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1.  INTRODUCTION

For marine invertebrates with pelagic development,
the egg is the complete investment of the mother to
her offspring, with differences of maternal provision-
ing in species with feeding and non-feeding larvae.
For many phyla (e.g. echinoderms, some molluscs and
polychaetes), planktotrophic development in species
with small eggs is considered to be the ancestral life
history from which independent evolutionary transi-
tions to a large egg and lecithotrophic development

have occurred (Strathmann 1985, Em let et al. 1987,
Haszprunar et al. 1995, Hart 1996, Duda & Palum bi
1999, McEdward & Miner 2001, Hart 2002, Byrne
2006). Evolutionary change in egg and larval traits
(evolution of development, ‘evo-devo’) profoundly in -
fluences the biogeography and population structure of
marine invertebrates, with the plankto trophic−
lecithotrophic dichotomy being of major im portance
for marine ecology and life-history theory (O’Connor
et al. 2007, Marshall et al. 2012, Barbosa et al. 2013,
Puritz et al. 2017). The egg size− fecundity trade-off
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has major implications for  maternal− larval fitness re-
lationships, dispersal potential and population con-
nectivity (Vance 1973, Levitan 2000, O’Connor et al.
2007, Moran & McAlister 2009). Egg size is also used
as the target size parameter for sperm in models of fer-
tilization kinetics, and egg size evolution is also sug-
gested to be influenced by sperm environment (e.g.
number of sperm available for fertilization), with larg -
er eggs providing a more suitable target in low-sperm
conditions (Levitan 1993, 2000, Styan et al. 2005).

For species with small eggs and planktotrophic de-
velopment, maternal energetic lipids are used to
build the feeding larvae (Sewell 2005, Prowse et al.
2009, 2017, Moran et al. 2013). As the mother pro -
vides only a small fraction of the energy required for
the full length of larval development, the size, condi-
tion and fitness of the recruiting juveniles are deter-
mined by larval experience (e.g. stress, food supply)
over the weeks to months that they spend in the
plankton (Bertram & Strathmann 1998, Miller & Em -
let 1999, Levitan 2000, Phillips 2004, Emlet & Sadro
2006, Pechenik 2006). Feeding larvae have to assimi-
late material to construct the juveniles, with the asso-
ciated increased risk of mortality the longer they dis-
perse (Lamare & Barker 1999, Byrne et al. 2008a).

In contrast to earlier notions that the extra provisions
in the large eggs of species with lecithotrophic devel-
opment are required to sustain development in the
absence of feeding (Mortensen 1921), most of the egg
energetic reserves are partitioned for the early juve-
nile (Emlet & Hoegh-Guldberg 1997, Prowse et al.
2009, Falkner et al. 2015). For these species, the large
egg is a direct transgenerational link between mother
and juvenile and can be used as a proxy for the size of
the recruiting offspring (Marshall et al. 2008). Large-
egg species can rapidly achieve metamorphic compe-
tence, with the potential outcome of lower planktonic
mortality and higher reproductive fitness with respect
to the number of juveniles produced and their success
(Havenhand 1993, McEdward & Miner 2001). These
juveniles start their benthic life far better provisioned
than those resulting from planktotrophic development
(Emlet & Hoegh-Guldberg 1997, Byrne & Cerra 2000,
Villinski et al. 2002).

The ancestral-type small eggs of echinoderms with
planktotrophic development contain low levels of
energetic lipids, the most important of which is tri-
acylglycerol (TAG), a readily metabolised fuel (Se -
well & Manahan 2001, Sewell 2005, Prowse et al.
2009, Whitehill & Moran 2012, Peters-Didier & Se -
well 2017). In contrast, the large eggs of species with
lecithotrophic development are stocked with high
levels of storage lipids including diacylglycerol ether

(DAGE) and wax and methyl esters (Villinski et al.
2002, Prowse et al. 2009, Falkner et al. 2015). The
independent evolution of a large egg and lecitho-
trophic development across echinoderm taxa has
resulted in distinct differences in egg lipid profiles
(Jaeckle 1995, Byrne et al. 1999, Villinski et al. 2002,
Prowse et al. 2009, Falkner et al. 2015).

We examined the evolution of maternal investment
in sea urchins by comparing egg biochemistry in
closely related species with contrasting plankto -
trophic and lecithotrophic development. The marked
difference in the egg and larval phenotypes in Helio-
cidaris species (family Echinometridae) has provided
insights into marine invertebrate evo-devo (Raff &
Byrne 2006). Evolution of lecithotrophy in this genus
is associated with extensive modifications in gene
expression, gene regulatory networks and egg bio-
chemistry (Villinski et al. 2002, Raff & Byrne 2006,
Israel et al. 2016). H. tuberculata (90 µm diameter
egg) and H. erythrogramma (400 µm diameter egg)
have negatively and positively buoyant eggs, respec-
tively (Byrne et al. 1999, 2001, Raff & Byrne 2006).
These species are estimated to have diverged ~5 mil-
lion yr ago (Mya) (Zigler et al. 2003). We also investi-
gated egg lipids in 2 temnopleurids with feeding and
non-feeding larvae (Temnopleurus alexandri and
Holopneustes purpurascens; 600 and 125 µm diame-
ter eggs, respectively) which are estimated to have
diverged >30 Mya (Smith et al. 2006, A. Kroh pers.
comm.).

A previous study using plate-based thin-layer
chro ma tography indicated that the novel lipid class
in the eggs of H. erythrogramma and H. purpuras-
cens was wax ester (WE) (Villinski et al. 2002). More
recently, analyses of asteroid and ophiuroid eggs
using a 1-step development hexane-based solvent
system and thin layer chromatography-flame ioniza-
tion detection (TLC-FID), which separates TAG and
DAGE into distinct peaks, have indicated that the
primary energy storage lipid in large echinoderm
eggs is DAGE (Prowse et al. 2009, Falkner et al.
2015). We used TLC-FID to characterise maternal
lipid provisioning in H. erythrogramma in compari-
son with that in its congener H. tuberculata, as well
as for egg lipid provisioning in the 2 temnopleurid
species.

Larval provisioning for the juvenile in plankto -
trophic developers (Byrne et al. 2008a) and maternal
provisioning for the juvenile in lecithotrophic devel-
opers (Emlet & Hoegh-Guldberg 1997) indicates
strong selection to support the early juvenile in both
life history modes. This stage is considered to be a
particularly weak link in the biphasic life history of
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marine invertebrates (Gosselin & Qian 1997). The
planktonic− benthic metamorphic transition is one of
the most important events in the life of marine inver-
tebrates and involves extensive body rearrangement
and functional changes. These changes are likely to
incur significant energetic costs, but this has rarely
been investigated, especially to the advanced juve-
nile stage (but see Villinski et al. 2002). We used the
rapid development of H. erythrogramma, where the
juvenile stage is reached within 5−6 d, to charac-
terise the dynamics of lipid depletion through meta-
morphosis and the early benthic stage. In this spe-
cies, most of the egg lipids are extruded into the
embryonic blastocoel as large droplets where they
are evident throughout larval development (Emlet &
Hoegh-Guldberg 1997, Byrne et al. 1999, 2001). We
determined what proportion and type of egg lipids
are used to fuel embryonic and larval development
through to metamorphosis and what provisions are
reserved for the benthic juvenile.

With respect to the proportion of different lipid
classes, the large eggs of echinoderms with lecitho-
trophic development are not simply scaled up ver-
sions of the small eggs (Prowse et al. 2009, Falkner et
al. 2015). We hypothesised that the switch to
lecithotrophy in echinoids involved a novel maternal
lipid provisioning strategy with hypertrophic produc-
tion of long-term energy storage lipid (sensu Lee et
al. 2006), in particular DAGE, as predicted by Prowse
et al. (2009), or alternately due to production of WE,
as previously reported (Villinski et al. 2002). During
development, we hypothesised that the TAG re -
serves would be exhausted in H. erythrogramma
during construction of the larval body as in echinoids
with planktotrophic development (Sewell 2005,
Byrne et al. 2008b, Prowse et al. 2017) with other
energetic lipid types reserved for the juvenile (Emlet
& Hoegh Guldberg 1997, Villinski et al. 2002). The
lipid condition index of the juvenile H. erythro-
gramma was compared with that determined for
juvenile H. tuberculata (Prowse et al. 2017) to assess
the comparative advantage of lecithotrophy.

2.  MATERIALS AND METHODS

2.1.  Spawning, egg sampling and fertilization

Heliocidaris erythrogramma, H. tuberculata and
Holo pneustes purpurascens were collected in Chow-
der Bay (33° 50’ 29” S, 151° 15’ 11” E) and Temnopleu-
rus alexandri was collected from Camp Cove
(33° 51’ 30” S, 151° 14’ 00” E) in Sydney Harbour, Aus-

tralia. To obtain eggs for lipid analysis, spawning was
induced by intracoelomic injection of 0.5 M KCl. The
eggs were collected from the top of the urchin and
transferred to 2 l beakers of filtered seawater (FSW
1.0 µm, Millipore), 1 for each female. After a rinse in
FSW, the eggs were placed in a 100 ml volumetric
cylinder and the concentration (number ml−1) of the
eggs in suspension was determined from ali quots us-
ing a Sedgewick-Rafter counting chamber. Three egg
samples per female (H. erythrogramma, n = 6 females
with 30 eggs per subsample; H. tuberculata, n = 3 fe-
males, 700 eggs; H. purpurascens, n = 2 females, 30
eggs; T. alexandri, n = 3 fe males, 700 eggs) were
aliquoted into 1.5 ml tubes. Each tube was briefly cen-
trifuged, the excess sea water re moved, and the sam-
ples stored at −80°C until analysis. Twenty eggs fe-
male−1 were photographed using an Olympus stereo
microscope and measured using image J (NIH).

For H. erythrogramma, eggs from 3 females were
pooled in 3 different combinations (Females 1,2; Fe-
males 1,3; Females 2,3), and each pool of eggs was
placed in a 2 l beaker filled with FSW. The eggs in
each beaker were fertilized with sperm mixed equally
from 2 males. This was followed by a rinse and re-
newal of the FSW. Each population of embryos was
then split into 2 l beakers of FSW (5 embryos ml−1) for
rearing with daily renewal of the FSW. Samples of the
eggs were collected (as above) to quantify the lipid
classes present at the start of development. The cul-
tures were maintained in a constant temperature
room (20°C) with gentle bubbling from a glass pipette
to maintain circulation. Water changes (90%) were
conducted daily by reverse filtration. On Day 4, larvae
from each beaker were transferred to 200 ml culture
dishes for settlement with a small piece of geniculate
coralline algae (Amphiroa sp.) to induce metamorpho-
sis. The settled juveniles were maintained in these
dishes until 14 d post fertilization (dpf) prior to forma-
tion of the mouth. Samples of swimming larvae (3
dpf), metamorphosing−metamorphosed larvae (6 dpf)
and definitive juveniles (11 dpf, 14 dpf) were collected
(as above, with n = 30−40 for each time point). As lar-
val settlement is asynchronous in H. erythrogramma,
the Day 6 sample was a mixture of swimming larvae,
attached larvae and metamorphosing larvae.

2.2.  Lipid extraction and analyses

Lipid was extracted from frozen samples as de -
scribed by Prowse et al. (2008). Total lipid extracts
were dissolved in a known volume of chloroform (5−
30 µl) before spotting on Chromarods of an Iatro scan
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Mark Vnew TLC/FID system. Lipids were separated
and quantified in H. erythrogramma, H. purpuras-
cens and T. alexandri using the 1-step development
of hexane−diethyl ether (96:4 v/v) which separates
TAG and DAGE into distinct peaks (Phleger et al.
1997, Prowse et al. 2009). The presence of DAGE was
confirmed by comparison with a lipid standard pro-
vided by P. Nichols (CSIRO) and P. Virtue (University
of Tasmania), and quantification based on the TAG
standard (Prowse et al. 2009). Total energetic lipid
per sample was calculated as the sum of DAGE,
TAG, WE and aliphatic hydrocarbon (AH). Structural
lipid was determined from the sum of the structural
neutral lipid cholesterol and the structural polar
lipids, which include phospholipid (PL) and acetone
mobile polar lipid (AMPL). Quantification of lipids in
H. tuberculata is from Prowse et al. (2017); here we
used additional egg samples to test for the presence
of DAGE using the 1-step development as described
above to confirm that the major energetic lipid class
is TAG. Amounts of DAGE and TAG for each female
were normalized to egg volume (ng nl−1) using the
mean egg volume for each species; as the units are
weight of lipid per unit egg volume, we follow
Jaeckle (1995) in referring to this as lipid density.
Lipid class depletion during development of H. ery -
thro gramma was also assessed using a lipid condi-
tion index based on the energetic lipid:ST ratio as
applied to development in a range of taxa including
H. tuberculata (see Prowse et al. 2017). This index
was calculated for the egg, larva (3 d) and meta -
morphosing juveniles (6 d) to compare lecitho-
trophic (H. erythrogramma) and planktotrophic de -
velopment (H. tuberculata).

2.3.  Statistical analyses

Data on lipid classes and total lipid in the eggs of H.
erythrogramma were analysed using a 1-way analy-
sis of variance (ANOVA) with female as a fixed fac-
tor. Data on lipid class and total lipid utilization over
development of H. erythrogramma were also ana-
lysed with a 1-way ANOVA with time as a fixed fac-
tor. The assumptions of ANOVA were checked
through graphical analysis of residuals, and Levine’s
(homogeneity of variance) and Shapiro-Wilk (nor-
mality) tests were non-significant. Tukey’s post hoc
tests were used to assess significant tests (α = 0.05).
Lipid density for TAG and DAGE in the eggs of H.
erythrogramma and H. tuberculata were compared
using Student’s t-test. All analyses were conducted in
R 3.4.3 (R Core Team 2018) or in the Systat module
within Sigmaplot 14.0.

3.  RESULTS

3.1.  Egg lipid profiles

The eggs of the 6 Heliocidaris erythrogramma fe -
males had mean diameters ranging from 390− 405 µm
diameter (Table A1 in the Appendix) with a mean ±
SE total lipid content of 6234 ± 440 ng egg−1

(Table 1). Five lipid classes were identified: DAGE
(4518 ± 390 ng egg−1) was the major energy storage
lipid (72.5% of total lipid), with TAG and WE com-
prising 10.2 and 5.4% of total lipid, respectively, and
the rest of the lipid being structural (Table 1, Figs. 1
& 2A). There was a significant difference between
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Lipid type                    Heliocidaris                       Heliocidaris                       Temnopleurus                       Holopneustes 
                                     tuberculata                     erythrogramma                         alexandri                            purpurascens

Energetic lipids
DAGE nd                        4517.83 (390); 72.47%                        nd                         4956.67 (111.75); 46.5%
TAG                          8.44 (1.74); 39%              632.83 (75); 10.15%              26.28 (2.00); 31.9%            723.71 (23.48); 6.8%
WE nd                           339.17 (57); 5.44%                  1.09 (0.06); 1.3%              194.10 (12.53); 1.8%
AH                            0.95 (0.17); 4.39% nd                               0.28 (0.01); 0.3%              712.96 (143.91); 7.3%

Structural lipids
ST                              1.27 (0.18); 5.86%           137.26 (10); 2.20%                11.64 (1.40); 14.1%            380.67 (6.43); 3.5%
AMPL+PL               11.0 (0.41); 50.1%             606.5 (79); 9.72%                  43.02 (2.88); 52.3%          3621.56 (50.58); 34.0%
                                                                                                                                                                                  
Total lipid                      21.66 (3.9)                        6233.66 (440)                         82.30 (2.77)                       10657.53 (239.19)

Table 1. Egg lipid composition (ng egg−1) of Heliocidaris tuberculata (n = 3), Heliocidaris erythrogramma (n = 6), Temnopleu-
rus alexandri (n = 3), and Holopneustes purpurascens (n = 2) as mean (SE) and % of total lipid. AH: aliphatic  hydrocarbon,
AMPL-PL: acetone-mobile polar lipids and phospholipid, DAGE: diacylglycerol ether, ST: sterol, TAG: triacylglycerol, 

WE: wax ester. Data for H. tuberculata from Prowse et al. (2017). nd: not detected
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females in the total lipid content of the eggs (F5,12 =
7.83, p = 0.0017), due to between-female variation in
DAGE content (ANOVA: F5,12 = 11.55, p = 0.0003).
The mean DAGE content was 4518 ± 390 ng egg−1

(n = 6) with a range from 3058−5450 ng egg−1, as
reflected in the different proportion of this lipid in the
eggs of the different females (Fig. 1). The mean TAG
and WE content were 633 ± 75 ng egg−1 (range
304−835 ng egg−1, n = 6) and 339 ± 57 ng egg−1

(range 369−550 ng egg−1, n = 6), respectively.
DAGE was not detected in the eggs of H. tubercu-

lata (88.5− 92.3 µm diameter, Table A1). These eggs
have a total lipid content of 21.7 ng egg−1 with the
energetic lipid being TAG (39% of total lipid) and
with trace levels of WE (not shown, see Prowse et al.
2017) (Table 1, Fig. 2A).

The eggs of Holopneustes purpurascens (595−
624 µm diameter, Table A1) had a mean total lipid
content of 10 657 ± 239.19 ng egg−1 (Table 1). DAGE
(mean 4956.67 ± 111.75 ng egg−1) was the major

energy storage lipid (46.5% of total), with
AH, TAG and WE being 7.3, 6.8 and 1.8% of
total lipid, respectively (Fig. 2A, Table 1).

The eggs of the planktotrophic developer
Temnopleurus alexandri (125 µm diameter)
had a low total lipid content (82.3 ng egg−1).
TAG was the major energy storage lipid
(31.9% of total), with small amounts of WE
(1.3% of total) (Fig. 2A, Table 1). DAGE was
not detected in the 1-step development.

The lipid density of the 2 main energetic
lipids illustrated in Fig. 2B shows that the
density of TAG was not significantly differ-
ent in the 2 Heliocidaris species (t = −0.482,
df = 7, p = 0.644), so that the TAG amount
remained proportionally the same per unit
volume in the lecithotrophic egg. DAGE den-
sity in the eggs of H. erythrogramma was
much higher (Fig. 2B). De spite their much
larger size, the eggs of H. purpurascens had
a significantly lower DAGE density com-
pared with those of H. erythrogramma (t =
4.496, df = 6, p = 0.004). For the 2 temno-
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Fig. 1. Proportional contribution of lipid classes in the eggs of
6 Heliocidaris erythrogramma. AMPL + PL: acetone-mobile
polar lipids and phospholipid, DAGE: diacylglycerol ether, 

ST: sterol, TAG: triacylglycerol, WE: wax ester

Fig. 2. (A) Proportional contribution of lipid classes
to total egg lipid content in Heliocidaris tuberculata
(n = 3; data from Prowse et al. 2017), H. erythro-
gramma (n = 6), Holopneustes purpurascens (n = 2)
and Temnopleurus alexandri (n = 3). AH: aliphatic
hydrocarbon; other abbreviations as in Fig. 1. (B)
Lipid density for the 2 main energetic lipids, DAGE 

and TAG (ng nl−1)
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pleurids, the density of TAG was higher in
T. alexandri (t = −7.778, df = 3, p =
0.00442), indicating that as the egg gets
bigger, the TAG amount does not
increase at the same rate as egg size in
the lecithotrophic H. purpurascens.

3.2.  Lipid dynamics in development of  
H. erythrogramma

There was a significant change in all
lipid classes, except ST, through develop-
ment in H. erythrogramma from the egg
(Time 0) through the swimming larva (Day
3) to metamorphosis-settlement (Day 6)
and juvenile stages (Days 11 and 14)
(Table 2, Fig. 3). The largest lipid class,
DAGE, was not used to fuel larval devel-
opment (to Day 3), and only decreased on
Day 6 in association with metamorphosis,
to 70% of the level in the egg (Table 2,
Fig. 3). By Day 14, the juveniles still had
49% of their initial DAGE levels. TAG was
used to construct the larvae (~190 ng TAG
used) on Day 3, with 71% of this lipid re-
maining with no further depletion to the
14 d old juvenile stage (Table 2, Fig. 3).
Overall, the WE levels remained relatively
unchanged (~100 ng used), but Tukey’s
post hoc results were difficult to interpret
(Table 2).

The lipid condition index (total ener-
getic lipid:ST ratio) of H. erythrogramma
changed from 38.1 for the egg to 34.8 for
the larva and to 20.2 for the metamorphic
period on Day 6, with the latter two con-
siderably higher than that for H. tubercu-
lata at metamorphosis (Table 3).
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Fig. 3. Lipid depletion (mean ± SE) in development of Heliocidaris erythro-
gramma from Day 0 (0D, egg) to the larva (Day 3), metamorphosis (Day 6)
and the juvenile (Days 11 and 14). Total: total lipid, DAGE: diacylglycerol
ether; SL: total structural lipid (sterol, acetone-mobile polar lipids and
phospholipid); TAG: triacylglycerol. The letters indicate results of Tukey’s 

post hoc test; time points that have the same letter did not differ

Lipid class                          Time F4,10               p                   Tukey’s post hoc

DAGE                                     5.38              0.0142              D0 = D3 > D6 = D11 = D14
TAG                                        8.06              0.0036              D0 > D3 = D6 = D11 = D14
WE                                          12.94             0.0006              D0 > D3 > D6; D3 > D11 > D14; D6 > D11 > D14; D0 = D11 = D14
ST                                           2.47               0.113                
AMPL + PL                            8.24             0.0033              D0 = D3 = D6 = D11; D0 > D14; D3 > D14; D6 > D14
Total energetic lipids            9.31               0.002                D0 = D3; D0 > D6, D0 > D11, D0 > D14; D6 = D11 = D14
Total structural lipids            6.28               0.009                D0 = D11 = D14; D3 = D11; D3 > D14; D6 = D11, D6 > D14
Total lipids                             5.11             0.0167              D0 = D3 = D6; D0 > D11; D0 > D14; D3 > D14; D6 = D11 = D14

Table 2. One-way ANOVA of data on maternal lipids over 5 time points (Time 0 [D0, egg], D3 [larva], D6 [metamorphosis], D11
and D14 [juvenile]) in development from the egg to the 14 d old juvenile of Heliocidaris erythrogramma. Lipid abbreviations as 

in Table 1

                                                        H. tuberculata      H. erythrogramma

Egg                                                            47                            38.1
Swimming larva                                     0.07                           34.8
Metamorphosing larva/juvenile           0.001                          20.2

Table 3. Comparison of the lipid condition index (total energetic lipid:sterol
ratio) of eggs, larvae and newly metamorphosed juveniles of the plank-
totrophic developer Heliocidaris tuberculata and the lecithotrophic devel-
oper H. erythrogramma. Data for H. tuberculata from Prowse et al. (2017)
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4.  DISCUSSION

Evolution of lecithotrophic development in echino-
derms was associated with the emergence of new
strategies of maternal investment in larger eggs
across the echinoderm classes (Strathmann 1985,
McEdward & Miner 2001, Prowse et al. 2008, 2009,
Falkner et al. 2015). Our hypothesis that evolution of
large eggs in echinoids involved hypertrophic pro-
duction of the long-term energy storage lipid DAGE is
supported by the data for Heliocidaris erythrogramma
and Holopneustes purpurascens. The eggs of these
species did not have extensive stores of WE, as previ-
ously suggested (Villinski et al. 2002), al though this
lipid was present in low levels in the eggs of both spe-
cies. For Heliocidaris tuberculata and Temnopleurus
alexandri, TAG is the major energetic lipid, as re-
ported for 9 species of echinoids with small eggs and
planktotrophic development (Table 4). The domi-
nance of TAG as the major energetic lipid across 5
echinoid families as well as in the small eggs of aster-
oids, ophiuroids and a holothuroid with planktotrophic
development (Falkner et al. 2015, Peters-Didier &
Sewell 2017, Prowse et al. 2017) provides a strong in-
dication that TAG was the ancestral type of maternal
energetic lipid provisioning in the Echinodermata.

The hypothesis that production of a large egg in H.
erythrogramma involved hypertrophic elaboration of
the ancestral lipogenic program is supported be cause

small amounts of DAGE have been detected in ances-
tral-type development in H. tuberculata using mass
spectrometry-based lipidomics (Davidson et al. 2019),
although we did not detect DAGE in these eggs with
TLC-FID. TAG density scaled with egg size similarly
in the 2 Heliocidaris species, indicating that H. ery-
throgramma has conserved provisioning of this lipid
class. TAG is used for larval building in this species,
as it is in H. tuberculata (Prowse et al. 2017). The den-
sity of DAGE in the eggs of H. erythrogramma is
much higher, showing that these eggs are not just
scaled up with respect to ancestral-type egg energetic
provisioning. The massive in crease in egg energy in
H. erythrogramma is due to hypertrophic elaboration
of an existing program of DAGE synthesis, similar to
that described for asteroids (Prowse et al. 2009) and
for several ophiuroids with lecithotrophic develop-
ment (Falkner et al. 2015). H. purpurascens has a
much larger egg than H. erythrogramma, but less
DAGE per nl volume, although levels of this lipid are
still substantial. The TAG density was lower in the
eggs of H. purpurascens compared with those of the
planktotroph T. alexandri. To understand egg evolu-
tion in the temnopleurids, we need data on how egg
lipids in H. purpurascens are used during develop-
ment. The temnopleurid model would be promising
to pursue with regard to evo-devo, as H. pur pur -
ascens forms a juvenile within a week of fertilization
(Morris & Byrne 2005).
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Family, species                          Larva   Egg diameter   Egg total              Egg energetic              Reference
                                                                       (µm)            lipid (ng)                  lipid (ng)

Echinidae                                                                                                                                             
Sterechinus neumayeri              P               179                 117                       75 (TAG)                   Moore & Manahan (2007)

Echinometridae                                                                                                                                    
Evechinus chloroticus                P                87                   34                        15 (TAG)                   Sewell (2005)
Echinometra lucunter                 P                82                  15.1                      7.5 (TAG)                   Emlet et al. (1987),

                                                                                                                                                               McAlister & Moran (2013)
Echinometra vanbrunti              P                70                   8.3                       3.4 (TAG)                   Emlet et al. (1987),

                                                                                                                                                               McAlister & Moran (2013)
Echinometra viridis                    P                91                  17.5                       8.3(TAG)                   Emlet et al. (1987),

                                                                                                                                                               McAlister & Moran (2013)
Heliocidaris tuberculata            P                90                   29                        10 (TAG)                   Prowse et al. 2017
Heliocidaris erythrogramma     L               400                6234         5500 (DAGE, TAG, WE)       This study

Toxopneustidae                                                                                                                                   
Tripneustes gratilla                    P                85                   31                        17 (TAG)                   Byrne et al. (2008a,b)

Temnopleuridae                                                                                                                                  
Temnopleurus alexandri            P               125                  82                       26.2 (TAG)                  This study
Holopneustes purpurascens      L               610               10435     5792 (DAGE, AH, TAG, WE)   This study

Strongylocentrotidae                                                                                                                         
Strongylocentrotus                    P                80                 15.67                    9.28 (TAG)                  Emlet et al. (1987), 
purpuratus                                                                                                                                         Matson et al. (2012)

Table 4. Egg energetic lipid data for echinoids with development through planktotrophic (P) and lecithotrophic (L) larvae, with 
details for lipid classes where available. Lipid abbreviations as in Table 1
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Intraspecific variation in egg size in echinoderms is
well known (e.g. Turner & Lawrence 1979), including
for H. erythrogramma (Deaker et al. 2019), but few
studies have examined variation in egg lipid chem-
istry between conspecific females (e.g. George 1990,
George et al. 1990, Moore & Manahan 2007) as seen
here across the eggs of individual H. erythrogramma
from the same location. These females would have
experienced similar abiotic conditions, and so the dif-
ferences may be due to maternal trophic state and
age, among other possible factors, as well as the
potential for in-built phenotypic plasticity in egg pro-
visioning (Jong-Westman et al. 1995, Marshall et al.
2008, Moran & McAlister 2009, González-Ortegón et
al. 2018). Differences in the level of DAGE in the
eggs among females would be expected to carry over
to their offspring. Some of these mothers may provi-
sion their juveniles for a longer period than others.
Larvae derived from more energy-rich eggs may also
start their benthic life at a larger size, as partial
removal of the lipids from H. erythrogramma
embryos reduces juvenile size and their survival
(Emlet & Hoegh-Guldberg 1997). The larvae may
also have greater flexibility to delay metamorphosis
and be more selective with respect to favourable set-
tlement habitat (Peche nik 2006). The larvae of H ery-
throgramma can swim for over a month in laboratory
culture, without an obvious change in size, before
undergoing settlement and metamorphosis (M.
Byrne pers. obs.).

Intraspecific variation in maternal provisioning, as
indicated by egg size in lecithotrophs (e.g. McEd-
ward & Carson 1987), would be of interest to follow
as there is a direct link between the egg (oogenic
program), juvenile condition and size, and the poten-
tial that this variation may represent a bet-hedging
strategy (Marshall et al. 2008). Although egg size
may not fully reflect nutritive content, there is a good
relationship between these two for echinoderms
(Moran et al. 2013). For H. erythrogramma, and other
species with lecithotrophic development, phenotypic
plasticity in egg size could be used to explore the
trade-offs between maternal fitness to maintain
nutritive condition to ensure future reproduction and
the imperative to invest in progeny. Selection to pro-
duce a high-quality juvenile in H. erythrogramma is
likely to have been an important evolutionary, as
well as contemporary, feedback mechanism on
oogenic processes.

We tracked lipid use over development in H. ery -
thro gramma, with a focus on energetic lipids. In early
development, some depletion of TAG occurred dur-
ing larval building in H. erythrogramma, similar to

that for H. tuberculata (Prowse et al. 2017). However,
there is a big difference in lipid use. For H. tubercu-
lata, ~12 ng of TAG (~100% of TAG reserves and
33% of total lipid) are used to construct the echino-
pluteus (Prowse et al. 2017). In H. erythrogramma,
~190 ng of TAG (~30% of TAG reserves and ~3% of
total lipid) are used to construct the simple larva of
this species, with ~440 ng remaining to support juve-
nile development and which may also be used to
extend the larval period.

For H. tuberculata, once the larva is formed there is
no improvement in nutritional condition, even after
6 wk of planktotrophic feeding with virtually no
energetic lipid reserves at metamorphosis, leading to
the suggestion that these larvae use phospholipids to
fuel metamorphosis (Prowse et al. 2017). In contrast,
for H. erythrogramma, despite the energetic cost of
metamorphosis, with 30% of energetic lipid stores
depleted to fuel this process, the early juveniles still
had massive maternal energetic lipid stores remain-
ing (~3000 ng DAGE juvenile−1). That the DAGE
reserves are sequestered for the juvenile and so are
physiologically inert through development is also
supported by larval energetics (Hoegh-Guldberg &
Emlet 1997). The lipid condition index of H. erythro-
gramma at metamorphosis (42.2) far exceeded that
determined for H. tuberculata (0.001; Prowse et al.
2017). This is similar to the case for asterinid sea stars
where the juveniles of a species with planktotrophic
development, Patiriella regularis, had a lipid nutri-
tion index of 1.4, whereas the indices of juveniles of
the lecitho trophic developers Meridiastra calcar and
Parvu las tra exigua were 25.4 and 33.3, respectively
(Prowse 2009, Prowse et al. 2017).

Ecological factors such as predation pressure, dis-
persal time, starvation and environmental abiotic
stressors are likely to have influenced the evolution-
ary imperative to evolve a larger larva independent
of an exogenous food source as well as a fitter high-
quality juvenile at the start of benthic life (Vance 1973,
Morgan 1995, Moran & McAlister 2009). Leci tho -
 trophic larvae are less prone to predation by a suite of
benthic predators (e.g. tunicates, mussels, ane   mones)
than their planktotrophic counterparts (Mercier et al.
2013). For the newly formed juvenile, the nutritional
buffer from a large egg, as seen in H. erythrogramma,
allows them to focus their energy on growing their
skeletal test and spines, structures that serve in pro-
tection and defence against predators (Strathmann
1981). Juvenile H. erythrogramma do not need to find
food for some time, potentially a month or more post
settlement (M. Byrne pers. obs.). The 14 d old juve-
niles still had 56% of maternal provisions remaining.
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These reserves undoubtedly contribute to the hardy
nature of these juveniles and their resilience to stress
(Wolfe et al. 2013). While there are many advantages
of lecithotrophy, the great diversity of species with
planktotrophic pro pa gules shows that this life history
strategy has also been selected for, potentially in as-
sociation with high dispersal potential, although the
benefits of a larval stage and life history modes are
mixed and have long been debated (Vance 1973,
Havenhand 1993, Peche nik 1999, Moran & McAlister
2009, Marshall et al. 2012).

Although egg size evolution is theorised to have
been influenced by the ‘sperm environment’ with re -
spect to the target size that eggs present to sperm
(Levitan 1993, Moran & McAlister 2009), egg target
size in echinoids is also strongly influenced by the
jelly coat, a feature not involved in larval nutrition
(Deaker et al. 2019). The egg jelly coat increases the
cross-sectional area of the egg several fold and is
inexpensive to produce (Podolsky 2002). In the sand
dollar Dendraster excentricus and sea urchin Arbacia
punctulata, the jelly coat is estimated to cost only 2
and 7% of the energy required to produce the egg,
respectively (Bolton et al. 2000, Podolsky 2001). This
extracellular coat releases sperm attractants, which
further increase egg target size by creating a chemi-
cal halo around the egg (Podolsky 2002, Inamdar et
al. 2007, Deaker et al. 2019). Investment in the egg
jelly coat differs across echinoid species, thereby dif-
ferentially influencing egg target size for sperm, al -
though the contribution of the jelly coat to egg target
size is not incorporated into models of fertilization
kinetics (Deaker et al. 2019). The relative importance
of the different evolutionary drivers to increase egg
size (offspring condition, egg target size for sperm)
and the mechanisms involved (increased maternal
provisioning, expansion of extracellular layers/
chemicals) are difficult to tease out (Moran & McAlis-
ter 2009, Deaker et al. 2019). For the Heliocidaris
species, the egg jelly provides a larger contribution
to the increase in surface area of the egg of H. tuber-
culata than in H. erythrogramma (Foo et al. 2018).

Evolution of lecithotrophic development in echino-
derms was associated with the emergence of new
strategies of maternal investment, which also drove
changes in the egg size−fecundity trade-off, likely in
response to selection to improve the nutritional status
of the early juvenile (Strathmann 1985, Emlet &
Hoegh-Guldberg 1997, McEdward & Miner 2001,
Prowse et al. 2009, Falkner et al. 2015). For the lipid-
rich, positively buoyant eggs of echinoderms with
lecitho trophic development, common themes in
maternal provisioning with increasing egg size are

emerging based on data for asteroids, ophiuroids and
echinoids (Prowse et al. 2008, 2009, Falkner et al.
2015, this study). The occurrence of large DAGE-rich
eggs in non-feeding larvae indicates convergent use
of this lipid class to provision large eggs. However,
this can vary, as seen in ophiocomid ophiuroids
where methyl esters and WE (not DAGE) are the
major energetic lipids in the eggs of some lecitho -
trophic developers (Falkner et al. 2015). Thus, in par-
allel with multiple and independent evolution of
diverse lecithotrophic larvae in the Echinodermata,
multiple patterns of maternal lipid provisioning have
also evolved, but with an overall trend in the switch
from dominance of TAG to other storage lipids, with
DAGE being prominent.

The weight of evidence suggests that readily meta -
bolised egg energetic lipid reserves such as TAG
are most suitable for planktotrophic development
(Table 4), while long-term energy stores are more
appropriate fuels for lecithotrophic development.
However, as seen here for H. erythrogramma, the
eggs have a similar density of TAG as the eggs of H.
tuberculata. Use of TAG to construct the larval body
is also a feature of development in this species, albeit
a very small proportion and for a much simpler larval
morphology. We need more comparative data on
closely related species with divergent modes of de -
velopment to confirm that TAG use for larval build-
ing is a conserved feature of lecithotrophic develop-
ment. To more fully understand evo-devo in the
Echino dermata, we also need more data on egg bio-
chemistry and lipid dynamics during development
for holo thuroids, for which just one study is available
(Peters-Didier & Sewell 2017), and for crinoids for
which there are no studies to date. The latter is a par-
ticularly important gap to address, as crinoids are the
basal echinoderm group. Interestingly, crinoids lost
the feeding larval stage millions of years ago, in asso-
ciation with major extinction events. Quantification
of crinoid egg lipids would provide key insights into
ancient (100s Mya) evolutionary change in maternal
provisioning to compare with the more re cent
changes, as for the Heliocidaris species (~5 Mya)
(Zigler et al. 2003).

Determination of the nutritive profile in the eggs of
echinoderms with facultative planktotrophy is likely
to be particularly informative (Allen & Pernet 2007).
Thus far, only one study has determined total lipid
levels in the eggs of a species with facultative
plankto trophy, i.e. Clypeaster rosaceus (280 µm
diameter egg, 2025 ng total lipid per egg) (Reitzel &
Miner 2007). However, there are no data on the ener-
getic lipid classes within this egg. In particular, the
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DAGE content of these eggs would be insightful to
determine if change in this lipid class was a key inno-
vation associated with increased egg size to allow
facultative feeding. The current paradigm is that a
gradual in crease in egg size reduced larval depend-
ence on exogenous food, with the eventual loss of
feeding structures, morphological simplification of
larvae and finally full dependence on maternal provi-
sions (Wray 1996, Hart 2002). This change is also
likely to have been associated with oogenic and
developmental plasticity. A parallel gradual increase
in DAGE as egg size evolved may have been a con-
vergent feature underlying the initial stages involved
in the switch to lecithotrophy in echinoderms.
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Species                                                                                        Egg diameter (µm)                                   Mean egg volume (nl)

Heliocidaris tuberculata (n = 3)                                    88.51 (0.91); 91.9 (0.84); 92.3 (0.2)                                    0.3937
Heliocidaris erythrogramma (n = 6)       390 (8.03); 392 (0.83); 397 (3.2); 399 (2.2); 400 (4.5); 405 (4.0)              32.8189
Holopneustes purpurascens (n = 2)                                          595 (11.1); 624 (7.6)                                              118.7563
Temnopleurus alexandri                                                                       125a                                                             1.0227

aM. Byrne pers. obs. (egg diameters of analysed females were not available)

Appendix. Calculation of egg volume

Table A1. Mean (SE) egg diameters (n = 20) for each species with the number of females used (n) and egg volumes used 
to calculate lipid density (see ‘Materials and methods’)
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