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ABSTRACT Extracting emotions from physiological signals has become popular over the past decade.
Recent advancements in wearable smart devices have enabled capturing physiological signals continuously
and unobtrusively. However, signal readings from different smart wearables are lossy due to user activities,
making it difficult to develop robust models for emotion recognition. Also, the limited availability of
data labels is an inherent challenge for developing machine learning techniques for emotion classification.
This paper presents a novel self-supervised approach inspired by contrastive learning to address the above
challenges. In particular, our proposed approach develops a method to learn representations of individual
physiological signals, which can be used for downstream classification tasks. Our evaluation with four
publicly available datasets shows that the proposed method surpasses the emotion recognition performance
of state-of-the-art techniques for emotion classification. In addition, we show that our method is more robust
to losses in the input signal.

INDEX TERMS Emotion recognition, representation learning, self-supervised learning, wearable signals.

I. INTRODUCTION
Emotion recognition is becoming an increasingly important
field in human-computer interaction. The common emotions
displays are speech [1], facial expressions [2], gestures [3],
and physiological signals [4]. Among them, physiological
signals are one of the most reliable means as they originate
from the activity of the Autonomous Nervous System (ANS)
and can hardly be triggered/suppressed by any conscious or
intentional control [4].

Before the emergence of smart wearable devices, physio-
logical signals could only be obtained using medical sensing
devices such as Electroencephalography (EEG) and Electro-
cardiograph (ECG) sensors. Such sensors are intrusive, non-
portable, and cumbersome to use, making it challenging to
embed emotion recognition technologies in real-life applica-
tions. Recent advancements in smart wearable devices have
offered a paradigm shift in wearable sensing. Consumer-
grade smart wearable devices such as smartwatches, fitness
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trackers are portable, non-invasive, and equippedwith various
sensors. They enable continuous monitoring of physiological
signals and make affect detection technologies possible for
daily usage.

Despite the merits of smart wearable devices, they are
not as highly accurate as medical-grade devices. They also
tend to get lossy due to users’ activities or environmental
interference. These could negatively impact the reliability of
affect detection algorithms [5].

Deep Learning models are robust to lossy signals in gen-
eral; therefore, they can be used to develop robust affect
detection algorithms [6]. Deep learning models also make
representation learning feasible, which fully or partially elim-
inates the need for feature engineering. Feature engineering
is the method of designing features using domain knowledge.
It is a complex task that requires significant human time and
effort, which can take even decades for an entire community
of researchers [7]. A representation learning algorithm can
discover a good set of features for a task in a fraction of
the time required by manual feature engineering. However,
it requires an enormous amount of labelled data for deep
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learning models to work effectively. It is challenging and
labour-intensive to identify and assign emotion labels to sen-
sor reading segments.

Self-supervised and unsupervised learning minimises the
need for labelled data, making representation learning using
deep models more feasible. Researchers have studied self-
supervised representation learning for physiological signals.
However, most of them are targeted for high-frequency sig-
nals such as EEG and ECG [8], [9], and little research
has been done on using representation learning techniques
for low-frequency signals such as heart rate, electrodermal
activity that are generated from widely available wearable
devices.

This paper presents a novel self-supervised representation
learning mechanism, SigRep, that works well with
low-frequency physiological sensor data generated from
commodity wearable devices. These representations can be
easily adapted for downstream emotion recognition tasks
with limited numbers of labeled data. With SigRep, we intro-
duce a signal encoder consisting of 1D convolutions.We use a
block-like neural network architecture inspired by Inception.
In the pre-training stage, our network learns to contrast
signal samples with random augmentation. We train signal
representations for individual signal modalities using a large
set of unlabeled signals. Then we fuse pre-trained signal
representations for emotion recognition tasks. In the emotion
recognition phase, we keep the weights of representations
frozen.

We extensively evaluate our method for 1) classification
performance on intact datasets, ii) behaviour of the method
when data is lossy, iii) performance of the system when a
less amount of labelled data is available for training, iv)
significance of our encoder component, and v) effect of the
individual signal modality on the emotion recognition. The
results show that our technique outperforms eight other state-
of-the-art techniques in seven tasks out of 12 tasks. Our
contributions are as follows:

1) We adopt contrastive learning, a self-supervised train-
ing technique, to learn signal representations from low-
frequency physiological sensor data, which can be
effectively used for downstream emotion classifiers.

2) We propose an improvement to the conventional
contrastive learning framework by proposing a new
inception-inspired lightweight encoder, which offers
better performance than a conventional encoder for
downstream emotion classification tasks.

3) To demonstrate our proposed technique’s performance,
we conduct a series of experiments on four datasets.
Experimental results show that our proposed approach
offers significantly better performance than state-of-
the-art methods. Results also show that the proposed
approach requires a significantly smaller amount of
labelled data and is robust to data loss than a fully
supervised model.

II. RELATED WORK
A. FEATURE ENGINEERING AND REPRESENTATION
LEARNING FOR EMOTION RECOGNITION USING
WEARABLE SENSING
Before the advent of deep learning, research on emotion
recognition was based on feature engineering, which is essen-
tially hand-crafting features based on domain knowledge.
It is, however, challenging to design features from the high
dimensional data captured from a multitude of wearable
devices [10]. Recent deep learning methods aim to address
this issue by representation learning, which automatically
extracts features from the raw signal. These deep learning
techniques are promising as they achieve higher accuracy
than conventional approaches using hand-crafted features.
For example, Santamaria-Granados et al. [11] compares deep
CNN with several classical machine learning methods for
emotion recognition tasks, where CNN learns features from
raw electrocardiography (ECG) and electrodermal activ-
ity (EDA) signals and the classical methods use hand-crafted
features. The comparisons show that representation learning
outperforms feature engineering. Recently, Yang et al. [12]
proposes a hybrid neural network architecture to learn human
emotion using EEG signals. Authors propose a parallelly
concatenated architecture of a CNN and a long-short term
memory (LSTM) network to learn from raw electroen-
cephalography (EEG) signals and validate their method using
publicly available datasets. Again, experimental results show
improved accuracy of CNN-LSTM over models using hand-
crafted features.

Although deep learning methods outperform classical
machine learning methods [11]–[13], they require a large
amount of labelled data to learn representative features [11].
It is challenging and labor-intensive to identify and assign
emotion labels to sensor reading segments. Unsupervised fea-
ture learning techniques in deep learning address the require-
ment of a large amount of labelled data. These techniques
can learn representations from unlabelled data; then, the
representations can be reused for multiple downstream tasks
built around smaller labelled datasets [14]. However, in a
recent review, Schmidt et al. [15] highlight the limited usage
of unsupervised and semi-supervised learning methods for
wearable-based affect recognition research.

Out of the studies in this research area, autoencoder is
a widely used technique for unsupervised representation
learning. Recently published CorrNet [16] uses autoencoder
based automatic feature extraction in a wearable signal-
based emotion recognition task and outperforms the state-
of-the-art baseline for CASE dataset for arousal (74.03%)
and valence (76.37%) detection. Martinez et al. [13] deploy a
denoising autoencoder network to learn features from blood
volume pulse (BVP) and electrodermal activity (EDA) sig-
nals and reuse the learned features to classify affective states.
Tang et al. [17] also uses a denoising autoencoder to learn
features from EEG and peripheral physiological signals,
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and achieve accuracies of 93.97% and 83.53% for binary
arousal valence classification of SEED and DEAP datasets,
respectively.

Recently, a few research studies have used self-
supervised learning on ECG [18] and EEG signals [9], [19].
Banville et al. [9] proposed a self-supervised strategy to
automatically learn features from unlabelled EEG signals and
demonstrate that EEG features learned in a self-supervised
manner outperforms traditional supervised features while
performing similarly to a fully supervised model on sleep
stage detection tasks. Furthermore, they demonstrate that
self-supervised models outperform supervised methods in
low data situations by extensive margins. Cheng et al. [20]
propose a contrastive learning method for EEG and ECG sig-
nals. Their study shows that self-supervised representations
yield comparable performance against a fully supervised
counterpart.

B. EMOTION RECOGNITION USING LOSSY SENSOR
DATA FROM WEARABLE DEVICES
Signal steams from wearable devices are inherently lossy,
resulting in gaps in signal streams [21]. Traditionally,
researchers use statistical values such as mean and median
values to replace the gaps in data [22]. However, filling gaps
with such values is problematic in time-series data as those
values do not reflect the qualities of signals [23]. To overcome
this problem, lately, researchers are looking into generat-
ing values to fill the gaps. For example, Che et al. [24] use
a deep learning model, ‘GRU-D’, to impute missing data
in multivariate time series. However, the lack of annotated
data makes the ‘GRU-D’ technique less usable in wearable
emotion recognition. Recently, Generative Adversarial Net-
works (GANs) based approaches have become popular for
data imputation [25], [26]. Again, generativemodels are com-
putationally heavy, but in this paper, we focus on lightweight
methods that can be potentially used in resource-constrained
environments.

C. EMOTION RECOGNITION USING LIMITED
LABELLED DATA
Addressing limited labelled data problems is a popu-
lar research area in machine learning. Transfer learning
[27], [28] has been a popular approach in addressing the
challenge of limited labelled data. The technique focuses on
transferring knowledge from amodel trained on a similar task
to a new task. In wearable sensing, it is common to transfer
learn with the models trained initially for activity recognition
tasks for emotion recognition. However, the signal modalities
used in activity recognition (accelerometer and gyroscope) do
not fully cover physiological signals captured with wearable
sensors.

Another way to address limited labelled data is by aug-
menting existing data to create new data points. The data
augmentation method has been successfully used in com-
puter vision. In wearable emotion recognition, a reflection of
emotion has a personalised nature [29]. Given that existing

FIGURE 1. Contrastive learning framework. This framework borrows
elements from SimCLR [30]. Initially, two separate transformation
operations (t, t ′) selected from a set of transformations (τ ) are applied to
samples (x) in the training distribution. Then, transformed signals are
used to train the encoder network f (.) and projection head g(.) to create
latent vectors (zi , zj ). Then, a contrastive loss is calculated between zi
and zj to maximise the agreement. The calculated loss is propagated back
through the network and weights are updated accordingly. After the
training process, the projection head g(.) is detached. The encoder
network f (.) and the latent representation h are used for downstream
tasks.

wearable-based emotion recognition datasets consist of a lim-
ited number of subjects, data augmentation may not expand
the inter-subject variability, leading to lower prediction per-
formance. More studies are needed to understand how data
augmentation can be used for emotion recognition using
wearable devices.

In wearable sensing, datasets are usually large as most
of the sensors run in the background as a daemon process
producing enormous data points. However, due to the high
cost of annotation, it is prohibitively expensive to label these
large datasets. Self-supervised techniques can address these
issues by learning meaningful representation from the data.
However, studies using self-supervised techniques on wear-
able emotion recognition tasks are very limited. II-A.

To summarise: (1) A majority of the already limited
unsupervised/self-supervised feature learning approaches are
targeted for high-frequency signals such as EEG and ECG,
and a little research work has used representation learning
techniques for low-frequency signals from wearable devices.
Our focus is to use physiological signals that can be captured
with commodity smart wearable devices, and there is a clear
gap in the literature regarding unsupervised/self-supervised
methods that could be used for our purpose. (2) Advanced
and computationally expensive techniques like GAN can be
used to address missing data challenges. There is still a need
for lightweight techniques to account for the data losses in
the input signal in wearable sensing. (3) Limited labelled
data is a universal challenge in machine learning and hence
common in wearable sensing. Self-supervised learning and
data augmentation are used to address the issue of limited
labelled data. However, there is a gap in the literature regard-
ing the suitability of these techniques in the wearable sensing
platform.

III. MODEL ARCHITECTURE
Signal representations are core components of our research
work. We propose a Self-Supervised Learning (SSL)
paradigm to learn representations. In particular, we use con-
trastive learning [30], which learns an embedding space by
minimising the distance between similar sample pairs while
maximising the distance between dissimilar pairs. We use
contrastive learning which has been show to be one of
the most powerful self-supervised learning paradigms [31].
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FIGURE 2. inception inspired block. We define an inception inspired
block inspired by the inception block [34] with Conv1D layers with
different kernel sizes [1,3,5,7] and a max-pooling layer. Each
convolution layer has two filters and uses rectified linear unit (ReLU) as
the activation function. The max pool layer is configured to have a pool
size of 3 and a stride of 1. All the parallel layers in this block use zero
paddings to keep the output width similar to the input width. An input
vector to a block goes through each layer parallelly. In the end, they are
stacked together to construct the output.

We borrow elements from the SimCLR framework [30]
for contrastive learning, which is originally proposed for
visual representations. It simplifies the specialised archi-
tecture of contrastive learning yet outperforms previous
self-supervised and semi-supervised learning methods on
ImageNet. We bring SimCLR to the wearable sensor domain.
We present our SimCLR Contrastive learning framework in
Fig. 1 and describe its various components below.

A. DATA AUGMENTATION COMPONENT
In contrast to the conventional learning paradigms, SSL
techniques do not require manual data labelling. They use
data augmentation to generate labels. The data augmentation
component transforms input data x into two views (̃xi, x̃j)
by applying transformations (t, t ′). Informed by previous
research, we randomly select a transformation τ from the
following pool τ = {amplitude re-scaling, random DC shift,
zero maskings, additive noise} [32], [33]. When (̃xi, x̃j) are
generated from the same input, we recognise them as a
positive pair; otherwise, we consider them negative. We use
following configurations for the signal transformations.
• Amplitude re-scale: This transformation selects a ran-
dom scale factor scale from a uniform distribution
scale ∈ (0.1, 1.9) and multiplies it with the input signal.

• Random DC shift: For this transformation, we select
a random shift value shift from a uniform distribution
shift ∈ (0.1, 0.9) and add it to the input signal.

• Zero mask: For this transformation, we select a random
mask length w such that, w ∈ (0.1 ∗ l, 0.9 ∗ l), where
l = signal length; also a random starting point sid such
that sid < l/2. Then, wemask the input signal with zeros
starting from the sid with a length of w. In case where
sid + w > l, zero mask is applied until the end of the
signal starting from sid .

• Additive noise: We generate a noise signal sampled
from (−1, 1) with the same length as the input signal for
this transformation. Then we add the input signal with
the noise signal to create the transformation.

FIGURE 3. Proposed Encoder Network. We construct the encoder network
with inception inspired blocks, max-pooling, global max pooling and
dense layers. All inception blocks have the same hyperparameter values
as mentioned in the description of the Fig. 2, while max pool layers in
between inception like blocks are configured to have a pool size of two.
The final dense layer consists of 40 units. As illustrated in the figure,
a raw input signal to the encoder network goes through a sequence of
blocks and layers. The dense layer at the end act as the feature
embedding of the encoder network.

B. ENCODER
For the encoder we propose a Inception network block [34] as
illustrated inFig. 3. The Inception network uses convolutional
layers with multiple kernel sizes on the same level in a CNN.
By having multiple convolution kernel sizes, the network
can learn patterns of different lengths from the input signal.
We pass the input to multiple Conv1D layers with kernel
sizes 1, 3, 5, 7 and a max-pooling layer before stacking as
the output. The encoder is trained to learn a function f (.),
where h = f (̃x); h denotes the latent representation of the
transformed signal x̃.
The Original inception network proposed by Szegedy et

al. [34] uses many inception blocks resulting in approxi-
mately five million trainable parameters in the final network.
However, our proposed signal encoder uses only four incep-
tion inspired blocks, resulting in an encoder network with less
than 5,000 trainable parameters. Therefore our final encoder
network can reduce resource consumption and avoid over-
fitting for smaller datasets.

C. PROJECTION HEAD
It is a neural network component in the SimCLR framework.
It is designed to learn a function g(.) on top of the representa-
tion h before calculating the contrastive loss. Chen et al. [30]
experimented with the effect of having a non-linear, linear
and no projection between the latent representation and con-
trastive loss calculation and reported that that having a non-
linear projection on top of the representation outperforms the
other two settings. Guided by this finding, we use a non-
linear neural network for the projection head, consisting of
two fully connected layers with 16 units each and use ReLU
as an activation unit.

D. CONTRASTIVE LOSS
The contrastive loss function maximises the agreement
between latent representations; positive pairs attract while
negative pairs repel each other. In this work, we use the
normalised temperature scaled cross-entropy loss (NT-Xent)
as the loss function. Equation 1 defines the Contrastive loss,
where l(i, j) is defined in Equation 2, and sim(i, j) is the cosine
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FIGURE 4. Network for emotion recognition task. Neural network
architecture is constructed for emotion recognition tasks by stacking the
outputs of four pre-trained signal representations. A tiny fully-connected
network is introduced on top of the stack of feature embeddings to learn
the emotions. All the pre-trained representations are kept frozen during
fine-tuning the network for emotion recognition.

similarity of the i, j vectors.

Loss =
1
2N
∗

N∑
k=1

[l(2k − 1, 2k)+ l(2k, 2k − 1)] (1)

li,j = −log
exp(sim(zi, zj/τ )

2N∑
k=1

1[k 6=i]exp(sim(zi, zk )/τ )

(2)

E. EMOTION CLASSIFICATION HEAD
After the training, the projection head g(.) is detached. The
encoder network f (.) and the latent representation h are used
for downstream tasks of emotion classification. The emotion
classification head is a tiny, fully connected neural network
component used in the downstream emotion classification
tasks. As illustrated in Fig. 4, the classification head is built
with two fully connected layers with 16 and 8 units each,
followed by a softmax layer. Each fully connected layer uses
‘ReLU’ activation, and the number of units in the softmax
layer is equal to the number of classes used in the classifica-
tion task.

IV. EXPERIMENTAL SETUP
A. DATASETS
We use multiple publicly available datasets, which consists
of physiological signals captured using wearable devices.
We provide a brief description of the datasets below.

The AffectiveROAD [35] dataset consists of multi-model
physiological and ambient sensor data captured during real-
world driving. Data is collected from ten people across
14 driving sessions of 1.5 hours. Two wrist-worn devices,
Empatica E4,1 were used for data collection from both hands
of the driver. A chest-worn device, BioHarness 3 ,2 was also
used to collect data, but we only consider data from the wrist-
word devices for this work. Data streams have been annotated
for stress from the perspective of an external party and later
validated with the driver. We use the physiological signal
streams from this dataset for representation training.

The continuously annotated signals of emotion
(CASE) [36] dataset contains physiological signals (Electro-
cardiogram (ECG), Blood Volume Pulse (BVP),

1https://www.empatica.com/research/e4/
2https://wearabletech.io/zephyr-bioharness-3/

Electromyogram (EMG) and Electrodermal Activity (EDA))
captured from 30 participants while they were watching
emotion stimulating videos. Data streams were annotated
with arousal and valence values from the perspective of the
participant. CASE dataset provides the arousal/valence rating
in nine levels. However, in the literature [16], researchers
have binned nine levels into two class and three class configu-
rations for evaluation. For the comparison purpose, we follow
the class configuration proposed by Zhang et al. [16] in our
evaluations. We use the CASE for signal representation
learning as well as the emotion recognition tasks.

The CLAS [37] dataset consists of physiological signals
(Electrocardiogram (ECG), Photoplethysmography (PPG)
and Electrodermal Activity (EDA)) with inertia signal
(Accelerometer (ACC)) captured from 60 participants. Data
were collected while participants engaged in various activi-
ties that elicit different cognitive load, affect and stress levels.
A Shimmer 3 GSR+ and Shimmer 3 ECG units were used in
the data collection process. Our study only uses PPG, EDA,
and ACC signals from the dataset in representation learning
and emotion recognition tasks.

The K-EmoCon [38] dataset contains multiple physio-
logical signals (Electrocardiogram (ECG), Electroencephalo-
gram (EEG), Blood Volume Pulse (BVP), Electrodermal
Activity (EDA), Body Temperature (TEMP)) and inertia
signals (Accelerometer (ACC)) from 32 participants during
16 debate sessions. Data of four participants were discarded
due to sensor malfunctioning. The dataset contains anno-
tations of arousal, valance, categorical emotions from mul-
tiple perspectives; first-person (self-report), second person
(debate opponent) and third-person (external party). We use
this dataset in booth representation learning and emotion
recognition stages. In this dataset, arousal and valence values
are reported at five different levels. However, due to heavy
imbalance of class distribution, we binn arousal/valence lev-
els into two and three binns and create binary and three-class
classification problems for arousal and valence.

Further, authors have published intensity levels of the five
categorical emotions (happy, sad, angry, cheerful and ner-
vous). When we chunk the dataset for emotion prediction
tasks, we treat the most intense emotion as the categorical
emotion in that chunk. We turn those categorical emotions
into a five-class classification problem. As previously men-
tioned, the dataset has been annotated from three different
perspectives. For this research work, we select self-reported
emotions for analysis.

The PPG dataset for motion compensation and heart rate
estimation in daily life activities (PPG-DaLiA) [39] contains
physiological signals (Blood Volume Pulse (BVP), Elec-
trocardiogram (ECG), Electrodermal Activity (EDA), Body
Temperature (TEMP)) and inertia signals (Accelerometer
(ACC)) captured from 15 subjects while they engaged in a
range of activities in daily life. The authors used a wrist-worn
Empatica E4 device and a chest-worn RespiBAN device to
capture signals. For our signal representation learning stage,
we use signals captured from the wrist-worn device.
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TABLE 1. A summary of datasets used in the self-supervised training stage. We use data from six datasets contains signals captured from wearable
devices. Each dataset has a different set of signal modalities with different capturing frequencies, as tabulated.

Wearable stress and affect detection (WESAD) dataset [40]
contains physiological signals (Blood Volume Pulse (BVP),
Electrocardiogram (ECG), Electrodermal Activity (EDA),
Body Temperature (TEMP)) and inertia signals (Accelerom-
eter (ACC)) captured from 15 subjects during a controlled
environment study. The dataset also contains signals captured
using a RespoBAN device also ECG signals. The authors
present the affective state in their dataset as a binary clas-
sification (stress vs non-stress) and three class classification
(baseline vs stress vs amusement) problems. We use the
partition of data recorded using the wrist-worn device in
this paper’s representation learning and emotion recognition
stages. Our emotion recognition task tries to solve their
three-class classification problem using the wearable signal
partition. Further, the authors of the dataset present data with
few other class labels not specified in the dataset description.
We ignore those signals in the emotion evaluation; however,
we use the physiological and inertia signals in our represen-
tation training stage as the labels are not required for SSL.

B. DATA PRE-PROCESSING
Datasets used in this work are captured with various devices
with different sampling frequencies. To unify the signal fre-
quency, we chunk the continuous signals into window size of
four seconds with a one-second overlap. The window size is
based on the findings from the literature [16]. Then, we recon-
struct the signal within the signal chunk and resample it to the
target signal frequency. To minimise the signal resampling,
we chose the most common sampling frequency for each
signal type as shown in Table 1. When we chunk signals,
it is very important to have a proper convention to assign
the correct class label to each chunk. We select the majority
agreement protocol to select the class label. If there is more
than one majority agreement on the class label, we discard
that chunk from the emotion recognition tasks. Table 1 sum-
marises the signal chunks we use for representation learning
while Table 2 summarises the class distribution for each
emotion recognition tasks.

C. MODEL TRAINING
Weuse twomain stages formodel training– (1) representation
training and (2) emotion recognition. For each training stage,
we use training parameters listed in the Table 3.We implement

FIGURE 5. Basic Encoder Network. We construct the basic encoder
network with 1D convolution, max-pooling, global max pooling and dense
layers. We keep the structure of the network simple also the number of
trainable parameters approximately similar to inception inspired encoder.

our models using Tensorflow v2.33 in Python 3.8 environ-
ment. All the source code for data processing, model training
and evaluation is open-sourced as a Github repository.

1) TRAINING SIGNAL REPRESENTATIONS
We train individual representations for each signal: ACC,
BVP, EDA, TEMP, in a self-supervised manner. First, we pre-
process datasets for representation learning (see Table 1).
Second, we mix and shuffle datasets before using them as
training data. We use the SimCLR framework illustrated in
Fig. 1 for representation training, wherein we use the pro-
posed inception inspired encoder architecture (see Fig. 3) as
the encoder component of the SimCLR framework. We use
512 epochs and a batch size of 256 for encoder training.
At the end of the training, the weights of each trained encoder
network are saved for further usage in emotion recognition
tasks.

We also train another set of signal representations with a
basic encoder architecture illustrated in Fig. 5. As illustrated,
the basic encoder is built with naively stacking Conv1D
layers and MaxPool layers. In contrast, the inception inspired
network is wider, with multiple Conv1D layers parallelly
in each network level. In order to make the basic encoder
and inspection inspire network comparable, we make the
basic encoder deeper than the inception inspired encoder
so that both networks have a similar amount of trainable
parameters. We keep the training procedure identical to the
procedure mentioned in the previous paragraph. We identify
this encoder as ‘Basic Encoder’ in the rest of the paper. The
purpose of this encoder is to experiment with the significance
of the inception inspired encoder.

3https://www.tensorflow.org/versions/r2.3/api_docs/python/tf
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TABLE 2. A summary of supervised tasks used in this research work. The table contains all twelve classification tasks in four datasets we address in our
experiments. Each dataset contains a different number of subjects and multiple classification tasks, as mentioned. We use the Task-ID to identify each
task throughout the paper.

TABLE 3. A summary of training parameters. Neural network training
parameters presented in the paper are listed in the Table. All the
self-supervised training use parameter values listed under the
representation training, while all the supervised models use the
configurations listed under training for emotion recognition.

With this SimCLR based approach, we expect the encoder
network to achieve a comprehensive understanding of the raw
input signal. For the contrastive loss to get minimised, the
encoder should be able to create similar latent representations
for positive pairs regardless of the random augmentation
added to the signal. To achieve that encoder should either
learn to decode the augmentation or learn how to extract
information about the underline signal. Since the augmen-
tation added is random in each run, and each augmentation
has randomness within the method of augmentation, it is
unlikely the encoder network learns to decode the applied
augmentation. Therefore the only way the contrastive loss
get minimise would be the encoder learning qualities of the
underline signal. For the same reason, the trained encoder
should be able to retrieve information from a lossy signal,
improving the robustness of downstream tasks.

2) TRAINING FOR EMOTION RECOGNITION
We use representations learned in the previous step for the
downstream task of emotion recognition. We build a new
neural network by stacking the outputs of individual sig-
nal representation networks. On top of the representation
embeddings stack, we implement a smaller neural network
for emotion recognition task, as shown in theFig. 4. The emo-
tion recognition network is created with two fully connected
layers with ReLU activation and a Softmax layer. We keep
the trained parameters of the representations frozen in this
phase of training. We train the emotion recognition network
in a fully supervised manner for tasks and datasets listed
in Table 2. We evaluate our emotion recognition model with
the leave one user out method and report the average accuracy
and F1 scores.

3) BASELINE MODEL TRAINING
To compare the performance of our model, we benchmark it
against a fully supervised model. In this paper, we refer to it
as the ‘baseline model’. The only difference between the pro-
posed model and the baseline model is that the encoder com-
ponent in the proposed model is trained in a self-supervised
manner, whereas that in the supervised model is trained in a
supervised manner. We use the same amount of training data
like that used for the representation-based emotion recogni-
tion model. Also, we keep the similar training parameters as
tabulated in Table 3.

D. SELF-SUPERVISED BENCHMARK
Although self-supervised learning is heavily used in com-
puter vision and natural language processing tasks, only a
few explorations have been conducted with time series sensor
data from wearable devices. In addition, the majority of the
existing self-supervised learningmethods for wearable sensor
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signals are focused on downstream tasks such as activity
recognition. Despite the lack of comparable works, we bench-
mark our work with Sense & Learn framework [41] given
that it the most recent state-of-the-art self-supervised repre-
sentation learning work with wearable sensor signals. In the
Sense & Learn framework, authors have proposed a generic
representation learning framework for heterogeneous sen-
sor signals. Saeed et al. [41] evaluate eight self-supervised
tasks to train signal representations and evaluated on multiple
downstream tasks (activity recognition, sleep stage detec-
tion, stress detection andWiFi-sensing) and provided insights
on choosing representation learning techniques for different
downstream tasks.

We replicated Sense & Learn framework [41] with the
parameters used for stress detection, as it is the closest task
to emotion recognition. We train representations using all
eight proxy tasks and use them in the downstream emotion
recognition task. Initially, we use data chunkswith 30 seconds
following the stress detection task proposed in the Sense &
Learn framework. Representations based on all eight proxy
tasks result in poor performance in emotion recognition.
Prior work [16] suggests sampling with smaller window
sizes results in better emotion recognition accuracy in the
context of the wearable signal-based emotion recognition.
Therefore we attempt to evaluate with a smaller sample size.
However, small sample windows are theoretically impos-
sible with the encoder architecture suggested in Sense &
Learn framework by Saeed et al. [41]. Therefore, we use the
encoder architecture proposed in the current work to train
representations with proxy tasks defined in Sense & Learn
framework [41].

The eight proxy tasks we adapted can be summarised as
follows.

1) T1: BLEND DETECTION
The blend detection task is defined as a three-class classifi-
cation. The classification task’s data samples and labels are
generated by blending two signal samples with a random
weight. The original sample without blending is labelled as
class A. If two signal samples are selected from different
modalities, it is marked as class B. If two signal samples
are from the same modality, they are labelled as class C.
The random weight for blending is selected from a uniform
distribution in range (1,0). Finally, negative log-likelihood is
used as the loss function to train the classification task on
these three classes.

2) T2: FUSION MAGNITUDE PREDICTION
In this task, signals are blended in a similar strategy as the
previous task (T1). In the learning phase, the objective of the
network is to predict the random weight used for blending.
For a clean sample, weight is considered zero.

3) T3: FEATURE PREDICTION FROM A MASKED WINDOW
In this task, a random segment is selected from an input
sample. Eight statistical values (mean, standard deviation,

maximum, minimum, median, kurtosis, skewness, number of
peaks ) are generated from the selected segment. Then mask
the segment with zeros. Later, a model is trained to predict
the statistics of the masked segment.

4) T4: TRANSFORMATION RECOGNITION
The transformation recognition task is based on previous
work of Saeed et al. [32]. One transformation from eight
pre-defined transformations (permutation, channel shuffle,
time-warp, scale, noise, rotation, flip, negation) is applied
to the input sample per instance. Each transformation is
labelled with a class-index. Then the representation learn-
ing model is trained to classify the respective class of the
transformation.

5) T5: TEMPORAL SHIFT PREDICTION
An input sample is circularly shifted with a random interval in
the temporal domain. The random shifting interval is divided
into seven classes based on the shifting period. Then the
representation learning model is trained to predict the seven
classes of shifts.

6) T6: MODALITY DENOISING
This task has a similarity with a denoising autoencoder.
A clean input sample is blended with a random sample from
a different signal modality to generate the noisy signal. The
blending process uses a random weight selected from a uni-
form distribution. Then a model is trained to re-generate the
clean sample given the blended sample.

7) T7: ODD SEGMENT RECOGNITION
In odd segment recognition task, an input sample is split into
four similar length segments. One of the segments is replaced
with a similar length signal segment chosen from a random
sample from a different modality. Then the representation
learning model is trained as a four-class classification prob-
lem to predict the replaced segment id.

8) T8: METRIC LEARNING WITH TRIPLET LOSS
For this task, a triplet (anchor, positive, negative) of samples is
used as the input. The original sample is chosen as the anchor.
While the positive is generated by applying a transformation
to the anchor. The negative is selected from a different signal
modality. Finally, the representation learning model is trained
with triplet loss to minimise the distance between the anchor
and the positive while increasing the distance between the
anchor and the negative.

V. EVALUATIONS AND RESULTS
We evaluate our proposed emotion recognition model with
four public datasets (CASE, CLAS, K-EmoCon, WESAD).
As shown in Table 2, each dataset has different emotion and
affective state labels. We evaluate them using the Leave One
Subject Out (LOSO) method. We report average categorical
prediction accuracy and average macro F1 scores.
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TABLE 4. SigRep emotion recognition performance with state of the art
results in literature. CorrNet [16] CLAS paper benchmark [37] WESAD
paper benchmark [40]. We could not find any existing benchmark for
emotion recognition tasks in K-EmoCon dataset.

A. EXPERIMENT 1: EVALUATION OF EMOTION
RECOGNITION MODELS
1) EXPERIMENT
In this experiment, we evaluate the performance of SigRep
emotion recognition models. We train the emotion recogni-
tion models for each classification task from each dataset.
As tabulated in Table 2, we have 12 classification tasks from
four different datasets. Because the class labels are heavily
imbalanced in most tasks, the accuracy metric alone does not
reflect model performance. Therefore we report the macro F1
score along with the prediction accuracy metric.

As discussed previously, current literature has very little
work on using self-supervised techniques for wearable sig-
nal based emotion recognition task. The majority of exist-
ing supervised work is based on classic machine learning
approaches. Therefore benchmarking only against work pub-
lished in the literature may not reflect the advantages of
using SigRep in emotion recognition tasks. On the other
hand, benchmarking only against self-supervised learning
methods may not properly position SigRep within existing
literature. Thereforewe benchmark performance of SigRep in
two different scenarios. i) benchmark against current state-of-
the-art for each emotion recognition task from the literature,
ii) benchmark against other self-supervised learningmethods.

2) RESULTS
For the CASE dataset, CorrNet [16] provides the state-of-
the-art emotion recognition performance. The CASE dataset

consists of arousal and valence levels in nine intensities. Due
to the heavy class imbalance, CorrNet [16] uses only two
and three-class configurations for evaluation. Following that,
we also evaluate our method using only two and three-class
configurations. Although the two-class results are on par with
each other, results of the three-class problem clearly demon-
strate the superior performance of the proposed method over
CorrNet.

We used prediction results reported by Markova et al. [37]
as the benchmark for the CLAS dataset. The CLAS dataset
contains emotion data elicited in two ways, using (1) image
and (2) video stimuli. The results are presented in Table 5.
For the WESAD dataset, most of the works in the lit-

erature are focused on using ECG and EMG signals. The
best performance for three-class affective state classification
using ACC, BVP, EDA and TEMP signals is achieved by
Schmidt et al. [40]. As we focus on commodity sensors
(such as sensors built into a smartwatch), we only use
the wrist-based signals and compare our performance with
results of wrist-based signals reported by Schmidt et al. [40].
Similarly, our method shows superior performance, as shown
in the Table 5.

Except for CorrNet, which is based on a representa-
tion learning approach, other state-of-the-art results are
based on classic machine learning approaches. In order to
compare SigRep with other self-supervised learning-based
methods, as mentioned before, we have re-implemented the
self-supervised methods proposed in the Sense & Learn
framework [41]. We benchmark the emotion recognition per-
formance of SigRep against all eight proxy tasks proposed in
the Sense & Learn framework [41]. Table 5 presents classi-
fication accuracy, and Table 6 presents the F1-Score for all
12 classification tasks.

As the results reflect, SigRep has demonstrated the top
accuracy for 7 out of 12 emotion recognition tasks and second
best accuracy for 3 out of the remaining 5 tasks. In the case
of F1-Scores, SigRep has achieved the top two F1 scores in
10/12 tasks. Overall, SigRep has demonstrated better emotion
recognition performance.

3) DISCUSSION
Diving deeper into the emotion recognition performance,
we observe that out of the eight proxy tasks in the Sense &
Learn framework [41], Tasks 3, 4 and 8 have achieved one of
the top two accuracies and F1 scores frequently. To explain
this observation, we analyse those proxy tasks and the proxy
task proposed in SigRep.

The proxy task proposed in the SigRep contrasts samples
after adding a random augmentation to the signal compo-
nents. The proxy task 8 in the Sense & Learn framework [41]
is to contrast samples from different modalities. Both proxy
tasks have a common element of learning how to contrast dis-
tinct elements and identify similar elements at a higher level.
SigRep uses random data augmentations before learning to
contrast them. Those augmentations are re-scaling amplitude,
random DC shift, additive noise and random zero masking.
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TABLE 5. Emotion Recognition Model Performance: Accuracy. The table benchmarks performance of emotion recognition models trained using the
pre-trained in different approaches. We adopt all methods proposed in Sense & Learn framework [41] to benchmark SigRep. Best results for each task is
presented in bold text while the second best result is presented in italic.

TABLE 6. Emotion Recognition Model Performance: F1 Scores. The table benchmarks performance of emotion recognition models trained using the
pre-trained in different approaches. We adopt all methods proposed in Sense & Learn framework [41] to benchmark SigRep. Best results for each task is
presented in bold text while the second best result is presented in italic.

The first three augmentations are similar to transformations
added in the task 4; zero masking is similar to task 5. At a
higher level, the proxy task in SigRep contains the essence of
proxy tasks 3,4 and 8 of the Sense & Learn framework [41].
Based on that, we suggest that the combined effect of the
proxy task in SigRep has resulted in better emotion recog-
nition performance. Further, the findings of this experiment
support the argument that the pre-training proxy task has an
effect on the downstream prediction task. Also, we recom-
mend using a combined proxy task consisting of signal trans-
formations, zero masking and a contrastive learning approach
for wearable signal base emotion recognition.

B. EXPERIMENT 2: EVALUATION OF ROBUSTNESS
1) EXPERIMENT
In real-life usage, signals captured from consumer-grade
wearable devices can be lossy due to various reasons such
as user movements, software errors, and malfunctioning sen-
sors. These signal losses have been identified as a tech-
nical limitation by researchers using wearable devices in
the wild [5].

Algorithm 1 The Process of the Lossy Data Evaluation

for p← 0 to 0.9 by 0.1 do
S = [data record with all signal modalities]
shuffle S
dropCounter = 0
foreach s in S do

p′ = random()
if p′ < p then

replace s with zeros
dropCounter+ = 1
if dropCounter == len(S)− 1 then

break
end

end
end
evaluate(S)

end

To evaluate the robustness of our method to signal losses,
we randomly drop data frames from every evaluation record.
An evaluation record is a set of data frames from each
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FIGURE 6. Results of the evaluation of lossy signals. Classification accuracy of each task in model training setting is visualised against the
probability of losing a signal frame.

signal modality and the target emotion label. To identify the
threshold of noise robustness, we define a variable p, which
corresponds to the probability of dropping a data frame.
We gradually increase the value of p from 0 to 0.9 with a
step of 0.1 for each evaluation round. We simulate the signal
loss by replacing the corresponding data frame with a vector
of zeros. We demonstrate our strategy to drop data frames
in Algorithm 1. We ensure that at least one data frame has
non-zero values. To avoid bias, we randomise the selection
of signal frame dropping for each evaluation record. To com-
pare the performance of robustness, we benchmark our pro-
posed method against the baseline model, which is a fully
supervised model (please see description in section IV-C3).
Further, we evaluate the emotion recognition models based

on eight proxy tasks presented in the Sense & Learn frame-
work [41]. In this evaluation, we consider a scenario where
there is a 50% chance of losing a signal frame.

2) RESULTS
We report the observed accuracy for each classification task
in Fig. 6). Interestingly, the SigRep model achieves higher
accuracy than the baseline models for almost every p value.
To quantify the robustness, we conduct a post-hoc test using
the Tukey Honest Significant Difference test (HSD) on each
scenario to determine which p value makes the significant
loss of accuracy. We identify p values, where the drop of
accuracy starts significantly in each task for both SigRep and
baseline models. We then average those p values for each
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TABLE 7. Emotion Recognition Model Performance with Lossy Signal (50%): Accuracy. The best accuracy for each classification task is highlighted in bold
text while the second best accuracy is marked in italic format. S&L: T# refers to each proxy task proposed in the Sense & Learn framework [41].

TABLE 8. Emotion Recognition Model Performance with Lossy Signal (50%): F1-Score. The best F1-Score for each classification task is highlighted in bold
text while the second best F1-Score is marked in italic format. S&L: T# refers to each proxy task proposed in the Sense & Learn framework [41].

setting and identify that when the average p value is greater
than 0.27, the accuracy drop in the baseline setting gets sig-
nificant. In contrast, models in SigRep settings demonstrate
a significant drop in accuracy when the average p is greater
than 0.55. This result indicates that our proposed method is
significantly more robust compared to a model with similar
architecture trained in an end-to-end manner.

Table 7 and Table 8 show the accuracy and F1-Score
of SigRep and Sense & Learn framework [41] at a 50%
signal loss probability. Overall results suggest that SigRep
has shown better accuracy and F1-Scores for all 12 emotion
classification tasks. Further, for nine out of 12 tasks, Sense
& Learn proxy tasks 3,4 and 8 have achieved the second-best
results based on prediction accuracy.Which is consistent with
the results of previous experiment.

3) DISCUSSION
Prior work indicates that representation learning can achieve
a better understanding of the underline data [14]. Also, as we
discussed in Section IV-C, contrastive learning inherently
offers robustness to noise and losses. Due to these aspects of

our model, we conjecture that we achieve higher robustness
than the baseline model.

C. EXPERIMENT 3: IMPACT OF THE AMOUNT OF
LABELLED DATA
1) EXPERIMENT
The cost of data annotation is one major issue in physiolog-
ical signal-based emotion recognition. Our proposed method
addresses this challenge by adapting to the downstream task
with less labelled data leveraging on the learned represen-
tations. We experiment by reducing the amount of labelled
data used in the downstream task to quantify the performance.
Since we use leave-one-subject-out evaluation, we control the
training data as a fraction of available subjects for training
in this experiment. Especially for each evaluation round,
we leave out the evaluation subject and then drop 50% of sub-
jects from the leftover set for training. We keep the training
parameters similar to experiment 1. Similar to the previous
experiment, we compare the performance of our model with
that of the baseline model.
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FIGURE 7. Performance comparison of the SigRep with different amounts
of training data. The Blue column represents the performance of the
SigRep with all available training data. The Red column represents the
performance of SigRep with 50% of training data. The Yellow column
represents the performance of the baseline model (see SectionIV-C3)
with 50% of training data. Error bars show the 95% confidence intervals.

2) RESULTS
Classification accuracy for each task for each scenario is plot-
ted in Fig. 7. As anticipated, with limited training data, clas-
sification accuracy drops significantly for all classification
tasks. On average, for the baseline, for a 50% drop of training
data, accuracy drop around 20% (calculated by comparing
with 100% training data used for baseline); however, with
the proposed method with learned representation, the average
accuracy drop is around 10%. t-test shows that the difference
between the baseline and the SigRep method is significant in
nine out of twelve classification tasks (p < 0.05). For the
remaining three tasks (g), (k) and (l), although the SigRep
method demonstrates a higher accuracy, we do not find a
statistical significance.

D. EXPERIMENT 4: SIGNIFICANCE OF INCEPTION
INSPIRED ENCODER
1) EXPERIMENT
Our proposed encoder architecture is built with Conv1D
layers inspired by the inception architecture. To test the
effect of the proposed architecture, we compare it with a
simple stacked convolutions architecture built with Conv1D
layers with a similar number of trainable parameters
(see Fig. 5). We denote it as the ‘‘basic encoder’’. We train
the basic encoder with the proposed SSL method with the
same datasets and training configurations as the proposed
inception inspired encoder. Then we train emotion classifiers
for all 12 tasks using the learned representations with the
basic encoder and evaluate emotion classification perfor-
mance. We keep the evaluation conditions identical to our
Experiment 1 (see section V-A).

2) RESULTS
The results of this experiment are plotted in Fig. 8. For all
classification tasks, the average accuracy of the proposed
inception inspired encoder is higher than the basic encoder.

FIGURE 8. Encoder Architecture Comparison. Prediction accuracy by
Inception inspired encoder architecture (see Fig. 3) compared to a basic
Conv1D architecture (see Fig. 5) for all 12 classification tasks. 95%
confidence intervals are marked on each column. Overall, inception
inspired encoder show higher average accuracy. In seven tasks the
accuracy gain is statistically significant.

We conduct t-tests for each classification results for an in-
depth analysis. We observe that for all twelve classification
tasks, the inception inspired encoder performs better than the
basic encoder, where for seven tasks, the inception inspired
encoder significantly (p < 0.05) outperforms the basic
encoder.

E. EXPERIMENT 5: PERFORMANCE AND ROBUSTNESS
COMPARISONS OF INDIVIDUAL MODALITIES
1) EXPERIMENT
Our proposedmodel makes use of four types of signals (ACC,
BVP, EDA, TEMP). Each type of signal carries independent
and correlated pieces of information. In this experiment,
we investigate the performance of individual modalities, also
their robustness to data losses. Some sensors aremore reliable
than others. This experiment can potentially assist researchers
in selecting sensors for their applications. In this experi-
ment, we train emotion classification models for all twelve
classification tasks using only a single signal modality in
each run. All the evaluation rounds use the leave-one-subject-
out evaluation method and used similar training parameters
as Experiment 1 (see Section V-A). We evaluate models in
two settings, (1) without data losses and (2) with 50% of
data loss. Evaluation process with data loss is similar to our
Experiment 2 (see Section V-B).

2) RESULTS
Fig. 9 shows the average accuracy of each signal modality as
well as the combined modalities. Fig. 9(a) shows the results
without data loss setting, while Fig. 9(b) shows the lossy
signal scenario. As one would expect, combined modalities
should offer better performance than individual modalities,
which is what we observe in Fig. 9. While comparing indi-
vidual modalities, the BVP signal and ACC signal show
higher accuracy than the EDA and TEMP signals. This obser-
vation can be explained based on the findings reported in
the literature: when someone experiences an emotion, bodily
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FIGURE 9. Ablation results: 0% vs. 50% Lossy Signals. Plots show the
effect of individual signal modality for the combined results with and
without losses to the signals. Error bars shows 95% confidence interval.
(a) effect without data losses. (b) effect with 50% of data loss.

reaction reflects faster with heartbeat compared to body tem-
perature variations and skin conductance changes [42]. Also,
literature [43], [44] suggest a higher correlation between
heart pulse andwrist accelerometer readings, providing better
accuracy for the accelerometer.

Interestingly, when there is no data loss, the predic-
tion accuracy of the combined model is not significantly
(p > 0.05) higher than the prediction accuracy of any individ-
ual signal. However, when the signals are lossy, seven out of
12 tasks, combined models demonstrate significantly higher
prediction accuracy than individual modalities. This result
attests that combined modalities can offer higher robustness
compared to individual modalities.

VI. CONCLUSION AND FUTURE WORK
This paper presents a novel contrastive representation learn-
ing approach for emotion recognition using wearable signals.
We achieve the following key results:

• We excel the state-of-the-art methods for emotional clas-
sification performance over three widely used datasets
(CASE, CLAS and WESAD) and create benchmark
performance for the K-EmonCon dataset.

• We benchmark SigRep with state of the art self-
supervised methods for signal representation learning
and show that SigRep outperforms.

• We demonstrate that our self-supervised model using
augmented data achieves significantly higher robustness
to data losses than a fully supervised baseline. We also
observe that while combined modalities do not achieve
significantly higher accuracy than individual modalities
without data loss; but with data loss combined modali-
ties provides significantly better performance than that
of individual modalities.

• We demonstrate that we can reduce the requirement
of labelled data for downstream emotion classification
tasks by learning representation.

In future work, we aim (1) to explore the effect of different
fusion techniques on downstream task performance, and (2)
to investigate the feasibility of using different self-supervised
learning methods for on-device learning. Understanding
the effect of fusion would help build better wearable sig-
nal representation based systems optimal for downstream
tasks. On-device learning could improve representation
based models on the go and personalise models after the
deployment.
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