on the sample type and the objective of the study. For 
example, absolute abundances have been determined by applying 
quantitative PCR (qPCR) in tandem with other methods of quantifica
tion of microbial load (Galazzo et al., 2020; Zhang et al., 2017). In 
accordance with our results, Galazzo et al. (2020) reported that while 
quantification by qPCR and flow cytometry of a mock community 
correlated strongly, large disagreement between the methods were 
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found when complex faecal samples were used and they argued that the 
process of the DNA extraction might have introduced the bias, be it due 
to DNA saturation, fragmentation or incomplete lysis. Flow cytometry 
quantifies living cells and measures their characteristics, and it is 
therefore able to distinguish between bacterial taxa (Prest et al., 2014; 
Props et al., 2017), but questions about its applicability for environ
mental samples remain, especially for samples of different properties 
(Khalili et al., 2019). Other studies used DNA (Hardwick et al., 2018; 
Tkacz et al., 2018; Wang et al., 2021) or bacterial strains (Lou et al., 
2018) as internal standards added to the sample to obtain absolute 
quantitative results from NGS, but these methods do not account for 
possible biases in DNA extraction steps. Furthermore, bioinformatic 
approaches exist that either correct for inherent differences among 
bacterial taxa or can be used to detect changes in the abundances of taxa 
between samples. The 16S rRNA gene copy number varies among 
different bacteria, and tools for correcting (= gene copy normalization 
[GCN]) for that difference exist (Angly et al., 2014; Kembel et al., 2012). 
However, this approach still lacks a comprehensive description of the 
gene copy number of most organisms, and has been found to not reliably 
improve NGS sequencing abundances of mock communities (Starke 
et al., 2020). In our study, the GCN might have had increased the dif
ferences between metabarcoding and PLFA-based estimates of the 
abundances, because Gram-positive Firmicutes have comparably high 
gene copy numbers (Kembel et al., 2012) which would have led to a 
further decrease in their relative abundance in our results. If microbial 
biomass information is not available, or not of relevance, the application 
of mathematical methods like differential abundance analysis (Morton 
et al., 2019) can be used to infer changes in taxon abundances between 
samples. Each method provides additional information and has its ad
vantages and disadvantages, and a careful selection of the most appro
priate method is important. 

5. Conclusion 

Using PLFA in parallel with metabarcoding when measuring micro
bial communities can strengthen comparisons between samples, sub
strates and studies, especially when mock communities and other means 
of correction fall short in environmental studies. Our data demonstrates 
that PLFA-correction adds bacterial biomass as an ecologically mean
ingful dimension to the data, therefore enabling researchers to avoid 
common problems arising from compositional sequencing results. 
However, the origin of the samples, and their microbial composition 
needs to be carefully considered when selecting appropriate PLFA 
biomarkers. 
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