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Abstract

The aim of the research described in this thesis is the development of methods for

solving computationally intensive computer model calibration problems by sample

based inference. Although our primary focus is calibrating computer models of

geothermal reservoirs, the methodology we have developed can be applied to a wide

range of computer model calibration problems.

In this study, the Bayesian framework is employed to construct the posterior

distribution over all model parameters consistent with the measured data, account-

ing for various uncertainties in the calibration process. To construct the posterior

distribution for computer model calibration problems, several methods such as the

additive bias framework of Kennedy and O’Hagan (2001) and the enhanced error

model (Kaipio and Somersalo, 2007) are investigated.

Then, the solutions of computer model calibration problems are given by esti-

mating the expected value of statistics of interest over the posterior distribution.

Markov chain Monte Carlo (MCMC) sampling, Metropolis-Hastings (MH) algo-

rithm (Metropolis et al., 1953; Hastings, 1970) in particular, is empoyed to explore

the posterior distribution, and Monte Carlo integration is used to calculating the

expected values.

To be able to automatically adjust the proposal densities used in the MH algo-

rithm, the state-of-the-art adaptive MCMC algorithms (Haario et al., 2001; Atchade

and Rosenthal, 2005; Andrieu and Moulines, 2006; Roberts and Rosenthal, 2007) are

investigated in this thesis. A group components adaptive Metropolis (GCAM) al-

gorithm has been designed, which combines the features of the adaptive Metropolis

algorithm (Haario et al., 2001) and the adaptive Metropolis-within-Gibbs algorithm
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(Roberts and Rosenthal, 2009) to improve both statistical and computational effi-

ciencies of sampling involving computationally demanding target densities.

In sampling the posterior distribution of the computer model calibration prob-

lem, the main computational cost of the MH algorithm is that the posterior den-

sity has to be evaluated at each iteration. The delayed acceptance MH (DAMH)

algorithm (Christen and Fox, 2005) can be used to speed up the sampling. An ap-

proximate posterior distribution is necessary to run the DAMH algorithm, and the

enhanced error model (Kaipio and Somersalo, 2007) provides a potential candidate.

However, constructing the enhanced error model requires evaluating the coarse

model and the fine model for a large number of input points a priori. Also, the

enhanced error model built over the prior distribution is not accurate enough, and

does not show desirable statistical efficiency in the DAMH algorithm .

To overcome this difficulty, we combine the DAMH algorithm, the enhanced error

model and techniques in the adaptive MCMC together to give an adaptive DAMH

(ADAMH) algorithm, which allows construction of the enhanced error model from

the posterior distribution adaptively. Sufficient conditions for the algorithm to con-

verge to the target distribution are provided, and several adaptive approximations

have also been designed under these conditions.

For test cases based on a well discharge test model with a synthetic data set and

a measured data set, the ADAMH algorithm and the adaptive approximations show

significantly better computational and statistical efficiencies than the non-adaptive

DAMH algorithm. For the synthetic data set, the approximations are compared

under various schemes, and best statistical efficiency is achieved by using the full

covariance matrix in the approximate posterior distribution. For both the synthetic

data set and the measured data set, the model predictions follow the data reasonably

well.

We are able to run the ADAMH algorithm for 9,000 iterations in about 30 days

time for a 3D natural state geothermal reservoir model. This originally would cost

the standard MH algorithm about eight months of computing time. The calibration

result shows good agreement between the estimated temperature profiles and the

measured data.
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