http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form and Deposit Licence.

Note: Masters Theses

The digital copy of a masters thesis is as submitted for examination and contains no corrections. The print copy, usually available in the University Library, may contain corrections made by hand, which have been requested by the supervisor.
Models of geothermal surface features at Wairakei

by

Juliet Newson

A thesis submitted to the University of Auckland in partial fulfilment of the requirements for the Degree of Doctor of Philosophy in Engineering Science

University of Auckland

2010
Abstract

Analytical and numerical models of heat and mass transfer in geothermal soils are calibrated using soil temperature time series, porosity, and saturation data from four sites at the Karapiti Thermal Area, Wairakei. The Karapiti data were collected by Bromley and Hochstein (2001). They measured temperature at several sites over periods of four to seven days at the soil surface and at depths of 0.01, 0.05, 0.1, 0.15, 0.2 m.

Thermal conductivity estimates for Karapiti soils as a function of saturation show that the dry and wet thermal conductivities for these soils is 0.1 W/mK, and 0.8 W/mK respectively.

Fourier analysis of the soil temperature data shows that the diurnal term is dominant in all cases. The Fourier analysis gives, at each depth, the mean temperature and the amplitude and phase shift of the diurnal component of the temperature.

The analytical models are used to derive estimates of thermal diffusivity which range from 2.8 x 10^{-7} to 6.1 x 10^{-7} m^2/s for the pumice soils sampled. The mean temperature versus depth profiles are non-linear and indicate that mass flow and associated advective heat transfer is important in warm ground.

Numerical modelling results show that mass flows and total heat flows are between 0.00065 and 0.00175 kg/s/m^2 and 148 and 917 W/m^2, respectively, for the Karapiti sites. The heat flows are comparable to calorimeter measurements from Karapiti (Hochstein et al. (2005)).

The second part of this study uses flow data from three geothermal features at the Alum Lakes, Wairakei, and Wairakei reservoir data, to calibrate a two-dimensional model of the Wairakei geothermal system. The model is based on an existing three-dimensional computer model of Wairakei system, but uses a finer grid in the vicinity of the Alum Lakes. The results show that pressure decline in the Wairakei reservoir has resulted in a cessation of the geothermal up-flow to the overlying Alum Lakes, and the Alum Lakes feeder conduit now hosts a down-flow of groundwater.
Acknowledgements

Professor Mike O'Sullivan - thank you for everything. For always being ready to help, for your advice, wisdom, and patience. My closest colleagues in Engineering Science, Sadiq Zarrouk and Adrian Croucher, when I needed advice or someone to talk to, you guys were always there, God bless you.

Special thanks to Andrew Pullan for his support.

Manfred Hochstein and Chris Bromley, thank you for sharing your data, and for your interest and advice. Thanks to Warren Mannington, who was there at the beginning. A big thank you to Pat Browne for sharing his knowledge and experience.

Jane Brotheridge, Leah Moore, Charlotte Severne, and Kate Dekker, thank you all for looking after me, for the encouragement, and all the wine. To my absent friend, Nenny Saptadjji, I've missed you, Nenny.

Thank you Eylem Kaya for your friendship, and especially for your help over the last few weeks. Eylem, sorry I'm not staying with you in Bali, at least my snoring won't keep you awake. Angus Yeh you've been great, especially in your readiness to help with all my questions about the Wairakei modelling. Emily Clearwater for your encouragement and cheerfulness, keep it up girl.

Special acknowledgement to the Geothermal Post Graduate Certificate students, you're all a great bunch, and inspiring to work with. Stand-out thanks to Katie McLean, for the use of your car this summer; and Jim Echols, for being a friend.

To everyone I worked with at GNS Wairakei - in particular Greg Bignall, Andrew Rae, and Diane Bradshaw. The time I spent with you at Wairakei inspired me to keep going. Thank you.

Thanks to all the geothermal people I know who have encouraged me, and collectively convinced me that geothermal is absolutely the most interesting field of endeavour, despite what my children think. Jim Lawless, Pat Brown, Colin Harvey, Brian White, and all other New Zealand Geothermal Association Board members; Warwick Kissling; Kevin Brown; Robert McKibbin; everyone at Contact Energy - especially Warren Mannington, Chris Morris (who makes the best quince jam ever), Kerin Brockbank, and Paul Bixley; Tennille Mares,
and the Aussie contingent - Klaus Reggenauer-Lieb, Florian Wellmann, Soazig Corbel, Betina Bendall, Mike Malavazos, Helen Gibson, Anthony Budd, and Fiona Holgate.

Thanks to the staff in Engineering Science, in particular Kim Williams for never failing to point out the more ridiculous aspects of life in a large institution. Also to the IT staff, especially Rao for always assuring me it wasn't my fault.

Thanks to my family. My partner Harry Netten for all the meals he has cooked, and for putting up with me and my thesis; and to my children Leah, Max, and Joel Netten for keeping it real, and for reminding me to laugh. Special thanks to Max for his computer skills, though I'm not sure Rao would agree.

I dedicate this to my late parents, Ivan and Nan Newson.
Table of Contents

1 INTRODUCTION .. 1
 1.1 BACKGROUND .. 1
 1.2 THESIS OUTLINE ... 3

2 BACKGROUND TO THE KARAPITI STUDY .. 6
 2.1 INTRODUCTION .. 6
 2.2 WAIKATE AREA LOCAL STRATIGRAPHY .. 7
 2.3 KARAPITI TOPOGRAPHY AND HYDROLOGY ... 10
 2.4 KARAPITI HEAT FLOW STUDIES .. 14
 2.5 KARAPITI HEAT FLOW SUMMARY ... 23
 2.6 SOIL DATA .. 25
 2.6.1 Introduction ... 25
 2.6.2 Soil structure and texture .. 25
 2.6.3 Saturation .. 25
 2.6.4 Porosity .. 26
 2.7 DATA FOR KARAPITI THERMAL GROUND .. 27
 2.7.1 Introduction ... 27
 2.7.2 Karapiti soil temperature data .. 27
 2.7.3 Soil saturation and porosity .. 28
 2.7.4 Summary of the use of data in this study ... 37
 The steady-state data: .. 37
 Transient data: .. 38
 Porosity .. 38

3 DETERMINATION OF THERMAL CONDUCTIVITY ... 39
 3.1 INTRODUCTION .. 39
 3.2 DETERMINATION OF THE THERMAL CONDUCTIVITY OF THE SOLID FRACTION OF THE SOIL .. 41
 3.2.1 Description of the soil components ... 41
 Thermal conductivity of two-component media .. 42
 Thermal conductivity of the solid fraction of Karapiti soils (λ_s) 44
 3.2.2 Calculation of λ_{wet}, λ_{dry} and λ_{eff} for Karapiti soils 45
 Johansen Model .. 46
 Kohout 47
 Lu-Ren .. 48
 Cote-Konrad .. 49
 TOUGH2 options for effective thermal conductivity 49
 Hochstein-Bromley determination of thermal conductivity for Karapiti soils . 50
 3.2.3 Discussion .. 52
 Porosity ... 52
 Saturation ... 52
 3.3 CHAPTER CONCLUSION ... 55