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Abstract
Many physical and biological systems consist of individuals with collective behaviour. In

reality, these individuals have a finite size, or at least prevent others from interacting

or becoming involved; hence, they exclude a volume in space. Volume exclusion can

be considered the simplest possible interaction within a population. It plays an impor-

tant role in determining transport properties from small-scale systems such as interior

cell motion or ion channels to large-scale systems such as pedestrian motion or animal

swarms. Individual-based models describe how interacting individuals give rise to col-

lective behaviour; however, these models become computationally intractable for large

systems. Our research aims to replace these expensive simulation models with continuum

population-level models based on partial differential equations (PDEs). The diffusion

of finite size hard-core interacting particles in one or two dimensions are examined sys-

tematically using asymptotic methods. The result is a coupled system of PDEs for the

distribution functions of position, velocity and time. Due to size exclusion, the PDEs are

nonlinear in the transport term.
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1
Introduction

1.1 Excluded volume interactions

Many physical and biological systems consist of individuals with collective behaviour.

In reality, these individuals have a finite size, and many living organisms tend to keep

others at a distance; hence, they exclude a volume in space. Volume exclusion can be

considered as the simplest possible interaction within a population. From small-scale

systems such as interior cell motion or ion channels to large-scale systems like pedestrian

motion or animal swarms, it influences the transport properties of diffusing particles

through crowded conditions.

A short-range hard-core potential

φ(r) =

∞ d ≤ 2r,

0 d > 2r,

where d is the inter-particle distance and 2r is the particles’ diameter, is suitable for

modelling excluded volume interactions in a system consisting of impenetrable spherical

particles. Such systems classify as hard-sphere (HS) systems, which will be the subject

of this thesis. A hard-sphere of radius r excludes a spherical volume of radius 2r around

the sphere’s centre as in Figure (1.1). When the particle concentration increases, this

exclusion reduces the free volume in a hard-sphere system, which does not occur in a

point particle system. Analysing such systems is our primary interest in the following

three chapters. However, note that we do not allow penetrations; instead, a particle may

1



2 Introduction

Figure 1.1: Excluded volume of radius 2r around the center of the sphere

have a chance to enter and leave the excluded region. This will allow us to model particle

motion in a narrow channel by assuming that collisions occur with a certain probability;

otherwise, particles can freely pass each other.

1.2 Theoretical approaches to HS systems

One of the intriguing questions is how to introduce a theoretically justified framework to

analyse HS systems. A common approach is to incorporate volume exclusion to individual-

based models (IBMs), also known as agent-based or microscopic models. IBMs treat each

occupant as a discrete entity and describe their behaviour explicitly. This behaviour

may include internal processes and interactions between individuals, which are mathe-

matically explained by an evolution update rule given in the form of an algorithm or

differential equation. For example, the application of overdamped Langevin stochastic

differential equation (SDE) for cell chemotaxis with size exclusion [53]. IBMs are concep-

tually simple, linkable to experimental data and suitable for systems with a low number of

occupants. However, in real applications, we find large systems of particles with complex

behavioural patterns. At this stage, it is difficult to deal with IBMs as they are compu-

tationally intractable. This difficulty can be avoided by replacing them with continuum

population-level models. Continuum models are responsive to large numbers as they con-

sider group-level quantities rather than individual properties. For this reason, they might

not capture details at discrete levels [86]; however, many preferred continuum over dis-

crete scale because of their computational efficiency. Continuum models most commonly

use partial differential equations (PDEs). For the derivation, one must consider the sys-

tem variables such as number density or spatial population density. For instance, the

overdamped Langevin SDE stated above has an associated Fokker-Planck (FP) equation

in term of cell density [12].

Connecting individual and continuum levels is challenging and not evident in general,

especially when the system includes particle-particle and particle-environmental interac-
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Figure 1.2: One-dimensional cellular automata consist of several uniform cells either occupied
or empty.

tions. On the other hand, an individual-level model requires computationally intensive

simulations to produce statistical results, and gain an accurate and deep understanding

of population-level dynamics. Therefore many studies have focused on solely one of the

two levels. Indeed one can either use a continuum model or a discrete model depending

on the subject of relevance and available experimental data. Nevertheless, it is essential

to understand the micro-macro link to get an insight into the diffusing systems.

1.2.1 Lattice-based models In this section, we introduce modelling frameworks for

lattice-based systems. We cite models like the cellular automaton and cellular potts to give

insight into the vast on-lattice modelling techniques available in the literature. However,

we avoid detailed explanations as this topic is not the scope of the present work.

Many studies have developed continuum models from interacting lattice-based models.

These on-lattice IBMs restrict particles’ motion to random walk on a grid. Two types of

lattice-based models exist: interacting and non-interacting [68]. An interacting lattice-

based model is the one that includes size exclusion during which the target site is occupied

by, at most, a single particle; otherwise vacant. The simplest model is a random walk

on the one-dimensional lattice with jumps (left/right) to the nearest vacant site [9]. In

other words, a particle at site n will after one time step be either at site n + 1 or at site

n− 1. The probabilities Pn(t) of finding a particle at site n at time t ≥ 0 obey the master

equation,
dPn
dt

= W+
n−1Pn−1 +W−

n+1Pn+1 − (W+
n +W−

n )Pn (1.1)

where W±
n are the nearest neighbour transition rates. By employing the Laplace transfor-

mation, one can find the long-time asymptotic behaviour of the average mean displace-

ment.

Volume exclusion can be integrated to discrete space, velocity and time models, such as

lattice gas automata (LGA), a special type of cellular automaton (CA). In a CA model,

the discretised domain (grid or lattice) holds at most one particle at each lattice site and

they evolve according to a set of rules based on neighbouring cells’ states. The simplest

is the one-dimensional updating rule (Figure (1.2)) known as elementary CA [105]. LGA

differ somewhat from the CA as the update rule splits into collisions and propagation.
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In other words, the microdynamics of LGA is described on a square or hexagonal lattice

with updated rules for collision and propagation. They produce simplified models leading

to mass and momentum conservation and yield the desired Navier-Stokes equation in the

macroscopic limit 1, which was exploited to study complex fluid mechanics problems. In

recent years, LGA has been applied in modelling pedestrian flows [65] and cell migration

[59] incorporating size exclusion.

The Cellular Potts Model (CPM), which is also lattice-based, illustrates a modelling

framework when the intercellular interactions are defined by the cell shape, size, and the

area of the cell interfaces. Lushnikov et al. [53] established a connection between the

stochastic cellular Potts model and the macroscopic nonlinear diffusion model. The cells

are assumed to have a fluctuating rectangular shape, and the volume exclusion is imposed

by setting the cell interaction potential to infinity during an overlap. The numerical so-

lution to the macroscopic model agreed with Monte Carlo simulations of the microscopic

model even for relatively large volume fractions. Both LGA and CPM are suitable to

model cell-cell interaction and migration [33]. CPM catches the size fluctuation, thus

suitable to study patterns of cells that often change the shape while LGA can simulate

cells’ movement in a correct and straightforward process.

Taylor et al. [96] studied a lattice model with volume exclusion implemented in each

uniform compartment. A compartment may be occupied by a single particle (full ex-

clusion), a finite number of particles (partially excluded/coarse-grained) or by infinitely

many particles (no exclusion). The diffusion of particles is modelled as a series of jumps

between compartments with jump rates

T±j =
D

(mh)2
(1− f (m)(n

(m)
j±1)) (1.2)

where D is the diffusion coefficient, h is the particle length, n
(m)
j is the number of particles

in compartment j when each compartment has capacity m. The function f (m) specifies

the proportion of jumps that fail due to the crowding effect. To clarify functional forms

of this volume exclusion function, they consider equations for particle numbers’ mean

and variance derived from a master equation similar to (1.1). They observed a perfect

agreement for the mean and variance between the full excluded and coarse-grained models.

Later, the model was extended to study multi-scale systems, by considering non-uniform

hybrid lattices [97]. Although the partially-excluding model reduced the computational

cost, a one spatial dimension multi-species mix led the models to make irreconcilable

1Not all LGA models yield the Navier-Stokes equation in the macroscopic limit [104]
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predictions in the fully-excluding and partially-excluding models [95]. Therefore, the

authors reexamined the system in two spatial dimensions where mixing is possible and

observed a good agreement in the models.

The continuum limit of an on-lattice hopping model in the context of multiple species

leads to a system of nonlinear drift-diffusion equations with cross-diffusion [15, 87]. In

the case of a single type of particle, the one-particle density function satisfies the Fokker

Planck equation
∂ρ

∂t
= ∇ · (D∇ρ+ ρ(1− ρ)∇F ) (1.3)

where D is the diffusion constant (independent of ρ) and F is the force acting on the

particle. The first order closure approximation assumes independence between particles,

and it is the simplest form of moment-closure. If the system is strongly correlated the

assumption often generates errors in the population level model. In such a situation a

higher order moment-closure approximation can be considered [5], where one has to deal

with a series of unclosed coupled moment equations for each of the individuals’ distribution

that may be difficult to solve. The usual procedure is to close the system by setting the

moments above a specific order equal to zero [34].

Some studies have used discrete space, continuous time master equation (1.1) with the

volume filling approach [74]. In volume filling (a particle jumps to free spaces), the higher

the density at a particular position, the less chance another particle accesses the same

location; therefore, a new term for the probability of finding a space at its nearby location

is introduced to the system. In particular, for the on-lattice cell density u and chemical

concentration v, the transition rate W±
n takes the form

W±
n = q(un±1)(α + β(τ(vn±1)− τ(vn))) (1.4)

α, β are constants, τ represents the mechanism of signal detection and q(u) is the proba-

bility of a particle finding space at its neighbouring site. As mentioned earlier, a master

equation describes the probability of occupation; in the volume limitation, the continuum

limit leads to a Keller-Segel (KS) type model. This method of establishing the micro-

macro link is used in applications like ion transport through confined regions [16] and

chemosensitive motion of a cell population [75].

KS models are widely used to describe aggregation [48] and pattern formation [41,101] in

a cell population. However, the solution to the KS model in chemotaxis exists globally in

time only if the mass is below its threshold, otherwise blows-up. Introducing a jumping

probability q to the cross-diffusion term that depends on the density u at the position

(volume-filling), Hillen and Painter prevent these blow-ups. In one dimension, every non-
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Figure 1.3: 1D hopping model where individuals’ centre located at x move with a rate α, a
distance d to the left or right

increasing q prevents blow-ups; however, in a higher dimension, existence depended on

the choice of q.

1.2.2 Off-lattice models An off-lattice framework can also be employed to study

IBMs. Here, particles do not jump on a lattice instead change its’ position in a continuous

space. Since this approach allows movement in any direction, IBMs capture the typical

behaviour of cells and animals. Again, the challenge is to incorporate volume exclusion

to the model.

Murray et al. investigated a one-dimensional spring-based model for interaction force

being linear [63] and nonlinear [64]. The volume exclusion is introduced by denying the

cells to pass the equilibrium distance, and the macroscopic limit produced a nonlinear

diffusion equation. A mechanical spring model ignores stochasticity; hence the equations

are deterministic. The resulting diffusion coefficient is compared with that derived by

Lushnikov et al. [53] and found to be notably similar.

Dyson et al. [21] described an analytical approach to derive the continuum model from a

one-dimensional off-lattice model. They considered an unbiased random walk where cell

centres jump a distance d at a rate α. The idea is similar to the on-lattice hopping model,

where particles only move to vacant sites, and at most, one particle can occupy the left or

right site. However, a jump does not occur on a predefined grid (see Figure (1.3)). Later,

Dyson and Baker [20] extended the ideas into two and three dimensions and incorporated

the bias by assigning a higher probability for the favourable movement. The authors

derive the continuum equations from the time evolution of the ith cell centre’s probability

density function that closely resembles Brownian dynamics. Both studies make use of a

moment-closure assumption where one of the lower order moments is set to zero.

Iron et al. [44] also considered an off-lattice framework with the above attempt-and-abort

volume exclusion mechanism where overlaps abort when agent attempt to move with

probability Pm. Although cells can migrate in a continuous space to preferred directions,

the authors divide the domain into vertical strips of width ∆ and calculate the average
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Figure 1.4: The spatial domain is discretised into strips of width ∆. The C(x, t) is calculated by
averaging the number of agents whose horizontal coordinate lies in the interval

[
x− ∆

2 , x+ ∆
2

)
at time t, over number of realisations.

Figure 1.5: Maintain a distance between the rear and front bumpers of the preceding and the
following vehicles respectively.

agent density C(x, t) in the vertical direction so that the model simplifies the dynamics

into a one-dimensional framework (see Figure (1.4)). They begin with an approximate

conservation statement in terms of agents’ density C(x, t) in a strip and derive the mean-

field nonlinear partial differential equation (PDE). Each term in the discrete conservation

statement is interpreted as the product of Pm from a particular strip to a nearby and the

probability that such an attempt will succeed (P (C)) during some time interval. Crowding

effects in the mean-field description are represented by the function P (C).

A continuum model may have limitations if the population size is low. As Tyagi [100]

points out, the macroscopic variable density is defined for a sufficiently large number

of particles; however, in traffic flows, the lanes might have a handful of vehicles which

is inappropriate to model as a continuum using the notion of density. They consider

the system as a countably infinite collection of homogenous, interconnected dynamical

systems and model via a set of coupled ordinary differential equations. The interactions

between vehicles occur according to vehicle following behaviour where the response is

based on the state of the vehicle in front (see Figure (1.5)).

1.2.3 Brownian dynamics Brownian motion is often used as a model for any move-

ments or dynamics described as random, and it is the simplest stochastic model one can

think of. As this topic is not our primary focus, we avoid full explanations, but definitions
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can be found in various textbooks [36,102]. We are interested in the work on Brownian

particles with excluded-volume effects that Bruna and Chapman [12] have already studied

as we develop a method similar to their work. The authors introduced a method to a

class of models consisting of diffusive particles with short-range interactions beginning

with the overdamped Langevin stochastic differential Equation

dXi(t) = fi( ~X(t))dt+
√

2dWi(t) (1.5)

which expresses the particle dynamics of a N -particles system. The centres of these

spherical particles (diameter ε) are given by Xi(t), i = 1, ...N with the standard Brownian

motions Wi. The above SDE has an associated FP equation (1.6) in term of the joint

probability density function, which is high-dimensional and difficult to solve.

∂P

∂t
(~x, t) = ~∇~x · (~∇~xP − ~F (~x)P ) (1.6)

Due to excluded volume effects, the above equation is defined in the hollow form of the

domain (a domain with holes corresponding to overlaps). Under the low volume fraction

(the ratio of the volume occupied by particles to the total volume) hypothesis, the authors

apply the method of matched asymptotic expansions (MAE) to derive a nonlinear diffusion

model from the particle-level model (1.6). The model can be thought of as a continuum

equation derived from an off-lattice individual-based model and it is similar to what

Dyson and Baker [20] obtained in their work under no external force. Lushnikov et al.

[53], and Bodnar and Velazquez [11] are other studies that derive continuum limit starting

from a stochastic equation similar to the Langevin equation. The former derived a KS

type model which does not collapse in finite time, under higher volume fractions and the

latter studies the limit equation under attractive and repulsive potentials; however, the

macroscopic equation became ill-posed when the element for attractions was introduced.

The above studies are limited to systems that resemble Brownian motion. In such systems,

the particle velocity is ignored; the models focus on only the random path that particles

follow.

1.3 Velocity jump processes

Behaviour in animal swarms and pedestrian flows are closely related to the random walk

in the velocity, where individuals avoid each other without loss of energy. These events

which have a spontaneous change in velocities can be described using transport equation
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as it includes a term for the finite propagation speed. Transport equations are extensively

used to study the motion of chemosensitive cells [4,71,92].

Throughout the thesis, we will repeatedly use the so-called velocity jump process, and

the framework is presented in [71]. In a velocity jump process, stochastic changes are

applied to the velocity rather than position. A particle may change its current velocity

v ∈ V ⊂ Rd at a small time-step dt with probability λdt, where λ is the turning frequency.

This frequency may take different forms depending on various internal and external fac-

tors, which will be addressed later. The inverse is the mean run length time between the

random choices of direction. Given that a jump occurred, a turning kernel T (v,u) defines

the probability of a change in velocity from u to v (in the same velocity space V ).

In light of the above information, the evolution of the density function p(x,v, t) for in-

dividuals in 2d-dimensional (d = 1, 2, ...) phase space with coordinates (x,v), where

x ∈ Ω ⊂ Rd, is governed by the transport equation

∂p

∂t
+∇x · vp(x,v, t) = λ

∫
V

T (v,u)p(x,u, t)du− λp(x,v, t), t ≥ 0 (1.7)

The above velocity jump process best describes the motion of flagellated bacteria such as

E. coli that possess two behavioural modes; runs and tumbles. In one space dimension, this

model recovers one of the earliest correlated random walk models proposed by Goldstein

and Kac [35, 47]. When particles possess random motions with a constant speed, say c,

and switch directions at an instantaneous time with an unbiased constant reversal rate λ,

the authors write the following coupled hyperbolic system of PDEs,

∂p+

∂t
+ c

∂p+

∂x
+ λ(p+ − p−) = 0

∂p−

∂t
− c∂p

−

∂x
+ λ(p− − p+) = 0

(1.8)

where p± ≡ p(x,±c, t). By introducing the macroscopic density ρ = p+ + p− and the flux

j = c(p+ − p−), the system reduces to a damped wave equation

∂2ρ

∂t2
+ 2λ

∂ρ

∂t
= c2 ∂

2ρ

∂x2
(1.9)

In higher dimensions, when individuals change directions according to the turning kernel,

the diffusion limit of the velocity jump process (1.7) is not straightforward. However, with

appropriate scaling of space and time, the asymptotic behaviour of the transport model

leads to its diffusion approximation [70]. At the same time, the turning kernel has to have
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some properties that ensure the limit’s existence. The macroscopic behaviour was further

analysed by the same authors under a variety of biases in the turning rate and kernel,

which led to either an anisotropic diffusion equation or a well-known KS type model [72].

We find various generalisations of the transport model (1.7). For instance, Erban and

Othmer [26] introduced internal dynamics of E Coli bacteria to the microscopic model.

Since these bacteria are chemosensitive, the internal state depended on an external signal

and evolved according to an ordinary differential equation. They later generalised the

analysis to a higher dimension [27] and applied it to a system which involves crawling

cells [28] where the diffusion limit led to the classical macroscopic description for chemo-

taxis. Incorporation of a resting phase is another extension of the transport equation;

this was investigated by Taylor-King et al. [98] for a group of swarm robotics: E-Puck.

E-Puck robots also perform velocity-jumps; however, their tumbling time is not negligible

as in cell migration. Therefore the authors introduced the time it takes for a particle

to reorient from velocity v to u by a new function K(v,u) and included a resting state

that defines the number of particles remaining in their turning time. They observed that

models including finite turning delays match well with experimental data compared to

the models without this delay.

Many previous velocity-jump processes are noninteracting; hence crowding effects are not

taken into account. This means overlaps are permitted which is not realistic in a dense

population. Treloar et al. [99] established a micro-macro link by incorporating three

types of crowding interactions into a velocity-jump process. The first case is the simplest,

where multiple agents on the same lattice site are prevented, similar to the on-lattice

hopping models discussed earlier (see Figure (1.2)). In other cases, additional conditions

are imposed apart from the first. They derived a system of advective PDEs in each case

from the discrete conservation statements that describe the evolution of the subpopula-

tions (left and right moving agents). The simulations for micro-macro comparison were

performed on a one-dimensional lattice at a particular velocity. However, these models

are lattice-based and may not be realistic in some scenarios, as the mechanism allows

individuals to jump across. Also, the approximation restricts the choice of the model

parameters and the initial condition.

Gavagnin and Yates [32] relaxed the above restrictions and generalized the model on a

two-dimensional lattice to connect the microscopic model with the macroscopic descrip-

tion via the diffusive limit. A positive integer is interpreted as the agent’s velocity, where

magnitude is given by the number of lattice sites moved during a single movement event.

An agent can move or reorient itself as independent Poisson processes with different in-

tensities. They scale an additional parameter ϕ to bias the motion along the chosen
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Figure 1.6: An R-polarised agent with unit velocity (jump one lattice site) has four potential
configurations when a movement occurs with bias ϕ.

direction (see Figure (1.6)), considering four different exclusion properties consistent with

that of Treloar et al. [99]. The diffusion limit leads to a series of coupled generalized

diffusion equations consisting of an advective and a reactive term. Agreement between

the continuum and discrete profiles holds for any arbitrary reorienting rates which were

not achievable in Treloar’s work.

Franz et al. [31] analysed the transport equation for N interacting hard-spheres in higher

dimensions where the reflective (speed preserving) collisions dominate. The speed is a con-

stant and the velocity jumps are defined as in the equation (1.7); therefore, this work’s

ideas are significantly linked to our work. The authors reduce the higher-dimensional PDE

to a low-dimensional allowing the collision boundary term to be absorbed into the turning

rate from three methods: under molecular chaos assumption, Boltzmann integral; an ad-

justed velocity-jump process using Cattaneo approximation; and an alternative transport

equation with a correction term using matched asymptotic expansion. The effective diffu-

sion properties investigated in this paper are consistent with those for Brownian particles

studied in [12]. Estrada-Rodriguez and Gimperlein [29] obtained the macroscopic descrip-

tion of swarm robotics, starting from the kinetic equation, that incorporates alignment,

collisions and long runs according to a Levy distribution. Unlike in Taylor-King et al.

[98] work, this study assumes that tumbles are instantaneous; thus, no delays in turnings.

However, both studies neglected the interdependence between individuals’ velocities as

the experiments were conducted under low robot density.

By following the ideas from [7,12], Ralph et al. [81] derived a model for chemotaxis with

hard-core interactions. The author examined how the finite size of individuals affect the

behaviour of groups of particles moving according to a velocity jump process in one di-

mension. The particles are identical hard rods that run back and forth with constant

speed in a fixed-length single-file channel while interacting through reflective collisions.

The velocity changes are controlled by a chemical gradient, meaning longer runs along
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favourable directions with fewer turns. The author performed an asymptotic analysis of

the associated transport equation using the method of MAE in the limit that the volume

fraction of particles is small, and verified that the nonlinear PDE model captures the

stochastic properties of the N -particle system.

1.3.1 Turning frequency Although the hyperbolic model was a notable explanation

for biological interactions among individuals, with constant turning rates, it limits the

knowledge about how correlation depends on the internal and external factors. In partic-

ular, the turns may occur due to the influence of conspecific densities or external signal

(food/toxin). Thus more complicated models have been derived, incorporating more in-

volved turning frequencies.

When nearby individuals’ densities (e.g. left and right moving densities) directly influ-

ence the interactions, a density-dependent turning rate of the form λ± = µ + µ±(p+, p−)

(where turning rate µ is for independent turnings and µ±(p+, p−) are for right and left

turnings due to interactions) can be introduced to systems like (1.8) to investigate the for-

mation and movement of bacterial aggregations. These models are capable of describing

the rippling behaviour of bacteria such as myxobacteria [54]. In contrast, an extracellular

signal (attractant/repellent) can cause indirect interactions among organisms; hence, the

turning rates may depend not only on the signal S alone but also on the spatial gradient

of S. In the presence of such non-vanishing signal gradient, λ+ 6= λ− and particles will

move in the direction of an increasing gradient resulting in a prolonged run-phase. Hillen

and Stevens [42] investigated a slightly complicated form of (1.8).

∂p+

∂t
+ c

∂p+

∂x
+ λ+(S, Sx)p

+ − λ−(S, Sx)p
− = 0 (1.10a)

∂p−

∂t
− c∂p

−

∂x
+ λ−(S, Sx)p

− − λ+(S, Sx)p
+ = 0 (1.10b)

τ
∂S

∂t
−D∂

2S

∂x2
− f(S, p+ + p−) = 0 (1.10c)

where last equation describes the production, decay and diffusion of the external signal

S. The authors established the global existence of positive solutions from positivity and

boundedness of the turning rates. However, during the process of examining finite time

blow-up solutions for the model, Hillen and Levine[40] observed that turning rates may

vanish (zero-turning-rate) before the solution blows up, which leads to negative densities

for p±. They considered the following forms for turning rates based on the previous
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experimental observations.

λ±1 =
c

2D
(c∓ χ(S)Sx) (1.11a)

λ±2 =
c2

2D
exp
(
∓ χ(S)

c
Sx
)

(1.11b)

whereD is the diffusion coefficient, c ∈ R+ is the speed and χ is the chemotactic sensitivity

coefficient. The former is suitable for shallow chemical gradients, or small chemotactic

sensitivities, or higher speed while maintaining the positivity of the turning rate. The

later is the most realistic model assumption which agreed well with the experimental

observations.

1.4 Our research

1.4.1 Motivation and Intention Reviewing previous studies on collective dynamics

and self-organisation in the physical and biological sciences, we understand the impor-

tance of advanced mathematical frameworks to capture fundamental characteristics in a

system. Among these features, the excluded-volume effect is the simplest possible inter-

action arising from the mutual impenetrability of finite-size particles, and we recognised

how this effect was incorporated into two classical modelling approaches: IBMs and con-

tinuum models.

In this thesis, we develop a method similar to studies [31] and [81], to analyse the impact of

collisions between individuals on the behaviour of groups of particles, driven according to

a velocity jump process. The ideas of the former study are applicable when analysing the

two-dimensional model, while the latter is closely related to the one-dimensional model.

In particular, we too examine a hard-core N -particle system, which gives rise to the so-

called excluded volume effects that influence population dynamics; though, we change

some aspects of the interacting systems.

Our model contains particles with unidirectional motion and instantaneous velocity changes,

much like Ralph’s model. However, the particles are now hard disks or spheres, and the

domain is a fixed-length narrow channel where occupants are allowed to cross each other

while collisions occur at random. During a pass, one particle has access to another parti-

cle’s excluded region; therefore, an interaction occurs through interface conditions. This

kind of setup is more vivid as individuals moving with constant speed will meet head-

on or pass one another if there is enough space. Examples where particles are driven

in a domain confined to a narrow channel, include various biological systems [8,67,85]
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and polymer solutions [37,50]. The assumptions of a narrow channel are reasonable to

model even pedestrian motion as unexpected contacts may occur on a pedestrian crossing

[77,79].

We suppose that there are no electrostatic or hydrodynamic interaction forces between

particles since our primary focus is on excluded volume effects. Once the particle-level

model is set, the goal is to find a system that models the motion of a single particle, that

is, the marginal density function with independent variables being the position, velocity

and time of a single particle. To this end, we perform an asymptotic analysis of the

associated transport equation under the low volume fraction assumption.

The system for the two-dimensional model can also be defined in a similar fashion, but

rather than considering reflective collisions this time, as specified by Franz et al., we sup-

pose an exchange of velocities after a collision. By doing so, we simplify the asymptotic

analysis. For elastic or reflective collisions, one has to use the method of MAE and deter-

mine the terms in the collision integral 2. Furthermore, they examine models employing

a constant turning rate with an unbiased turning kernel, which is not the case in our

models.

We consider velocity changes that are biased according to the individual’s environment.

In other words, the movement of an organism in response to a stimulus, a taxis. In par-

ticular, we consider chemotaxis, which is a directed motion along a chemical gradient.

There are other types of taxes; for instance, Ha and Levy derive a hierarchy of mathe-

matical models for phototactic bacteria (stimulation by light) employing a similar turning

operator as in chemotaxis [38]. Mazzag et al. [58] incorporate experimental observations

of the aerotactic bacteria (stimulation by oxygen) into a mathematical model similar to

Goldstein and Kac; yet, chemotaxis is the most intensely studied by far [73].

To analyse the models derived in this thesis, we consider the following form of λ (similar

to (1.11a)):

λ(~x,~v) = λ0 − χ(S)~v · ∇S(~x) (1.12)

where λ0 is a constant base-line turning frequency and ~v is the velocity. The term

χ(S)∇S(~x) describes the change in the turning frequency in the presence of an exter-

nal chemical gradient. When χ > 0, the stimulus S can be a chemoattractant which

leads to a positive taxis. A particle is less likely to change direction when moving in a

favourable direction; hence, returns a lower value for λ. The sample signal functions for

2Franz et al. [31] introduced MAE similar to what can be seen in [12]. However, due to the velocity
component, the leading order terms in the asymptotic analysis may disagree at the collision boundaries.
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S are taken from the the paper [26].

1.4.2 Outline of the thesis Chapter 2 presents our core model, a system of N iden-

tical hard-core particles with unidirectional motion in a bounded narrow channel whose

dimensions are large compared to the particles’ size. This chapter allows us to introduce

the method and techniques used in the subsequent chapters. Due to size exclusion, we

find PDEs that are nonlinear in the transport term. To validate the model, we compare

the numerical solutions of the PDE model with simulations of the full-particle model.

In Chapter 3, We extend our core model from identical particles to different particles,

mainly two species. We call them blues and reds. Particles within one group are all

identical, but a blue and a may red have different sizes. Our analysis at the particle-

level model now produces a coupled system of nonlinear transport equations for the two

one-particle densities. The equations incorporate terms from both interspecies and in-

traspecies interactions. We also take one species as an obstacle and study the diffusion of

the other through the obstacle.

Going back to the N identical hard spheres system, we introduce resting particles in

Chapter 4. That is, a finite-sized particle moving back and forth with a constant speed

may suddenly stop its motion and enter into a resting state. We derive equations for both

the collision and the narrow channel systems with symmetric and non-symmetric turning

rates. Once again, we validate the models comparing the numerical solutions with their

respective stochastic simulations of the full-particle system.

We carry the fundamental ideas from the collision model in [81] and create the two-

dimensional problem in Chapter 5. In particular, the system has N identical hard-core

particles moving with constant speed in a two-dimensional bounded domain. Particles

switch their velocities due to collisions between each other or with the domain walls. Be-

sides collisions, direct reversals occur according to an independent Poisson process. Under

the low volume fraction assumption, we derive the population-level model analogous to

those one-dimensional nonlinear PDEs derived earlier.
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2
Velocity-jump process in a narrow

channel

2.1 Introduction

In this chapter, we analyse our main model: a system of N identical hard cores (spheres

or discs) on a narrow geometric configuration. The physical space is essentially a channel

in R with a probability of occupants being able to pass each other. The system mimics

what nature does, where individuals pass one another in a narrow channel while making

incidental contact with those moving in the opposite direction. The passing probability

depends on the size of the particles and the width of the channel. The extreme case

in which particles’ diameter is equal to the width of the channel is the so-called single-

file diffusion [55]. One can also view this as a problem of finite-size particles diffusing

through a confined domain; however, it is not to be confused with the particle densities

being dependent on the vertical position [14].

Many examples of mathematical and computational efforts to understand confined domain

systems solely focused on either stochastic models [19,43] or continuum population-level

models developed for Brownian colloidal [3,14]. We establish the micro-macro link to a

velocity jump process in a narrow channel, where waiting times between velocity jumps

are exponentially distributed [71]. A single-file velocity jump process has already been

examined [81]; the correlated motion with the ability of particles to bypass one another

that was ignored in this work has now become important in the present work. The

17
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(a) (b)

Figure 2.1: (a) A single-file channel where particle’s diameter is same as the width of the
channel. (b) A narrow channel where particles crossover and easily change order.

occupants exclude a volume in the channel, but in the passing regime, the occupied

regions behave as interfaces that are no longer excluded; hence the interactions occur via

interface conditions.

We begin in section (2.2) by writing down the particle-based description of the system,

which consists of an N -dimensional PDE for the joint probability density function in the

probability space.

2.2 Particle level model

In this section, we describe the stochastic system in compact velocity space with constant

speed. We neglect the effect of background noise and assume that the system does not

have external forces which restrict or prevent the particles’ motion and turn velocity back

to zero. The system has N interacting particles in a one-dimensional domain that does

not change through time, meaning there is no birth/death. The particles are identical

hard spheres of diameter ε and move either left or right with a constant speed c ∈ R+.

In other words, the velocity space V = {−c, c}. The bounded domain Ω = [0, L] is the

space available to a particle centre and for any particle centre Xi(t) ∈ Ω at time t ≥ 0

with velocity Vi(t) ∈ V , we write the relation

dXi

dt
= Vi.

The stochastic changes are applied to the particle’s velocity rather than to its position

in space; therefore, a particle switches its direction based on N independent Poisson

processes with rates λ(x, v) > 0. Collisions with another particle or with the domain

wall may also change the velocity; however, we expect fewer collisions when the domain

dimensions are larger than the particle’s size. Due to unidirectional motion, particles

will only interact with the left and the right ends of the domain. During a head-on

collision, the initial velocities, say c and −c of two interacting individuals will be reflected

at a distance ε, and these collisions are both energy and momentum preserving, which
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will not be the case in our two-dimensional model. The other important assumption is

that particles occupy a small volume of the one-dimensional domain, so that pairwise

interactions are dominated.

The equivalent PDE description in terms of the joint probability density function P (~x,~v, t)

for N particles to be found at the position ~x = (x1, ..., xN) with velocity ~v = (v1, ..., vN)

at time t, given by

∂P

∂t
+ ~v · ∇~xP +

N∑
i=1

(
λ(xi, vi)P (~x,~v, t)− λ(xi,−vi)P (~x, si~v, t)

)
= 0, (2.1)

where ∇~x stands for the gradient with respect to the N -particle position vector ~x ∈
ΩN , ~v ∈ V N and si is the operator for the velocity change in the ith particle. The

third (fourth) term is the loss (gain) due to the velocity jumps with the switching rate

λ(xi, vi) = λ0 − χviDxiS(xi), the one-dimensional form of (1.12). In the passing regime,

the excluded area {~x ∈ ΩN : |xi − xj| ≤ ε,∀i 6= j} act as an interface where P has jumps

at xi ± ε, ∀i.
We now proceed to address the necessary initial and boundary conditions. If all the

particles are initially distributed independently and identically in the domain, the initial

condition

P (~x,~v, 0) = P0(~x,~v) (2.2)

is invariant to permutations of the particle labels; however, they do not preserve their

initial ordering as the finite-size particles can pass each other.

The wall-particle boundary condition can be written as,

P (~x,~v, t) = P (~x, si~v, t) for xi = 0, L. (2.3)

Inside the domain, particles collide with probability δ, otherwise move independently.

This collision probability is another small parameter that depends on the particle size

and the channel width (say l) in a particular modelling situation. Here, we treat δ as

an independent parameter. During a bypass, a particle can access one’s excluded region

from the left and right ends; consequently, an interface condition will replace the collision

boundary condition. The one-dimensional domain with these interface conditions mimics

particles’ motion in a narrow channel. We detail these conditions in the following section.
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Finally, P (~x,~v, t) satisfies the normalization condition,∫
ΩN×V N

P (~x,~v, t)d~xd~v = 1 (2.4)

The equation (2.1) together with the above conditions defines the individual-based model

which is higher dimensional; hence difficult to solve directly.

2.3 Population level model

The aim is to reduce the higher-dimensional PDE for the joint density P (~x,~v, t) to a low-

dimensional PDE for the marginal density of a single particle which is the population-level

model for p(x, v, t). We begin with the transport equation for two particles and integrate

it with respect to the configuration domain. Then through a systematic asymptotic

expansion we derive a nonlinear hyperbolic equation for the marginal density.

2.3.1 Point particles Consider the simple case when ε = 0. The domain ΩN has no

holes and particles are independent. Therefore, inserting

P (~x,~v, t) =
N∏
i=1

p(xi, vi, t)

in the transport equation, we get the evolution equations for the one-particle density

functions p± ≡ p(x,±c, t) as

∂p

∂t

+

+ c
∂p

∂x

+

+ λ+(x)p+ − λ−(x)p− = 0 (2.5a)

∂p

∂t

−
− c∂p

∂x

−
+ λ−(x)p− − λ+(x)p+ = 0 (2.5b)

with the initial condition

p(x, v, 0) = p0(x, v)

and the boundary conditions on the domain wall x = 0, L

p±(x, t) = p∓(x, t)
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The above system does not contain any confinement parameters. In fact, it is similar to

that of Goldstein and Kac [35, 47], except now the turning rate is a function of x which

can be replaced by the one-dimensional form of (1.12). Consequently, in terms of the total

density ρ(x, t) = p+ + p− and the flux j(x, t) = c(p+− p−), system (2.5) can be re-written

as

∂ρ

∂t
+
∂j

∂x
= 0 (2.6a)

∂j

∂t
+ c2 ∂ρ

∂x
− 2c2χ

∂S

∂x
ρ+ 2λ0j = 0 (2.6b)

Differentiating (2.6a) with respect to time t and (2.6b) with respect to space x, we elimi-

nate j and derive the telegraph equation

∂2ρ

∂t2
+ 2λ0

∂ρ

∂t
= c2 ∂

2ρ

∂x2
− 2c2 ∂

∂x

(
ρχ
∂S

∂x

)
(2.7)

Then taking the limit λ0 → ∞ and c → ∞ in such a way that c2

2λ0
(= D) held constant

results the following PKS (Patlak-Keller-Segel) type diffusion model [70].

∂ρ

∂t
= D

∂2ρ

∂x2
− c2

λ0

∂

∂x

(
ρχ
∂S

∂x

)
(2.8)

We will compare (2.8) with the diffusion equation for finite-size particles in our subsequent

analysis.

2.3.2 Finite-size particles When ε > 0, the domain ΩN has holes and particles are no

longer independent. We find configurations in which two or more particles are approach-

ing each other; however, in the low volume fraction regime, the volume in the integration

space occupied by two particles dominates. A simple physical explanation in terms of

geometric ideas will help to understand this statement.

As illustrated in Figure (2.1), consider a narrow flattened pipe where cores of the occu-

pants are separated by O(ε). Then the volume in the configuration space corresponding

to when two disks are close to each other is O(ε2N) (for N − 1 pair interactions) whereas

for three disks it is O(ε4N2) (for (N − 1)(N − 2)/2 triplets). Therefore, the dominant

contribution to collisions corresponds to two-particle interactions. Consequently, instead

of integrating the transport equation (2.1) over N -dimensional configuration space, we

can illustrate the method for two-particle interactions and later extend for N .

We begin with two identical particles of diameter ε at position x1 with velocity v1 and at
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(a) (b)

Figure 2.2: (a) Schematic of the excluded area |x1 − x2| < ε in the integration domain [0, L]
which is accessible to a second particle with the probability 1 − δ. (b) The boundary layer
coordinates in the regions x1 < x2 (upper left) and x1 > x2 (lower right).

position x2 with velocity v2, which satisfy the transport equation

∂P

∂t
+ v1

∂P

∂x1

+ v2
∂P

∂x2

+ λ(x1, v1)P (~x,~v, t)− λ(x1,−v1)P (~x,−v1, v2, t)+

λ(x2, v2)P (~x,~v, t)− λ(x2,−v2)P (~x, v1,−v2, t) = 0

(2.9)

in the configuration space (2.2(a)). This configuration space is different from both the

single-file channel and the independent-particle situation. In the former (x1−ε, x1+ε) is an

illegal configuration, while the latter does not have such regions. In the current situation,

the second particle passes this inner region with the probability 1− δ; otherwise, bounce

back. Therefore, when particle one is at x1, the space available for the second particle’s

centre is still Ω = [0, L], but with discontinuities at x1 ± ε. We now write the conditions

for the two particles that explain the situation near interfaces.

At the right interface,

P (x1, x
+
1 + ε,−c, c, t) = δP (x1, x

+
1 + ε, c,−c, t) + P (x1, x

−
1 + ε,−c, c, t) (2.10a)

P (x1, x
−
1 + ε, c,−c, t) = (1− δ)P (x1, x

+
1 + ε, c,−c, t) (2.10b)

and at the left interface,

P (x1, x
−
1 − ε, c,−c, t) = δP (x1, x

−
1 − ε,−c, c, t) + P (x1, x

+
1 − ε, c,−c, t) (2.11a)

P (x1, x
+
1 − ε,−c, c, t) = (1− δ)P (x1, x

−
1 − ε,−c, c, t) (2.11b)

where δ ≡ δ(ε, l).
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2.3.2.1 Integrated equation

Let us now integrate equation (2.9) over Ω× V and derive the population-level model in

terms of the marginal density p, where

p(x1, v1, t) =

∫
Ω×V

P (x1, x2, v1, v2, t)dx2dv2

We rewrite the integral over subintervals [0, x1 − ε), (x1 − ε, x1 + ε) and (x1 + ε, L] where

necessary because the joint density function P has jumps at x1 ± ε.
Begin by integrating the first term of (2.9) simply yields,∫

Ω×V

∂P

∂t
dx2dv2 =

∂p

∂t
(2.12)

since the domain is independent of t. The integration of the second term of (2.9) requires

the use of the Leibniz integral rule as each of the subinterval has an upper or lower limit

that depends on x1.∫
Ω

∂P

∂x1

dx2 =
∂

∂x1

∫
Ω

Pdx2 + P (x1, x2, ~v, t)|
x2=x+1 +ε

x2=x−1 −ε
− P (x1, x2, ~v, t)

x2=x−1 +ε

x2=x+1 −ε

The integral over v2 is the summation over {−c, c}. That is,∫
Ω×V

v1
∂P

∂x1

dx2dv2 =
∑

v2∈{−c,c}

v1

∫
Ω

∂P

∂x1

dx2

Hence, the second term of (2.9) reads∫
Ω×V

v1
∂P

∂x1

dx2dv2 = v1
∂p

∂x1

+
∑

v2∈{−c,c}

v1

(
P (x1, x2, ~v, t)|

x2=x+1 +ε

x2=x−1 −ε

− P (x1, x2, ~v, t)|
x2=x−1 +ε

x2=x+1 −ε

) (2.13)
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The third term of (2.9) generates∫
Ω×V

v2
∂P

∂x2

dx2dv2 =

∫
Ω

∑
v2∈{−c,c}

v2
∂P

∂x2

dx2

=
∑

v2∈{−c,c}

v2

(
P (x1, x2, ~v, t)|

x2=x−1 −ε
x2=0

+ P (x1, x2, ~v, t)|
x2=x−1 +ε

x2=x+1 −ε
+ P (x1, x2, ~v, t)|x2=L

x2=x+1 +ε

)
Using the wall-particle boundary conditions,∑

v2∈{−c,c}

v2P (x1, 0, v1, v2, t) = 0

and ∑
v2∈{−c,c}

v2P (x1, L, v1, v2, t) = 0

Consequently the third term simplifies to∫
Ω×V

v2
∂P

∂x2

dx2dv2 =
∑

v2∈{−c,c}

−v2

(
P (x1, x2, ~v, t)|

x2=x+1 +ε

x2=x−1 −ε
− P (x1, x2, ~v, t)|

x2=x−1 +ε

x2=x+1 −ε

)
(2.14)

The integral of the last term of (2.9) vanishes as for any v1∑
v2∈{−c,c}

λ(x2, v2)P (~x,~v, t)− λ(x2,−v2)P (~x, v1,−v2, t) = 0

and the remaining term λ(x1, v1)P (~x,~v, t)− λ(x1,−v1)P (~x,−v1, v2, t) results∫
Ω×V

λ(x1, v1)P (~x,~v, t)− λ(x1,−v1)P (~x,−v1, v2, t)dx2dv2 =

λ(x1, v1)p(x1, v1, t)− λ(x1,−v1)p(x1,−v1, t)

(2.15)

Now by adding (2.13) and (2.14), the right hand side yields

v1
∂p

∂x1

+
∑

v2∈{−c,c}

(v1 − v2)
(
P (x1, x2, ~v, t)|

x2=x+1 +ε

x2=x−1 −ε
− P (x1, x2, ~v, t)|

x2=x−1 +ε

x2=x+1 −ε

)
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From the summation term above, we get two separate terms (v1 + c)[...] and (v1 − c)[...];
since v1 also has the same two choices for the velocity, the above equation reduces to

v1
∂p

∂x1

+ 2v1

(
P (x1, x2, v1,−v1, t)|

x2=x+1 +ε

x2=x−1 −ε
− P (x1, x2, v1,−v1, t)|

x2=x−1 +ε

x2=x+1 −ε

)
(2.16)

Combining equations (2.12), (2.15) and (2.16) we find the integral of the equation (2.9)

over Ω× V as

∂p

∂t
+ v1

∂p

∂x1

+ 2v1

(
P (x1, x2, v1,−v1, t)|

x2=x+1 +ε

x2=x−1 +ε
+ P (x1, x2, v1,−v1, t)|

x2=x+1 −ε
x2=x−1 −ε

)
+

λ(x1, v1)p(x1, v1, t)− λ(x1,−v1)p(x1,−v1, t) = 0

(2.17)

The joint density P is not specified at the interfaces, but we expect an expression for

P that is uniformly valid over the entire interval [0, L]. For freely moving particles,

we may take P (x1, x2, v1, v2, t) = p(x1, v1, t)p(x2, v2, t) (closure approximation); however,

this approximation is invalid for a correlated system. Therefore we seek a more reliable

interpretation for P asymptotically.

2.3.2.2 Evaluating the terms at the interfaces

An asymptotic expansion allows us to find an approximate P which does not breaks down

in the interval (x1 − ε, x1 + ε). We implement the idea that when two particles are far

apart (|x1 − x2| � ε), they are independent, whereas when they are close to each other

(|x1 − x2| ∼ ε), they are correlated. So we identify two interior layers at x1 + ε and at

x1 − ε. Note that, when x1 is close to ∂Ω, it creates a boundary layer at ∂Ω; however,

since we assume that the length of the domain is higher than the particle’s diameter, we

may ignore this boundary layer.

In the outer region, where one particle lies further from the other particle (|x2− x1| � ε)

define Pout(x1, x2, v1, v2, t) = P (x1, x2, v1, v2, t). Since particles are identical and indepen-

dent to leading order, for some distribution function q, we define the outer solution with

δ dependency. Indeed, we may think of δ as a small parameter that depends on ε.

Pout(x1, x2, v1, v2, t) = q(x1, v1, t)q(x2, v2, t) + δP
(1)
out(x1, x2, v1, v2, t)

In the correlated region, we introduce the boundary layer coordinates x1 = x̃1 and

x2 = x̃1 + εx̃ (see Figure 2.2(b)). Then the interface conditions (2.10) and (2.11) change
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accordingly, such that

P̃ (x̃1, x̃, v1, v2, t)|x̃=1+

x̃=1− = δP̃ (x̃1, 1
+, c,−c, t)

P̃ (x̃1, x̃, v1, v2, t)|x̃=−1+

x̃=−1− = −δP̃ (x̃1,−1−,−c, c, t)
(2.18)

Expanding the outer solution in terms of the inner variables, we get

Pout(x̃1, x̃, v1, v2, t) = q(x̃1, v1, t)q(x̃1, v2, t) + εx̃q
∂q

∂x̃1

+ δP
(1)
out + δεx̃

∂P
(1)
out

∂x̃1

+ ... (2.19)

When v2 = −v1, the appropriate expansion for the boundary layer solution is in powers of

δ; P̃ (x̃1, x̃, v1, v2, t) ≈ P̃0(x̃1, x̃1 + εx̃, v1, v2, t) + δP̃1(x̃1, x̃1 + εx̃, v1, v2, t) + ... that matches

with the outer solution at the interfaces as well as |x̃| → ∞. Substituting the expansions

into (2.18), the O(1) and O(ε) terms yield

P̃0 = q(x̃1, v1, t)q(x̃1, v2, t) + εx̃q(x̃1, v1, t)
∂

∂x̃1

q(x̃1, v2, t)

If we suppose that P
(1)
out ≡ P

(1)
r (x̃1, x̃1, ~v, t) for x̃ > 1 and P

(1)
out ≡ P

(1)
l (x̃1, x̃1, ~v, t) for x̃ < −1

we get, at the right interface

O(δ) : P (1)
r − P̃1 = q(x̃1, c, t)q(x̃1,−c, t),

O(δε) :
∂P

(1)
r

∂x̃1

− ∂P̃1

∂x̃1

= q(x̃1, c, t)
∂

∂x̃1

q(x̃1,−c, t),

and at the left interface

O(δ) : P̃1 − P (1)
l = −q(x̃1,−c, t)q(x̃1, c, t),

O(δε) :
∂P

(1)
l

∂x̃1

− ∂P̃1

∂x̃1

= q(x̃1,−c, t)
∂

∂x̃1

q(x̃1, c, t).

We may now go back to the integrated equation (2.17) and use the above results to

evaluate the terms at the interfaces.
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P (x1, x2, v1,−v1, t)|
x2=x+1 +ε

x2=x−1 +ε
+ P (x1, x2, v1,−v1, t)

x2=x+1 −ε
x2=x−1 −ε

=

P̃ (x̃1, x̃, v1, v2, t)|x̃=1+

x̃=1− + P̃ (x̃1, x̃, v1, v2, t)|x̃=−1+

x̃=−1− =

δ
(
P (1)
r − P̃1 + P̃1 − P (1)

l

)
+ δε

(
∂P

(1)
r

∂x̃1

− ∂P̃1

∂x̃1

+
∂P

(1)
l

∂x̃1

− ∂P̃1

∂x̃1

)
=

δε

[
q(x̃1, c, t)

∂

∂x̃1

q(x̃1,−c, t) + q(x̃1,−c, t)
∂

∂x̃1

q(x̃1, c, t)

]
Since particles are identical and indistinguishable, we can write the nonlinear term, in

general, as

δε
∂

∂x̃1

q(x̃1, v1, t)q(x̃1,−v1, t)

and change the variable from x̃1 to x1. From the normalization condition (2.4) on P we

find, q(x1, v1, t) = p(x1, v1, t) + O(ε) (Detailed description is given in appendix A.1.1).

Hence, density p(x1, v1, t) satisfies, to O(ε), the nonlinear kinetic equation

∂p

∂t
+ v1

∂p

∂x1

+ 2v1δε
∂

∂x1

(pp(x1,−v1, t)) + λ(x1, v1)p(x1, v1, t)

−λ(x1,−v1)p(x1,−v1, t) = 0

(2.20)

Recall that we began our analysis considering pairwise interactions at O(ε) which can

now be easily extended to N particles. For a particle interacting with N − 1 remaining

particles, we find

∂p

∂t
+ v1

∂p

∂x1

+ 2v1(N − 1)δε
∂

∂x1

(pp(x1,−v1, t)) + λ(x1, v1)p(x1, v1, t)−

λ(x1,−v1)p(x1,−v1, t) = 0

(2.21)

with the initial condition

p(x1, v1, 0) = p0(x1, v1)

and the boundary condition

p(x1, v1, t) = p(x1,−v1, t)

Equation (2.21) describes the evolution of a particle at position x1 with velocity v1 at

time t ≥ 0. Due to excluded volume effects, the PDE is nonlinear in the transport term.

If we separate the left and right moving densities p±, the kinetic equation can also be
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written as,

∂p

∂t

+

+ c
∂p

∂x

+

+ 2c(N − 1)δε
∂

∂x
(p+p−) + λ+(x)p+ − λ−(x)p− = 0 (2.22a)

∂p

∂t

−
− c∂p

∂x

−
− 2c(N − 1)δε

∂

∂x
(p−p+) + λ−(x)p− − λ+(x)p+ = 0 (2.22b)

The above PDE system is fairly similar to the model in previous work [81], except now

the nonlinear term incorporates a collision probability. Although we assumed a small δ

for the first-order perturbative correction, the probability may take any value between

zero and one as far as the model concerns; the extreme value resembles a collision system

(or single-file channel). We later determine the expression for δ in terms of the sizes of

the particle and the container. One can also think of this model as an off-lattice ver-

sion examined in [99]; however, the reduced continuum model we have obtained for the

population-level behaviour differs from the corresponding continuum limit of the discrete

on-lattice counterpart model. Specifically, the nonlinear transport terms of the coupled

system of hyperbolic PDEs obtained due to crowding effects do not agree with those de-

rived in our model.

We will next look at some mathematical properties of the system (2.22), restricting our

attention to the following nonlinear hyperbolic system of conservation laws (without ve-

locity jumps)
∂~p

∂t
+

∂

∂x
F (~p) = 0, 0 ≤ x ≤ L, 0 ≤ t ≤ T (2.23)

where ~p =

(
p+

p−

)
and F (~p) =

(
cp+ + cξp+p−

−cp− − cξp−p+

)
with ξ = 2δε(N − 1). The Jacobian of

F , for a noninteracting system (2.5) yields linearly degenerate fields{[
c,

(
1

0

)]
,

[
−c,

(
0

1

)]}
(2.24)

whereas for the interacting system produces genuinely nonlinear fields{[
c(a+

√
b),

(
−1− ξ

2
(p+ + p−)−

√
b

ξp−

)]
,[

c(a−
√
b),

(
−1− ξ

2
(p+ + p−) +

√
b

ξp−

)]} (2.25)



2.3 Population level model 29

where a = − ξ(p+−p−)
2

and b = 1 + ξ(p+ + p−) + 1
4

(ξ(p+ − p−))
2
. Since the eigenvalues are

real and distinct, the system (2.23) is strictly hyperbolic.

We assess the validity of both the models (2.22) and (2.23) by examining the solutions for

both particle-level and population-level models in the following sections. The eigenvalues

and its associated eigenvectors above are essential to understand these solutions from

the numerical methods. This analysis shows the conditions under which the model can

describe population-level behaviour emerging from the particle-level dynamics.

2.3.2.3 Long-time dynamics of the kinetic model

The reduction of the point-particle velocity-jump process to a telegraph equation was

effortless; however, the process becomes more involved with finite-size particles due to

nonlinearity of the transport term. In fact, we can only expect to obtain diffusion limit

as an asymptotic description of the velocity-jump process.

We begin by rewriting the system in terms of the total density ρ(x, t) = p+ + p− and the

flux j(x, t) = c(p+ − p−).

∂ρ

∂t
+
∂j

∂x
= 0

∂j

∂t
+ c2 ∂ρ

∂x
+ δε(N − 1)

∂

∂x
(c2ρ2 − j2) + c(λ+ − λ−)ρ+ (λ+ + λ−)j = 0

with no flux boundary condition

(2.26)

From the representation (1.12) for the turning frequencies λ+ and λ−, we can further

simplify the above equations. We then introduce the parabolic scaling ζ = γx for space

variable and τ = γ2t for time variable, where γ is a small dimensionless parameter [70].

This yields the scaled system of equations,

γ
∂ρ

∂τ
+
∂j

∂ζ
= 0

γ2 ∂j

∂τ
+ γc2∂ρ

∂ζ
+ γδε(N − 1)

∂

∂ζ
(c2ρ2 − j2)− 2γc2χ

∂S

∂ζ
ρ+ 2λ0j = 0

(2.27)

Applying the regular perturbation expansions ρ = ρ0 + γρ1 + ... and j = j0 + γj1 + ..., we

get
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O(1) :
∂j0

∂ζ
= 0

2λ0j0 = 0

which implies the trivial solution j0 = 0

O(γ) :
∂ρ0

∂τ
+
∂j1

∂ζ
= 0

c2∂ρ0

∂ζ
+ δε(N − 1)

∂

∂ζ
(c2ρ2

0)− 2c2χ
∂S

∂ζ
ρ0 + 2λ0j1 = 0

eliminating j1 from the equations we get the drift-diffusion equation

∂ρ0

∂τ
=

∂

∂ζ

[
c2

2λ0

(1 + 2εδ(N − 1)ρ0)
∂ρ0

∂ζ
− c2χ

λ0

∂S

∂ζ
ρ0

]
(2.28)

In the noninteracting system, we found a PKS type diffusion model with a constant

diffusion coefficient (2.8). But here, we identify a density-dependent diffusion coefficient

D(ρ) = c2

2λ0
(1+2εδ(N−1)ρ) which coincides with the collective diffusion coefficient studied

by Bruna ([12], chapter 2). The diffusion is increased relative to point particles by O(ε),

while the drift term remains the same in both models. This increment in the collective

diffusion coefficient is because collisions influence propagation towards low particle density

areas (see [12], section 2.5.1). We expect a close result from the two-dimensional kinetic

model as well.

2.4 Time-dependent solutions

In this section, we study solution strategies based on characteristics for time-dependent

hyperbolic balance laws. Rather than adhering to standard numerical methods, this ap-

proach is comprehensive and practical. Numerous work has contributed to understanding

nonlinear hyperbolic systems of equations, such as the shallow water equations [1] and

compressible Euler equations [69]. The main ingredients in the study of such systems

are the concepts of characteristics and Riemann invariants. We apply them for both the

theoretical and computational developments in the system we study. To begin with, the

equations in (2.22) can be represented as a hyperbolic system

∂~p

∂t
+

∂

∂x
F (~p) = ~g(x, ~p), 0 ≤ x ≤ L, 0 ≤ t ≤ T (2.29)
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where terms on the right-hand side have the same definitions as at (2.23) and the left-hand

side has the source term ~g(x, ~p) =

(
λ−(x)p− − λ+(x)p+

λ+(x)p+ − λ−(x)p−

)
. When ε = 0, the characteristic

fields (2.24) of the uncoupled system (2.5) give rise to the following system of ODEs:

dp

dt

+

= g1(x, ~p) along x = ct+ x0

dp

dt

−
= g2(x, ~p) along x = −ct+ x0

(2.30)

with the initial condition p±0 (x) and the reflective boundary conditions. The system can be

solved by employing a numerical integration method with a fixed time step, which is not

the case in a nonlinear system. When ε 6= 0, for every ~p ∈ R2 we found two distinct real

eigenvalues paired with two linearly independent eigenvectors (2.25). But the structure of

these eigenvectors does not provide much help for the latter computations; alternatively,

we consider the periodic extensions for the marginal densities.

Let u1(x, t) be the odd extension of p+−p− and u2(x, t) be the even extension of p+ +p−.

Then the solution domain changes to [−L,L], and substituting p+ = u1+u2
2

and p− = u2−u1
2

in to (2.22), the non-conservative system reads

∂~u

∂t
+ J(~u)

∂~u

∂x
= ~g(x, ~u), −L ≤ x ≤ L, 0 ≤ t ≤ T

with the periodic boundary condition ~u(−L, t) = ~u(L, t),

(2.31)

where ~u =

(
u1

u2

)
, J(~u) =

(
−cξu1 c(1 + ξu2)

c 0

)
and the source term

~g(x, ~u) =

(
µ1u2 + µ2u1

0

)
with µ1 = λ− − λ+ and µ2 = −λ− − λ+. We use this extended

system to analyse time-dependent solutions. Essentially we expect to get two ODEs for

some algebraic combinations of u1 and u2 along the characteristic curves.

2.4.1 λ± ≡ 0 When particles do not experience random changes in the direction, we

can simply ignore the source term in (2.31). In this particular situation, the solution of

(2.30) is simply p±0 (x∓ ct). In an interacting system, we still find velocity changes due to

collisions, but we expect the nonlinear system to behave like the noninteracting particles

linear system at lower values of collision probabilities. Besides, the solution procedure

becomes more involved in the presence of nonlinear transport terms. To solve the system

(2.31), we first derive the characteristic ODEs from the eigenvalues and their associated
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eigenvectors. We then find functions that are invariant along the characteristic directions

and satisfy a set of convective equations.

The eigenvalues

Λ = c(a±
√
b) of J, where a = −ξu1

2
and

b = 1 + ξu2 +
1

4
(ξu1)2

(2.32)

represent the characteristic directions at which hard particles propagate, paired with the

left eigenvectors

V = (1,−a±
√
b) (2.33)

The system is strictly hyperbolic, because the eigenvalues are all real and distinct, as long

as b remains positive. Also, the Λi-characteristic field is genuinely nonlinear as

∇Λ1(u1, u2) · V1 =
cξ2u1

2
√
b

and ∇Λ2(u1, u2) · V2 = −cξ
2u1

2
√
b

for ξ 6= 0.

When the system (2.31) is multiplied by the eigenvectors, we derive the following PDEs

(u1)t + Λi(u1)x + Vi2[(u2)t + Λi(u2)x] = 0 for i = 1, 2

which then condenses and collapses down to two ODEs:

along the characteristics x′(t) = Λi(u1, u2),

Vi1
du1

dt
+ Vi2

du2

dt
= 0 for i = 1, 2 (2.34)

Since the asymptotic expansion is accurate up to O(ε), we expand
√
b and include terms

upto O(ξ). This approximation simplifies the above ODEs into

du1

dt
+
(
1 + ξ

2
(u1 + u2)

)du2

dt
= 0,

du1

dt
+
(
ξ
2
(u1 − u2)− 1

)du2

dt
= 0,
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which are integrable using an integrating factor. Hence, it follows that the Riemann

invariants are

R1(u1, u2) = (u1 + u2)e
ξu2
2 on characteristics x(t) = c

(
1 + ξ

2
(u2 − u1)

)
t+ x0,

R2(u1, u2) = (u1 − u2)e
ξu2
2 on characteristics x(t) = −c

(
1 + ξ

2
(u2 + u1)

)
t+ x0

(2.35)

It is possible to obtain an exact solution for p+ and p− in the nonlinear system (2.22)

during this unbiased situation. Since R1 and R2 are constant along their respective

characteristics, given the initial conditions, say u0
1(x0) and u0

2(x0), we write

R1(u1(x, t), u2(x, t)) = R1(u0
1(x− Λ1t), u

0
2(x− Λ1t))

R2(u1(x, t), u2(x, t)) = R2(u0
1(x− Λ2t), u

0
2(x− Λ2t))

Now solving the above system, we get

p+ =
1

4
(R0

1 +R0
2)exp

[
−W

(
ξ
4

(R0
1−R0

2)
)]

+
1

ξ
W
(
ξ
4

(R0
1−R0

2)
)

p− =
1

ξ
W
(
ξ
4

(R0
1−R0

2)
)
− 1

4
(R0

1 +R0
2)exp

[
−W

(
ξ
4

(R0
1−R0

2)
)] (2.36)

where R0
1 = R1(u0

1(x − Λ1t), u
0
2(x − Λ1t)), R0

2 = R2(u0
1(x − Λ2t), u

0
2(x − Λ2t)) and W is

the Lambert W function.

2.4.2 λ± 6= 0 When the system possessed by an external signal, the particles begin its’

random turns unfolding the source term ~g(x, ~u) on the right-hand side of (2.31); hence,

following the same reasoning as in zero turnings, the system of ODEs (2.34) returns

Vi1
du1

dt
+ Vi2

du2

dt
= Vi1g1 + Vi2g2 for i = 1, 2

We can write the above system in a more concise form with the approximation to
√
b; the

solutions propagate according to the differential equations

dR

dt
= e

ξu2
2 G(u1, u2) along the characteristics

x′(t) = Q(u1, u2)
(2.37)

where R = (R1,R2) as defined in (2.35), G is the source term whose entries are Vi · ~g =

µ1u2 + µ2u1 for i = 1, 2 and Q(u1, u2) = (Λ1,Λ2). The equations are integrable along

the characteristics. So computing the solution of the kinetic model (2.22) is equivalent to
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Figure 2.3: Signal functions: (a) S(x) = 1− 2|x− 0.5| with λ0 = 2.5, (b) S(x) = 2e−50 (x− 0.5)2

with λ0 = 20.

numerically generating the characteristic paths in spacetime. In the following section, we

discuss the methods of solving the full-particle systems and later match the results with

the numerical integration.

2.5 Full-particle simulations

In this section, we develop algorithms necessary to perform simulations of velocity jump

particles with (and without) hard-sphere interactions. We apply a simple time-stepping

stochastic simulation algorithm for point particles and an event-driven kinetic Monte

Carlo method for finite-size particles. To this end, we need to be more specific about the

signal function S. In one dimension, the turning frequency (1.12) becomes

λ± = λ0 ∓ cχDxS(x) (2.38)

and we consider two forms of signal functions which are given in Figure (2.3). The

Gaussian function is also used as bias interaction kernels in IBMs, where the neighbouring

individuals influence the travelling direction [94].

2.5.1 A Stochastic Simulation Algorithm (SSA) In a one-dimensional velocity

jump model, a particle positioned at X(t) evolves according to

V (t) =
dX

dt
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This can be discretised using a finite time step ∆t as

X(t+ ∆t) = X(t) + V (t)∆t (2.39)

The initial positions X(0) are drawn from the initial density P0(~x,~v). A point particle

which undergoes a velocity jump process has only two possible events; reflection near

boundaries and random turns. The reflective boundary conditions can be implemented

as follows:
If X(t+ ∆t) < 0, X(t+ ∆t) = −X(t)− V (t)∆t;

If X(t+ ∆t) > L, X(t+ ∆t) = 2L−X(t)− V (t)∆t;

complemented with V (t+ ∆t) = −V (t).

(2.40)

The above conditions are used to avoid particles moving outside the domain walls when

stepping forward in time. However, they do not generate new positions; instead, detect

the wall, switch the velocity and proceed the random walk (that performed outside walls)

in the opposite direction. The final step is the execution of the random velocity jumps.

During the time interval (t + ∆t) a particle will turn with the turning probability λ∆t;

otherwise, advances with the same velocity. The turning rate λ has two possibilities based

on the particle’s direction of motion and is chosen according to the formula (2.38). (See

appendix (A.2.1) for the complete algorithm.)

We observe particle-particle interactions apart from random jumps and wall collisions in

a closed, narrow channel with finite-size particles. Therefore at the end of each time-step,

every sphere must be checked over every other for overlaps. A system of N particles gen-

erate N(N−1)
2

such checks. If collision (one or more) occurred, the new velocities would be

computed by turning back the clock to the collision time and then continue the simulation.

It is essential to choose a small time step to avoid dropping any interaction. Despite the

simplicity, these checks at a minimal time interval increase the computational cost of the

method. In the next section, we present an improved algorithm to deal with finite-size

particles.

2.5.2 Event-driven kinetic Monte Carlo (KMC) algorithm. To perform sim-

ulations on velocity jump particles with hard-core interactions, we use an event-based

algorithm that fits into the general class of KMC methods. During this event-driven

algorithm, realisations advance from event to event [52]. The time is calculated for the

next possible event; hence automatically adjusts the time step and avoid missing any

interactions.

There are three types of events in our problem; collision with another particle (with
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probability δ), collision with boundaries, and random velocity jump. Again from the low

volume fraction assumption, we can safely ignore three or more particle interactions. A

particle can bypass its neighbours and interact with a distant individual or with the walls.

Therefore, it is necessary to check the interactions of each particle with every other par-

ticle and walls. We may divide the domain into cells such that each section contains two

or more particles. This way, we can compute interaction times within a cell; however, a

higher number of occupants bring the step complexity back to an O(N2). Moreover, an

individual may experience instantaneous directional changes in between pair interactions.

Consequently, we expect different event queues from two consecutive iterations.

Let us now closely look at the basic operations in the algorithm for a chaotically colliding

N hard spheres in a narrow channel. The state of sphere i consists of position and veloc-

ity along with the last updated time ti ≤ t, where t is the current simulation time. The

trajectory of the sphere is a unique straight line; thus, given the current configuration,

we can calculate position X(t + ∆t) using the equation (2.39). If a particle reverses its

direction in the presence of an external signal S(x) at an instantaneous random time, we

can compute the next turning time t+ τ . The derivation is adapted from the lecture note

[25], where we replace the chemical reaction rate with the turning rate (2.38).

V (t) ln

(
1

r

)
=

X(t)+V (t)τ∫
X(t)

λ(y)dy

=

X(t)+V (t)τ∫
X(t)

λ0 − χV (t)Sydy

= λ0V (t)τ − χV (t) (S(X + V τ)− S(X))

where r is a uniform random number from the interval (0, 1) and V (t) is either c or −c.
When the signal function is of the form 2.3(a), we have

τ =

(λ0 + 2V χ)−1 ln
(

1
r

)
, 0.5 ≤ X(t) ≤ 1

(λ0 − 2V χ)−1 ln
(

1
r

)
, 0 ≤ X(t) < 0.5

(2.41)

and the signal 2.3(b) yields,

ln

(
1

r

)
= λ0τ − 2χ

(
e−50(X+V τ−0.5)2 − e−50(X−0.5)2

)
(2.42)
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To find τ , one can use either Newton-Raphson (NR) method or MATLAB fzero function.

Next suppose two hard spheres, i and j, positioned initially at Xi0 and Xj0 with velocities

Vi0 and Vj0. If two collide, given the collision probability δ, we can compute the collision

time at ε = |Xj −Xi|.

tcoll =
|Xj0 −Xi0| − ε
|Vj0 − Vi0|

(2.43)

The interaction time finds a finite value only if two particles move towards each other

(Xj0−Xi0)(Vj0−Vi0) < 0 and collide with the specified probability; otherwise, we assume

a large value for tcoll. Besides, a collision does not occur at all if two particles moving the

same direction, |Vj0−Vi0| = 0; or if already overlapped, |Xj0−Xi0| < ε. After a collision,

their velocities experience jumps. The final event time is the reflection on the walls, and

it can be calculated by dividing the distance to the wall from its speed.

twall =

(L−Xi)/Vi, Vi > 0;

Xi/Vi, Vi < 0
(2.44)

Due to unidirectional motion, a particle will only hit either end of the channel. The

reflection time set to a large value if the particle moves away from the wall.

The above three functions create the event queue, and the algorithm picks the minimum

next event time. Using equation (2.39), every sphere will advance their position according

to this minimum time, but only the selected event’s participants change their velocities. To

avoid particles leaving the domain during the position advancement, we use the reflective

boundary conditions (2.40) (the basic algorithm is given in appendix (A.2.2)).

2.6 Comparison of transient solutions

This section is dedicated to assess the validity of the kinetic model 2.21 from the transient

solutions. The solution procedures studied under previous sections are illustrated through

practical numerical examples and the numerical results are compared with particle simu-

lations.

2.6.1 Numerical Integration Since an analytical solution for the nonlinear kinetic

model (2.22) is not achievable with varying turning rates over x, we resort to a numerical

integration method along the characteristics. This way, we avoid problems that occur

when using standard numerical methods for solving PDEs. We have already established

the equations for this numerical integration in section (2.4), where we have found a set of
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Figure 2.4: Two characteristics originating from x0 = (x1, x2)|0 at time t0 = (t1, t2)|0 intersect
at P (xin, tin), then reach x1 = (x1, x2)|1 at t1 = (t1, t2)|1.

ODEs for the Riemann variables R1 and R2 on the characteristic directions (2.37). Given

the initial conditions, we can obtain the solutions elsewhere by integrating along the

characteristic curves, and the numerical procedure is the simple Euler’s approximation.

Each integration step requires information carried by both sets of characteristics, and

they themselves depend on both u1 and u2 which leads to a nonuniform grid.

Let us now establish the algorithm according to (2.37).

S1 Determine the time and position of the intermediate crossover point P (xin, tin) of

the two characteristics originating from x0 ≡ x(t0) (see Figure (2.4)). Here we use

the two equations; xin = x0 + (h1
1, h

2
1) ◦ Q, the output from the Euler’s step and

tin = t0 + (h1
1, h

2
1), where hi1s are the time steps for their respective characteristics.

S2 Calculate the Riemann variables R at P using

R(xin, tin) = R(x0, t0) + (h1
1, h

2
1) ◦G

Each element in R is a combination of u1 and u2 along the two curves, which gives

us two equations to solve and find the updated u1 and u2 at the crossover point.

S3 Using the updated u1 and u2 calculate the new positions x1 ≡ x(t1) beyond the

intersection point. Similar to equations in S1, again from the Euler’s step we have

x1 = xin + (h1
2, h

2
2) ◦Q, and t1 = tin + (h1

2, h
2
2).

S4 Find R beyond intersections using

R(x1, t1) = R(xin, tin) + (h1
2, h

2
2) ◦G
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Here hi1 and hi2, for i = 1, 2 are calculated from the equations given in S1 and S3. The

total time elapsed, say h, is the sum of hi1 and hi2 along each characteristic. We cannot

maintain a fixed h since hi1 and hi2 are constantly changing during the process. We may

start off with a uniform grid at t = 0, but subsequently follows the characteristics. Hence

the curves will be approximate straight lines.

2.6.2 Numerical examples The numerical examples presented in this section aim to

the followings: illustrate the behaviour of the systems under biased and unbiased condi-

tions, investigate whether the model and associated discrete processes support travelling

wave solutions, and examine the effect of changing parameters, such as the size of the

particles and collision probability, on the solutions. Unless explicitly stated otherwise,

we consider a set of N = 100 particles with speed c = 1 and chemotactic sensitivity

coefficient χ = 1, placed inside a channel of length one (L = 1). Given the size of the

indistinguishable particles and the width of the channel, the formula A.3(iii) calculates

the collision probabilities.

In the event-driven algorithm, we generate random initial positions for the particles at the

beginning of each realisation; simultaneously, we avoid overlaps. The collision probability

will take care of the overlaps during iterations. The histograms were produced by dividing

the domain into 40 bins. At each step, we check the number of particles in each bin; sub-

sequently, the cumulative average is calculated; dividing the resulting value in each bin

by the number of steps, total particle count and bin width. For the two signal functions

(2.3(a)) and (2.3(b)), respectively performed 5000 and 500 realisations. Effectively, this

implies that we are using 5× 105 ( and 5× 104) trajectories of all N particles to compute

the one-particle distribution histogram.

For the numerical integration, the domain [0, 1] is divided into k = 200 spaces. At the

beginning of each time step h, two characteristics emerge from each grid point xk while

at the end, two characteristics meet at each xk. As said in the earlier section, We may

be only able to choose an equidistant grid at the beginning of time. The subsequent

paths and time step will be computed automatically in the numerical procedure. At the

boundaries, we impose periodic boundary conditions.

The solid lines and the circles represent solutions for the PDE models and the KMC

simulations, respectively. In all figures, we follow the colour code (for both lines and

circles): green, the point particle system; blue, the narrow channel system; red, the

collision system. Figures (2.5) and (2.6) collate simulations of both noninteracting and

interacting particles at time t = 0.3. Initially, all the particles are evenly distributed

across the domain. We fix width of the channel (l) to 0.01 and examine the solutions for
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Figure 2.5: Transient marginal densities from the signal function (2.3(a)) when ε = 0 (green),
δ(0.002, 0.01) = 0.4375 (blue) and δ(0.005, 0.01) = 1 (red). The particle simulations (circles) are
obtained by 5000 realisations.
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Figure 2.6: Transient marginal densities from the signal function (2.3(b)) when ε = 0 (green),
δ(0.002, 0.01) = 0.4375 (blue) and δ(0.005, 0.01) = 1 (red). The particle simulations (circles) are
obtained by 500 realisations.
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Figure 2.7: Transient marginal densities when λ± = 0. Numerical results in the leftmost and
middle columns show the band travels to the right and left, respectively. The particle simulations
(circles) are obtained by 5000 realisations.

0.0314 and 0.1962 occupied fractions; the latter occupancy yields a collision system where

δ(0.005, 0.01) = 1.

We plot a subpopulation of right-moving p+, a subpopulation of left-moving p− and the

total population ρ = p+ + p− for a simple non-tumbling case in Figure (2.7), and with

biases in Figures (2.8) and (2.9) upto time t = 0.4. The initial particle arrangement is

given by

p+
0 (x) =

55

100
1[0.2,0.4] and p−0 (x) =

45

100
1[0.6,0.8]

We compare the numerical predictions of the narrow channel system with those cor-

responding to both the point particles and the single-file models. For more readable

graphs, we avoid particle simulations of the latter systems. The particle size is fixed to

ε = 0.002 so that Nε2 remains constant during model comparison. We, therefore, change
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Figure 2.8: Transient marginal densities for the signal function (2.3(a)). Numerical results in
the leftmost and middle columns show the band travels to the right and left, respectively. The
particle simulations (circles) are obtained by 5000 realisations.
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Figure 2.9: Transient marginal densities for the signal function (2.3(b)). Numerical results in
the leftmost and middle columns show the band travels to the right and left, respectively. The
particle simulations (circles) are obtained by 500 realisations.
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the width of the channel to 0.004 to form a collision system. This comparison will explain

the importance of excluded volume effects on the propagating wavefronts in biased and

unbiased conditions.

2.6.2.1 Discussion

In the above numerical examples, we illustrate the time-dependent behaviour of the sys-

tems in the case of both vanishing and nonvanishing turning frequencies. In Figures (2.5)

and (2.6), the theoretical predictions for both point (green) and finite-size particles in a

narrow channel (blue) compare well with their simulation counterparts. Particularly in

the narrow channel, when 3.14% of the domain is occupied we observe 56.25% overlaps.

Due to this low volume fraction as well as more overlaps, the model and the simulations

are essentially in a close convergence. However, excluded-volume effects are significant in

the collision system, especially at the peaks 1. An apparent reason for this observation is

that the high volume fraction (19.62%) occupied by the particles. In fact, we expect ap-

proximately the same outcomes for the narrow channel under this large occupied fraction.

Note that significantly fewer simulations were required for the signal function (2.3(b))

compared to (2.3(a)), as particles reorganize themselves rapidly under higher baseline

frequency.

The collision-free and single-file channel plots are the reference points that allow us to

see the competition between the most favourable signal environment and the volume ex-

clusion of finite-size particles. In general, we find higher densities around the peaks of

the signal functions as individuals aggregate into favourable regions. However, the peaks

are reduced for the narrow channel system (blue) and further reduced for the collision

system (red). In other words, the higher the collision probability lesser the peak. This

is because not all particles can be in and around the highest point of the signal. A par-

ticle redistribution would also co-occur, allowing more particles closer to the ends of the

channels (this can be clearly seen in the subpopulation plots of Figure (2.5)). Initially,

particles are evenly distributed in the domain; therefore, we do not find deviations in the

subpopulation densities about the centre after time t.

The idea of distinct waves for subpopulations is pursued in [26] and [88]. The former

referred to travelling bands of point particles, while the latter suggested that in the case

where the travelling wave speed coincides with the individual cell speed. The wavefronts

of the point particle system (2.5) travel at constant speed c. Since ε = 0, overlap within

the band is not a factor. However, when ε 6= 0, velocity changes due to collisions. From

1This effect is minor in Figures (2.5) compared to Figures (2.6) as the gradients of signal (2.3(a)) are
much more shallow than those of signal (2.3(b)) around the centre of the domain [81]
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the plots (2.7) and (2.8), we find the nonlinear system (2.22) match the noninteracting

particles linear system up to t = 0.1; thereafter, two fronts collide. Specifically, in the

narrow channel, only 43.75% collisions are involved in this. The rebounded waves at

t = 0.3 are shifted outward; apparently, this shift progresses with the increasing collision

probabilities, which the eigenvalues (2.25) describe. We find the characteristic speeds, to

O(ε), Λ+ = c+ cξp− and Λ− = −c− cξp+, where ξ = 2δε(N − 1). The maximum, δ = 1

recovers the single-file nonlinear system [81].

When λ 6= 0, whether the particles are point or finite in size, they undergo instantaneous

velocity changes; waves distort before collisions (Figures (2.8) and (2.9) at t = 0.1). The

travelling bands further disrupted due to interactions between finite-size particles, and

the difference between the linear and nonlinear PDE solutions become more noticeable at

t = 0.2. The 56.25% overlaps again raise the crowd in and around the centre of the narrow

channel domain compared to the single-file channel. Note that, higher baseline frequen-

cies stimulate the kinetic waves to diffusion mode. Hence we do not observe continuing

kinetic waves in Figure (2.9).

2.7 Stationary solution

In this section, we compare the steady-state solutions with the stochastic simulations

of the full particle model. In one dimensional setting, it is feasible to derive an exact

stationary solution. However, this is not the case in higher dimensions, and we will see

this in the chapter (5). For the full particle system, we use an indirect sampling method

known as the Metropolis Hastings (MH) algorithm.

When the system is at equilibrium, ρ is independent of time t; therefore, (2.26) yields
dj
dx

= 0. From the wall-particle boundary conditions it follows that, j = 0; hence, the

stationary density pst satisfies the ODE

c
dpst
dx

+ 2(N − 1)cδεpst
dpst
dx

+ (λ+ − λ−)pst = 0 (2.45)
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Set ξ = 2δε(N − 1) and Λ = λ+ − λ−, then

1

pst

dpst
dx

+ ξ
dpst
dx

= −Λ

c

ln pst + ξpst = −
∫ x

0

Λ(y)

c
dy + lnA

ln(ξpste
ξpst) = ln(Aξe−

∫ x
0

Λ(y)
c
dy)

(ξpst)e
ξpst = Aξe−

∫ x
0

Λ(y)
c
dy

pst =
1

ξ
W(Aξe−

∫ x
0

Λ(y)
c
dy)

(2.46)

where W is the Lambert W function and A is a constant to be determined using the

normalisation condition,
L∫

0

pst(x)dx = 1

Note that, ε = 0 returns the solution for the point particles pst = Ae−
∫ x
0

Λ(y)
c
dy.

2.7.1 Full particle system To derive the stationary solution for the full particle

system, we consider the higher dimensional PDE (2.1) for two particles travelling with

velocity v1 = −v2 ∈ {c,−c}. To ease the notation, we use the superscripts +−,−+ for

the velocities of the joint density P (x1, x2, v1, v2, t) in the order of x1 and x2, and write

∂P

∂t

+−
+ c

∂P

∂x1

+−
− c ∂P

∂x2

+−
+ λ+(x1)P+−(x1, x2)− λ−(x1)P−−(x1, x2)

+λ−(x2)P+− − λ+(x2)P++

(2.47a)

∂P

∂t

−+

− c ∂P
∂x1

−+

+ c
∂P

∂x2

−+

+ λ−(x1)P−+(x1, x2)− λ+(x1)P++(x1, x2)

+λ+(x2)P−+ − λ−(x2)P−−
(2.47b)

with the reflective boundary condition on xi = 0, L and the interface conditions (2.10) at

the right interface, and (2.11) at the left interface.

Let the total density and flux be (ρ1, ρ2) = (P+v + P−v, P v+ + P v−) and (j1, j2) =

c(P+v − P−v, P v+ − P v−), where v is either c or −c. Note that, the flux has no inflow

towards the excluded region while the total density has jumps across interfaces. For

instance, at the left interface, the sum and the difference of the two conditions (2.11a)
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and (2.11b) yield, respectively,

j1(x1, x
−
1 − ε) = j1(x1, x

+
1 − ε)

and

ρ1(x1, x
−
1 − ε)− ρ1(x1, x

+
1 − ε) = 2δP−+(x1, x

−
1 − ε)

We use the latter to establish the steady state solution for interacting system. Adding

equations (2.47), the kinetic model in terms of the flux at the steady state reads as

∂j2

∂x1

+
∂j1

∂x2

+
λ+(x1)− λ−(x1)

c
j2 +

λ+(x2)− λ−(x2)

c
j1 = 0 (2.48)

For two arbitrary functions ψ1 and ψ2, the exponential functions

j1 = ψ1(x1)e−
∫ x2
0

λ+(u)−λ−(u)
c

du and j2 = ψ2(x2)e−
∫ x1
0

λ+(u)−λ−(u)
c

du

satisfy equation (2.48) and the no-flux boundary condition yields (j1, j2) = 0 for all

x1, x2 ∈ [0, L]. It follows that, ρ1 = 2P+v
st = ρ2 = 2P v+

st = Pst(~x), which yields the kinetic

equation in terms of steady state Pst as

∂Pst
∂x1

− ∂Pst
∂x2

+
Λ(x1)−Λ(x2)

c
Pst = 0 (2.49)

where Λ(x1) = λ+(x1)− λ−(x1) and Λ(x2) = λ+(x2)− λ−(x2).

The solution for the above equation is

Pst = Ae−
∫ x1
0

Λ(u)
c
du−

∫ x2
0

Λ(u)
c
du, where A is an arbitrary constant.

In fact, there are three different arbitrary constants in the interacting system, one for

each region excluded by the two particles connected by the interface conditions. Let A1,

A2, and A3 be those constants for left outer region, inner region and right outer region,

respectively. For x1 > x2,

Pst(x1, x
−
1 − ε)[1− δ] = Pst(x1, x

+
1 − ε)

A1e
−

∫ x1
0

Λ(u)
c
du−

∫ x−1 −ε
0

Λ(u)
c
du[1− δ] = A2e

−
∫ x1
0

Λ(u)
c
du−

∫ x+1 −ε
0

Λ(u)
c
du
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Figure 2.10: Schematic of the excluded domain for three interacting particles when one particle
is fixed at x1. The shaded areas show the inner slabs of width 2ε.

and since λ(x) is continuous, we get A1[1− δ] = A2.

For x1 < x2, the equation

Pst(x1, x
+
1 + ε)[1− δ] = Pst(x1, x

−
1 + ε)

A3e
−

∫ x1
0

Λ(u)
c
du−

∫ x+1 +ε

0
Λ(u)
c
du[1− δ] = A2e

−
∫ x1
0

Λ(u)
c
du−

∫ x−1 +ε

0
Λ(u)
c
du

implies A3[1− δ] = A2.

Therefore, the stationary solution for a system with two identical particles can be written

as,

Pst = A[1− δ]e
−

2∑
i=1

xi∫
0

Λ(u)
c
du

where A is the arbitrary constant in the outer region. Note that, the collision probability

δ is invariant to switch of particles, and we still adhere to the low volume fraction as-

sumption. Using a similar approach, we can show that vector flux is zero for a system of

three identical particles and establish the stationary solution

Pst = A[1− δ]2e
−

3∑
i=1

xi∫
0

Λ(u)
c
du
.

In two dimensions (two particles), the inner region is a diagonal of width 2ε (see Figure

2.2(a)), and we have already computed the density jump, which changes from a factor of

(1− δ). In three dimension (three particles), a slab of the same width along the diagonals

represent the inner regions. As depicted in Figure (2.10) when one particle is fixed at x1,

the density changes from 1− δ when first enters from the inner slab of the second particle
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and then from (1− δ)2 further from the inner slab of the third particle. If the system has

n(< N) interacting particles, one particle has n− 1 inner regions.

i.e. for position index i 6= j, define

φ(xi, xj) =

{
1 |xi − xj| ≤ ε

0 |xi − xj| > ε

Then,

n(φ) =
N−1∑
i=1

N∑
j=i+1

φ(xi, xj)

Thus, we can write the steady state solution as

Pst(~x) = A[1− δ]n(φ)e
−

N∑
i=1

xi∫
0

Λ(u)
c
du

with the normalisation condition

∫
ΩN

Pstd~x = 1
(2.50)

If all the particles are noninteracting, then δ → 0 and

Pst(~x) = Ae
−

N∑
i=1

xi∫
0

Λ(u)
c
du

(2.51)

2.7.2 The Metropolis-Hastings algorithm Integrating (2.50) in higher-dimension

and direct calculation of A may not be feasible; instead, let us move to the application of

MH algorithm to the stationary state of our model. To begin, let Φ(~x) =
N∑
i=1

xi∫
0

Λ(u)
c
du be

the energy associated with the configuration ~x ∈ ΩN . Then, the stationary density (2.50)

becomes

Pst(~x) = A[1− δ]n(φ)e(−Φ(~x)) for ~x ∈ ΩN (2.52)

Note that Φ is not defined outside the domain; therefore, we set Φ(~x) = ∞ for ~x /∈ ΩN .

The MH algorithm samples configurations according to the density Pst as follows:

S1 Select a particle i at random and calculate the close encounters with the other xjs

for i 6= j = 1, 2, ..., N .

S2 Generate a candidate yi = xi + hX where X ∼ N(0, 1) and h a tunable parameter.

S3 Count the close encounters with yi and xjs for i 6= j = 1, 2, ..., N . (the difference of

above counts in step 1 and 3 = (n− 1))
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S4 Compute the difference ∆Φ between the current and modified configurations

S5 Accept yi with probability p = min(1,(1− δ)n−1exp(-∆Φ)) and set xi+1 = yi, oth-

erwise set xi+1 = xi

At the ith iteration, the candidate y is generated from a randomly chosen particle and

displaced it by a normal random distance. It is essential to understand how the density

function changes with the randomly chosen particle. Therefore, in steps S1-S3, we com-

pare the close encounters before and after modifying each selection. Both the displacement

of the randomly chosen particle and the acceptance rate controls by the tunable parameter

h. If it is too small, the chain will converge slowly; on the other hand, if it is too large more

likely to get a lower acceptance rate. It has been established that for high-dimensional

target distributions formed by independent and identically distributed components, the

optimal acceptance rate approaches 0.234 [82]. We used h = 0.1, and it does not change

the rate of convergence drastically. The calculation of the acceptance probability does

not require knowledge of the normalisation constant. Moreover, the higher the ∆Φ, the

lower the probability of acceptance.

2.7.3 Numerical comparison of stationary solutions From the one dimensional

form of the turning frequency (1.12), we get Λ = −2cχDxS. Then, the equilibrium

solution (2.46) becomes

pst =
1

ξ
W (Aξe2χ(S(x)−S(0)))

With the signal function S(x), the expression for the Lambert W function is too com-

plicated to be analysed by the ordinary calculus; therefore, we use Matlab function

fminsearch of norm of the integral to estimate the constant A. Nevertheless, one can

also use the NR method.

Figure (2.11) shows the model and simulation results with N = 100 for both point and

finite-size particles of size ε = 0.002 and unit speed. In a narrow channel of length [0, 1]

this corresponds to 0.0314 fraction of filled volume. The width of the channel determines

the collision probability; for l > 0.004, particles can pass each other, while l = 0.004

turns it into a full-collision system. In accordance with the transient solutions, we choose

l = 0.01 which returns δ = 0.4375. The histograms for the MH algorithm are produced

by dividing the domain into 40 bins, and initially the particles are evenly spaced in the

domain. An acceptance rate in the 0.1 order of magnitude, and 106 steps of the algo-

rithm produce the desired results. We monitor the number of particles in each bin at
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Figure 2.11: Stationary marginal density pst (solid lines) and the simulations from the MH
algorithm (circles) for ε = 0 (green) and ε = 0.002 (blue). (a) Solutions corresponding to the
signal function (2.3(a)). (b) Solutions corresponding to (2.3(b)).

every step: when a proposed move is rejected, the old configuration is added over to the

count, whereas if the move is accepted, the new configuration is added. At the end of the

process, the cumulative average is calculated; dividing the resulting value in each bin by

the number of steps, total particle count and bin width.

The stationary solution of the kinetic model agrees well with the particle simulation re-

sults for both interacting and noninteracting systems. As in time-dependent solutions, we

see a lower density around the peak of the signal functions for finite-size particles. Even

though we did not include stationary solutions from the single-file channel, we expect a

much lower peak in this situation unless for considerably smaller particle size 2. A narrow

channel allows some overlaps based on the passing probability around the maximum point

of the signal while the colliding individuals redistribute to other accessible areas in the

domain.

2.8 Summary

This chapter has considered a system of N identical interacting hard-cores of size ε and

unit speed in a narrow bounded channel that undergoes a velocity-jump process. These

2Stationary solutions for the single-file channel (collision system) has already been studied in [81]
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random changes in the velocity are instantaneous and distributed according to a Poisson

process. The finite-size of particles means that the motions are correlated; the interactions

in a narrow channel give rise to the so-called interface conditions. From a high-dimensional

PDE, we obtained the kinetic model under the small volume fraction assumption whilst

considering the interactions at the particle level. The equations are nonlinear in the trans-

port term, and it incorporates a collision probability that resembles a collision system at

its maximum value. We have verified the model with numerical simulations, comparing its

solutions with the corresponding stochastic simulations of the underlying particle system

as well as against the interaction-free linear system. The plots confirm that the model

captures the features at the particle level rather well. Besides, we have implemented both

time-dependent and stationary simulations of the system. The time-dependent solutions

are non-dissipative as we have considered a systematic approach based on characteristics

for hyperbolic balance laws. Note that, we do not comment on the collision system’s

outputs as they are examined already in [81] following different conditions. The study of

this core model allows extensions in many directions. In the following chapter, we will be

considering distinguishable particles in a narrow channel. Another interesting but com-

plicated extension is that considering anisotropic particles to examine how the transport

model changes with noncircular particles [78].



3
Multiple species in a narrow channel

3.1 Introduction

This chapter extends the model of identical hard cores in a narrow channel to several

particles. Specifically, we allow two species in the system and each population to have

a different number of particles with different sizes. We name these species the blues

and reds [13] and intend to derive a continuum model that describes the evolution of

each species’ population density. The analysis will yield a coupled system of nonlinear

transport equations, one for each species. The procedure is similar to Chapter 2, although

now interactions among identical species as well as opposite species are possible. Only

the latter type of interactions involving one blue particle and one red particle must be

computed; the former is similar to what we did for one species. The integration step

produces an unknown collision term to be determined using the asymptotic expansion.

The common lattice-based modelling approach for multi-species size exclusion has been

employed to develop models for facing pedestrian traffic on a passage [65], interacting

bath-tracer particles inside a narrow channel [60] and subpopulation cell motility within

a large population of cells [90], in which the particle’s motion is restricted, and one

defines hopping rules to estimate the interactions. Nevertheless, we have already learned

the drawbacks of these kinds of on-lattice models. Surendran et al. [94] investigated

a lattice-free IBM and its macroscale continuum approximation considering interactions

between individuals in a population consists of two distinct species; chasers and escapees.

Unlike our finite-size exclusion model, the interplays are attractions or repulsions, leading

53
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to four types of interactions.

We begin the next section by writing down the particle level model for the two species

in the population. The species have a small memory effect allowing them to sense the

chemical concentrations along their trajectory and respond to gradients of concentrations.

We then derive the continuum model for the one-particle density functions. This setting of

keeping two distinct densities in the continuum model enables us to describe the evolution

of a single tagged particle and transport through static obstacles. As in the previous

chapter, we compare numerical solutions of the coupled system with the full particle

simulations and validate the model; however, we use a standard numerical method this

time as the characteristics are much more complicated in the balance laws.

3.2 Two species particle-level model

Consider a system which consists of Nb blue and Nr red hard discs (or spheres) of non-

dimensional diameters εb and εr, respectively. The total number of particles N = Nb+Nr,

and they are diffusing in a bounded one-dimensional domain of length Ω = [0, L]. Regard-

less of the kind, every particle move either left or right with a constant speed c ∈ R+, and

the blue (and red) particles switch their direction based on Poisson processes with rate

λb(xi, vi) ( and λr(xi, vi)) where xi ∈ Ω and vi ∈ V = {−c, c} for i = 1, ..., N . As before,

we assume a low particle occupied fraction, so that Nbε
d
b +Nrε

d
r � 1. To give an instance,

the occupied volume fraction in a narrow flattened pipe is π
((

εb
2

)2
Nb +

(
εr
2

)2
Nr

)
/lL,

where l is the width of the pipe.

Three types of pairwise interactions are possible: blue-blue, red-red, and blue-red; the

lattermost is the one that needs to be computed. The two interacting individuals involv-

ing one blue particle and one red particle will be reflected at a distance εbr = 1
2
(εb + εr)

preserving both momentum and energy.

We may divide the position and velocity vectors to represent blue and red indices sep-

arately and re-write equation (2.1) for a two species system. Particularly, the higher-

dimensional PDE in terms of the joint probability density P (~x,~v, t) in space

(x1, x2, ..., xNb , xNb+1
, ..., xN) ∈ ΩN and velocity (v1, v2, ..., vNb , vNb+1

, ..., vN) ∈ V N at time

t can be written as follows:

∂P

∂t
+ ~vb · ∇~xbP + ~vr · ∇~xrP +

Nb∑
i=1

[λb(xi, vi)P (~x,~v, t)− λb(xi,−vi)P (~x, sbi~v, t)]+

N∑
i=Nb+1

[λr(xi, vi)P (~x,~v, t)− λr(xi,−vi)P (~x, sri~v, t)] = 0

(3.1)
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with the initial condition,

P (~x,~v, 0) = P0(~x,~v)

wall-particle boundary condition,

P (~x,~v, t) = P (~x, si~v, t) for xi = 0, L

where si is the operator that switches the ith velocity component regardless of the species,

whereas sbi and sri correspond to each species’ turn. In other words,

sbi~v = (v1, v2, ...,−vi, ..., vNb , ..., vN) and sri~v = (v1, v2, ..., vNb , ...,−vi, ..., vN).

In this chapter, we define switching rate (1.12) for different chemotactic sensitivity coeffi-

cient χb and χr. The initial distribution is invariant to the particle labels’ permutations in

that same species as they are identically distributed within the same kind. The configu-

ration space now contains three different holes that are reachable by another or the same

kind. It can generally be taken as
{
xi ∈ ΩN : ||xi − xj|| > 1

2
(εi + εj), ∀i 6= j

}
where

εi = εb for i ≤ Nb and εi = εr otherwise. In the passing regime, equation (3.1) is defined

in ΩN . There are four interface conditions for each particle type; that is when red particle

entering (leaving) the excluded region of the blue (placed at xi) and vice versa. These

interface conditions are coupled as well as identical upon exchange of the blue and red

labels.

At the left interface,

P+−(xi, x
−
i − εbr, t) = δP−+(xi, x

−
i − εbr, t) + P+−(xi, x

+
i − εbr, t) (3.2a)

P−+(xi, x
+
i − εbr, t) = [1− δ]P−+(xi, x

−
i − εbr, t) (3.2b)

and at the right interface,

P−+(xi, x
+
i + εbr, t) = δP+−(xi, x

+
i + εbr, t) + P−+(xi, x

−
i + εbr, t) (3.3a)

P+−(xi, x
−
i + εbr, t) = [1− δ]P+−(xi, x

+
i + εbr, t) (3.3b)

where δ is the red-blue collision probability that depends on the particle sizes of blue, red

and the width of the channel. Moreover, in a mixture of the two species, the interface

conditions for a single variety also hold; hence requires collision probabilities αb and αr

from εb and εr, respectively.

As seen in one species system, our goal is to reduce the higher-dimensional PDE (3.1) for
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the joint density P to a low-dimensional PDEs for the marginal densities of one particle.

In particular, we now have two marginal density functions, one for each blue and red

particles. Since all the particles are identical within the same population, the marginal

densities b and r for the first blue and last red can be written as,

b(x1, v1, t) =

∫
ΩN−1
εbr

(x1)×V N−1

P (~x,~v, t)dx2...dxNdv2...dvN

r(xN , vN , t) =

∫
ΩN−1
εbr

(xN )×V N−1

P (~x,~v, t)dx1...dxN−1dv1...dvN−1

where ΩN(x1) and ΩN(xN) denote slices of the configuration space ΩN when blue particle

is fixed at x1 and red at xN .

3.3 Population-level model

As in the previous chapter, we derive the low-dimensional PDEs for the marginal density

of each species. The model reduction is straightforward for point particles. For finite-size

particles, we begin with the transport equation for one blue particle and one red particle,

and integrate it with respect to the configuration domain. Then from the systematic

asymptotic expansion, we derive a coupled system of nonlinear hyperbolic equations.

3.3.1 Point particles When εb and εr are zero, the domain has no holes; thus, no

interface conditions. The product solution

P (~x,~v, t) =

Nb∏
i=1

b(xi, vi, t)
N∏

i=Nb+1

r(xi, vi, t)

corresponds to N independent particles yields the evolution equations for the one-particle

density functions b and r as

∂b

∂t
(x, vb, t) + vb

∂b

∂x
(x, vb, t) + λb(x, vb)b(x, vb, t)− λb(x,−vb)b(x,−vb, t) = 0 (3.4a)

∂r

∂t
(x, vr, t) + vr

∂r

∂x
(x, vr, t) + λr(x, vr)r(x, vr, t)− λr(x,−vr)r(x,−vr, t) = 0 (3.4b)

in Ω× V , with the initial conditions

b(x, vb, 0) = b0(x, vb) and r(x, vr, 0) = r0(x, vr) (3.5)
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and the reflective boundary conditions

b(x, vb, t) = b(x,−vb, t), r(x, vr, t) = r(x,−vr, t) on x = 0, L (3.6)

3.3.2 Interacting particles When εb, εr > 0, the particles are no longer independent,

and the volume associate when they are close to each other is O(ε2brN) (for disks in

a narrow flattened pipe). Here too, we assume a small occupied volume that leads to

dominant pairwise interactions. Since we have already examined equations for identical

particle pair interactions in the previous chapter, we now begin with one blue and one

red particle. The system derives for a pair Nb = 1 and Nr = 1 can be readily extended to

an arbitrary N .

For one blue particle (diameter εb) at position x1 with velocity v1 and one red particle

(diameter εr) at position x2 with velocity v2, the transport equation (3.1) reads as

∂P

∂t
+ v1

∂P

∂x1

+ v2
∂P

∂x2

+ λb(x1, v1)P (~x,~v, t)− λb(x1,−v1)P (~x,−v1, v2, t)+

λr(x2, v2)P (~x,~v, t)− λr(x2,−v2)P (~x, v1,−v2, t) = 0

(3.7)

with the interface conditions (3.2) and (3.3) defined for x1 and x2. The distinctive sizes of

the individuals make the configuration space (2.2(a)) asymmetric along x2 = x1. In light

of that, the space available to red particle when blue is fixed at x1, explicitly, Ω = [0, L]

with discontinuities at x1 ± εbr, where we define εbr = 1
2
(εb + εr) for the convenience. The

red passes the inner region of the blue with probability 1− δ, where δ ≡ δ(εb, εr, l).

The marginal density functions b(x1, v1, t) and r(x2, v2, t) are now read as

b(x1, v1, t) =

∫
Ω×V

P (~x,~v, t)dx2dv2 (3.8a)

r(x2, v2, t) =

∫
Ω×V

P (~x,~v, t)dx1dv1 (3.8b)

We proceed to obtain an equation for b(x1, v1, t) with the support of the interface condi-

tions and reflective boundary conditions; a similar procedure would yield the equation for

the red marginal density r(x2, v2, t). Integrating equation (3.7) over Ω×V , and following

the steps in section (2.3.2.1) we derive the first three terms

∂b

∂t
+ v1

∂b

∂x1

+ 2v1[P (x1, x2, ~v, t)|
x2=x+1 +εbr

x2=x−1 −εbr
− P (x1, x2, ~v, t)

x2=x−1 +εbr

x2=x+1 −εbr
] (3.9)
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Since
∑

v2∈{−c,c}
λr(x2, v2)P (~x,~v, t)− λr(x2,−v2)P (~x, v1,−v2, t) = 0, the integral of the last

term is zero. The remaining term λb(x1, v1)P (~x,~v, t)− λb(x1,−v1)P (~x,−v1, v2, t) results∫
Ω×V

λb(x1, v1)P (~x,~v, t)− λb(x1,−v1)P (~x,−v1, v2, t)dx2dv2 =

λb(x1, v1)b(x1, v1, t)− λb(x1,−v1)b(x1,−v1, t)

(3.10)

Combining equations (3.9) and (3.10) we get the integral of (3.7) over Ω× V as

∂b

∂t
+ v1

∂b

∂x1

+ 2v1[P (x1, x2, ~v, t)|
x2=x+1 +εbr

x2=x−1 +εbr
+ P (x1, x2, ~v, t)

x2=x+1 −εbr
x2=x−1 −εbr

]+

λb(x1, v1)b(x1, v1, t)− λb(x1,−v1)b(x1,−v1, t) = 0

(3.11)

Consequently, we can write the corresponding equation for r(x2, v2, t) as well

∂r

∂t
+ v2

∂r

∂x1

+ 2v2[P (x1, x2, ~v, t)|
x1=x+2 +εbr

x1=x−2 +εbr
+ P (x1, x2, ~v, t)

x1=x+2 −εbr
x1=x−2 −εbr

]+

λr(x2, v2)r(x2, v2, t)− λr(x2,−v2)r(x2,−v2, t) = 0

(3.12)

The next step is to find the unknown interaction term at the interfaces, and this can be

proceeded according to section (2.3.2.2). The expression deriving for P is now depends

on both the marginal densities b and r and it is not invariant to a switch of blue and red

particle labels. Therefore when blue is fixed at x1 (red moves independently on [0, x1−εbr)
and (x1 + εbr, L]), for two arbitrary functions qb and qr we define

Pout(x1, x2, ~v) = qb(x1, v1)qr(x2, v2) + δP
(1)
out(x1, x2, ~v)

in the outer region. In the inner region, the boundary layer coordinates changes to x1 = x̃1

and x2 = x̃1 + εbrx̃, and the interface conditions (2.18) (the boundary layer coordinates

produce the same interface conditions from (3.2) and (3.3)) yields following relations to

O(δ) and O(δεbr) terms:

At the right interface,

O(δ) : P (1)
r − P̃1 = qb(x̃1, c, t)qr(x̃1,−c, t)

O(δεbr) :
∂P

(1)
r

∂x̃1

− ∂P̃1

∂x̃1

= qb(x̃1, c, t)
∂

∂x̃1

qr(x̃1,−c, t)



3.3 Population-level model 59

At the left interfarce,

O(δ) : P̃1 − P (1)
l = −qb(x̃1,−c, t)qr(x̃1, c, t)

O(δεbr) :
∂P

(1)
l

∂x̃1

− ∂P̃1

∂x̃1

= qb(x̃1,−c, t)
∂

∂x̃1

qr(x̃1, c, t)

Now we evaluate the unknown interaction term at the two interfaces from the above

outcomes.

P (x1, x2, ~v)|x2=x+1 +εbr

x2=x−1 +εbr
+ P (x1, x2, ~v)

x2=x+1 −εbr
x2=x−1 −εbr

=

P̃ (x̃1, x̃, v1, v2, t)|x̃=1+

x̃=1− + P̃ (x̃1, x̃, v1, v2, t)|x̃=−1+

x̃=−1− =

δ
(
P (1)
r − P̃1 + P̃1 − P (1)

l

)
+ δε

(∂P (1)
r

∂x̃1

− ∂P̃1

∂x̃1

+
∂P

(1)
l

∂x̃1

− ∂P̃1

∂x̃1

)
=

δ[qb(x̃1, c, t)qr(x̃1,−c, t)− qb(x̃1,−c, t)qr(x̃1, c, t)]+

δεbr
[
qb(x̃1, c, t)

∂qr
∂x̃1

(x̃1,−c, t) + qb(x̃1,−c, t)
∂qr
∂x̃1

(x̃1, c, t)
]

We observe a significant difference in the resulting expression compared to the nonlinear

term derived under identical and indistinguishable conditions, in which we found only

the O(δε) contribution. We drop ”~” on x1 and use the normalisation condition on P

to determine the functions qb and qr (see Appendix (A.1.2)). Thus, the evolution of blue

marginal density is given by the nonlinear kinetic equation (omitting the time variable

and use subscript notation for partial derivatives for ease of notation), to O(εbr),

∂tb+ vb∂xb+ 2vbNrδ[b(x, c)r(x,−c)− b(x,−c)r(x, c)] + 2vbNrδεbr
[
b(x, c)∂xr(x,−c)

+b(x,−c)∂xr(x, c)
]

+ 2vb(Nb − 1)αbεb∂xbb(x,−vb) + λb(x, vb)b(x, vb)

−λb(x,−vb)b(x,−vb) = 0

(3.13a)

coupled with the kinetic equation for the red marginal density

∂tr + vr∂xr + 2vrNbδ[r(x, c)b(x,−c)− r(x,−c)b(x, c)] + 2vrNbδεbr
[
r(x, c)∂xb(x,−c)

+r(x,−c)∂xb(x, c)
]

+ 2vr(Nr − 1)αrεr∂xrr(x,−vr) + λr(x, vr)r(x, vr)

−λr(x,−vr)r(x,−vr) = 0

(3.13b)
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in Ω×R+ and complemented with the initial condition (3.5), and the boundary condition

(3.6). The δ, αb and αr are collision probabilities of red-blue, blue-blue and red-red,

respectively. The above coupled system is the extended model for Nb blue and Nr red

particles. This extension is possible up to O(εbr) as pairwise interactions dominate at this

order. For instance, in equation (3.13a) the Nr copies of the nonlinear term are from the

blue-red inner regions. Similarly, the Nb−1 copies of the nonlinear term are a contribution

of pairwise interactions between identical particles.

Comparing the terms in distinguishing particles’ nonlinear system with that of identical

particles, we find the additional O(εbr) transport term that enhances (or diminish) the

diffusion. The third term is the leading-order contribution, and it did not appear in the

indistinguishable particle situation. One can think of this term as a contribution to the

density changes due to a collision, that simply vanishes when particles are identical.1 The

last two terms in both equations (3.13) are the loss and gain terms corresponding to the

velocity jumps, explicitly given by

λ(x, vb) = λ0 − χbvbDxS(x) and λ(x, vr) = λ0 − χrvrDxS(x).

When the two species are identical, say vb = vr, εb = εr and χb = χr, the collision

probabilities δ = αb = αr, as well as the governing equations of the densities b and r are

the same. Then, if we begin with equal densities b0(x, vb) = r0(x, vb) for vb ∈ {−c, c}, we

may set b(x, vb) = r(x, vb) ∀t > 0. Consequently, the two species model retrieves the

system for a single species.

∂tb+ vb∂xb+ 2vb(Nr +Nb − 1)αbεb∂xbb(x,−vb, t) + λb(x, vb)b(x, vb)

−λb(x,−vb)b(x,−vb) = 0

Note that, we will not connect the parameters (above stated) in the model (3.13); hence,

they can be chosen independently.

3.3.3 Equilibria We compute the stationary solutions of the coupled nonlinear kinetic

model (3.13), which we denote by bst and rst. In the case of point particles (εb = εr = 0),

1In the initial ordering, whether x1 < x2 or x1 > x2, one cannot distinguish between the particles
after a collision when they are identical.
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the equilibria are trivial as the system for bs and rs decouples and we get

bst(x) = Abe
−

∫ x
0

Λb(y)

c
dy (3.14a)

rst(x) = Are
−

∫ x
0

Λr(y)
c

dy (3.14b)

where Λb = λ+
b − λ

−
b , Λr = λ+

r − λ−r and Ab, Ar are constants to be determined using

the normalisation condition. For finite-size particles, we rewrite the system in terms of

the first two moments; the total densities ρb = b+ + b−, ρr = r+ + r− and the fluxes

jb = c(b+ − b−), jr = c(r+ − r−). Then the system become

∂ρb
∂t

+
∂jb
∂x

= 0

∂jb
∂t

+ c2∂ρb
∂x

+ 2cNrδ(ρrjb − ρbjr) + 2Nrδεbr
(
c2ρb

∂ρr
∂x
− jb

∂jr
∂x

)
+

αbεb(Nb − 1)
∂

∂x
(c2ρ2

b − j2
b ) + c(λ+

b − λ
−
b )ρb + (λ+

b + λ−b )jb = 0

∂ρr
∂t

+
∂jr
∂x

= 0

∂jr
∂t

+ c2∂ρr
∂x

+ 2cNbδ(ρbjr − ρrjb) + 2Nbδεbr
(
c2ρr

∂ρb
∂x
− jr

∂jb
∂x

)
+

αrεr(Nr − 1)
∂

∂x
(c2ρ2

r − j2
r ) + c(λ+

r − λ−r )ρr + (λ+
r + λ−r )jr = 0

Then continuing with the same procedure as in section (2.7), we get the coupled system

of ODEs,

c
dbst
dx

+ 2cNrδεbrbst
drst
dx

+ 2cαbεb(Nb − 1)bst
dbst
dx

+ (λ+
b − λ

−
b )bst = 0

c
drst
dx

+ 2cNbδεbrrst
dbst
dx

+ 2cαrεr(Nr − 1)rst
drst
dx

+ (λ+
r − λ−r )rst = 0

where we set the equilibrium states of ρb and ρr to bst and rst, respectively. Observe the

multi-species interaction addition to each equation in the system (compared with (2.45)).

Integrating above, the resulting equations can be written as

ln bst + 2Nrδεbrrst + 2αbεb(Nb − 1)bst +

∫ x

0

Λb(y)

c
dy = Ab

ln rst + 2Nbδεbrbst + 2αrεr(Nr − 1)rst +

∫ x

0

Λr(y)

c
dy = Ar

(3.15)
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with the normalisation conditions
L∫
0

bst(x)dx =
L∫
0

rst(x)dx = 1. We find solutions for bst

and rst with the Newton-Raphson method, discretising the domain into K grid points,

approximating the normalisation integrals with a quadrature, and solving for 2K + 2

unknowns.

3.3.3.1 Multiple species system via MH algorithm

Similar to (2.50), we first find the stationary density for the multi-species particle-level

model. Then use the MH algorithm as in (2.7.2), though as particles can have different

chemotactic sensitivity, care must be taken when defining the energy associated with each

configuration. Note that, the candidate yi generated in the second step of the algorithm

may be either red or blue. Based on this selection, we count the distinct close encounters

with xj for j = 1, 2, ..., Nb and for j = Nb+ 1, ..., N in the third step. In the fifth step, the

acceptance probability of yi is replaced by these reformulated stationary densities. We

derive the following forms for the close encounters among identical and different species

within the population.

Blue-Blue (or red-red): n(φk) =
Nk−1∑
i=1

Nk∑
j=i+1

φk(xi, xj),

where φk(xi, xj) =

{
1, |xi − xj| ≤ εk

0, |xi − xj| > εk
for k = b or r.

Blue-Red (or red-blue): n(φbr) =
Nk∑
i=1

N∑
j=Nk+1

φbr(xi, xj),

where φbr(xi, xj) =

{
1, |xi − xj| ≤ εbr

0, |xi − xj| > εbr
Imitating the process established in the section (2.7.1), under no-flux boundary conditions,

the stationary densities become

Bst(~x) = Ab[1− δ]n(φbr)[1− αb]n(φb) exp{−Φ(~x)}

Rst(~x) = Ar[1− δ]n(φrb)[1− αr]n(φr) exp{−Φ(~x)},
(3.16)

where Φ is the energy associated to configurations given by

Φ(~x) =

Nb∑
i=1

xi∫
0

Λb(y)

c
dy +

N∑
i=Nb+1

xi∫
0

Λr(y)

c
dy for ~x ∈ ΩN

To gain more insight into the expression (3.16), let us consider a system containing two

blues and one red. For a blue particle (say fixed at x1 as in Figure (3.1)), the density
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Figure 3.1: Schematic of the excluded domain for three interacting particles (two blues and
one red) when a blue particle is fixed at x1. The shaded areas show the inner slabs of width 2εb
and 2εbr = εb + εr.

changes from 1− δ when first enters from the inner slab of the red particle and then from

1−αb through the inner slab of the second blue particle, whereas for the red particle, the

density changes from 1− δ when first enters from the inner slab of the blue particle and

then from (1− δ)2 further from the inner slab of the second blue particle. Therefore, we

find

Bst(~x) = Ab[1− δ][1− αb] exp{−Φ(~x)} and Rst(~x) = Ar[1− δ]2 exp{−Φ(~x)}.

3.3.3.2 Numerical comparison

Eight examples of stationary solutions are shown in Figures (3.2) and (3.3) from the two

signal functions (2.3(a)) and (2.3(b)), respectively. We have taken Nb = 40 blue particles

of size εb = 0.002 and Nr = 60 red particles of size εr = 0.001 moving with a constant

speed c = 1 inside a channel of length L = 1. Given the width of the channel and

the sizes of the particles, the formula (A.3) produces the collision probabilities between

identical as well as opposite species. We first take width l = 0.01 to add more overlaps and

then narrow it down to l = 0.003 to increase collisions in the system. The red and blue

solid lines (and dashed lines) indicate the stationary solutions derived from the equations

(3.15) using NR method. Since this method is sensitive to the initial guess, we define

initial densities through signal functions which provide estimates that are reasonably

close to the solutions of the coupled system. When discretising the domain into K grid

points, and approximating the normalisation integrals with quadrature, the density values
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bst(xi), rst(xi) for 1 ≤ i ≤ K and the two constants Ab, Ar yields a system of equations

for 2K + 2 unknowns as follows:

lnQ{1≤k≤K} + 2NrδεbrQ{K+1≤k≤2K} + 2αbεb(Nb − 1)Q{1≤k≤K}

−2χb(S(x)− S(0))−Q2K+1 = 0

lnQ{K+1≤k≤2K} + 2NbδεbrQ{1≤k≤K} + 2αrεr(Nr − 1)Q{K+1≤k≤2K}

−2χr(S(x)− S(0))−Q2K+2 = 0

m ·Q{1≤k≤K} − 1 = 0 and m ·Q{K+1≤k≤2K} − 1 = 0

(3.17)

where Q = (bst(:), rst(:), Ab, Ar) and m =
(

1 4 2 4 ... 4 1
)

, the one dimensional

quadrature. The simulations were initiated with orderly distributed blue (i ≤ Nb) and

red (Nb < i ≤ N) particles in the domain. The domain is then divided into 40 bins and

the histograms are computed with 107 steps of the MH algorithm. Again, the tuneable

parameter 0.1 gives the desired outputs.

3.3.3.3 Discussion

The effect of reflective collisions on the equilibrium of a group of species that follow a ve-

locity jump process has been examined in this section. We have computed the stationary

solutions (3.14) and (3.15) for the respective point and finite-size particles systems. In

Figures (3.2) and (3.3), we have included the results for latter case with different chemo-

tactic sensitivity coefficients. We omit interaction-free plots from this figure as the results

would be similar to those green plots in Figure (2.11), but one can still use them as the

point of reference to understand the competition between the most favourable signal en-

vironment and the volume exclusion of finite-size particles; particularly, the blue plot in

Figures (3.2 (a)) and (3.3 (a)), for χb = 1.

Although the system contains more red particles, the domain occupied by blue (0.0126)

is higher than the red (0.0047). This is because the size of a blue particle is twice the size

of a red. Even so, we find a good agreement between the model (3.15) and the stochastic

simulations for the narrow channel system throughout the domain. Besides, the higher

passing rates encourage overlaps and hence the agreement. When the channel width is

reduced to l = 0.003, only red particles overlap themselves; the rest of the interactions

(red-blue and blue-blue) will end up being collisions. Note that, we have derived the

equations for the perturbed system using the fact that δ � 1, but we examine solutions

for higher probabilities (closer to 1) as far as the model concerned.

Both species aggregate in and around the centre of the domain as expected, but each
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Figure 3.2: Stationary marginal densities bst (blue) and rst (red) from the signal function
(2.3(a)) for particles in a channel of width 0.01 (solid lines) and 0.003 (dashed lines). Circles
depict the histograms from the MH algorithm for the former model, while asterisks describe
that for the latter model. Solutions in (a) and (c) are for χb = 1 and χr = 1.5; in (b) and (d)
are for χb = 0.5 and χr = −0.5.

species’ densities change according to its sensitivity toward the signal. One can think

of the signal as a chemoattractant for positive chemotactic sensitivity coefficient while a

chemorepellent for negative of that. In the first column of the Figures (3.2) and (3.3),

χr > χb > 0; therefore, red densities are higher than that of blue where the signal max-

imise. The peaks are reduced in the collision system, and we see a noticeable deviation in

the simulation results in Figure (3.3 (c)). This is because not all particles can aggregate

at the centre according to the steep signal gradients of the signal (2.3(b)).

The red and blue particles accumulating to opposite ends for χr < 0 and χb > 0, and the

outcomes are illustrated in the second column of the Figures (3.2) and (3.3). Particularly

blues are attracted, and reds are repelled in the central part of the domain. A blue does

not block a red at the centres and vice versa. However, particles disperse to less crowded

areas. Consequently, we find a higher density of reds at either end of the domain. We

do not observe significant changes in the densities from the collision system compared to

the narrow channel. In fact, we see a reasonable closeness between the solutions and the

particle simulations.



66 Multiple species in a narrow channel

0 0.2 0.4 0.6 0.8 1

x

0

5

10

S
ta

ti
o

n
a

ry
 d

e
n

s
it
ie

s

(a)

0 0.2 0.4 0.6 0.8 1

x

0

1

2

3

(b)

0 0.2 0.4 0.6 0.8 1

x

0

2

4

6

8

S
ta

ti
o

n
a

ry
 d

e
n

s
it
ie

s

(c)

0 0.2 0.4 0.6 0.8 1

x

0

1

2

3
(d)

Figure 3.3: Stationary marginal densities bst (blue) and rst (red) from the signal function
(2.3(b)) for particles in a channel of width 0.01 (solid lines) and 0.003 (dashed lines). Circles
depict the histograms from the MH algorithm for the former model, while asterisks describe
that for the latter model. Solutions in (a) and (c) are for χb = 1 and χr = 1.5; in (b) and (d)
are for χb = 0.5 and χr = −0.5.
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3.4 Multiple species time-dependent solutions

This section illustrates the time-dependent behaviour of the particle-based model and

the population-based system with numerical simulations. We applied a solution strategy

based on characteristics as eigenvalues and eigenvectors were readily available in the single-

species model. However, with the nonlinear transport term from the opposite species

interactions, the method becomes more complicated. Therefore, we resort to a standard

numerical method to find transient solutions. We begin by writing the coupled system

of equations in terms of the left- and right- moving densities and applying the periodic

extensions as in (2.4). This initiation yields a non-conservative product due to O(εbr)

terms.

The system (3.13) may be rewritten in the form

∂tb
+ + c∂xb

+ + 2cNrδ[b
+r− − b−r+] + 2cNrδεbr

[
b+∂xr

− + b−∂+
x

]
+

2c(Nb − 1)αbεb∂xb
+b− + λb(x, c)b

+ − λb(x,−c)b− = 0

∂tb
− − c∂xb− − 2cNrδ[b

+r− − b−r+]− 2cNrδεbr
[
b+∂xr

− + b−∂+
x

]
−

2c(Nb − 1)αbεb∂xb
−b+ + λb(x,−c)b− − λb(x, c)b+ = 0

∂tr
− − c∂xr− − 2cNbδ[r

+b− − r−b+]− 2cNbδεbr
[
r+∂xb

− + r−∂xb
+
]
−

2c(Nr − 1)αrεr∂xr
+r− + λr(x,−c)r− − λr(x, c)r+ = 0

∂tr
+ + c∂xr

+ + 2cNbδ[r
+b− − r−b+] + 2cNbδεbr

[
r+∂xb

− + r−∂xb
+
]
+

2c(Nr − 1)αrεr∂xr
−r+ + λr(x, c)r

+ − λr(x,−c)r− = 0

Let ub1(x, t) be the odd extension of b+− b− and ub2(x, t) be the even extension of b+ + b−

together with the extensions ur1(x, t) and ur2(x, t) for the red densities. Then the modified

system reads

∂ ~Ub
∂t

+
∂Fb
∂x

( ~Ub) +Kb( ~Ub)
∂ ~Ur
∂x

+ Sb = Gb(x) · ~Ub,

∂ ~Ur
∂t

+
∂Fr
∂x

( ~Ur) +Kr( ~Ur)
∂ ~Ub
∂x

+ Sr = Gr(x) · ~Ur,

with the periodic boundary condition ~Ui(−L, t) = ~Ui(L, t)

(3.18)
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where ~Ui =

(
ui1

ui2

)
and flux terms Fi( ~Ui) =

(
cui2 + cαiεi(Ni − 1)(u2

i2
− u2

i1
)

cui1

)
for i = b, r;

Kb( ~Ub) =

(
−2cδεbrNrub1 2cδεbrNrub2

0 0

)
and Kr( ~Ur) =

(
−2cδεbrNbur1 2cδεbrNbur2

0 0

)

are the terms in the non-conservative products; Sb =

(
2cNrδ det( ~Ub, ~Ur)

0

)
and Sr =(

2cNbδ det( ~Ur, ~Ub)

0

)
; Gi(x) =

(
µi2 µi1

0 0

)
the source terms with µi1 = λ−i − λ+

i and

µi2 = −λ−i − λ+
i for i = b, r.

Note that, the flux terms are similar to those in the single species system; hence, the

Jacobian ∂Fi
∂~Ui

produces eigenvalues for each separate system analogous to those in (2.32).

The coupled equations in (3.18) can be further combined and written under the form:

∂U

∂t
+ J (U)

∂U

∂x
= G(x,U) (3.19)

where U =

(
~Ub
~Ur

)
, J (U) =

(
∂Fb
∂~Ub

Kb

Kr
∂Fr
∂~Ur

)
and G =

(
Gb O

O Gr

)
·U−

(
Sb

Sr

)
. This integrated

system’s eigencharacteristics are more involved than that of the single-species model,

leaving us no choice other than adapting one of the usual numerical schemes. To this end

we follow the Roe-type path conservative schemes proposed by Parés and Castro [76].

We define an equidistant mesh size ∆x with mesh interfaces xi = i∆x for i ∈ N. As

usual, the cell average at time t is given by

U(xi, t) =
1

∆x

xi+∆x/2∫
xi−∆x/2

U(y, t)dy

Since the method is based on the theoretical notion of path, we first define a family of

paths φ : [0, 1] × R4 × R4 → R4 that satisfies the properties in ([76], Definition 1). We

confine ourself to the simplest choice:

φ(s; UL,UR) = UL + s(UR −UL) for s ∈ [0, 1]

then a Roe linearisation Jφ(UL,UR) can be defined such that ([76], Definition 3),

• Jφ(UL,UR) has four distinct eigenvalues for any UL,UR,

• Jφ(U,U) = J (U) ∀ U,
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• Jφ(UL,UR) · (UR −UL) =
1∫
0

J (φ(s; UL,UR))∂sφ(s; UL,UR)ds for any UL,UR.

From the specified path, ∂sφ = UR−UL; hence, the elements of Roe matrix are simply the

averages of UL and UR. In the descretized system, the intermediate matrix is Ji+1/2 =

Jφ(Ui, Ui+1) for i ∈ N, and the CFL condition has the form

C =
∆t

∆x
max{|Λj|, 1 ≤ j ≤ 4} for 0 < C ≤ 1

where Λjs are the eigenvalues of the matrix and ∆t is the time step. We may now adapt

the numerical scheme ([76], 4.63) as

Ui(t+ ∆t) = Ui(t)−
∆t

∆x

[
Fi+1/2 − Fi−1/2

]
− ∆t

2∆x

[
Bi+1/2 · (Ui+1 −Ui)+

Bi−1/2 · (Ui −Ui−1)
]

+
∆t

2

[
Gi+1/2 + Gi−1/2

] (3.20)

where Fi+1/2 = 1
2

[F (Ui+1) + F (Ui)] − 1
2

[
max{|Λi+1

j ,Λi
j|, 1 ≤ j ≤ 4}

]
(Ui+1 − Ui), the

Rusanov flux and

Bi+1/2 =
1∫
0

B(φ(s; Ui,Ui+1))ds, with B being the block matrix

(
O Kb

Kr O

)
. The last term

is obtained by applying the trapezoidal rule to the integral of G(x,U) over the interval

[xi −∆x/2, xi + ∆x/2].

The solution of the particle-level model is obtained using the event-driven KMC method

described in section (2.5.2). The only difference is that now we count interactions among

red-blue particles by computing the collision times between reds and blues. Distinguishing

between the two species, we must now construct two histograms, one for each population.

The histograms were produced by dividing the domain into 40 bins. At each step, we

count the number of blue and red particles in each bin; subsequently, the cumulative

averages are calculated.

To corroborate our methods and to understand the importance of volume exclusions, we

perform simulations of the discrete and continuum models for finite-size particles. The

Figures (3.4),(3.5), (3.6) and (3.7) shows the results of time-dependent simulations of each

species under different chemotactic sensitivity coefficients when Nb = 60, Nr = 40 and

width of the flattened channel l = 0.01. To generate the plots in the first two figures, we

set εb = 0.002 and εr = 0.001 that yields 31.95% red-blue, 43.75% blue-blue and 20.99%

red-red collisions. Then halve the sizes of the species for the latter plots. Initially, the blue

particles are uniformly distributed, that is b0(x) = 1, and the red particles are normally

distributed with 0.5 mean and standard deviation 1. The distribution is truncated so that
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Figure 3.4: Transient marginal densities for the signal function (2.3(a)) at time t = 0.4.
Blue particles of size εb = 0.002 with χb = 0.5 (blue line) and red particles of size εr =
0.001 with χr = 1 (red line). The collision probabilities δ(0.002, 0.001, 0.01) = 0.3195,
αb(0.002, 0.002, 0.01) = 0.4375 and αr(0.001, 0.001, 0.01) = 0.2099. Histograms computed from
5000 realisations (circles).

its integral over the domain Ω is one.

The theoretical predictions for finite-size particles compare well with their simulations in

both types of external biases, while excluded volume effects are noticeable for opposite

chemotactic sensitivities even though the volume fraction of particles is only 0.0055 (see

Figure 3.6). This discrepancy is because the impediment is high from one species to

another when they are moving away from each other. However, the agreement between

the model solution and particle simulation is reasonable for steeper gradients (see Figure

3.7). For positive chemotactic sensitivities, subpopulations flow towards the maximum of

the signal functions. Besides, the higher the sensitivity, the higher the aggregation at this

location.

3.4.1 Without tumbling and bias In the simple case where λ±i ≡ 0 for i = b, r,

no random changes will occur in the velocities of particles; the only changes are due to

collisions. The solutions for noninteracting particles (3.4) are simply waves travelling at

constant speed; b±(x, t) = b±0 (x ∓ ct) and r±(x, t) = r±0 (x ∓ ct). We expect the coupled

nonlinear system to behave like the noninteracting particles linear system up to the point

when the two fronts collide. Figure (3.8) shows the results of time-dependent simulations

for point particles as well as finite-size particles (εb = 0.002 and εr = 0.001) with Nb = 20,
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Figure 3.5: Transient marginal densities for the signal function (2.3(b)) at time t = 0.4. Blue
particles of size εb = 0.002 with χb = 1.0 (blue line) and red particles of size εr = 0.001 with χr =
1.5 (red line). The collision probabilities δ(0.002, 0.001, 0.01) = 0.3195, αb(0.002, 0.002, 0.01) =
0.4375 and αr(0.001, 0.001, 0.01) = 0.2099. Histograms computed from 500 realisations (circles).
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Figure 3.6: Transient marginal densities for the signal function (2.3(a)) at time t = 0.4.
Blue particles of size εb = 0.001 with χb = 0.5 (blue line) and red particles of size εr =
0.0005 with χr = −0.5 (red line). The collision probabilities δ(0.001, 0.0005, 0.01) = 0.1550,
αb(0.001, 0.001, 0.01) = 0.2099 and αr(0.0005, 0.0005, 0.01) = 0.1025. Histograms computed
from 5000 realisations (circles).
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Figure 3.7: Transient marginal densities for the signal function (2.3(b)) at time t = 0.4.
Blue particles of size εb = 0.001 with χb = 0.5 (blue line) and red particles of size εr =
0.0005 with χr = −0.5 (red line). The collision probabilities δ(0.001, 0.0005, 0.01) = 0.1550,
αb(0.001, 0.001, 0.01) = 0.2099 and αr(0.0005, 0.0005, 0.01) = 0.1025. Histograms computed
from 500 realisations (circles).

Nr = 100 and l = 0.01. We initiate with the same initial conditions mentioned earlier

and collate plots at different times.

It is evident from the plots that the initial uniform density of the blue particles does not

change in time when size-exclusion effects are ignored (blue dash-dot line). In contrast, the

non-uniform density of red particles pushes blue particles towards the domain edges when

they are of finite size. The shift depends on the red’s travelling direction; particularly,

the red travelling to the right (or left) pushes blue to the right (or left) end. On the

other hand, the red particles’ initial profile, in which particles are dense in the centre

of the domain, spreads faster when excluded-volume effects are included compared to

interaction-free case (at time t = 0.3 and t = 0.5). This indicates that the collisions bias

the spread towards areas of low particle densities.

3.4.2 Tagged particle With a tagged particle, it is not the collective motion we are

looking at anymore; it is now the movement of an individual particle. But higher densities

of background particles impede the tagged particle diffusion, and excluded volume effects

become complex. The Lorentz and Rayleigh gases are well studied in this context, where

one assumes the only interactions present are between a unique particle of one species

and a collection of particles of another species [57]. The linear Boltzmann equation has
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Figure 3.8: Transient marginal densities for the non-tumbling point (dash-dot lines) and finite-
size particles (solid lines) when Nb = 20 (blue) and Nr = 100 (red). The collision probabili-
ties δ(0.002, 0.001, 0.01) = 0.3195, αb(0.002, 0.002, 0.01) = 0.4375 and αr(0.001, 0.001, 0.01) =
0.2099.

given the macroscopic evolution of the tagged particle density.

The advancement of a tagged particle over time is often monitored by the particle’s mean-

square displacement that can be related to the self-diffusion coefficient. It is well known

that the mean square displacement scales linearly with time for interaction-free diffusion.

However, when the tagged particle is immersed in a crowded system, it exhibits so-called

anomalous subdiffusion diffusion. This effect is more apparent in narrow channel systems,

especially single-file [6,49].

We compare the time-dependent solutions of an individual tagged particle in a crowded

environment. We do this by colouring one particle in red, leaving the remaining particles

to be blue. Setting Nr = 1, Nb = N , and εb = εr = ε in (3.13), under non-tumbling

conditions give

∂tb+ vb∂xb+ 2vbδ[b(x, c)r(x,−c)− b(x,−c)r(x, c)] + 2vbδε
[
b(x, c)∂xr(x,−c)

+b(x,−c)∂xr(x, c)
]

+ 2vb(N − 1)δε∂xbb(x,−vb) = 0

∂tr + vr∂xr + 2vrNδ[r(x, c)b(x,−c)− r(x,−c)b(x, c)] + 2vrNδε
[
r(x, c)∂xb(x,−c)

+r(x,−c)∂xb(x, c)
]

= 0

(3.21)
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Figure 3.9: Transient marginal densities for the non-tumbling tagged red particle when N = 50
(solid lines) and N = 100 (dashed lines) blue particles. The particle’s size is ε = 0.001 and the
channel width is l = 0.01 yields the collision probability δ(0.001, 0.001, 0.01) = 0.2099.

Looking at the equation for the tagged red where particle’s velocity changes are solely

depended on the collisions, we see that mobility is affected by the crowders, the blues.

For a better understanding, we compare the results of N = 50 and N = 100 crowders at a

longer run time in Figure (3.9). All the particles are of size 0.001 and placed in a channel

of width 0.01. At t = 0, the blues are uniformly distributed, while the tagged particle

is normally distributed with 0.5 mean and standard deviation 1 with a positive velocity.

That implies, initial r−(x) is zero. The tagged particle moves to the right until it collides

with the crowders. This shift is more vivid in the solid line compared to the dashed

at t = 0.2, because the red will be less unobstructed from a fewer number of crowders.

The diffusion of tagged particles immersed in a densely populated domain gives rise to

immediate collisions; therefore, r−(x, t) value rises and the dashed line is lies above the

solid line in the top right plot. We do not observe a notable shift after time t = 0.2;

instead, the tagged particle’s density begins to spread. Although the concentrations are

higher in the centre, the spread slows down with more crowders (see left plots at times

t = 0.4 and t = 0.6).

In Figure (3.10), we compare tagged particle situation to the one-species collective motion.

Since the red particle is identical to all the blue particles except in colour, we unlabeled

it so that if the initial densities are the same, then r± ≡ b± for all x ∈ Ω and the coupled
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Figure 3.10: Transient marginal densities for the non-tumbling tagged red particle with N =
100 blue particles (dashed lines) and collective motion (solid lines) when r± ≡ b± at t = 0. The
collision probability δ(0.001, 0.001, 0.01) = 0.2099.

system (3.21) yields

∂tr + vr∂xr + 2vrNδε∂xrr(x,−vr, t) = 0

that coincides with the equation (2.21) without switching rates. We consider a 0.79%

occupied fraction for the comparison as the models perform well under small volume

fractions. The same initial condition is applied to red particles and the subpopulation

densities are plotted. We observe left and right moving travelling bands in the collective

motion since particles are identical and indistinguishable (solid lines). In comparison, the

tagged red concentration spread over the domain from the initial profile (dashed line) and

the crowders undergo collective motion.

3.4.3 Transport through obstacles The two species model (3.13) itself can be con-

sidered as one species diffusing through an obstacle. The only difference is that the

obstacles are mobile crowders. We may use the same model to study the impact of having

static obstacles in a system. This has been found in many different contexts: bacte-

rial motility in porous media in which individual cells are hopping and intermittently

trapping for a short time as they move through the pore space; the instantaneous speed
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calculations of each cell differentiate the two modes [10], diffusion of probe molecules into

absorbed polymer layers where the diffusion rate is reduced with the density of surface

obstacles encountered by tracer molecules [83], protein transport in the plasma membrane

where hopping becomes the primary transport mechanism under a high area fraction of

obstacles [93], and in anomalous subdiffusion of inert tracer particles in the cytoplasm

of mammalian cells where the embedded proteins provide an obstacle-rich environment

[103].

Starting from the particle-level model described in section (3.2) for two interacting species;

red and blue, we set the blue particle to be the static obstacle. The red particles switch

their velocities due to collisions among themselves as well as with obstacles. While the

former collisions are both momentum and speed preserving, the latter only preserve the

speed. According to the new settings, we should re-evaluate the interaction term because

the interface conditions change considerably. Particularly a red particle that passes the

obstacle or reflects at the obstacle satisfies

P (xr, xb, vr, 0, t)|xb=x
+
r +ε

xb=x
−
r +ε

= δP (xr, x
+
r + ε, c, 0, t)

P (xr, xb, vr, 0, t)|xb=x
+
r −ε

xb=x
−
r −ε

= −δP (xr, x
−
r − ε,−c, 0, t)

as well as the integral (3.9) for red marginal density r(xr, vr, t) reads

∂r

∂t
+ vr

∂r

∂xr
+ vr

[
P (xr, xb, vr, 0, t)|xb=x

+
r +εbr

xb=x
−
r −εbr

− P (xr, xb, vr, 0, t)
xb=x

−
r +εbr

xb=x
+
r −εbr

]
(3.22)

The obstacles’ distribution b(x, 0, t) is given by b0(x), t > 0; hence, we find the equation

∂tr + vr∂xr + vrNbδb0(x)[r(x, c)− r(x,−c)] + vrNbδεbr
[
r(x, c) + r(x,−c)

]
∂xb0(x)

+2vr(Nr − 1)αrεr∂xrr(x,−vr) + λr(x, vr)r(x, vr)− λr(x,−vr)r(x,−vr) = 0
(3.23)

in Ω × R+, where δ is the collision probability of red-blue interaction, together with

reflective boundary condition r(x, vr, t) = r(x,−vr, t) on ∂Ω × R+. It is apparent that

the result is the same as setting b±(x, t) = b0(x) in (3.13b). Accordingly, we only need to

consider equations for ~Ur from the extended system (3.18), where

Kr( ~Ur)
∂ ~Ub
∂x

=

(
2cδεbrNbur2∂xb0

0

)
and Sr =

(
2cδNbur1b0

0

)
.

The two Figures (3.11) and (3.12) show the results of time-dependent simulations when

Nr = 60 and Nb = 40 placed in a narrow channel of width l = 0.01. Blue obstacles
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Figure 3.11: Marginal density of mobile red particles at time t = 0.4 when the blue obstacle
sizes are εb = 0.002 (solid line & circles) and εb = 0.005 (dashed line & asterisks). Histograms
computed from 500 realisations. The red particle size is εr = 0.001 that yields collision prob-
abilities δ = 0.3194 for εb = 0.002 and δ = 0.6444 for εb = 0.005. The collision probability αr
remains at 0.2099.

are uniformly distributed; b ≡ 1, and the initial density of the red particles is a one-

dimensional Gaussian of mean 0.5 and standard deviation 1. In Figure (3.11), the solutions

of the kinetic model (3.23) are compared with event-driven KMC simulations of the N -

dimensional system for the obstacle sizes 0.002 and 0.005 at time t = 0.4. The size of the

red particle is 0.001 with chemotactic sensitivity coefficient χr = 1.5. Regardless of the

obstacle size, the reds cluster around the signal’s peak, but the density is reduced for the

larger obstacle size as they block piling more reds in the centre of the domain. In fact, we

do not see a good agreement between the model and the particle simulations. In contrast,

there is a better agreement on the reduced obstacle size. Note that, red-red interactions

influence the outputs in the same way for both cases as the collision likelihood among

themselves does not change, whichever the obstacle size.

The plots in Figure (3.12) are generated assuming that the reds are under no external

influence. Thus we concentrate on the behaviour of red subpopulations as they interact

with the blue obstacles and themselves via excluded volume interactions. Here we compare

both point (εr = 0) and finite-size (εr = 0.001) particles’ solutions of (3.23) by setting the

obstacle size to 0.002. For non-tumbling point red particles, the equation transforms to

∂tr + vr∂xr + vrNbδb0(x)[r(x, c)− r(x,−c)] + vrNbδεbr
[
r(x, c) + r(x,−c)

]
∂xb0(x) = 0
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Figure 3.12: Transient marginal densities for red point particles (dashed lines) and finite-
size particles (solid lines) at different times. The obstacle size is set to εb = 0.002. The col-
lision probabilities for the finite-size red-red αr(0.001, 0.001, 0.01) = 0.2099 and red-obstacle
δ(0.002, 0.001, 0.01) = 0.3194.

where εbr = εb/2 and δ = εb/l. Their movement is unobstructed until it meets an obstacle,

whereas a finite-size particle can be blocked by its kind. Therefore point particle’s sub-

populations are shifted more in their respective directions (dashed lines in Figure 3.12 at

t = 0.2). The initial profile, in which red particles are concentrated in the centre, spreads

more slowly for finite-size particles than for point particles indicating that the overall

distribution of red is reduced. This behaviour is evident in both left- and right-moving

reds after t = 0.2 (solid and dashed lines at t = 0.4 and t = 0.6).

3.5 Summary and discussion

We find many efforts to describe multiple species with size exclusion processes that have

been directed at on-lattice models, where one takes the continuum limit of a discrete model

and obtain a PDE describing the average occupancy of the agent population. However,

less attention has been given to off-lattice systems with several species experience instanta-

neous tumbles or random changes in velocity. In this chapter, we examined such a scenario

by predicting the macroscopic description of the particle-level attributes. Specifically, we

allowed two interacting species of hardcore to have different sizes and chemosensitivities,
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and extended the model derived in the previous chapter. The result is a coupled system

of nonlinear transport equations for the two marginal probability densities associated to

each species. Both identical and opposite species interactions emerge as nonlinear trans-

port terms, involving coupling terms to interpret the inter-species communications in the

narrow channel.

We have assessed the validity of our kinetic model to predict the system’s behaviour

by comparing its numerical solutions with the simulations of the discrete particle-based

model. Both the stationary and time-dependent simulations agree well under low occupied

fractions, supporting the notion that our PDE system captures the same population-level

behaviour observed under expensive particle simulations. Our two-component nonlinear

transport model is used to characterise the transport properties of a tagged particle sys-

tem. A single tagged particle exhibits outspreading from its initial order rather than

travelling bands (collective behaviour of identical particles). We also studied the motion

of finite-size particles through static obstacles. In fact, one species itself can be considered

as some sort of a mobile obstacle in our original model. The difference is that collisions

bias the spread towards areas of low particle densities during the latter case, while immo-

bile obstacles adversely affect the overall spread.

An interesting extension of two-species model is to study the role of the interactions and

the speed synchronization of the travelling pulses when each population travels at different

speeds in the channel [23,24]. The interface conditions can be handled assuming elastic

collisions while reflecting at the solid boundaries. The summation term
∑

v2∈{−c,c}
(v1−v2)[...]

does not simplify to 2v1[...]; instead, it will produce additional terms corresponding to each

velocity. One can also extended the model to examine heterogeneous population that is

composed of agents from three different subpopulations [45].
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4
Velocity-jumps with a finite set of

speeds

4.1 Introduction

This chapter goes back to the velocity jump process analysed in Chapter 2 and introduces

the zero velocity to the compact velocity space. That is, particles can now move either to

the left or the right with a fixed speed c or suddenly become motionless. This transition

from one velocity to another is reasonable since several organisms may tend to take a rest

for a short time during the motion; a particular case could be narrow bands of chemical

pheromone trails formation by ants while foraging for food [86]. The system still accounts

for the excluded volume, and upon collisions, particles block each other until eventually

a random velocity switch or a bypass frees them. We study the effect of elastic colli-

sions between hard cores where particles exchange velocities after a collision. The speeds

typically change during fully elastic collisions, but the total momentum of the system is

preserved. If the system has at most two velocities {c,−c}, reflective and elastic collisions

are equivalent. It should be noted that the set-up here is to introduce zero velocity to the

system and is not to be confused with the case when one species is appearing as a static

obstacle that has already been studied in section (3.4.3).

We begin by writing the PDE in terms of the joint probability density for the individual-

based model description. As in previous chapters, we aim to reduce this high-dimensional

PDE to a practical low dimensional description for the one-particle density under two

81
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channel domains: single-file and a channel with a sufficiently large width so that occu-

pants can easily change order. Asymptotic analysis in the limit of small volume fraction

is performed, resulting in nonlinear transport terms that describe pairwise interactions

among the three subpopulations. We adopt the characteristics method applied in the sec-

tion (2.4) to find numerical solutions of the coupled system and compare them with the

full particle simulations to validate the model. For a more comprehensive understanding,

we generalise the derived nonlinear model for a velocity-jump process that comprises a

finite set of speeds in section (4.3.3), and also reexamine the original system under re-

flective pair collisions in section (4.3.4). Interestingly, the resulting PDE for the latter

system is similar to that of multiple species model when one species blocks the motion of

the other.

4.2 Formulation of the particle-level model

To begin with, we consider a random motion of a point particle either at rest or moving at

a constant speed c in one dimensional domain. That is, the system has a finite set of three

possible velocities with the transition rate λv1v2 in [t, t+∆t], where v1, v2 ∈ {+c, 0,−c} and

v1 6= v2. Denoting the one-particle density by p(x, c, t) with position x and velocity c at

time t, the probability of finding the particle in the interval [a, b] can be written as

P (X(t) ∈ [a, b], V (t) = c) =

b∫
a

p(x, c, t)dx

So we write the rate of change dP
dt

as

b∫
a

∂p

∂t

+

(x, t)dx = cp+(a, t)− cp+(b, t) +

b∫
a

p0(x, t)λ0
+(x)dx+

b∫
a

p−(x, t)λ−+(x)dx

−
b∫

a

p+(x, t)λ+
0 (x)dx−

b∫
a

p+(x, t)λ+
−(x)dx

where first two terms of the right hand side are for the rates of change when a particle

enters at the boundary a and leaves from the boundary b; third and fourth are gain terms

when switching to c; the last two terms are the loss terms when switching from c to 0 and

−c. There is no contribution from the terms λ+
+, λ0

0 and λ−−.
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By rearranging the terms we get

b∫
a

(
∂p

∂t

+

+ c
∂p

∂x

+

− p0λ0
+ − p−λ−+ + p+λ+

0 + p+λ+
−

)
dx = 0

Since [a, b] is an arbitrary interval from R+
0 , we get

∂p

∂t

+

+ c
∂p

∂x

+

− p0λ0
+(x)− p−λ−+(x) + p+λ+

0 (x) + p+λ+
−(x) = 0

Similarly, for the subpopulations with velocities 0 and −c, we have

∂p

∂t

0

+ p0λ0
+(x) + p0λ0

−(x)− p+λ+
0 (x)− p−λ−0 (x) = 0

∂p

∂t

−
− c∂p

∂x

−
+ p−λ−0 (x) + p−λ−+(x)− p+λ+

−(x)− p0λ0
−(x) = 0

where the transport term for a stationary particle disappears, and the rate of change only

depends on velocity-jumps. Hence the above system of equations can be written in the

following compact form for a point particle.

∂p

∂t
(x, v, t) + v

∂p

∂x
(x, v, t) +

∑
v′∈{c,0,−c}

λvv′(x)p(x, v, t)− λv′v (x)p(x, v′, t) = 0 (4.1)

An extension of the above model (4.1) for two particles is provided in the appendix (A.4).

Thus for a system of N particles, the evolution of joint probability density P (~x,~v, t), where

~x ∈ ΩN and ~v ∈ V N = {c, 0,−c}N , is governed by the following transport equation:

∂P

∂t
+ ~v · ∇~xP +

N∑
i=1

∑
v′∈{c,0,−c}

(
λviv′(xi)P (~x,~v, t)− λv′vi(xi)P (~x, s′i~v, t)

)
= 0, (4.2)

where s′i is the operator that changes the ith velocity component to v′. Compared to

particle level model (2.1) in Chapter 2, the reaction term (due to a random choice of

velocity) contains additional transition terms as a result of the zero velocity component.

The model completes with the initial condition

P (~x,~v, 0) = P0(~x,~v) (4.3)
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and the wall-particle boundary condition (assuming reflective collisions at the solid bound-

aries)

P (~x,~v, t) = P (~x, si~v, t) for xi = 0, L (4.4)

where si is the operator that switches the sign of the ith velocity component. It is now

remaining to specify the conditions during interactions. These conditions may vary de-

pending on the channel domain; particularly, particle interactions occur through collision

boundary conditions in a single-file channel switches to interface conditions when parti-

cles collide with a certain probability that mimics the narrow channel. We intend to look

through these interaction conditions between moving and stationary particles in-depth in

the following section, and derive the population-level model for the marginal density p of

one particle in a reduced dimensional space.

4.3 Population-level model

We derive the population-level model for identical hard disks of non-dimensional diameter

ε � L in a bounded domain Ω = [0, L] that satisfies the linear, but higher-dimensional

PDE model (4.2). We expect two nonlinear transport terms from the subpopulation in-

teractions in the resulting PDE. The collision (single-file) and the narrow channel systems

are studied under separate sections, and for both, we assume that the volume fraction is

small. This assumption allows us to write down an integral equation for the one-particle

density in terms of the two-particle joint density and later generalise for N .

4.3.1 Collision system In a one-dimensional collision system, particles cannot pass

each other and remain ordered in the same manner as for the initial time. The hard cores

create holes in the domain; hence, equation (4.2) is defined everywhere except at illegal

configurations. So we redefine the configuration space as

ΩN
ε = {~x ∈ ΩN : |xi − xj| > ε,∀i 6= j}.

Therefore, P satisfies the normalisation condition∫
ΩNε ×V N

P (~x,~v, t) = 1.
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Since particle-particle collisions are elastic, the collision boundary condition can be written

as

P (~x,~v, t) = P (~x, sij~v, t) (4.5)

where sij is an operator that swaps the velocity components i, j at |xi − xj| = ε. We can

now progress to obtain the population-level description for the one-particle density

p(x, v, t) =

∫
ΩN−1
ε (x)×V N−1

P (~x,~v, t)dx2...dxNdv2...dvN .

4.3.1.1 Integrated equation for a collision system

A system consist of two particles at (x1, v1) and (x2, v2) satisfy the transport equation

∂P

∂t
+ v1

∂P

∂x1

+ v2
∂P

∂x2

+
∑

v′∈{c,0,−c}

(
λv1v′ (x1)P (~x,~v, t)− λv′v1(x1)P (~x, s′1~v, t)

+λv2v′ (x2)P (~x,~v, t)− λv′v2(x2)P (~x, s′2~v, t)
)

= 0

(4.6)

Let Ω(x1) be the space available for the second particle when first particle is at x1;

explicitly it is comprised of the left region [0, x1− ε) and the right region (x1 + ε, L]. Then

integration of (4.6) over Ω(x1)× V produces a similar result as in section (2.3.2.1).

∂p

∂t
+ v1

∂p

∂x1

+
∑
v2∈V

(v1 − v2)P (x1, x2, ~v, t)|x2=x1+ε
x2=x1−ε +

∑
v′∈V

(
λv1v′ (x1)p(x1, v1, t)

−λv′v1(x1)p(x1, v
′, t)
)

= 0

(4.7)

The first term comes from the independence of the configuration domain from time.

The second and third terms come from integrating the transport terms v1
∂P
∂x1

and v2
∂P
∂x2

,

applying the Leibniz integral rule and wall-particle boundary conditions. Continuing to

integral of the summation over the velocity-jumps,∫
Ω(x1)×V

∑
v′∈V

(
λv1v′P (~x,~v, t)− λv′v1P (~x, s′1~v, t) + λv2v′P (~x,~v, t)− λv′v2P (~x, s′2~v, t)

)
=
∑
v′∈V

(
λv1v′ p(x1, v1, t)− λv

′

v1
p(x1, v

′, t)
)

+

∫
Ω(x1)×V

∑
v′∈V

(
λv2v′P (~x,~v, t)− λv′v2P (~x, s′2~v, t)

)
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we note that

∑
v2∈V

∑
v′∈V

(
λv2v′ (x2)P (~x,~v, t)− λv′v2(x2)P (~x, s′2~v, t)

)
=
∑
v′∈V

(
λcv′P (~x, v1, c, t)− λv

′

c P (~x, v1, v
′, t) + λ0

v′P (~x, v1, 0, t)− λv
′

0 P (~x, v1, v
′, t)

+ λ−cv′ P (~x, v1,−c, t)− λv
′

−cP (~x, v1, v
′, t)
)

= 0

Hence the only term remaining will be the loss and gain terms due to the velocity jumps

of particle 1, which is the last term of (4.7).

4.3.1.2 Evaluating the collision term

To evaluate the collision term P (x1, x2, ~v, t)|x2=x1+ε
x2=x1−ε, when two particles are far apart

(|x1 − x2| � ε), we define Pout(x1, x2, v1, v2, t) = P (x1, x2, v1, v2, t) as

Pout(x1, x2, v1, v2, t) = q(x1, v1, t)q(x2, v2, t) + εP
(1)
out(x1, x2, v1, v2, t)

for some distribution function q. In the inner region where |x1 − x2| ∼ ε, we define the

inner coordinates x1 = x̃1 and x2 = x̃1 + εx̃. Then P̃ (x̃1, x̃, v1, v2, t) = P (x1, x2, v1, v2, t)

and the collision boundary condition (4.5) becomes

P̃ (x̃1, x̃, v1, v2, t) = P̃ (x̃1, x̃, v2, v1, t) at x̃ = ±1 (4.8)

Now expanding the outer solution in terms of the inner variables, we get

Pout(x̃1, x̃, v1, v2, t) = q(x̃1, v1, t)q(x̃1, v2, t) + ε

[
x̃q

∂q

∂x̃1

+ P
(1)
out(x̃1, v1, v2, t)

]
(4.9)

We look for a solution in powers of ε; P̃ ≈ P̃0+εP̃1+... that matches with the outer solution

as |x̃| → ∞. Since the leading order term satisfies (4.8), we find P̃0 = q(x̃1, v1, t)q(x̃1, v2, t).

If we suppose that P
(1)
out ≡ P

(1)
r (x̃1, x̃1, ~v, t) for x̃ ≥ 1 and P

(1)
out ≡ P

(1)
l (x̃1, x̃1, ~v, t) for

x̃ ≤ −1, the collision boundary condition (4.8) requires that O(ε) terms to satisfy;

at the right boundary (x̃ = 1),

q(x̃1, v1, t)∂x̃1q(x̃1, v2, t) + P (1)
r = q(x̃1, v2, t)∂x̃1q(x̃1, v1, t) + P (1)

r (x̃1, x̃1, v2, v1, t) (4.10)
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Figure 4.1: Configurations for identical and indistinguishable particles when x2 > x1 and
x2 < x1.

and at the left boundary (x̃ = −1),

−q(x̃1, v1, t)∂x̃1q(x̃1, v2, t)+P
(1)
l = −q(x̃1, v2, t)∂x̃1q(x̃1, v1, t)+P

(1)
l (x̃1, x̃1, v2, v1, t) (4.11)

Therefore, we find the inner solution, to O(ε),

P̃ (x̃1, x̃, v1, v2, t) = q(x̃1, v1, t)q(x̃1, v2, t) + ε
[
x̃q

∂q

∂x̃1

+ P
(1)
out(x̃1, x̃1, v1, v2, t)

]
(4.12)

that satisfies (4.10) and (4.11). We can relate P
(1)
r and P

(1)
l using the fact that particles

are identical and indistinguishable. For instance, suppose v1 = 0 and v2 = c, then at the

right outer region P
(1)
out ≡ P

(1)
r (x1, x2, 0, c, t), but the same configuration can be obtained

in the left outer region when P
(1)
out ≡ P

(1)
l (x1, x2, c, 0, t) (see Figure (4.1)). Therefore, more

generally we can write,

P (1)
r (x1, x2, v1, v2, t) = P

(1)
l (x1, x2, v2, v1, t) (4.13)

We may now evaluate the collision term P (x1, x2, ~v, t)|x2=x1+ε
x2=x1−ε = P̃ (x̃1, x̃, ~v, t)|x̃=1

x̃=−1, where

O(ε) terms yield,

q(x̃1, v1, t)
∂q

∂x̃1

(x̃1, v2, t) + P (1)
r (x̃1, ~v, t) + q(x̃1, v1, t)

∂q

∂x̃1

(x̃1, v2, t)− P (1)
l (x̃1, ~v, t)

= q(x̃1, v1, t)
∂q

∂x̃1

(x̃1, v2, t) + P
(1)
l (x̃1, v2, v1, t) + q(x̃1, v1, t)

∂q

∂x̃1

(x̃1, v2, t)− P (1)
l (x̃1, ~v, t)

= q(x̃1, v1, t)
∂q

∂x̃1

(x̃1, v2, t) + q(x̃1, v2, t)
∂q

∂x̃1

(x̃1, v1, t)

=
∂

∂x̃1

[q(x̃1, v1, t)q(x̃1, v2, t)]

We have used the inner solution (4.12), the relation (4.13) and the left boundary condition

(4.11) in the first, second and third lines, respectively. From the normalisation condition

(A.1.1) we find q(x1, v1, t) = p(x1, v1, t) +O(ε); consequently, the nonlinear kinetic model
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(4.7) for N interacting particles in a single-file channel can be written as,

∂p

∂t
+ v1

∂p

∂x1

+
∑
v2∈V

(v1 − v2)(N − 1)ε
∂

∂x1

[p(x1, v1, t)p(x1, v2, t)] +

∑
v′∈V

(
λv1v′ (x1)p(x1, v1, t)− λv

′

v1
(x1)p(x1, v

′, t)
)

= 0
(4.14)

4.3.2 Narrow channel The idea is very much similar to the narrow channel model

discussed earlier in Chapter (2), albeit we have stationary hard cores with elastic colli-

sions. Since particles have three possible velocities, let us redefine the interface conditions

(2.10) and (2.11) in a more general setting.

If two particles have velocities v1 and v2 that exchange after collisions; at the right inter-

face,

P (x1, x
+
1 + ε, v2, v1, t) = δP (x1, x

+
1 + ε, v1, v2, t) + P (x1, x

−
1 + ε, v2, v1, t) (4.15a)

P (x1, x
−
1 + ε, v1, v2, t) = [1− δ]P (x1, x

+
1 + ε, v1, v2, t) (4.15b)

and at the left interface,

P (x1, x
−
1 − ε, v1, v2, t) = δP (x1, x

−
1 − ε, v2, v1, t) + P (x1, x

+
1 − ε, v1, v2, t) (4.16a)

P (x1, x
+
1 − ε, v2, v1, t) = [1− δ]P (x1, x

−
1 − ε, v2, v1, t) (4.16b)

where v1, v2 ∈ {c, 0,−c} and δ ≡ δ(ε, l) is the probability of collision. Mimicking the

derivation process in section (2.3.2.1) with the above interface conditions and the bound-

ary condition (4.4), integral of (4.6) over Ω×V produces the PDE for the marginal density

p(x, v, t) analogous to (4.7):

∂p

∂t
+ v1

∂p

∂x1

+
∑
v2∈V

δ(v1 − v2)(P (x1, x
+
1 + ε, v1, v2, t)− P (x1, x

−
1 − ε, v2, v1, t))+∑

v′∈V

(
λv1v′ (x1)p(x1, v1, t)− λv

′

v1
(x1)p(x1, v

′, t)
)

= 0
(4.17)

Evaluating joint densities at the interfaces (see section (2.3.2.2)) and using the normali-

sation condition, we derive the population-level model for a narrow channel system that
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contains stationary particles as

∂p

∂t
+ v1

∂p

∂x1

+
∑
v2∈V

δ(v1 − v2)(N − 1)ε
∂

∂x1

[p(x1, v1, t)p(x1, v2, t)] +

∑
v′∈V

(
λv1v′ (x1)p(x1, v1, t)− λv

′

v1
(x1)p(x1, v

′, t)
)

= 0
(4.18)

Both the systems (4.14) and (4.18) are complemented with no-flux boundary conditions

on ∂Ω and the initial condition p(x1, v1, 0) = p0(x1, v1). The nonlinear transport terms

obtained by the asymptotic expansion are accurate up to the first order ε, and the term

count depend on the velocities (v2 s) that the first particle, at x1 with v1, possibly contact.

As far as the model concerned, when δ = 1 we recover the kinetic model for the collision

system; therefore, we consider the latter model to analysis time-dependent and stationary

solutions. We expect a good agreement between stochastic simulations of the full particle

system with the solution of the population-level equation.

From the given set of velocities {c, 0,−c} equation (4.18) can also be written in terms of

the subpopulation densities:

∂p

∂t

+

+ c
∂p+

∂x1

+ c(N − 1)δε
∂

∂x1

(p+p0) + 2c(N − 1)δε
∂

∂x1

(p+p−)+

λ+
0 (x1)p+ − λ0

+(x1)p0 + λ+
−(x1)p+ − λ−+(x1)p− = 0

(4.19a)

∂p

∂t

0

− c(N − 1)δε
∂

∂x1

(p+p0) + c(N − 1)δε
∂

∂x1

(p0p−) + λ0
+(x1)p0

−λ+
0 (x1)p+ + λ0

−(x1)p0 − λ−0 (x1)p− = 0

(4.19b)

∂p

∂t

−
− c∂p

−

∂x1

− c(N − 1)δε
∂

∂x1

(p−p0)− 2c(N − 1)δε
∂

∂x1

(p+p−)+

λ−0 (x1)p− − λ0
−(x1)p0 + λ−+(x1)p− − λ+

−(x1)p+ = 0

(4.19c)

where each equation consists of two nonlinear transport terms from the existing subpop-

ulation interactions. In vectorial form with ~p = (p+, p0, p−), we can write the gain terms

as

 0 λ0
+ λ−+

λ+
0 0 λ−0

λ+
− λ0

− 0

 that can be rewritten in terms of a constant (or constant matrix) κ:

κ

 0 λ̃−+ λ̃0
+

λ̃+
− 0 λ̃0

−

λ̃+
0 λ̃−0 0

, where λ̃v2v1 s are transition probabilities such that each row adds upto

one. This idea is similar to the turning kernel T defined in [71]. We assume non-zero

transitions rates which are independent of time; therefore, transition probabilities are
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stationary.

For bidirectional moving particles in section (2.3.2.3), we discussed the long-time dynam-

ics of the kinetic model by taking the parabolic limit. The approach works for the current

system (4.19) with the same flux function j(x, t) and total density ρ(x, t) = p+ + p0 + p−

(see Appendix (A.5) for details), returning the drift-diffusion equation

∂ρ0

∂τ
=

∂

∂ζ

[
c2

3λ0

(1 + 3εδ(N − 1)ρ0)
∂ρ0

∂ζ
− c2χ

λ0

∂S

∂ζ
ρ0

]
(4.20)

which is very similar to the equation (2.28). The only difference is that the additional

term in the density-dependent diffusion coefficient (proportional to the excluded volume)

is multiplied by a factor of 3. This means the collective diffusion is increased relative to

point particles in the presence of finite size particles.

4.3.3 The discrete velocity-jump model In this section, we generalise our nonlinear

model (4.18) for a system that comprises a finite set of speeds. The common modelling

approach that suggests itself pertaining to discrete distributions of velocities is the use

of a discrete-velocity Boltzmann (DVB) system [17]. The system consists of PDEs that

essentially describe the evolution of discrete distribution functions in term of elementary

interactions. These interactions are included in the collision operator as loss and gain of

particles’ velocities due to collisions. With the molecular chaos hypothesis, these systems

are more straightforward than the Boltzmann equation on a continuous velocity space.

Boltzmann-type approaches have been used in the context of traffic flows, where the

collision operator is replaced with a probability distribution representing interactions that

lead to the gain or loss of the test speed depending on the local traffic conditions [80].

With a small number of discrete velocities, the authors prove the existence of a class

of quantized equilibrium distributions and their uniqueness. In an arbitrary finite set

of speeds, the generalised Goldstein-Kac model is also a DVB system where random

transitions from one velocity to another replace the pairwise collisions [56]. Hence, this

system closely resembles our interaction-free model.

Here, attention is drawn to a class of nonlinear hyperbolic equations that describes a

system with a family of n velocities, V = {−cn−1
2
, ...,−c1, 0, c1, ..., cn−1

2
} and transition

rates λviv ≥ 0 for vi, v ∈ V ; vi 6= v. The dynamics of such a system, with interaction
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treatment, is dictated by the generalised model

∂pi
∂t

+ vi
∂pi
∂x

+
∑
v∈V

δ(vi − v)(N − 1)ε
∂

∂x
[p(x, vi, t)p(x, v, t)] +∑

v∈V
vi 6=v

(
λviv (x)p(x, vi, t)− λvvi(x)p(x, v, t)

)
= 0, i = 1, ..., n

(4.21)

where pi ≡ p(x, vi, t) is the ith subpopulation density and δ, ε, N have usual meaning.

It is important to include both positive and negative values of the speed ci in order to

apply the wall-particle boundary condition in the integrated equation (4.17) (see 2.14 for

details). Besides, simplifying the integral of the summation over the velocity-jumps also

requires possessing these states for the velocities. In (4.21) the nonlinear transport term

retains all terms up to first-order due to pairwise interactions. If we consider higher-order

interactions where three particles or two particles and the boundary are close, additional

correction terms will appear in the model.

4.3.4 Interactions through reflective collisions When elastic collisions are not

applicable in biological applications, especially if living organisms do not transfer mo-

mentum when interacting with each other, reflective collisions are a valid alternative. At

this point, stationary particles may act as static obstacles until, eventually, a random ve-

locity switch frees them. We cleave to the system derived in section (4.3.2) and re-evaluate

the interaction term because the change in the interface conditions corresponding to one

moving and one obstacle requires some derivation steps to be modified. Interestingly, the

resulting PDE is similar to the multiple species model when one variety obstructs the

passage of the other.

For particles travelling in opposite directions in a narrow channel, the interface conditions

(4.15) and (4.16) remain the same as there is no distinction between elastic and reflective

collisions. When a mobile particle interacts with an obstacle, it will pass or bounce back;

hence, the following changes occur:

P (x1, x2, v1, 0, t)|
x2=x+1 +ε

x2=x−1 +ε
= δP (x1, x

+
1 + ε, c, 0, t)

P (x1, x2, v1, 0, t)|
x2=x+1 −ε
x2=x−1 −ε

= −δP (x1, x
−
1 − ε,−c, 0, t)

We may now go back to the asymptotic expansion discussed in section (2.3.2.2), set

v2 = 0 and re-evaluate the term for the obstacle at the interfaces. In this way we derive
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the kinetic model, to O(ε)

∂p

∂t
+ v1

∂p

∂x1

+ δv1p
0
(
p+ − p−

)
+ δv1ε

(
p+ + p−

) ∂p0

∂x1

+ 2v1δε
∂

∂x1

pp(x1,−v1, t)+∑
v′∈V

(
λv1v′ (x1)p(x1, v1, t)− λv

′

v1
(x1)p(x1, v

′, t)
)

= 0 for v1 ∈ V
(4.22)

in Ω×R+. The stationary particle density p0 changes with time as occupants are allowed

to randomly choose directions according to the external stimuli and move along. At the

same time, any moving occupant can quiet motion.

4.4 Transient solution

In this section, we consider the time-dependent evolution of the system. As in previ-

ous chapters, the particle-level system is solved using the event-driven KMC algorithm,

while the kinetic model is integrated using characteristics. Below we give details of the

algorithms used and numerical examples.

4.4.1 Balance laws When ε = 0, the characteristic fields of the uncoupled system

(4.1) give rise to the simple ODE system

dp

dt

+

= λ0
+(x)p0 + λ−+(x)p− − λ+

0 (x)p+ − λ+
−(x)p+ along x = ct+ x0

dp

dt

0

= λ+
0 (x)p+ + λ−0 (x)p− − λ0

+(x)p0 − λ0
−(x)p0 along x = x0

dp

dt

−
= λ0

−(x)p0 + λ+
−(x)p+ − λ−0 (x)p− − λ−+(x)p− along x = −ct+ x0

(4.23)

which can be numerically integrated with a fixed time step. For finite-size particles,

we may write the nonlinear hyperbolic system (4.19) in matrix form and examine the

solutions. However, we recall the less supportive structure of the eigenvectors in our

previous constant speed models; in fact, here we get even more complex eigenvalues due

to zero velocity component. Therefore, we begin with the periodic extensions for the

marginal densities.

Let u1(x, t) be the odd extension of p+−p−, u2(x, t) be the even extension of p+ +p−+p0

and u3 = p0. Then the solution domain changes to [−L,L], and substituting p+ = u1+u2−u3
2
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and p− = u2−u1−u3
2

into (4.19), we find the system in a nonconservative form

∂~u

∂t
+ J(~u)

∂(~u)

∂x
= ~g(x, ~u), −L ≤ x ≤ L, 0 ≤ t ≤ T

with the periodic boundary condition ~u(−L, t) = ~u(L, t),

(4.24)

where ~u =

u1

u2

u3

, J(~u) =

−2cξu1 c(1 + 2ξu2 − ξu3) −c(1 + ξu2)

c 0 0

−cξu3 0 −cξu1


with ξ = (N − 1)δε, and

~g(x, ~u) =

(
λ−0
2
− λ+0

2
+ λ−+ − λ+

−)(u2 − u3)− (
λ−0
2

+
λ+0
2

+ λ−+ + λ+
−)u1 + (λ0

+ − λ0
−)u3

0

(
λ−0
2

+
λ+0
2

)(u2 − u3) + (
λ+0
2
− λ−0

2
)u1 − (λ0

+ + λ0
−)u3

 .

Due to complexity of the exact eigenvalues and eigenvectors of J , we try to find approx-

imate values, upto O(ε), using asymptotic expansion. This time we expect three ODEs

for some algebraic combinations of u1, u2 and u3 along characteristic curves.

Notice the exact eigencharacteristics
0,

 0

0

1


 ,
c,
 −1

−1

1


 ,
−c,

 1

−1

1



 (4.25)

of the simple non-interacting system. When ε 6= 0, we introduce ε-dependency to the

above and use the characteristic polynomial and eigenequation to evaluate each element.

Accordingly for the nonlinear system, we find approximations
−cξu1,

 0

ξu3

1


 ,
c− cξ (u1 − u2) ,

 −1

−ξ(u1 + u2 − u3)− 1

1


 ,

−c− cξ (u1 + u2) ,

 1

ξ(u1 − u2 + u3)− 1

1





(4.26)
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that reduce the balance laws to the following ODEs:

ξu3
du2

dt
+
du3

dt
= G1 on C1 : x′(t) = −cξu1

−du1

dt
− [ξ(u1 + u2 − u3) + 1]

du2

dt
+
du3

dt
= G2 on C2 : x′(t) = c− cξ (u1 − u2)

du1

dt
+ [ξ(u1 − u2 + u3)− 1]

du2

dt
+
du3

dt
= G3 on C3 : x′(t) = −c− cξ (u1 + u2)

(4.27)

where ~G(x, ~u) =

 (
λ−0
2

+
λ+0
2

)(u2 − u3) + (
λ+0
2
− λ−0

2
)u1 − (λ0

+ + λ0
−)u3

(λ−+ − λ+
− − λ+

0 )(u3 − u2) + (λ−+ + λ+
− + λ+

0 )u1 − 2λ0
+u3

(λ−+ − λ+
− + λ−0 )(u2 − u3)− (λ−+ + λ+

− + λ−0 )u1 − 2λ0
−u3

.

With no direct velocity transitions, particles change their course only after a collision; the

Riemann invariants

{
u3e

ξu2 , (u3 − u1 − u2)eξu2 , (u3 + u1 − u2)eξu2
}

satisfy such ODE system and, hence, simplifies the left hand side of (4.27). The simplified

system is integrable along the characteristics. So computing the solution of the kinetic

model (4.19) is equivalent to numerically generating the characteristic paths in spacetime.

We will compare these solutions with the full-particle simulations under zero, symmetric

and non-symmetric transition rates.

4.4.2 Discrete model The solution of the discrete model can be obtained using the

event-driven KMC method described in (2.5.2). The only difference is that now we must

assign zero velocity for some set of particles in the system and work out on times for

each velocity transition. However, in a collision system, it is not necessary to compute

collision times of each particle with every other particle or wall. Because we are working

on a restricted domain (one dimensional), it is suffice to examine interaction times with

the neighbouring particle or wall. This reduces the complexity of the algorithm. We also

noticed that all event times of particles that are not involved in the current event remained

unchanged. Therefore, we calculate them once before the time loop and update the stored

data according to the new velocities of the interacting particles as time evolves. That is,

the number of events to update per particle is two neighbouring interactions and one turn

event. These changes significantly reduce the run time of a collision system compared to

a narrow channel as fewer collision times are to be calculated.
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4.4.3 Numerical Examples The numerical study aims to illustrate the behaviour of

the systems under symmetric and asymmetric transition rates apart from examining the

effect of biased and unbiased conditions. Unless explicitly stated otherwise, for all the

numerical examples we take particles of speed c = 1 and chemotactic sensitivity coeffi-

cient χ = 1, and place them inside a narrow channel of length 1 and width l = 0.01. The

solid lines and the circles depict solutions for the PDE model and the KMC simulations,

respectively.

We utilise the system of ODEs established in section (4.4.1) to find the solutions of the

nonlinear kinetic model (4.18). The numerical integration procedure discussed in section

(2.6.1) would work except now we have three characteristic curves emerging from each

grid point in the domain. These curves are approximate straight lines; hence, there will

be two intermediate crossover points. The first point is the intersection of C2 and C3 in

(4.27), followed by the second intersection of C1 with C2 (or C3) based on the inclination

of the curve. At each crossover point, we compute the respective Riemann variables and

update u1, u2 and u3.

In the event-driven algorithm, we generate random initial positions for the particles at

the beginning of each realisation while avoiding overlaps. The collision probability calcu-

lates from the formula A.3(iii) handles the overlaps during iterations. To construct the

histograms for the full-particle model, we use 40 bins and compute bin averages using ac-

cumulated mobile and immobile particles at each realisation. For the two signal functions

(2.3(a)) and (2.3(b)) we perform 5000 and 500 realisations, respectively.

Figures (4.2) and (4.3) collate simulations of both noninteracting (green) and interact-

ing states at t = 0.3 when N = 102 particles are evenly distributed in the domain at

the beginning of time. Here we cleave to the turning frequency (1.12) where we define

asymmetric transition rates as

λ+
0 = λ+

− = λ0 − cχSx, λ−0 = λ−+ = λ0 + cχSx, λ0
+ = λ0

− = λ0 (4.28)

We find 43.75% collisions when 3.2% of the narrow channel is occupied (blue) while fully

collisions when 20% is occupied (red). As in previous chapters, the purpose of having

collision-free and single-file diffusion plots is to use them as reference points to see the

competition between the most favourable signal environment and the volume exclusion

of finite-size particles. We see a good match between the kinetic models (solid lines) and

the particle simulations (circles) for noninteracting and narrow channel systems in all the

subpopulation and total density plots. But the usual discrepancy between the two for

a collision system is vivid in the domain centre. Here, the signal gradient is high, and
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Figure 4.2: Transient marginal densities from the signal function (2.3(a)) when ε = 0 (green),
δ(0.002, 0.01) = 0.4375 (blue) and δ(0.005, 0.01) = 1 (red) at t = 0.3. The particle simulations
(circles) are obtained by 5000 realisations.
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Figure 4.3: Transient marginal densities from the signal function (2.3(b)) when ε = 0 (green),
δ(0.002, 0.01) = 0.4375 (blue) and δ(0.005, 0.01) = 1 (red) at t = 0.3. The particle simulations
(circles) are obtained by 500 realisations.
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that results in notable excluded-volume effects. Initially, 1/3 of the total population is

uniformly distributed stationary particles with a constant transition rate; however, they

behave according to the extracellular chemical concentration. In fact, we find higher den-

sities around the peaks of the signal functions (top left graphs in Figures (4.2) and (4.3)).

The physical interpretation of such output one can think of is that it counts the density

of immobile particles that have already moved in the favourable direction (direction of

increasing S) with the random speed transformations.

The next four figures illustrate travelling bands of subpopulations under different transi-

tion rates. For all the plots, we begin by taking a set of N = 135 particles and distributing

them according to a step function:

p+
0 (x) = (55/N)1[0.1,0.3], p0

0(x) = (35/N)1[0.4,0.6], p−0 (x) = (45/N)1[0.7,0.9]

The particle size is fixed to ε = 0.002 so that the volume fraction remains constant

during model comparison. We, therefore, change the width of the channel to 0.004 to

form a collision system. We avoid full-particle simulation results to produce more concise

graphs. In Figure (4.4), we have considered the simple case where particles do not un-

dergo velocity transitions. This comparison purely explains the importance of excluded

volume effects on the propagating wavefronts. In particular, solutions of the noninteract-

ing system are simply waves travelling right and left at constant speed c and the initial

distribution p0
0(x) itself. We find the nonlinear system obey the noninteracting particles

linear system up to t = 0.05; thereafter, both right and left moving fronts collide with

the stationary wave. The disturbances move along the characteristic curves at speeds

{cξ(p− − p+), c+ cξ(p0 + 2p−),−c− cξ(p0 + 2p+)}, indicating that the existing speed of

a particle is increased or decreased by other particles moving in different directions (O(ξ)

terms). These shifts are apparent at t = 0.3; however, ignorable for p0(x, 0.5) (see bottom

left plot in Figure 4.4).

To produce Figure (4.5), we let the symmetric transition rates be positive constants such

that λ+
− = λ−+ = α, λ+

0 = λ0
+ = β, λ0

− = λ−0 = γ. This means, we are looking at

particles moving in one-dimension subject to an unbiased velocity jump process. This is

the dominating process that dictates the behaviour of the particles until t = 0.05. Let

us correlate those outputs with the transition rates in the following way. In p0(x, 0.05),

the left density, corresponding to β, is lower than the right density, corresponding to γ,

because β < γ. For p+(x, 0.05) and p−(x, 0.05), the gain from stationary particles is

higher than that of oppositely moving particles as α < β < γ. Despite the subpopulation

density fluctuations, the total density does not vary much from the initial profile. After
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Figure 4.4: Transient marginal densities at various times without velocity transitions.
Solid lines; green when δ(0, 0.01) = 0, blue when δ(0.002, 0.01) = 0.4375 and red when
δ(0.002, 0.004) = 1. The dash-dot black line is the initial travelling band.
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Figure 4.5: Transient marginal densities for symmetric transition rates α = 1.5, β = 2.5 and
γ = 3.5. Solid lines; green when δ(0, 0.01) = 0, blue when δ(0.002, 0.01) = 0.4375 and red when
δ(0.002, 0.004) = 1. The dash-dot black line is the initial travelling band.
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Figure 4.6: Transient marginal densities for the signal function (2.3(a)). Solid lines; green
when δ(0, 0.01) = 0, blue when δ(0.002, 0.01) = 0.4375 and red when δ(0.002, 0.004) = 1. The
dash-dot black line is the initial travelling band.

t = 0.1, waves distort due to particle interactions, and wave shifts become noticeable even

in stationary particle’s densities (see plots in Figure 4.5 at t = 0.5).

Figures (4.6) and (4.7) are generated from the non-symmetric transition rates (4.28) to

analyse travelling bands during biased velocity jump processes. The outcomes for left

and right moving wavefronts are similar to those in the constant speed model (see Figures

2.8 and 2.9), except now we have distribution curves for immobile particles. The ini-

tial profile, in which stationary particles are concentrated in a strip in the centre, spreads

more slowly for point particles than for finite-size particles, indicating that immobile point

particles have already moved in the direction of increasing S with the random velocity

transformations. Moreover, we find continuing kinetic waves (see plots in Figure 4.6 at

t = 0.2) and a low number of velocity transitions (the dashed blue lines in Figure 4.7 at

t = 0.03) under lower baseline frequencies.
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Figure 4.7: Transient marginal densities for the signal function (2.3(b)). Solid lines; green
when δ(0, 0.01) = 0, blue when δ(0.002, 0.01) = 0.4375 and red when δ(0.002, 0.004) = 1. The
dash-dot black line is the initial travelling band, and the dashed blue line is for base frequency
λ0 = 10.
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4.5 Stationary solutions

In section (2.7), we discussed the equilibria of a system which consists of bidirectional

moving particles with a constant speed. The approach works for the current system

with the same flux function as the immobile particles do not contribute to it. From the

reflective boundary condition, the flux vanishes, and if p+ = p− = p (say), the equation

(4.19b) returns

p0 = Λp, where Λ =
(λ+

0 + λ−0 )

(λ0
+ + λ0

−)
.

Since the total stationary density pst(x) = p+ + p−+ p0, we get p = pst
(2+Λ)

. Inserting these

results into (4.19a) (or 4.19c) and rearranging the terms gives the following ODE for pst:

c
dpst
dx

+ 2cξpst
dpst
dx

+ (λ+
0 − λ0

+Λ + λ+
− − λ−+)pst = 0,

where ξ = δε(N − 1). Hence, the stationary solution for the kinetic model (4.18) satisfies

the nonlinear equation

ln pst + 2ξpst +
1

c

∫ x

0

(λ+
0 − λ0

+Λ + λ+
− − λ−+)dy = lnA

for an arbitrary constant A. When ε → 0, the above equation produces the stationary

solution for the interaction-free system

pst(x) = A exp(−1
c

∫ x
0

(λ+
0 − λ0

+Λ + λ+
− − λ−+)dy), (4.29)

while finite-size particles yield

pst(x) =
1

2ξ
W
[
2ξA exp(−1

c

∫ x
0

(λ+
0 − λ0

+Λ + λ+
− − λ−+)dy)

]
with the normalisation condition

L∫
0

pst(x)dx = 1

(4.30)

The solution (4.30) is valid for both the collision (δ = 1) and narrow channel systems.

4.5.1 Comparison with the full-particle system The microscopic stationary den-

sity of the collision system is different from that of the narrow channel due to illegal

configurations. The MH algorithm (2.7.2) defined in the second chapter works for the
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current narrow channel system in the same fashion, except now we have a different en-

ergy function. However, for the collision system, we must redefine the N -dimensional

microscopic density and modify the algorithm accordingly.

Up until the point of illegal configurations, we can define the stationary density for the

full-particle system (4.2) as

Pst(~x) = A exp
(
−1
c

N∑
i=1

∫ xi
0

(λ+
0 − λ0

+Λ + λ+
− − λ−+)dy

)
for ~x ∈ ΩN

ε

Since a single-file channel prevents overlaps, Pst is not defined for configurations ~x ∈
ΩN \ ΩN

ε . However, it is possible to extend it in the entire configuration space ΩN as

Pst(~x) = A exp(−Φ(~x)) (4.31)

by introducing the energy associated to arrangements

Φ(~x) =


1
c

N∑
i=1

∫ xi
0

(λ+
0 − λ0

+Λ + λ+
− − λ−+)dy, ~x ∈ ΩN

ε

∞, otherwise.

Hence, the MH algorithm allows us to sample configurations directly from the density

(4.31) as follows:

S1 Select a particle i at random and generate a candidate yi = xi + hX where X ∼
N(0, 1) and h a tunable parameter.

S2 Compute the difference ∆Φ between the current and modified configurations

S3 Accept yi with probability p = min(1,exp(-∆Φ)) and set xi+1 = yi, otherwise set

xi+1 = xi

For the numerical example, we consider following two cases:

Symmetric transition rates

When λij = λji ∀i 6= j, the multiplier Λ becomes one, and the reaction term (due to the

random choice of velocity) vanishes. Hence the symmetry between turning rates leads to

the outcomes; p0 = p, and constant stationary density pst = 1
2ξ
W (2ξA). Then applying

the normalisation condition yields, pst = 1
L

. That is, distribution fall into a uniform

steady state.

Asymmetric transition rates

Inserting transition rates (4.28) to the multiplier Λ, we get p0 = p, resulting in the



4.5 Stationary solutions 105

0 0.2 0.4 0.6 0.8 1

x

0

0.5

1

1.5

2

2.5

3

3.5
(a)

0 0.2 0.4 0.6 0.8 1

x

0

1

2

3

4

5

6

7

8

9
(b)

Figure 4.8: Stationary solutions of the kinetic model for N = 102 point (green), narrow channel
(blue) and collision (red) particles. Densities in (a) from signal (2.3(a)) with ε = 0.002 and in
(b) from signal (2.3(b)) with ε = 0.001. The results from the MH algorithm (circles) use 106

MH steps for noninteracting particles and 107 for hard-core particles.

equilibrium solution pst = 1
2ξ
W
[
2ξAe3χ(S(x)−S(0))

]
from (4.30). We use Matlab function

fminsearch of norm of the integral to estimate the constant A.

Figure (4.8) compares the model and simulation results for the latter case with N = 102

and χ = 1. We take two different particle sizes for the signal functions, ε = 0.002 for

(2.3(a)) and ε = 0.001 for (2.3(b)), to reduce the disparity between the model predictions

and the stochastic simulations, especially in the collision system. Both point and finite-

size particles are distributed inside a narrow flattened pipe of length 1, which form a

narrow channel at width l = 0.01 and a collision system at l = 2ε. The histograms for the

MH algorithm are produced by dividing the domain into 40 bins. An acceptance rate in

the 0.1 order of magnitude, and 107 steps of the algorithms produce the desired outputs.

As in time-dependent solutions, we see a lower density around the peak of the signal

functions for finite-size particles. The peaks are even much lower in the single-file channel

unless for considerably smaller particle size. The stationary solutions of the kinetic model

agrees well with the particle simulations except in this situation. In fact, the discrepancy

is notable in 4.8(b) relative to 4.8(a) despite having only half of the occupied fraction.

This is because the gradients of signal function (2.3(b)) are steeper near the centre than

that of (2.3(a)).
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4.6 Summary and discussion

We find many efforts to describe interacting systems with discrete velocity distributions,

specifically collision systems, using a discrete-velocity Boltzmann (DVB) system where

a collision operator describes relations for velocities before and after encounters. How-

ever, to our knowledge, no attention has been given to finite-size species that experience

both collisions and instantaneous velocity changes at a given set of speed values. In this

chapter, we examined such a scenario by predicting the macroscopic descriptions of the

particle-level attributes in a single-file and narrow channel. Specifically, we allowed im-

mobile species of hardcore to interact with the same species of having a constant speed

and extended that model for a finite set of speeds. The result is a system of nonlinear

transport equations for the marginal probability density associated with each subpopula-

tion. The number of nonlinear transport terms depended on the pairwise subpopulation

interactions.

We have assessed the validity of our kinetic models to predict the system’s behaviour

by comparing its numerical solutions with the simulations of the discrete particle-based

model. Both the stationary and time-dependent simulations agreed well under low occu-

pied fractions, particularly in the narrow channel, supporting the notion that our PDE

model captures the features at the particle level rather well. With suitable initial condi-

tions, the subpopulation densities exhibit travelling bands under non-tumbling, symmetric

and bias asymmetric transition rates. These time-dependent solutions are non-dissipative

as we have considered a systematic approach based on characteristics for hyperbolic bal-

ance laws. The characteristic speeds were enhanced further by the stationary particle

density causing outward shifts in the subpopulations.

An interesting extension in future work would be introducing a soft-core potential for

particle interactions in the discrete velocity jump processes. Individuals in a real-life sys-

tem may repel (or attract) each other over a region rather than on an excluded volume

created by the particle’s finite size. A simple repulsive soft pair potential like the expo-

nential [61] or a repulsive–attractive potential like the Lennard–Jones [91] is appropriate

for such systems to account for the softness.



5
Hard-core interactions in two

dimensions

5.1 Introduction

Hard-core interactions in velocity-jump processes are typically observed in a two or three-

dimensional domain, whereas we have thus far introduced them only in one dimension.

Let us, therefore, extend the one-dimensional collision system examined by Ralph et al.

[81] in a higher-dimensional setting. Particularly, we focus on the two-dimensional analy-

sis, but the methods would easily work out in a three-dimensional regime. The equations

derived in the previous work are quite similar to the kinetic model we have derived in

Chapter 2, though we allowed particles to pass each other like in a narrow channel. In

a much larger domain, an ample amount of space will be available for the occupants to

move freely and pass each other without overlapping. Nevertheless, a collision may occur

if one particle blocks the others’ trajectory. Although it is demanding, we can consider

this work as a direct extension of a one-dimensional collision system.

The behaviour of groups of particles moving according to a velocity-jump process is a clas-

sical problem in higher-dimensional domains. However, as we stated before, many models

ignore excluded-volume effects; if one wishes to incorporate volume exclusion, just as

in unidirectional motion, a common approach is to use agent-based models (ABM). For

instance, one can write the mean-field approximation model for the four-directional mo-

tion on a lattice (pedestrian flow [66]) and derive the diffusive continuum description [32].

107
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The travel directions are pre-defined, like left, right, up and down; therefore, ABM models

may be restrictive and sometimes unreliable. The recent researches by Franz et al. [31],

and Estrada-Rodriguez and Gimperlein [29] derived population-level models for velocity

jumps in two dimensions which aligns with our work. Both studies adopted the molecular

chaos assumption, and collision treatment has emerged in the source term. Besides, the

former utilised the hypothesis with a first-order correction term that emerged in Bruna’s

work [12] from the method of matched asymptotic expansion, which may not be directly

applicable to the velocity changes at the collision boundaries.

As in previous chapters, we begin by writing the particle-based description of the system,

which consists of, in the probability space, a PDE for the joint probability density func-

tion. Reduction of this high-dimensional model from N interacting finite-size particles to

the evolution of the one-particle marginal density explained in section (5.3). In the limit

of small volume fraction, asymptotic analysis is performed, resulting in a nonlinear hy-

perbolic equations for the one-particle density function analogous to the one-dimensional

model (33) derived in [81].

Generally, two types of collisions often consider in higher dimensions; reflective and elas-

tic. In the one-dimensional constant speed case, elastic and reflective collisions were one

in the same thing. We are interested in systems with speed preserving collisions where

particles always maintain a constant speed c ∈ R+. Therefore, we examine the system

when particles exchange their velocities during close encounters. We shall detail later the

situation when particles reflect directly off each other. Note that, exchanging velocities

are different from reflective collisions as they preserve both total momentum and energy

in the system. For example, take v = (c, 0) and u = (0, c) to be the initial velocities, and

suppose the collision occurred perpendicular to x direction. Then resulting velocities can

be derived as follows.

For exchange velocities:

v′ = u; u′ = v

v′ = (0, c); u′ = (c, 0)

For reflective collisions:

v′ = v− 2(v · n)n; u′ = u− 2(u · n)n

v′ = (c, 0)− 2[(c, 0) · (0, 1)](0, 1); u′ = (0, c)− 2[(0, c) · (0,−1)](0,−1)

v′ = (c, 0); u′ = (0,−c)
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For elastic collisions:

v′ = v− [(v− u) · n]n; u′ = u + [(v− u) · n]n

v′ = (c, 0)− [(c,−c) · (0, 1)](0, 1); u′ = (0, c) + [(c,−c) · (0,−1)](0,−1)

v′ = (c, c); u′ = (0, 0)

5.2 Particle level model

Let us consider a system of N identical disks in a two dimensional domain, Ω = [0, L]×
[0, L]. This is the space available to a particle centre Xi(t) at time t ≥ 0 with no-flux

boundary condition and it does not exactly correspond to the physical domain. The

particles are hard cores of diameter ε(� L); therefore, the actual free space is somewhat

smaller than Ω. When a particle’s speed is constant, the dynamics of the particle is

governed by
dXi

dt
= Vi for 1 ≤ i ≤ N

where Vi = c(cos θi, sin θi) with c being any positive real value and θi ∈ [0, 2π]; the set of

possible orientations that can be defined through physical limitations in applications. We

assume that the system does not have external forces limiting or preventing the particles’

motion and turning velocity back to zero. But as before, particles switches its direction

of motion according to independent Poisson processes with rates λ(Xi, Vi) > 0 or collision

with another particle or the domain wall. If the domain dimensions are larger than the

particle’s size, we cannot expect many collisions.

Now we can write the equivalent higher dimensional transport equation in terms of the

joint probability density P (r,v, t) for the system described above.

∂P

∂t
+

N∑
i=1

~vi · ∇~riP +
N∑
i=1

(
λ(~ri, ~vi)P (r,v, t)− λ(~ri,−~vi)P (r, siv, t)

)
= 0 (5.1)

where r = (~r1, ~r2, ..., ~rN) ∈ ΩN with ~ri = (xi, yi) and v = (~v1, ~v2, ..., ~vN) ∈ V N . Since

a particle can only change its orientation, we can define the velocity space V = cΘ,

where Θ contains unit vectors. The term λ(~ri,−~vi) is the rate at which particle i reverses

it’s direction and si is the operator which represents this transformation in the density

function. Due to hard-core interactions, equation (5.1) is defined in the configuration

space (different from the physical domain) ΩN
ε × V N , where

ΩN
ε = {r ∈ ΩN : ||~ri − ~rj|| > ε ∀i 6= j}.
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Initially, the particles are independently and identically distributed in the domain; hence,

the initial condition

P (r,v, 0) = P0(r,v) (5.2)

is invariant to permutations of the particle labels. We assume reflective collisions with

the wall; hence, the probability density satisfies the wall-particle boundary condition,

P (r,v, t) = P (r, siv, t) on ∂Ω (5.3)

where si is the operator that changes the angle when ith particle hit the wall. During

particle interactions, two particles collide at a distance ε and exchange their velocities.

So the boundary condition for the collision between particles i and j is

P (r,v, t) = P (r, sijv, t) on ||~ri − ~rj|| = ε (5.4)

where sij is the operator that swaps the angles of the interacting particles. The above sys-

tem is higher dimensional, and we have dealt with such systems in our previous chapters.

In the next section, we derive the population-level model using similar techniques.

5.3 Population level model

We are interested in a lower-dimensional model given in terms of the marginal density

p(~r1, ~v1, t) =
∫
P (r,v, t)d~r2...d~rNd~v2...d~vN , which is much more realistic and solvable.

As before, the reduction process begins with the low volume fraction assumption. If N

particles occupy the two dimensional domain, chosen a particle, there are N − 1 possible

pair interactions and (N−1)(N−2)
2

triplets. Since the particle centres are separated by a

distance of O(ε), in the configuration space, the total volume occupied by two particles

is O(Nε2) and three particles is O(N2ε4) 1. During particle-particle-wall encounter, the

volume fraction is O(Nε3). We take the domain to be large enough (volume of O(1))

so that under low volume fraction, the dominant contribution is when two particles are

close.

So let us restate the individual-based model and the boundary conditions for two disks

at (~r1, ~r2) ∈ Ω2
ε with velocities (~v1, ~v2) ∈ V 2. The space available for disk 2 when disk

1 is fixed at ~r1 defines as Ω(~r1) = Ω \ Bε, where Bε = {~r2 ∈ Ω : ||~r1 − ~r2|| ≤ ε}. On

the configuration space, Ω(~r1) is a slice at ~r1. The excluded area defines here split the

boundary into two: ∂Bε, the collision boundary; and ∂Ω \ ∂Bε, the reflective boundary.

1A more general description is given in [12]
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Then equation (5.1) reads

∂P

∂t
+ ~v1 · ∇~r1P + ~v2 · ∇~r2P + λ(~r1, ~v1)P − λ(~r1,−~v1)P (~r1, ~r2,−~v1, ~v2, t)+

λ(~r2, ~v2)P − λ(~r2,−~v2)P (~r1, ~r2, ~v1,−~v2, t) = 0
(5.5a)

P (~r1, ~r2, ~v1, ~v2, t) = P (~r1, ~r2, ~v1, ~v∗, t), ~r2 ∈ ∂Ω (5.5b)

P (~r1, ~r2, ~v1, ~v2, t) = P (~r1, ~r2, ~v2, ~v1, t) on ||~r1 − ~r2|| = ε (5.5c)

where ~v∗ is the reflected velocity for wall collision given by ~v∗ = ~v2 − 2(~v2 · ~n)~n.

As has been the case throughout this thesis, we aim to reduce the equation (5.5a) term

by term and derive the population level model for the marginal density

p(~r1, ~v1, t) =

∫
Ω(~r1)×V

P (~r1, ~r2, ~v1, ~v2, t)d~r2d~v2.

Begin integrating the the first term yields∫
Ω(~r1)×V

∂P

∂t
d~r2d~v2 =

∂p

∂t
(5.6)

as Ω(~r1)× V is independent of t. For the second integral, we use the Reynold’s transport

theorem.∫
Ω(~r1)×V

(~v1 · ∇~r1P )d~r2d~v2 = ~v1 · ∇~r1
∫

Ω×V

Pd~r2d~v2 −
∫

∂Bε×V

(~v1 · ~n)PdS~r2d~v2

= ~v1 · ∇~r1p−
∫

∂Bε×V

(~v1 · ~n)P (~r1, ~r2, ~v1, ~v2, t)dS~r2d~v2

(5.7)

Here dS~r2 is the surface component with respect to ~r2. On the collision surface, the

outward normal is ~n = (~r1 − ~r2)/||~r1 − ~r2|| and it is pointing into the ball Bε. In fact, we

have a second outward pointing normal at the boundary of Ω, which we denote by ~nΩ.

Also note that, ∂Bε(~r1) is the only moving boundary which contributes to the theorem.

Since the particle size is fixed over time, the velocity of the boundary is the same as its

centre.

Now, using the Divergence theorem,∫
Ω(~r1)×V

(~v2 · ∇~r2P )d~r2d~v2 =

∫
∂Ω∪∂Bε×V

(~v2 · ~n)PdS~r2d~v2
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To evaluate the integral along the wall ∂Ω, we define two subsets

V +(~nΩ) = {~v ∈ V : ~v · ~nΩ > 0} and V −(~nΩ) = {~v ∈ V : ~v · ~nΩ < 0}.

Then,∫
∂Ω×V

(~v2 · ~nΩ)PdS~r2d~v2 =

∫
∂Ω×V +

(~v2 · ~nΩ)PdS~r2d~v2 +

∫
∂Ω×V −

(~v2 · ~nΩ)PdS~r2d~v2

= −
∫

∂Ω×V −

(~v2 · ~nΩ)P (r, ~v1, ~v∗, t)dS~r2d~v2 +

∫
∂Ω×V −

(~v2 · ~nΩ)PdS~r2d~v2

= 0 (from (5.5b))

Therefore, the third term simplifies to∫
Ω(~r1)×V

(~v2 · ∇~r2P )d~r2d~v2 =

∫
∂Bε×V

(~v2 · ~n)P (~r1, ~r2, ~v1, ~v2, t)dS~r2d~v2 (5.8)

In the fourth term, λ is independent of ~r2; therefore, one can simply integrate to obtain∫
Ω(~r1)×V

λ(~r1, ~v1)P − λ(~r1,−~v1)P (~r1, ~r2,−~v1, ~v2, t)d~r2d~v2 =

λ(~r1, ~v1)p− λ(~r1,−~v1)p(~r1,−~v1, t)

(5.9)

Since −~v2 = c (cos(π + θ2), sin(π + θ2)), the integral of λ(~r2,−~v2)P (~r1, ~r2, ~v1,−~v2, t) over

V when {θ2 : π ≤ θ2 ≤ 2π} is same as the integral of λ(~r2, ~v2)P (~r1, ~r2, ~v1, ~v2, t) when

{θ2 : 0 ≤ θ2 ≤ π}. Thus, integral of the fifth term over V vanishes. Now combining (5.6),

(5.7), (5.8) and (5.9), a single particle transport equation takes the form

∂p

∂t
(~r1, ~v1, t) + ~v1 · ∇~r1p(~r1, ~v1, t) +

∫
∂Bε(~r1)×V

[(~v2 − ~v1) · ~n]P (~r1, ~r2, ~v1, ~v2, t)dS~r2d~v2

+ λ(~r1, ~v1)p− λ(~r1,−~v1)p(~r1,−~v1, t) = 0

(5.10)

The next step is to find an estimation for the collision integral over the collision surface

∂Bε(~r1), where particles are more correlated. We first transform the integral into a surface

integral over unit disk by taking the normal ~n such that ~r2 = ~r1 + ε~n. Then, further
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separate the collision boundary into sub-boundaries, ∂B+
1 and ∂B−1 . This yield

I =

∫
∂Bε(~r1)×V

[(~v2 − ~v1) · ~n]P (~r1, ~r2, ~v1, ~v2, t)dS~r2d~v2

=

∫
∂B1(0)×V

[(~v2 − ~v1) · ~n]P (~r1, ~r1 + ε~n,~v1, ~v2, t)(−ε)dS~nd~v2

=

∫
∂B+

1 (0)×V

[(~v2 − ~v1) · ~n]P (~r1, ~r1 + ε~n,~v1, ~v2, t)(−ε)dS~nd~v2

+

∫
∂B−1 (0)×V

[(~v2 − ~v1) · ~n]P (~r1, ~r1 + ε~n,~v1, ~v2, t)(−ε)dS~nd~v2

where ∂B−1 (0) = {~n : (~v2 − ~v1) · ~n < 0} and ∂B+
1 (0) = {~n : (~v2 − ~v1) · ~n > 0}. From the

collision boundary condition (5.5c), we find

I =

∫
∂B−1 (0)×V

ε[(~v2 − ~v1) · ~n]
(
P (~r1, ~r1 − ε~n,~v2, ~v1, t)− P (~r1, ~r1 + ε~n,v, t)

)
dS~nd~v2

which still contains the unknown joint density function P . So to evaluate I, we suppose

the independent motion of far off particles whereas their correlation at nearby. The

methodology is similar to what we have discussed in section 4.3.1.2, except that now it

should be implemented in two dimensions. Hence, we get

P (~r1, ~r1 + ε~n,v, t) = q(~r1, ~v1, t)q(~r1, ~v2, t) + ε
[
q(~r1, ~v1, t)~n · ∇~r1q(~r1, ~v2, t) + P

(1)
out(~r1,v, t)

]
(5.11)

where P
(1)
out is the first order correction of the outer solution. However, the same approxi-

mation would not work for every interacting system. According to the physical description

of our model, particles exchange their velocities during close encounters meaning the lead-

ing order term satisfies the collision boundary condition (5.5c), enabling us to write this

approximation. On the contrary, when the system experiencing reflective (or elastic)

collisions, the order O(1) terms may not satisfy the collision boundary condition. For

example, let us recall the velocities during reflective collisions given in the introduction:

when ~v1 = (c, 0), ~v1
′ = (c, 0) and ~v2 = (0, c), ~v2

′ = (0,−c). Then it is apparent that the

leading orders q(~r1, ~v1, t)q(~r2, ~v2, t) 6= q(~r1, ~v1
′, t)q(~r2, ~v2

′, t). At that point, one can utilise

the method of matched asymptotic expansion to evaluate the collision integral.

Now, substituting the approximation (5.11) to the integral I, O(ε) terms vanishes and
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O(ε2) terms yield,

O(ε2) :

∫
∂B−1 (0)×V

[(~v2 − ~v1) · ~n]
(
− q(~r1, ~v2, t)~n · ∇~r1q(~r1, ~v1, t)− q(~r1, ~v1, t)~n · ∇~r1q(~r1, ~v2, t)

+ P
(1)
out(~r1, ~v2, ~v1, t)− P (1)

out(~r1, ~v1, ~v2, t)
)
dS~nd~v2

=

∫
∂B−1 (0)×V

[(~v2 − ~v1) · ~n]
(
−∇~r1 [q(~r1, ~v1, t)q(~r1, ~v2, t)] · ~n

)
dS~nd~v2

+

∫
∂B−1 (0)×V

[(~v2 − ~v1) · ~n]
(
P

(1)
out(~r1, ~v2, ~v1, t)− P (1)

out(~r1, ~v1, ~v2, t)
)
dS~nd~v2

=

∫
V

π

2
(~v1 − ~v2) · ∇~r1 [q(~r1, ~v1, t)q(~r1, ~v2, t)]d~v2

To write the expression back in the original variables we use the normalisation condition

on P which yields, q(~r1, ~v1, t) = p(~r1, ~v1, t)+O(ε2). Moreover, in a system of N individuals,

pairwise interactions leads to N − 1 excluded regions. Hence derives the following two

dimensional kinetic model for p(~r1, ~v1, t) to O(ε2),

∂p

∂t
(~r1, ~v1, t) + ~v1 · ∇~r1p(~r1, ~v1, t) +

∫
V

π

2
ε2(N − 1)(~v1 − ~v2) · ∇~r1 [p(~r1, ~v1, t)p(~r1, ~v2, t)]d~v2

+λ(~r1, ~v1)p(~r1, ~v1, t)− λ(~r1,−~v1)p(~r1,−~v1, t) = 0

(5.12)

together with the initial condition

p(~r1, ~v1, 0) = p0(~r1, ~v1), where p0(~r1, ~v1) =

∫
ΩN−1
ε (~r1)×V N−1

P0(r,v)d~r2...d~rNd~v2...d~vN

and the reflective boundary condition p(~r1, ~v1, t) = p(~r1, ~v∗, t) on ∂Ω.

In the particular case of ε = 0, N particles are independent in the domain ΩN and we

recover the noninteracting linear model from (5.12). This is the long-established velocity-

jump model that describes the motion of organisms undergoing a stochastic reorientation

event in higher dimensions [30, 71].

5.3.1 Velocity-space discretisation The nonlinear transport model can also be used

to analyse systems that consist of a finite set of velocities. Such systems mimic the motion

of persistent walkers on a lattice when each lattice site is occupied by at most one particle
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or none. For instance, when individuals have an assigned direction of motion; vertically

or horizontally, we may take V = {c(cos θ, sin θ) : θ = kπ
2
, k = 0, 1, 2, 3}, possibly the

simplest extension of the one-dimensional collision system. This is a well-known square

lattice structure studied by Gavagnin and Yates [32] when each agent has been assigned

a polarisation in one of the four directions of the lattice. The agent’s velocity defined

by the number of lattice sites moved during a single movement event. Moving on to the

next example, the case when V = {c(cos θ, sin θ) : θ = kπ
3
, k = 0, 1, 2, 3, 4, 5} is more like

an agent attempting to undergo a migration event choosing a target site from six nearest

neighbour lattice sites [89].

In general, we can discretise the angular domain [0, 2π] into m intervals of size ∆θ = 2π/m

and reformulate an equation capable of describing any situation like the above. In the

divided domain, set Ii = [θi−1/2, θi+1/2] for i = 0, 1, ...,m − 1, and approximate p(~r1, θ, t)

by a piecewise constant function pi(~r1, t)/∆θ, where pi(~r1, t) =
∫
Ii

p(~r1, θ, t)dθ. We further

ease the notations by setting θ1 = θ and θ2 = φ correspond to ~v1 and ~v2 in (5.12) and

integrate it with respect to θ ∈ Ii to obtain the PDE for pi(~r1, t).

Begin integrating the first term:∫
Ii

∂p

∂t
(~r1, θ, t)dθ =

∂pi
∂t

(~r1, t) (5.13)

Integrating the second term,∫
Ii

~v1 · ∇~r1p(~r1, θ, t)dθ =
c

∆θ

∫
Ii

(cos θ, sin θ) · ∇~r1pidθ

=
sin(∆θ/2)

∆θ/2
~vθi · ∇~r1pi(~r1, t)

(5.14)

where ~vθi = c(cos θi, sin θi). By discretising the existing integral V and applying the

second integral over Ii, the third term simplifies as

∫
Ii

2π∫
0

πε2(N − 1)(~v1 − ~v2) · ∇~r1 [p(~r1, θ, t)p(~r1, φ, t)]dφdθ

=
cπε2(N − 1)

∆θ2

m−1∑
j=0

∇~r1pipj ·
∫
Ii

∫
Ij

[(cos θ, sin θ)− (cosφ, sinφ)]dφdθ

= πε2(N − 1)
sin(∆θ/2)

∆θ/2

m−1∑
j=0

(~vθi − ~vθj) · ∇~r1pipj for i 6= j

(5.15)



116 Hard-core interactions in two dimensions

Substituting the bias term for λ, the fourth term becomes∫
Ii

λ(~r1, θ)p(~r1, θ, t)dθ =

∫
Ii

(
λ0 − cχ(cos θ, sin θ) · ∇~r1S(~r1)

)
p(~r1, θ, t)dθ

= piλ0 −
cχpi
∆θ
∇~r1S(~r1) ·

∫
Ii

(cos θ, sin θ)dθ

= λi(~r1)pi(~r1, t)

(5.16)

where λi(~r1) = λ0 − sin(∆θ/2)
∆θ/2

χ~vθi · ∇~r1S(~r1). Similarly, we can evaluate the fifth term and

write ∫
Ii

λ(~r1, θ + π)p(~r1, θ + π, t)dθ = λi+π(~r1)pi+π(~r1, t) (5.17)

where λi+π(~r1) = λ0 + sin(∆θ/2)
∆θ/2

χ~vθi ·∇~r1S(~r1). Combining (5.13), (5.14), (5.15), (5.16) and

(5.17), we get the discretised version of (5.12):

∂pi
∂t

(~r1, t) +
sin(∆θ/2)

∆θ/2
~vθi · ∇~r1pi(~r1, t) + πε2(N − 1)

sin(∆θ/2)

∆θ/2

m−1∑
j=0

(~vθi − ~vθj) · ∇~r1pipj+

λi(~r1)pi(~r1, t)− λi+π(~r1)pi+π(~r1, t) = 0

(5.18)

5.4 Diffusion limit

To analyse systems on a macroscopic scale, one can compute the diffusion limit of a trans-

port equation. In fact, with a high frequency of directional changes, the motion resembles

diffusion. In our previous discrete velocity-jump models, we investigated the long-time

dynamics of the system by applying algebraic operations on the subpopulation probability

distributions following up with an asymptotic expansion. In higher dimensions, one needs

to use the analogous first two velocity moments:

the number density (zeroth moment): ρ(~r, t) =
∫
V

p(~r,~v, t)d~v; and

the momentum flux (first moment) : j(~r, t) = ρ(~r, t)u(~r, t) =
∫
V

p(~r,~v, t)~vd~v,

where u is the average velocity. The process yields a system of two equations that in-

cludes the third moment, and it is essential to close this system before investigating the

parabolic limit. To this end, we use the Cattaneo approximation, which is studied by

Hillen [39].
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To begin with, let us first integrate (5.12) over V 2:

∂

∂t

∫
V

p(~v1)d~v1 +∇~r1 ·
∫
V

p(~v1)~v1d~v1 +
π

2
ε2(N − 1)∇~r1 ·

∫
V

∫
V

(~v1 − ~v2)[p(~v1)p(~v2)]d~v1d~v2

+

∫
V

(
λ(~r1, ~v1)p(~v1)− λ(~r1,−~v1)p(−~v1)

)
d~v1 = 0

The third and the fourth integrals vanishes; therefore, we obtain the continuity equation

∂ρ

∂t
+∇~r1 · j = 0 (5.19)

Next, multiplying (5.12) by ~v1 and again integrating over V ,

∂j

∂t
+∇~r1 ·

∫
V

p(~v1)~v1~v1d~v1 +
π

2
ε2(N − 1)∇~r1 ·

ρ
∫
V

p(~v1)~v1~v1d~v1 − |j|2


+2λ0j− 2∇~r1S ·
∫
V

p(~v1)~v1~v1d~v1 = 0

(5.20)

where
∫
V

p(~v1)~v1~v1d~v1 is the second velocity moment. To close the system we replace this

higher moment from the Cattaneo approximation (see appendix (A.6)):∫
V

p(~v1)~v1~v1d~v1 =
c2

2
ρI (5.21)

where I is the 2× 2 identity matrix. Substituting (5.21) and the turning frequency (1.12)

in the integrated equation (5.20), we derive the moment system

∂ρ

∂t
+∇~r1 · j = 0 (5.22a)

∂j

∂t
+
c2

2
∇~r1ρ+

π

2
ε2(N − 1)∇~r1

(
(cρ)2

2
− |j|2

)
+ 2λ0j− c2χ(S)ρ∇~r1S = 0 (5.22b)

with the boundary condition η · j = 0 on ∂Ω (5.22c)

2we write p(~r1, ~v1, t) = p(~v1) to ease the notation
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where η is the outward normal. We now apply the parabolic scaling t = τ/γ2 and ~r1 = ~r/γ

for a sufficiently small parameter γ > 0. So the system (5.22) becomes

γ
∂ρ

∂τ
+∇~r · j = 0

γ2 ∂j

∂τ
+
c2

2
γ∇~rρ+

π

2
ε2(N − 1)γ∇~r

(
(cρ)2

2
− |j|2

)
+ 2λ0j− c2χ(S)γρ∇~rS = 0

Now using the regular perturbation expansion ρ = ρ0 + γρ1 + ... and j = j0 + γj1 + ...,

we get

O(1) :∇~r · j0 = 0

2λ0j0 = 0

which implies the trivial solution j0 = 0

O(γ) :
∂ρ0

∂τ
+∇~r · j1 = 0

c2

2
∇~rρ0 +

π

4
ε2(N − 1)∇~r(cρ0)2 + 2λ0j1 − c2χ(S)ρ0∇~rS = 0

eliminating j1 from the equations we get the drift-diffusion equation

∂ρ0

∂τ
= ∇~r ·

[
c2

4λ0

(
1 + πε2(N − 1)ρ0

)
∇~rρ0 −

c2ρ0

2λ0

χ(S)∇~rS
]
, (5.24)

where the effective diffusion coefficient D(ρ) is given by c2

4λ0

(
1 + πε2(N − 1)ρ

)
and the

drift F = c2

2λ0
χ(S)∇~rS. When c, λ0 →∞

D(ρ) = D0

(
1 + πε2(N − 1)ρ

)
, where D0 =

c2

4λ0

(5.25)

The above drift-diffusion equation is consistent with that for Brownian particles which is

investigated by Bruna and Chapman (see eq.(11) in [12]) but differs from the continuum

population-level description of the on-lattice model used by Gavagnin and Yates [32]. The

noninteracting system, however, aligns with our reduced linear model.

5.5 Eigenstructure of the two-dimensional system

In this thesis, a fair amount of work has been devoted to understanding the 1D nonlin-

ear hyperbolic system using the concept of characteristic lines. We were able to write

more transparent characteristic relations in terms of directional differentials along a sin-



5.5 Eigenstructure of the two-dimensional system 119

gle characteristic direction (see section (2.4)) that were eventually supported us when

establishing time-dependent solutions. However, the situation is more complicated in 2D

problems. The characteristic curves become characteristic surfaces that involve two in-

dependent directions of directional differentiation described as bicharacteristic directions

[51]. Moreover, a simple decoupling of the equations is not possible since the Jacobian

matrices in the x- and y-direction cannot be diagonalized simultaneously. Therefore, in

the present section, we discuss the eigenstructure of the 2D model following the ideas

from the study [51], though we will not extend those in examining Riemann invariant

manifolds.

The system (5.22) can be written in terms of three unknown functions on 3-dimensional

spacetime that give rise to the differential conservative form

∂U

∂t
+
∂F (U)

∂x
+
∂G(U)

∂y
= 0, −L ≤ x, y ≤ L, 0 ≤ t ≤ T (5.26)

where U =

 ρ

ρu

ρv

 with (u, v) being the directional velocity,

F (U) =

 ρu
c2ρ
2

(1 + ξρ
2

)− ξ
2
|j|2

0

 and G(U) =

 ρv

0
c2ρ
2

(1 + ξρ
2

)− ξ
2
|j|2

 with ξ = πε2(N − 1).

It is noted that, for the flux Jacobians JF and JG, the differential operator

D = I ∂
∂t

+ JF
∂
∂x

+ JG
∂
∂y

is hyperbolic if real characteristic surfaces exist, and any charac-

teristic surface ψ(r, t) = 0, for r ∈ R2 satisfies the characteristic function

det

(
I
∂

∂t
ψ + JF

∂

∂x
ψ + JG

∂

∂y
ψ

)
= 0 (5.27)

Consequently, substituting the Jacobian matrices JF =

 0 1 0
c2

2
(1 + ξρ) −ξρu −ξρv

0 0 0

 and

JG =

 0 0 1

0 0 0
c2

2
(1 + ξρ) −ξρu −ξρv

 in (5.27), a straightforward calculation derives the

following factors for a polynomial in the derivatives of ψ:

∂ψ

∂t

(
∂ψ

∂t
− jξ

2
· ∇ψ − σ

2
‖∇ψ‖

)(
∂ψ

∂t
− jξ

2
· ∇ψ +

σ

2
‖∇ψ‖

)
= 0 (5.28)
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where σ =

√
2c2 + 2ρc2ξ + ξ2

(
j · ∇ψ‖∇ψ‖

)2

. We may expand the square root in powers of ε,

but we only add terms up to O(ε2) as the PDEs obtained by the perturbation method are

expected to be accurate to this order. This simplification eliminates the spatial gradient

of ψ in σ itself, which would be helpful in our following calculations.

We find each factor in (5.28) is in the general form of the Hamilton-Jacobi equation, where

the Hamiltonian can be identified as

H(r, p) = −jξ

2
· p± σ

2
‖p‖ for ∇ψ ≡ p

From Hamilton’s canonical equations, we then derive the bicharacteristics for the nonlin-

ear system (5.26):

ṙ(t) =
∂H

∂p
= −jξ

2
± σ

2

p

‖p‖
= −jξ

2
± σ

2
n

where n ≡ ∇ψ
‖∇ψ‖ is the spatial unit vector, and σ is independent of p. The eigenvalues

of the matrix n · (JF , JG) are given by the formula Λ = − 1
‖∇ψ‖

∂ψ
∂t

= H(r,p)
‖p‖ ; therefore, we

have the eigenvalues analogous to those in 1D form (2.32):{
0,−jξ

2
· n− σ

2
,−jξ

2
· n +

σ

2

}

5.6 Stationary solution

In the present as well as in the following sections, we assess the validity of the two-

dimensional velocity jump model, comparing both stationary and time-dependent solu-

tions of (5.22) with particle-level simulations. The numerical techniques for both the

particle- and the population-level models are similar to the ones used in the previous

chapters, yet we detail the modifications that support the higher-dimensional applica-

tions. For the numerical examples, we consider the two-dimensional forms of the two

signal functions 2.3(a) and 2.3(b), where the maximum indicates a higher amount of nu-

trients (see Figure (5.1)).

When the system is at equilibrium, the time derivative in the equation (5.22a) can be set

to zero. This implies, j satisfies

∇~r1 · j = 0 in Ω, and

η · j = 0 on ∂Ω
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Figure 5.1: (a). S(~r) = 1 − 2||~r − 0.5||, with λ0 = 2.5 and (b). S(~r) = 2e−50 ||~r− 0.5||2 , with
λ0 = 20

Consequently, the flux vanishes and the equation (5.22b) yields

(
1 + πε2(N − 1)ρst

)
∇~r1ρst − 2ρstχ(S)∇~r1S = 0

with the normalisation condition

∫
Ω

ρstd~r1 = 1

The solution to the above equation is

ln ρst(~r1) + πε2(N − 1)ρst(~r1)− 2χ(S)(S(~r1)− S(~0)) = A, (5.29)

where A is an arbitrary constant which can be determined from the normalisation condi-

tion. Note that, when ε→ 0 we simply obtain the stationary state for the point particles:

ρ0
st = e(2χ(S(~r1)−S(~0))+A)

=
e(2χ(S(~r1)−S(~0)))∫
e(2χ(S(~r1)−S(~0)))

(5.30)

Although Lambert W function worked for (5.29) in one dimension, it is unlikely to find

a closed form solution in higher dimension because of the nonlinearity; hence, we obtain
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numerically.

5.6.1 The Metropolis–Hastings algorithm When the system consists of point par-

ticles, the stationary solution for the N -particle model (5.1) is

Pst =
N∏
i=1

ρ0
st(~ri, t) in ΩN

= A exp

{
N∑
i=1

(
2χ(S)(S(~ri)− S(~0))

)}

The same solution works for finite-sized particles in ΩN
ε ; however, we will face the same

difficulty as in the one-dimensional situation. That is, integrating Pst over a complicated

domain ΩN
ε to find the arbitrary constant A. We have already overcome this problem in

our previous models by using an indirect sampling method: the MH algorithm. In the two

dimensional setting, the definition of Pst can be extended to all ΩN as Pst = A exp(−Φ(r)),

by introducing the energy Φ associated with each configuration:

Φ(r) =

−
N∑
i=1

(
2χ(S)(S(~ri)− S(~0))

)
, r ∈ ΩN

ε

∞, otherwise

We then follow the MH algorithm described under section (4.5.1) to sample configurations

according to the density Pst by constructing a Markov chain over the configuration space.

5.6.2 Numerical example Since an exact stationary solution for the nonlinear PDE

is not feasible, we solve (5.29) numerically using the Newton-Raphson method, discretising

both x and y directions into K grid points. From these discrete counterparts, the density

values ρst(xi, yj) for 1 ≤ i, j ≤ K and the constant A yields a system of K2 equations

with K2 + 1 unknowns. Approximating the normalisation condition using the composite

Simpson’s rule, we can write the (K2 + 1)th equation. So the resulting system can be

written as

lnQk + πε2(N − 1)Qk − 2(S(xi, yj)− S(~0))−QK2+1 = 0 for 1 ≤ k ≤ K2

K2∑
k=1

MkQk − 1 = 0
(5.31)
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Figure 5.2: Stationary marginal densities ρst under the extracellular signal function (5.1(a))
for finite-size particles. (a) ρst from (5.29) for ε = 0.002. (b) Histogram from the MH algorithm
for ε = 0.002. (c) ρst from (5.29) for ε = 0.01. (b) Histogram from the MH algorithm for
ε = 0.01. Plots (a)-(d) have the same colour bar. (e) Stationary marginal density (solid line)
and the particle simulation (circles) at y = 0.5. The green indicates ε = 0.002 and blue ε = 0.01.

where Q = (ρst(:), C) and Mk is the kth entry of the linearised matrix h2

9
(m>m) with m

being the one dimensional quadrature
(

1 4 2 4 ... 4 1
)

. The Jacobian is a (K2+1)-

by-(K2 + 1) matrix given by,

Jacobian =


1
Q1

+ πε2(N − 1) 0 · · · 0 −1

0 1
Q2

+ πε2(N − 1) · · · 0 −1
...

...
. . .

...
...

M1 M2 · · · MK2 0


The Figures (5.2) and (5.3) show the model and simulation results of randomly positioned

N = 200 particles of size ε = 0.002 and ε = 0.01 inside the square domain, whose chemo-

tactic sensitivity coefficient χ is one. The histograms are produced at an acceptance

rate in the 0.234 [82] order of magnitude with 108 steps of the MH algorithm, dividing

the domain Ω into 40 bins along each dimension. At the end of the process, we divide

the resulting value in each bin by the number of steps, the number of particles, and the

bin area. In both figures, the stationary solutions preserve the radial shape and centres

of their respective signal functions, indicating that the particle densities are higher in

and around the centres of the domain. In fact, the densities are significantly high for

steeper gradients (see Figure (5.3)). Although there is competition between finite-size
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Figure 5.3: Stationary marginal densities ρst under the extracellular signal function (5.1(b))
for finite-size particles. (a) ρst from (5.29) for ε = 0.002. (b) Histogram from the MH algorithm
for ε = 0.002. (c) ρst from (5.29) for ε = 0.01. (b) Histogram from the MH algorithm for
ε = 0.01. Plots (a)-(d) have the same colour bar. (e) Stationary marginal density (solid line)
and the particle simulation (circles) at y = 0.5. The green indicates ε = 0.002 and blue ε = 0.01.
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particles, the agreement between the model (5.29) and the stochastic simulations is good

when ε = 0.002. Essentially the outputs are in close convergence with the point parti-

cle solution due to the low occupied fraction (≈ 0.000628). However, when we raise the

dimension of the particle to 0.01 (keeping the number of particles the same), the model

deviates noticeably from the simulation result around the centre of the domain (see Figure

5.3 (e)). This result confirms that the equilibrium of the kinetic model (5.12) works well

under the strict condition: Nε2 � 1.

5.7 Transient solution

In this numerical study, we compare the time-dependent solutions of the kinetic models

(5.12) with the simulations of the full particle system. We use the algorithm explained in

section (2.5.2) that counts the frequency of collisions to perform full-particle simulations

in two dimensions, and this is detailed in the next section. The numerical solutions of the

model is achieved applying a first order explicit finite volume scheme in the discretised

velocity space (5.18).

5.7.1 Event-driven KMC algorithm For the simulations, the KMC algorithm would

work based on the three events: random turns, collisions with the wall and collisions with

each other. We assume positions and velocities of the N particles are Xi = (xi, yi) and

Vi = (ui, vi) with no two particles overlap at any time. That is ||Xi −Xj|| > ε for i 6= j.

The algorithm jumps from one minimum time to another; therefore, we calculate the

event times as follows.

Turn time (τturn): λ0τ−χ (S(X + V τ)− S(X))−ln
(

1
r

)
= 0, where r is a uniform random

number. When a turn event happens, the particle rotates by 180deg and proceed in the

new direction.

Boundary collision time (τwall): Particles rebound at the hard boundaries. We can sim-

ply calculate this rebound time, dividing the distance from the relevant collision wall

(x, y = 0 or x, y = L) by its velocity component (horizontal or vertical). We can identify

the collision wall by checking the sign of each velocity component and update the reflected

velocities accordingly. Here we use the inward normal.

Particle interaction time (τcoll): Computing future collisions of an individual with every

other occupant increase the computational cost. Besides a particle is more likely to inter-

act with neighbouring particles, rather than faraway ones. To identify one’s neighbours,

we first get the minimum time from turn times and wall collision times. Then, calculate

the distance (dmin) that a particle can run during this minimum time. Pairs that fit into
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the range which is created by dmin are counted for collision time calculations; otherwise,

time is set to infinity. If two particles, say at Xi and Xj with velocities Vi and Vj, collide

at a future time τcoll,

||(Xi + Viτcoll)− (Xj + Vjτcoll)||2 = ε2

Therefore, we find the collision time through

τcoll =

−b−
√
b2−ac
a

, a 6= 0, b ≤ 0 and b2 − ac ≥ 0

∞, otherwise

where a = ||Vi − Vj||2, b = (Xi − Xj) · (Vi − Vj) and c = ||Xi − Xj||2 − ε2. Note that,

if a = 0, the particles are moving in the same direction. The value c may also be zero if

two particles are already at the collision site. After the interaction, the two particles will

exchange their velocities.

The above three events create the event queue, where we find the next minimum event

time. Interestingly, all event times of particles that are not involved in this chosen event

persist. Therefore, we can calculate them once before the time loop and update the stored

data according to the new velocities of the interacting particles as time evolves. That is,

the number of updated events per particle is N collisions and one turn event. These

changes reduce the complexity of the algorithm to O(N) and hence the run time.

5.7.2 Numerical examples The numerical examples presented in this section aim to

illustrate the behaviour of the systems under biased and unbiased conditions and examine

the effect of changing parameters on the solutions. Unless explicitly stated otherwise, we

take 400 particles of speed c = 1 and χ = 1 in a unit square domain Ω = [0, 1] × [0, 1]

with no-flux boundary conditions. To generate model solutions, we discretise the velocity

space into 20 velocity directions and the spatial domain into control volumes of size

dx = dy = 0.005. We then approximate the numerical flux at each interface using

the so called local Lax-Friedrichs (Rusanov) scheme. To produce histograms, we divide

the domain into 40 × 40 bins and calculate the cumulative bin averages, performing

104 realisations. Essentially this implies that we are plotting a distribution of 4 × 106

particle positions. In all figures, we collate simulations of both noninteracting (green)

and interacting particles (blue) at time t = 0.2; the solid lines and the circles indicate

solutions for the PDE models and the KMC simulations, respectively.

Figure (5.4) illustrates the time-dependent behaviour of the system in the case of vanishing

turning rates. In other words, we are examining only the effect of collisions. The particles

are initialised uniformly at random inside a 0.5× 0.5 square with centre at (0.5, 0.5), that
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Figure 5.4: Transient marginal densities ρ at time t = 0.2 under no external stimulus. The
first column shows model solutions for (a) point (c) ε = 0.005 and (e) ε = 0.01 particles with
their respective histograms (from the KMC algorithm) in the second column. Plots (a)-(f) have
the same colour bar. Plots (g)-(i) represent a cross section at y = 0.5 where the green indicates
point and blue indicates finite-size particles. The dashed black line is the initial condition.
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Figure 5.5: Transient marginal density ρ(~r, t) under the extracellular signal function (5.1(a)).
(a) ρ from (5.18) for ε = 0. (b) Histogram from the KMC algorithm for ε = 0. (c) ρ from (5.18)
for ε = 0.01. (b) Histogram from the KMC algorithm for ε = 0.01. Plots (a)-(d) have the same
colour bar. (e) Transient marginal density (solid line) and the particle simulation (circles) at
y = 0.5.

is,

p(~r, θ, 0) = 1D, θ ∈ [0, 2π]

where D = [0.25, 0.75] × [0.25, 0.75]. Care was taken to avoid overlapping of finite-size

particles during this initialisation. The initial profile spreads out with time, maintaining

an excellent match between the model solution and the simulation for point particles

(see first row of Figure (5.4)). In fact, the theoretical prediction for size ε = 0.005 also

compares well with their simulation counterparts because of the low occupied fraction of

particles. However, excluded-volume effects are significant for size ε = 0.01 (see Figure

5.4(i)). This discrepancy can also be attributed to additional numerical diffusion in the

PDE solution.

To generate Figures (5.5) and (5.6), we introduced the extracellular signals (5.1(a)) and

(5.1(b)) to both point and finite-size particle systems. We started simulation by evenly

distributing particles across the domain. After t = 0.2, we find higher densities in and

around the most favourable location, the centre. In both figures, the point particle model

seems to give a good approximation to the KMC results; however, when looking at the
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Figure 5.6: Transient marginal density ρ(~r, t) under the extracellular signal function (5.1(a)).
(a) ρ from (5.18) for ε = 0. (b) Histogram from the KMC algorithm for ε = 0. (c) ρ from (5.18)
for ε = 0.01. (b) Histogram from the KMC algorithm for ε = 0.01. Plots (a)-(d) have the same
colour bar. (e) Transient marginal density (solid line) and the particle simulation (circles) at
y = 0.5.
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slice in Figure 5.6(e), we see a slight disparity. In addition, the same slice plot confirms

that the model solutions for ε = 0.01 differ significantly from the particle simulation

under steeper gradients. The main reason for this discrepancy is the appreciable volume

fraction in the test problem even though it is only 0.0314; besides, one can attribute

the steepness of the signal function that may further enhance numerical diffusion in the

PDE solution. Overall, these results confirm the validity of the adjusted system (5.12) as a

reasonable approximation under low occupied fractions for particles undergoing a velocity

jump process with exchange velocity hard-sphere collisions in the considered parameter

region.

5.8 Summary and discussion

The aim of this chapter was to extend the one-dimensional collision system examined by

Ralph et al. [81] in a two-dimensional setting, examining the effect of exchange-velocity

collisions on the general behaviour of a group of particles. These collisions differ greatly

from the reflective and fully elastic collisions as they preserve both total momentum and

energy in the system while maintaining the existing speed. While this chapter conceptu-

ally differs slightly from the one-dimensional work, it fits well into the context of classical

velocity-jump processes in higher-dimensional domains. In the absence of random velocity

switches, the system solely defines a hard-core collision system.

As in previous chapters, under the hypothesis that the occupied volume fraction is small,

we obtained the population-level description through a systematic asymptotic expansion

in ε while accurately considering the interactions at the particle level. The exchange-

velocity collisions simplified the analysis as the leading orders satisfied the collision bound-

ary conditions. On the contrary, when the system experiencing reflective (or elastic) col-

lisions, one has to use some other systematic method to find solutions that are valid in

the whole domain, including the region where particles are correlated [31].

The low-dimensional transport equation we have derived is for the one-particle probabil-

ity density that measures the probability of finding any particle at a given position and

velocity (given that the particles are identical and indistinguishable), and it carries a non-

linear transport term accounting for the excluded volume in the system. From this kinetic

model, we then derived moments equations using the Cattaneo approximation technique,

where parabolic scaling led to the collective diffusion constant, which is consistent with

that for Brownian particles investigated by Bruna and Chapman [12].

Finally, the theoretical predictions of the derived model are compared with full-particle

simulations and against the interaction-free case of point particles. We have performed
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stationary and time-dependent simulations of the system; to this end, we adopted the

two algorithms: MH and event-driven KMC, which were introduced in one dimension,

with modifications to the 2D system. In both cases, the nonlinear PDE has captured the

particle level’s features well under low occupied fractions.
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6
Conclusion

In this thesis, we have studied systems of hard-core particles with short-range interactions

and stochastic changes applied to the velocity. Velocity jumps in collective behaviour

under external impetus could arise in many different contexts and be analysed using

different techniques. Out of the two classical modelling techniques, agent-based and

continuum PDEs, we focused on the latter. Specifically, we intended to introduce a

method that allows for a more accurate way of studying general dispersing systems without

using any ad hoc closure assumptions. We introduced our core model in the second

chapter, including the method and many of the techniques we used throughout this thesis.

In the subsequent chapters, we removed limitations from this model and extended those

techniques accordingly.

The model derivation procedure is initiated by writing down the particle-based description

of the system in the probability space, a PDE for the joint probability density function.

The cases considered in each chapter, respectively, are as follows:

Chapter 2 focussed on a system of N identical and indistinguishable finite-size par-

ticles moving in a narrow channel with a fixed speed.

Chapter 3 eliminated the assumption of identical the particles and introduced two

types of particles or species to the system; namely, the blues and the reds.

Chapter 4 primarily studied both one-dimensional collision and narrow channel sys-

tems consisting of stationary particles and later extended the model to allow a finite

set of speeds.

133
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Chapter 5 extended the one-dimensional velocity-jump model with hard-core inter-

actions in higher dimensions, where pairwise collisions swapped velocities.

The high-dimensional particle-based description was then reduced to a practical low-

dimensional description for the one-particle density under the small volume fraction as-

sumption. Here we used the regular perturbation expansion from the interaction-free case

to find a solution to the system that is valid throughout the domain, including the cor-

related region. The resulting population-level model is nonlinear in the transport term

due to excluded volume effects, and it is manifested in all of the above cases. The non-

linearities are all pair-products of subpopulation densities. This can be explained by the

fact that they represent pairwise interactions and come from the outer solution. If we

had considered three-particle interactions, we would expect to obtain a product of three

subpopulation densities in the continuum model.

In order to assess the validity of the PDE models, we compared their numerical solutions

with simulations of the N -particle system. This involved a numerical integration method

along the characteristics to find transient solutions for our core model. The technique was

successfully adopted for the model in the fourth chapter as well. This way, we avoided

problems that occur during standard numerical methods for solving PDEs. However, in

the third and fifth chapters, we had no choice but to resort to standard numerical meth-

ods due to the complexity of the eigenstructures. During particle-level simulations, we

utilised Metropolis-Hastings for the equilibrium state calculations and the event-driven

kinetic Monte Carlo method for the transient state calculations. We modified the steps

of these algorithms in accordance with the dynamics of the systems: collision and nar-

row channel. The adjusted models seemed to give a good approximation to the averaged

stochastic simulations of the particle-level model. Note that we have only included the

leading-order nonlinear term in the PDE; however, it is possible to go back to the asymp-

totic expansions and algebraically calculate the next higher-order correction terms. These

augmented models could match the simulations more firmly.

The main assumption that entered the models’ derivation and validation procedure is the

occupants’ low occupied fraction. It should be low enough so that pairwise interactions

are the dominant ones, and the agreement between model solutions and the particle sim-

ulations are acceptable. On the other hand, we discussed how the choice of particle’s

size could lead to problematic convergence behaviour in the numerical examples. We also

assumed that the dimension of the container (with solid boundaries) is much larger than

the particle length to avoid wall-particle-particle interactions. This way, the holes from

illegal configurations may be hidden from the outside. In its simplest form, the velocity-

jump process assumed that particles move at a constant speed; however, we managed to
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extend that for a finite set of speeds in Chapter 4.

We repeatedly applied our test systems to chemotaxis, where entities adjust their mo-

tion according to an extracellular chemical. The time-independent turning (or transition)

rates were defined using the fact that an agent is less likely to change when moving in

a favourable direction; however, if the frequency of these changes becomes large, then

the motion looks more like diffusion. We were able to formally derive the macroscopic

limit under the diffusion-dominated regime via parabolic scaling and a regular pertur-

bation expansion. In the numerical examples, we exercised two forms of signals, and in

both, nutrients were found about the peak of the function. In most models, we used a

positive chemotactic sensitivity coefficient that led to positive taxis. But we examined

how this coefficient directs the chemotactic substance (positive or negative) in general

from the multiple species model. We have also accompanied the one-dimensional kinetic

models to examine travelling bands. Here we only considered PDE solutions for several

specific examples instead of having exhaustive numerical tests to assess the validity of

our continuum models against the simulations of the discrete models. We were able to

obtain travelling wave type solutions for the subpopulations in one dimension as well as

the two special cases: tagged particle and transport through obstacles in the two-species

model. Despite the restriction of a low-volume fraction, our models provided insight into

the mechanisms by which particle-level characteristics emerge at the population level,

particularly the nonlinear terms.

This work bridges the existing statistical techniques and a PDE modelling framework for

finite-size particles’ random walk systems. The modelling techniques and model exten-

sions presented help one to understand direct interactions through interfaces and collision

boundaries, as well as indirect interactions via a chemotactic medium. The methods

can, in theory, be applied to a range of systems on different scales and analyse the results

against those already known in statistical mechanics. However, it is crucial to describe the

dynamics in each situation. This is where we believe our work could have significant con-

tributions. Furthermore, since all the models are based on simple one or two-dimensional

PDEs, they are accessible and ready-to-use tools for any discipline.

6.1 Future work

One of the important future works would be the extension of the two-dimensional model

when particles reflect directly off each other. This type of collision might be the most

relevant for biological applications as organisms do not usually transfer momentum during

interactions. We can carry out the ideas of the two-dimensional problem in Chapter 5
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with changes to the collision boundary condition. That is, rewriting condition (5.5c) as

P (~r1, ~r2, ~v1, ~v2, t) = P (~r1, ~r2, ~v1
′, ~v2

′, t) on ||~r1 − ~r2|| = ε

where ~v1
′ and ~v2

′ are the velocity updates after a reflective collision. Franz et al. [31] have

already studied this problem, but complications arose from using the same outer solution

as Bruna’s work without implementing it in the velocity space.

To systematically determine the collision integral I, we can use the method of matched

asymptotic expansion that accounts for both the independent (outer) region and the cor-

related (inner) region. It is successfully utilised to tackle the one-dimensional chemotaxis

model by Ralph et al. [81]. The method involves finding a solution in the outer region

and hence obtaining the matching inner solution. This way, we will find a solution that

satisfies boundary conditions and is valid throughout the domain. We expect a qualitative

difference in the resulting kinetic model, especially in the nonlinear transport term.

So far, we have considered hard-core interactions that assumed impenetrable particles

where the potential is infinity for overlaps. But it is often the case that particles interact

via two-body soft-core potentials where they attract or repel each other over a region

rather than at a particular distance. Such interactions were examined within systems of

self-propelling particles [2,22]. The most common soft-core potentials adopted in physical

and biological applications are the Lennard–Jones [46] and Morse [62] potentials. They

explicate both the situation where particles repel each other in a shorter range and attract

each other in a longer range. Introducing these pair potentials to the velocity jump model

would be another extension of our previous work. Interestingly the N -dimensional PDE

in probability space is now defined in the whole space since there are no illegal configu-

rations with a soft-core potential. The hard-core collision boundary condition is replaced

by the interaction rule [18]:

~vi
′ = ~vi −∇U(||~ri − ~rj||) for i 6= j

where ~vi
′ is the velocity update of the ith particle and U : Rd → R is a given potential

which is a function of the separation distance (since particles are isotropic). We suppose

that the particle–wall interactions are hard-core; therefore, we still have the reflecting

boundary conditions. As has been the case throughout this work, we reduce the di-

mensionality of the problem by looking at the marginal density function of one particle.

Presumably, we expect the resulting transport equation to have the same structure as its

hard-spheres counterpart, except that now the nonlinear term might depend on the pair
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interaction potential.

In Chapter 4, we derived a model for a collision system with a finite set of velocities via

asymptotic expansion. It would be interesting to produce a comparable result by applying

Rost’s method [84] to this system and explore the two methods’ solutions. Ralph et al.

[81] successfully used this compression method to derive a model for the constant speed

interacting-particles problem. The idea is to eliminate the excluded regions among par-

ticles and convert the system into an interaction-free problem using a coordinate change.

One can then easily write the kinetic equation for the marginal density under this com-

pression; consequently, decompress back to the original variables. In contrast to the

asymptotic approach, this method works well under constant (≥ 0) transition rates (the

position-dependent rate would become discontinuous in the mapped problem).
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A
Appendix

A.1 Normalisation conditions

In this section we establish the relationships between marginal densities and the outer

functions.

A.1.1 Identical particles To obtain a closed equation for the one-particle density

p(x, v, t), we used q(x, v, t) = p(x, v, t) + O(ε) in section (2.3.2.2). Although there is no

sharp boundaries at the left and right interfaces, we begin by introducing an imaginary

radius γ, with ε < γ � 1, that divides the region Ω into two; the inner region: Ωin =

{x2 ∈ Ω : ε < |x1 − x2| < γ}, and the outer region Ωout = Ω\Ωin.

From the definition of the marginal density (in terms of the joint density) and using the

imaginary separation between inner and outer regions, we can then split the integral.

p(x1, v1, t) =

∫
Ω×V

P (x1, x2, v1, v2, t)dx2dv2

=

∫
Ωin×V

P (x1, x2, v1, v2, t)dx2dv2 +

∫
Ωout×V

P (x1, x2, v1, v2, t)dx2dv2
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Since particles are independent in the outer region, we replace the second integrand by

the product solution and transform the first integral to inner variables.

p(x1, v1, t) =

∫
{1<|x̃|<γε}×V

εP (x̃1, x̃, v1, v2, t)dx̃dv2 + q(x1, v1, t)

∫
Ωout×V

q(x2, v2, t)dx2dv2

where γε = γ/ε. Using the fact that Ωout = Ω\{x2 ∈ Ω : |x1 − x2| < γ} in the second

integral, and inserting the leading order inner solution q(x̃1, v1, t)q(x̃1, v2, t) to the first

integral, we can write

p(x1, v1, t) = εq(x̃1, v1, t)ρ(x̃1, t)

∫
{1<|x̃|<γε}

dx̃+ q(x1, v1, t)

 ∫
Ω×V

q(x2, v2, t)dx2dv2

−
∫

{|x1−x2|<γ}×V

q(x2, v2, t)dx2dv2


= 2ε(γε − 1)q(x1, v1, t)ρ(x1, t) +O(ε2) + q(x1, v1, t)

∫
Ω×V

q(x2, v2, t)dx2dv2

− 2γq(x1, v1, t)(ρ(x1, t) +O(γ))

p(x1, v1, t) = q(x1, v1, t)

∫
Ω×V

q(x2, v2, t)dx2dv2 − 2εq(x1, v1, t)ρ(x1, t) +O(ε2, γ2) (A.1.1)

where ρ(..., t) = q(..., c, t) + q(...,−c, t) and we drop ∼ on x1 in the second line. Imposing

the normalisation condition above and applying the binomial theorem for the fractional

power, we get

1 =

∫
Ω×V

q(x1, v1, t)dx1dv1

∫
Ω×V

q(x2, v2, t)dx2dv2 − 2ε

∫
Ω×V

q(x1, v1, t)ρ(x1, t)dx1dv1 + ...

 ∫
Ω×V

q(z, u, t)dzdu

2

= 1 + 2ε

∫
Ω×V

q(z, u, t)ρ(z, t)dzdu+O(ε2, γ2)

∫
Ω×V

q(z, u, t)dzdu = 1 + ε

∫
Ω

ρ2(z, t)dz +O(ε2, γ2)

(A.1.2)
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Substituting this result in (A.1.1)

p(x1, v1, t) = q(x1, v1, t) + εq(x1, v1, t)

∫
Ω

ρ2(z, t)dz − 2ρ(x1, t)

+O(ε2, γ2)

Set γ =
√
ε, then we get p(x1, v1, t) = q(x1, v1, t) +O(ε) as required.

A.1.2 Multiple species To obtain a closed equation for two types of particles, a

similar result required to relate the outer functions qb and qr with the marginal densities

b and r. The same procedure as outlined above (upto (A.1.1)) yields

b(x1, v1, t) = qb(x1, v1, t)

∫
Ω×V

qr(x2, v2, t)dx2dv2 +O(εbr)

and

r(x2, v2, t) = qr(x2, v2, t)

∫
Ω×V

qb(x1, v1, t)dx1dv1 +O(εbr)

Then applying the normalisation condition, we get∫
Ω×V

qb(z, u, t)dzdu

∫
Ω×V

qr(z, u, t)dzdu = 1 +O(εbr)

This relation determines the leading orders of the integrals upto a constant. Without

loss of generality setting one integral to 1, we find b(x1, v1, t) = qb(x1, v1, t) +O(εbr) and

r(x2, v2, t) = qr(x2, v2, t) +O(εbr) as required.

A.1.3 2D system We may extend the work in (A.1.1) to relate the outer function

q(~r1, ~v1, t) back to the marginal density p(~r1, ~v1, t). In two dimensional domain, the inner

region Ωin corresponds to an annulus. Then equation (A.1.1) reads as

p(~r1, ~v1, t) = q(~r1, ~v1, t)

∫
Ω×V

q(~r2, ~v2, t)d~r2d~v2 − πε2q(~r1, ~v1, t)ρ(~r1, t)
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where ρ(~r1, t) =
∫
V
q(~r1, ~v1, t)d~v1. Next applying the normalisation condition to the above

and repeating the steps in (A.1.2), we get ∫
Ω×V

q(~r,~v, t)d~rd~v

2

= 1 +O(ε2)

that produces the required results p(~r1, ~v1, t) = q(~r1, ~v1, t) +O(ε2).

A.2 Algorithms

A.2.1 SSA

1: Compute position X(t+ ∆t).

2: If X(t + ∆t) is outside the domain [0, L] , proceed the random walk to the opposite

direction.

a If X(t+ ∆t) < 0, X(t+ ∆t)← −X(t)− V (t)∆t and V (t+ ∆t)← −V (t).

b If X(t+ ∆t) > L, X(t+ ∆t)← 2L−X(t)− V (t)∆t and V (t+ ∆t)← −V (t).

3: Calculate λ: if V (t) > 0, λ← λ+, else λ← λ−.

4: Generate a uniform random number r.

5: Check for random velocity jumps: if r < λ∆t, then V (t+ ∆t)← −V (t).

6: Go back to step 1 for t← t+ ∆t.

A.2.2 Even-driven KMC algorithm

1: Initialise position vector X and velocity vector V for N spheres.

2: Compute pairwise collision times.

a Generate uniform random number r.

b If r < collision probability and particles moving towards each other, calculate

collision time T colli,j for i 6= j = 1, 2, ..., N − 1.

c Else set T colli,j ← large value.

3: Calculate the collision times Twalli for i = 1, 2, ..., N with the walls 0 and L; otherwise

set Twalli ← large value.

4: Compute random turn times T turni for i = 1, 2, ..., N .

a If Vi > 0, λ← λ+, and τ ← τ−.

b Else λ← λ−, and τ ← τ+.
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Figure A.3.1: The collision square illustrates the space available for the red particle when the
blue particle is fixed at y. The upper left and the lower right triangles represent, respectively,
passing below and passing above.

5: Find the minimal time from the event queue: tmin ← {Tcoll,Twall,Tturn}.
6: Update the positions using time tmin.

a If Xi(new) < 0, Xi(new)← −Xi(old)− Vi(old)dt and Vi(new)← −Vi(old),

b If Xi(new) > L, Xi(new)← 2L−Xi(old)− Vi(old)dt and Vi(new)← −Vi(old),

where dt = tmin − t

7: Change velocities of the participants of the corresponding event.

a If i collide with j, Vi(new)← −Vi(old) and Vj(new)← −Vj(old).

b If wall-particle interaction, Vi(new)← −Vi(old), where i = 1 or N + 1.

c If a random turn, Vi(new)← −Vi(old).

8: Go back to step 2 for t← tmin

A.3 Collision Probability

In general, the collision probability depends on the sizes of the species and the container.

Here we consider two species (blue and red) with hard-cores inside a narrow channel, so

it is not to be confused with the case when one species is immersing in a fluid with much

smaller particle size. Take a blue particle with diameter εb and a red with εr such that

εb + εr ≤ the width of the narrow channel (say l). Let’s assume that the blue is at y,

where Y ∼ U( εb
2
, l − εb

2
). Then the space available for the red particle to unobstructedly

move is given by the top and the bottom triangles of Figure A.3.1. The total probability
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of red passing blue is

(l− εb
2

)∫
(εr+

εb
2

)

P (passing below|Y = y)fY (y)dy +

(l−εr−
εb
2

)∫
εb
2

P (passing above|Y = y)fY (y)dy

The total space available for the red particle is l− εr. Given that the blue particle is at y,

the probability of the red particle passing the blue particle; below (upper left triangle) is
max{0,y−εbr− εr2 }

l−εr and above (lower right triangle) is
max{0,l−y−εbr− εr2 }

l−εr . The position density

function for the blue particle is the constant function 1/(l − εb). Therefore, the above

integrals produces the following result.

(l− εb
2

)∫
(εr+

εb
2

)

y − εb
2
− εr

(l − εr)(l − εb)
dy +

(l−εr−
εb
2

)∫
εb
2

l − y − εb
2
− εr

(l − εr)(l − εb)
dy =

(l − εr − εb)2

(l − εr)(l − εb)

Since the collision probability is (1− the total probability of red passing blue), we remark

the following special case:

i. When εr, εb → 0, collision probability vanishes; hence, we obtain the independent

system,

ii. When l = εr + εb, particles cannot pass each other; hence, the system becomes a

collision system,

iii. When εr = εb = ε, we get the passing probability ( l−2ε
l−ε )2 for identical particles.

A.4 Two independent particles

We extend the work in section (4.2) for two particles in a rectangular region S = [a1, a2]×
[b1, b2]. When the particles are positioned at x1 and x2 with positive velocity c at time t,

denoting the two-particle density by p(x1, x2, c, c, t), the probability can be written as

P (X1(t), X2(t) ∈ S, V1(t), V2(t) = c) =

∫∫
S

p(x1, x2, c, c, t)dx1dx2.
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So the rate of change is

∫∫
S

∂p

∂t

++

(x1, x2, t)dx1dx2 = c

b2∫
b1

p++(a1, x2, t)dx2 + c

a2∫
a1

p++(x1, b1, t)dx1

−c
b2∫
b1

p++(a2, x2, t)dx2 − c
a2∫
a1

p++(x1, b2, t)dx1

+

∫∫
S

p0+(x1, x2, t)λ
0
+(x1)dx1dx2 +

∫∫
S

p−+(x1, x2, t)λ
−
+(x1)dx1dx2

+

∫∫
S

p+0(x1, x2, t)λ
0
+(x2)dx1dx2 +

∫∫
S

p+−(x1, x2, t)λ
−
+(x2)dx1dx2

−
∫∫
S

p++(x1, x2, t)λ
+
0 (x1)dx1dx2 −

∫∫
S

p++(x1, x2, t)λ
+
−(x1)dx1dx2

−
∫∫
S

p++(x1, x2, t)λ
+
0 (x2)dx1dx2 −

∫∫
S

p++(x1, x2, t)λ
+
−(x2)dx1dx2

where first four terms of the right hand side are the rates of change when particles enter

at the boundaries a1 and b1, and leave at the boundaries a2 and b2. The positive terms

of the integrals are the contribution to the rate when switching to +c while the negative

terms corresponds to velocity changes from +c.

By rearranging the terms we get∫∫
S

(
∂p

∂t

++

+ c
∂p++

∂x1

+ c
∂p++

∂x2

− p0+λ0
+(x1)− p−+λ−+(x1)− p+0λ0

+(x2)− p+−λ−+(x2)

+p++λ+
0 (x1) + p++λ+

−(x1) + p++λ+
0 (x2) + p++λ+

−(x2)
)
dx1dx2 = 0

Since the region S is arbitrary, we get

∂p

∂t

++

+ c
∂p++

∂x1

+ c
∂p++

∂x2

− p0+λ0
+(x1)− p−+λ−+(x1)− p+0λ0

+(x2)− p+−λ−+(x2)

+p++λ+
0 (x1) + p++λ+

−(x1) + p++λ+
0 (x2) + p++λ+

−(x2) = 0

and we derive eight other PDEs similar to the above, starting from the probability P for

the combinations of subpopulations.
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A.5 Diffusion limit

We consider the long-time dynamics of the model by taking the parabolic limit of (4.19).

First, we write the system in terms of the flux function j(x, t) = c(p+ − p−) and total

density ρ(x, t) = p+ + p0 + p−:

∂ρ

∂t
+
∂j

∂x
= 0

∂j

∂t
+ c2 ∂ρ

∂x
+ ξ

∂

∂x
(c2ρ2 − j2) + c2ξ

∂

∂x
(ρp0) + c(λ+

− − λ−+)ρ+ (λ+
− + λ−+)j+

c

2
(λ+

0 − λ−0 )ρ+
1

2
(λ+

0 + λ−0 )j + c(λ0
− − λ0

+)p0 = 0

c
∂p0

∂t
− cξ ∂

∂x
(jp0)− c

2
(λ+

0 + λ−0 )ρ− 1

2
(λ+

0 − λ−0 )j + c(λ0
− + λ0

+)p0 = 0

with no flux boundary condition

where ξ = δε(N − 1). From the transition rates (4.28), we can further simplify above

equations. We then introduce the parabolic scaling ζ = γx for space variable and τ = γ2t

for time variable, where γ is a small dimensionless parameter. This yields the scaled

system of equations,

γ
∂ρ

∂τ
+
∂j

∂ζ
= 0

γ2 ∂j

∂τ
+ γc2∂ρ

∂ζ
+ γξ

∂

∂ζ
(c2ρ2 − j2) + γc2ξ

∂

∂ζ
(ρp0)− 3γc2χ

∂S

∂ζ
ρ+ 3λ0j = 0

γ2c
∂p0

∂τ
− γcξ ∂

∂ζ
(jp0)− cλ0ρ+ γcχ

∂S

∂ζ
j + 2cλ0p

0 = 0

Applying the regular perturbation expansions ρ = ρ0 + γρ1 + ... and j = j0 + γj1 + ..., we

get

O(1) :
∂j0

∂ζ
= 0

2λ0j0 = 0

2cλ0p
0 − cλ0ρ0 = 0

which implies the trivial solution j0 = 0 and p0 =
ρ0

2
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O(γ) :
∂ρ0

∂τ
+
∂j1

∂ζ
= 0

c2∂ρ0

∂ζ
+ ξ

∂

∂ζ
(c2ρ2

0) +
c2ξ

2

∂

∂ζ
(ρ2

0)− 3c2χ
∂S

∂ζ
ρ0 + 3λ0j1 = 0

eliminating j1 from the equations we get the drift-diffusion equation

∂ρ0

∂τ
=

∂

∂ζ

[
c2

3λ0

(1 + 3ξρ0)
∂ρ0

∂ζ
− c2χ

λ0

∂S

∂ζ
ρ0

]

A.6 Cattaneo approximation

In transport equations, velocity moments of the density are derived by multiplying it

with powers of velocity and integrating over velocity space. In general, the nth moment

equation will contain n+ 1st moment as well. In order get a closed system of n-moments it

is necessary to find an approximation for this n+1 moment. According to Hillen [39], this

estimation can be found using minimization principle. The Cattaneo closure is the second-

moment approximation, and we make use of this method to estimate
∫
V

p(r,v, t)vvdv.

First, define the functional J on p as

J(p) =

∫
V

(p2

2
− λ(p− ρ)− µ · (pv− j)

)
dv (A.6.1)

where λ = λ(r, t) and µ = µ(r, t) are Lagrangian multipliers. Then the first-variation of

J yields

p− λ− µ · v = 0 (A.6.2)

We calculate the Lagrangian multipliers such that the first two moments of the minimizer

pmin are ρ and j.

ρ(r, t) =

∫
V

pdv =

∫
V

(λ+ µ · v)dv = cλ

∫
Θ

dθ = c|Θ|λ

j(r, t) =

∫
V

pvdv =

∫
V

(λ+ µ · v)vdv =

∫
V

µ · vvdv =
c3

2
|Θ|µ
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Here
∫
V

vdv = 0 and
∫
V

vvdv = c3

2
|Θ|I, where I is the 2× 2 identity matrix and |Θ| = 2π.

Therefore, λ(r, t) = ρ
c|Θ| and µ(r, t) = 2

c3|Θ|j. From (A.6.2), we can write the minimizer as

pmin(r,v, t) =
1

c|Θ|
(
ρ+

2

c2
j · v

)
,

and find the second-moment of p from the second-moment of the minimizer.∫
V

pvvdv =

∫
V

1

c|Θ|
(
ρ+

2

c2
j · v

)
vvdv =

c2ρ

2
I

A.6.1 Boundary condition We also use pmin to find the appropriate boundary con-

dition in terms of the velocity moments. From the reflective boundary condition

p(r,v, t) = p(r,v∗, t) on ∂Ω,

where v∗ = v− 2(v · η)η for outward normal η.

Substituting the minimizer and v∗ we get

1

c|Θ|
(
ρ+

2

c2
j · v

)
=

1

c|Θ|
(
ρ+

2

c2
j · (v− 2(v · η)η))

)
(v · η)(j · η) = 0

Since v · η 6= 0, we get j · η = 0 on ∂Ω.
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