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Abstract: Background: Heterogeneous laborious analytical methodologies for the determination of
urinary lactulose and mannitol limit their utility in intestinal permeability testing. Methods: We
developed an assay using a Shimadzu HPLC system, an Aminex HPX87C column, and refractive index
detection. The test was calibrated using a series of dilutions from standard stock solutions of lactulose
and mannitol ‘spiked’ into urine samples. The utility to quantify urinary excretion during the dual sugar
absorption test over 6 h was also determined. Results: Lactulose and mannitol were eluted isocratically at
5.7 and 10.1 min, respectively, with water as a mobile phase at a flow rate of 0.3 mL min−1, 858 psi, 60 ◦C.
The calibration curves for both sugars were linear up to 500 µg mL−1 with a limit of detection in standard
solutions at 4 µg mL−1 and in ‘spiked’ urine samples at 15 µg mL−1. The intra-assay and inter-assay
CVs were between 2.0–5.1% and 2.0–5.1% for lactulose and 2.5–4.4% and 2.8–3.9% for mannitol. The
urinary profiles of the 6 h absorption of lactulose and mannitol showed similar peak-retention times to
standard solutions and were well-resolved at 5.9 and 10.4 min, respectively. Conclusions: The assay was
easy to automate, using commonly available equipment and convenient requiring no prior laborious
sample derivatization. The simplicity, reproducibility, and robustness of this assay facilitates its use in
routine clinical settings for the quantification of intestinal permeability.

Keywords: high-performance liquid chromatography; intestinal permeability; lactulose; mannitol;
dual sugar absorption test

1. Introduction

The standardization of a dual sugar absorption test using lactulose and mannitol [1] by
our group with regard to the dosage and timing of urinary sample collection has enabled it
to be used as a noninvasive quantitative assay for the direct assessment of small intestinal
permeability. The lactulose mannitol (LM) test is useful for monitoring changes in intestinal
permeability in a variety of conditions, such as celiac disease [2–5], Crohn’s disease [6–8],
and food allergies [9–11], as well as in testing changes in permeability following the intake
of aspirin [12,13] and ascorbic acid [14]. Lactulose and mannitol are useful probe sugars
that are passively absorbed [15], nonmetabolized [16], water soluble, noncharged, nontoxic
sugars that are quantitatively cleared by the kidneys in urine [16] within a six-hour period
and can be readily quantified in urine [17]. Both lactulose and mannitol are chemically inert
and uncharged molecules. The former is a disaccharide (molecular weight (MW): 342 Da;
molecular radius: 0.42 nm) that is absorbed via the paracellular pathway [18], while the latter
is a monosaccharide (MW: 182 Da; molecular radius: ≤0.4 nm) that is absorbed transcellularly
across the luminal mucosa [18]. Despite the widespread utility and benefits of the LM test,
heterogeneity in analytical protocols, including instrument performance and subsequent
reporting, has limited its routine use [19] for measuring intestinal permeability.
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Urinary lactulose and mannitol have been determined using various published method-
ologies that include enzymatic assays [20–22], colorimetric assays [23], and thin-layer chro-
matography (TLC) [24], as well as separate assays that individually quantify lactulose
and mannitol [25,26]. These methods are not only technically laborious, but some also
require the derivatization of urine samples prior to analysis. Recent work has indicated
that high-performance liquid chromatography (HPLC) [27–30] may be a preferred method-
ology on the basis of its greater precision and sensitivity [31] in quantifying lactulose and
mannitol [32–35]. However, the use of a number of different detectors and column types,
mobile phases, flow rates [15,32,33,36,37], and sample preparation protocols has confound
comparisons of their usefulness in clinical studies.

The use of different methods of detection stems from the fact that both lactulose and
mannitol lack chromophore and flurophore groups [38]. Whilst the ultraviolet detection
(UV) of an HPLC eluant with a photodiode array may give greater precision, this may
require more complex and expensive equipment, such as mass spectrometry (MS) with
electrospray ionization in tandem with MS [39]. Whilst MS is a highly sensitive and
reliable method, its use has often involved a variety of detectors [15,32,33,36,37,40] that are
expensive, which may limit its use during routine analysis in clinical settings [41].

Hitherto, considerations for method development have included an isocratic HPLC
system with refractive index detection [27,28,30,40]. This work describes the development
of a simple, reproducible, and convenient method for detecting urinary lactulose and
mannitol based on HPLC methodology using a resin-based cation exchange column with
a refractive index detector and a common, standard, readily available HPLC system. We
determined the accuracy, sensitivity, precision, and reproducibility of the method using
standard solutions, human urine samples spiked with lactulose and mannitol, and urine
from subjects following the oral ingestion of a lactulose (10 g) and mannitol (5 g) solution
during a standardized 6 h dual sugar absorption test.

2. Results

The chromatographic separation of lactulose and mannitol was achieved at a flow rate
of 0.3 mL min−1. The analysis was performed at 60 ◦C, 858 psi, with a run time of 12 min
for the standards and 25 min for urine samples (Figure 1a), with lactulose and mannitol
eluting at 5.7 and 10.1 min, respectively. No major interference was seen at the retention
times corresponding to the peaks at which each of the sugars were eluted. A relatively
small, unknown peak with a constant area under the curve (AUC), which was due to a
diluent contaminant, was eluted before mannitol (Figure 1b) and did not interfere with the
mannitol peak resolution.
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Figure 1. Chromatographic separation of lactulose and mannitol in standard solutions. Chromato-
grams depict (a) the resolution and peak separation of standard solutions containing 250 µg mL−1 

lactulose and mannitol at 5.7 and 10.1 min, respectively. (b) Each sugar was eluted at the same re-
tention time following injection of a range of different concentrations of standard solutions that 
contained 500 µg mL−1 (black), 125 µg mL−1 (pink), 31.3 µg mL−1 (blue), and 3.9 µg mL−1 (brown) 
lactulose and mannitol. A consistent residual peak before that of the mannitol peak from the diluent 
(water) is shown with an asterisk. 

The chromatograms of the urine samples spiked with standard solutions containing 
lactulose and mannitol were well-resolved within 11 min (Figure 2a,b) with similar peak-
retention times and resolutions as those obtained from the standards. 

 
Figure 2. Chromatographic separation of lactulose and mannitol in urine samples spiked with var-
ying concentrations of standard solutions. Chromatograms depict (a) the resolution and peak sepa-
ration of urine spiked with standard solution containing 250 µg.mL−1 lactulose and mannitol (cor-
rected with the ‘blank’ un-spiked urine sample) at 5.8 and 10.2 min, respectively. (b) Each of the 

Figure 1. Chromatographic separation of lactulose and mannitol in standard solutions. Chro-
matograms depict (a) the resolution and peak separation of standard solutions containing
250 µg mL−1 lactulose and mannitol at 5.7 and 10.1 min, respectively. (b) Each sugar was eluted at
the same retention time following injection of a range of different concentrations of standard solutions
that contained 500 µg mL−1 (black), 125 µg mL−1 (pink), 31.3 µg mL−1 (blue), and 3.9 µg mL−1

(brown) lactulose and mannitol. A consistent residual peak before that of the mannitol peak from the
diluent (water) is shown with an asterisk.

The chromatograms of the urine samples spiked with standard solutions containing
lactulose and mannitol were well-resolved within 11 min (Figure 2a,b) with similar peak-
retention times and resolutions as those obtained from the standards.
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Figure 2. Chromatographic separation of lactulose and mannitol in urine samples spiked with varying
concentrations of standard solutions. Chromatograms depict (a) the resolution and peak separation of
urine spiked with standard solution containing 250 µg mL−1 lactulose and mannitol (corrected with the
‘blank’ un-spiked urine sample) at 5.8 and 10.2 min, respectively. (b) Each of the sugars eluted at the
same retention time following injection of a range of different concentrations of standard solutions that
contained 500 µg mL−1 (blue), 250 µg mL−1 (brown), 125 µg mL−1 (green), and 62.5 µg mL−1 (black)
lactulose and mannitol after correction with the ‘blank’ un-spiked urine sample.
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2.1. Calibration of Assay

The calibration curves for lactulose (Figure 3a) and mannitol (Figure 3b) were each
linear up to 500 µg mL−1 with the following regression equations: lactulose, y = 563.88x;
and mannitol, y = 545.92x (expressed as the formula y = a + bx where a = 0 as the line
intercepts the axes at 0). The limit of detection (LOD) was up to 4 µg mL−1 for both
lactulose and mannitol in the standards.
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The concentration of lactulose and mannitol in each standard was 500 µg mL−1, 250 µg mL−1,
125 µg mL−1, 62.5 µg mL−1, 31.3 µg mL−1, 15.6 µg mL−1, 7.8 µg mL−1, and 3.9 µg mL−1, respectively.

2.2. Calibration with Spiked Urine Samples

The mean ratio of the observed-to-expected (O/E) recoveries for lactulose and man-
nitol for the set of spiked urine samples injected in triplicate over a range of dilutions
ranged from 90–101% for both lactulose and mannitol across all the dilutions, indicating
the sufficient linearity of the assay (Table 1).

The mean recovery for each of the sugars (to test the accuracy of the assay) from three
different spiked urine samples ranged between 96% and 110% for lactulose and between
102% and 110% for mannitol (Table 2). Based on these recoveries of the sugars, the LOD for
lactulose and mannitol from spiked urine samples was 15 µg mL−1.
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Table 1. Ratio of the observed-to-expected (O/E) recoveries of lactulose and mannitol using three
spiked urine samples.

O/E Ratio
(%)

1:2 1:4 1:8

Lac Man Lac Man Lac Man

Mean a 100.6 ± 6.8 97.7 ± 1.7 93.9 ± 4.2 89.8 ± 4.0 89.5 ± 7.9 93.7 ± 8
SE 0.87 0.44 0.69 0.67 0.94 0.94

CV% 6.8 1.8 4.5 4.5 8.9 8.6
Min 90 95 91 84 81 81
Max 113 100 105 97 100 102

a Data in this row are presented as mean ± standard deviation of the O/E ratio in each of the dilutions as a
composite for both the sugars in the three different urine samples (total data points: 27). Urine samples were
spiked with standards and had final concentrations of 250 µg mL−1, 190 µg mL−1, and 125 µg mL−1, which
were used in 1:2, 1:4, and 1:8 dilutions. Min and max are values of percentage recoveries. SE = standard error;
CV% = coefficient of variation.

Table 2. Recovery of lactulose and mannitol from three different spiked urine samples.

O/E
Ratio
(%)

Sugar Added a

Sample 1 Sample 2 Sample 3

Lac Man Lac Man Lac Man

Mean b 108.9 ± 3.2 110.3 ± 2.8 95.8 ± 2.0 101.8 ± 4.4 103.2 ± 5.3 102.5 ± 10.5
Min 105 106 93 97 95 92
Max 113 116 99 111 113 130

a Lactulose + mannitol; b data are expressed as mean ± standard deviation of the O/E ratio for both sugars
in the three different urine samples (total data points: 30). Urines were spiked with standards and had final
concentrations of: Sample 1 = 250 µg mL−1, Sample 2 = 62.5 µg mL−1, and Sample 3 = 15.6 µg mL−1. Min and
max are values of percentage recoveries.

2.3. Precision and Reproducibility

The precision of the assay for detecting lactulose and mannitol examined as a coeffi-
cient of variation (CV) for intra-assay variability was between 2.0% and 5.1% for lactulose
and between 2.5% and 4.4% for mannitol (Table 3).

Table 3. Intra-assay variability of lactulose and mannitol in three urine samples each repeated
10 times within the same assay run.

Urine
Spike

Sample 1 Sample 2 Sample 3

Mean a

(µg mL−1) CV b (%)
Mean a

(µg mL−1) CV b (%)
Mean a

(µg mL−1) CV b (%)

Lactulose 544.4 ± 15.9 2.9 119.7 ± 2.5 2.1 32.2 ± 1.6 5.1
Mannitol 551.7 ± 13.9 2.5 127.3 ± 5.5 4.3 31.1 ± 1.4 4.4

a Mean ± standard deviation of the concentration of sugar in urine sample from the 10 measurements within the
same run; b the coefficients of variation for each sugar. Urine samples were spiked with standards and had final
concentrations of: Sample 1 = 500 µg mL−1, Sample 2 = 125 µg mL−1, and Sample 3 = 31.3 µg mL−1.

The reproducibility of the assay for the detection of lactulose and mannitol, determined
as an inter-assay CV, was between 2.0% and 5.1% for lactulose and between 2.8% and 3.9%
for mannitol (Table 4).
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Table 4. Inter-assay variability of lactulose and mannitol in three urine samples each repeated 10 times
in consecutive assay runs.

Urine
Spike

Sample 1 Sample 2 Sample 3

Mean a

(µg mL−1) CV b (%)
Mean a

(µg mL−1) CV b (%)
Mean a

(µg mL−1) CV b (%)

Lactulose 251.0 ± 5.0 2.0 126.4 ± 4.0 3.1 31.6 ± 1.6 5.1
Mannitol 245.8 ± 6.8 2.8 121.4 ± 4.5 3.7 30.4 ± 1.2 3.9

a Mean ± standard deviation of the concentration of sugar in urine samples from the 10 consecutive assay
runs; b the coefficients of variation for each sugar. Urine samples were spiked with standards and had final
concentrations of: Sample 1 = 250 µg mL−1, Sample 2 = 125 µg mL−1, and Sample 3 = 31.3 µg mL−1.

2.4. Detection of LM in Urine Samples during the Dual Sugar Absorption Test

The sensitivity and reproducibility of the methodology for detecting each sugar in
urine samples during the dual sugar absorption test for intestinal permeability was also
tested and showed good peak resolution of lactulose and mannitol at 5.9 and 10.4 min,
respectively, in all samples collected over a 6 h period of testing. The peaks were distinct
and well-defined in samples collected at the start (Figure 4a(i)), as well as toward the end
(Figure 4b(i)), of the testing period. The correction of the chromatograms obtained from
half-hourly urine samples with that obtained from the baseline ‘blank’ sample showed a
clear AUC with distinct peak separation and resolution (Figure 4a(ii),b(ii)).

Molecules 2022, 27, x FOR PEER REVIEW 6 of 12 
 

 

Table 4. Inter-assay variability of lactulose and mannitol in three urine samples each repeated 10 
times in consecutive assay runs. 

Urine 
Spike 

Sample 1 Sample 2 Sample 3 
Mean a (µg mL−1) CV b (%) Mean a (µg mL−1) CV b (%) Mean a (µg mL−1) CV b (%) 

Lactulose 251.0 ± 5.0 2.0 126.4 ± 4.0 3.1 31.6 ± 1.6 5.1 
Mannitol 245.8 ± 6.8 2.8 121.4 ± 4.5 3.7 30.4 ± 1.2 3.9 

a Mean ± standard deviation of the concentration of sugar in urine samples from the 10 consecutive 
assay runs; b the coefficients of variation for each sugar. Urine samples were spiked with standards 
and had final concentrations of: Sample 1= 250 µg mL−1, Sample 2 = 125 µg mL−1, and Sample 3 = 
31.3 µg mL−1. 

2.4. Detection of LM in Urine Samples during the Dual Sugar Absorption Test 
The sensitivity and reproducibility of the methodology for detecting each sugar in 

urine samples during the dual sugar absorption test for intestinal permeability was also 
tested and showed good peak resolution of lactulose and mannitol at 5.9 and 10.4 min, 
respectively, in all samples collected over a 6 h period of testing. The peaks were distinct 
and well-defined in samples collected at the start (Figure 4(ai)), as well as toward the end 
(Figure 4(bi)), of the testing period. The correction of the chromatograms obtained from 
half-hourly urine samples with that obtained from the baseline ‘blank’ sample showed a 
clear AUC with distinct peak separation and resolution (Figure 4(aii,bii)). 

 
Figure 4. Detection of lactulose and mannitol over a 6 h testing period. Lactulose and mannitol were 
well-resolved in urine samples at 5.9 and 10.4 min, respectively. Chromatograms depict peaks of 
each sugar in urine samples before (ai,bi) and after (aii,bii) correction of the respective sample with 
the baseline ‘blank’ urine sample at 2.5 h and 5.5 h post-ingestion of the lactulose mannitol test 
solution. 

3. Discussion 
The HPLC assay that was developed in our laboratory proved to be simple to use, 

robust, and reproducible. As such, it can readily be used in hospital laboratories to detect 
trace quantities of lactulose and mannitol to assess small intestinal permeability. The 
methodology involved no equipment in addition to that which is normally used in clinical 
laboratories and was easy to automate. In particular, it required no prior sample derivat-
ization or internal standard, as has been reported in previous published methodologies. 

Figure 4. Detection of lactulose and mannitol over a 6 h testing period. Lactulose and mannitol were
well-resolved in urine samples at 5.9 and 10.4 min, respectively. Chromatograms depict peaks of each
sugar in urine samples before (a(i),b(i)) and after (a(ii),b(ii)) correction of the respective sample with the
baseline ‘blank’ urine sample at 2.5 h and 5.5 h post-ingestion of the lactulose mannitol test solution.

3. Discussion

The HPLC assay that was developed in our laboratory proved to be simple to use,
robust, and reproducible. As such, it can readily be used in hospital laboratories to detect
trace quantities of lactulose and mannitol to assess small intestinal permeability. The
methodology involved no equipment in addition to that which is normally used in clinical
laboratories and was easy to automate. In particular, it required no prior sample derivatiza-
tion or internal standard, as has been reported in previous published methodologies. The
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simplified and convenient assay had similar CVs for precision and reproducibility to other
reported studies based on urine samples to assay intestinal permeability [27,42].

The chromatographic resolution and separation were well-defined over the entire 6 h
period of testing and allowed for the temporal patterns of the excretion of lactulose and
mannitol to be accurately determined [12,13] and the LM ratio to be derived, as it is often
used as a cutoff for defining increased intestinal permeability. While a small peak was
eluted just prior to the peak in mannitol, comparison and assessment of the constancy of
the peak to that obtained from a pure ‘diluent’ solution (i.e., filtered MilliQ) showed that it
was due to the presence of an unknown substance in the diluent. Again, the retention time
of this peak was sufficiently different from that of mannitol (9.08 min) to allow the AUC of
mannitol to be well-separated and accurately quantified, and had no impact on the assay.

In prior publications based on a series of randomized crossover human studies [12–14,43],
we have standardized the clinical testing methodology with regard to the proper dosage and
timing of urine sample collection [1] for assessing region-specific intestinal permeability.
Additionally, the methodology and protocol adopted for the dual sugar absorption test
allowed the temporal patterns of absorption of the individual sugars to be compared before
and after a single dose of aspirin. This provided the opportunity to acquire information on the
differences in digestibility and the degradation of the component sugars within the different
segments of the gut. The consistency of the results obtained from these clinical studies using
the developed HPLC method further support repeatability and reproducibility in diagnostic
clinical settings [12–14,43].

Endogenous mannitol is known to be naturally present in urine in low concentrations.
Trace amounts of mannitol in dietary items that are consumed during the 24 h prior to test-
ing, along with traces from endogenous production by commensal intestinal microflora [44],
necessitate the correction of samples by subtraction of the quantities found in a baseline
sample collected prior to the administration of the LM solution [29,45]. Note that this
procedure assumes a constancy of excretion during the period of the test. An additional
strength of our method is that the baseline levels can be determined with sufficient accuracy
to allow meaningful correction.

The methodological modifications incorporated during the development of the assay
included the use of a resin-based column, Aminex HPXC, which exhibits multimodal inter-
actions described as ion-moderated partitioning [46]. The use of this resin is advantageous
over other reversed-phase and ion-pairing methodologies, which work on the principle
of modifying the compound to be analyzed and require complex eluants for effective
separation. This feature enabled an isocratic HPLC system to be used and the method of
sample preparation to be simplified, avoiding the need for the derivatization of the sample.
The bonded resin of the columns are prone to retaining certain components of the sample
that progressively decrease its efficiency and selectivity [47]. This problem was successfully
avoided by the use of a Micro-Guard pre-column that was installed between the injector
and the analytical column to protect from plugging and contamination by samples and
the mobile phase. A limitation of the use of refractive index detection is its susceptibility
to baseline drifts that may result from temperature and pressure fluctuations. This was
overcome by the placement of the detector within the HPLC system away from any vents,
and the detector was warmed for at least two hours prior to sample injection.

In conclusion, the described methodology was simple, readily automated, convenient,
reproducible, and robust for use in routine clinical settings and facilitated the ease of
undertaking an LM test over a six-hour period. Intestinal permeability is recognized as
an important diagnostic marker, commonly measured using the dual sugar absorption
test [48] and is a highly useful tool for screening gut ‘leakiness’. Although there is a need for
accurately assessing intestinal permeability, the multiplicity of current methods limits its
utility [49]. It is anticipated that the use of a standardized LM testing protocol with regard to
the dosage and timing of urine sample collection in conjunction with the methods described
herein may facilitate routine intestinal permeability testing within clinical settings.
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4. Materials and Methods

Chemicals and Reagents: Lactulose (L7877-25G) and mannitol (M4125-500G) were pur-
chased from Sigma Aldrich, Saint Louis, MO, USA. The Amberlite resins IR120 H and
IRA410 Cl were obtained from Fluka, Sigma Aldrich, Saint Louis, MO, USA. Cellulose
acetate filters (pore size of 0.2 µm) were supplied by Advantec, Toyo Roshi Kaisha Ltd.,
Tokyo, Japan. HPLC vials (1.5 mL) were obtained from Fisher Scientific, Loughborough,
LEI, UK. Filtered MilliQ water was utilized in all sample preparation. The urine samples
for spiking and calibration were provided by one of the authors (IRS), following a routine
8–10 h overnight fast. The urine samples were aliquoted and stored at −80 ◦C pending
spiking and HPLC analysis. The urinary sample aliquots were thawed at room temperature
pending spiking with calibrators.

The stock solutions of both lactulose and mannitol were prepared in filtered MilliQ
water and stored at 4 ◦C for one week. A series of dilutions containing the appropriate
aliquots of each of the two standard stock solutions in filtered MilliQ water was prepared
(see below). Similarly, the serial dilutions of each of the two standard stock solutions in
human urine were prepared using filtered MilliQ water. Each of the series of dilutions was
then stored at 4 ◦C for one week.

Sample preparation and treatment: A standard stock solution (1 mg mL−1) was prepared
using 100 mg lactulose (Sigma Aldrich L7877-25G) and 100 mg mannitol (Sigma Aldrich
M4125-500G) dissolved in and made up to 100 mL of filtered MilliQ water at room temper-
ature. A series of dilutions from 500 µg mL−1 to 3.9 µg mL−1 was prepared from the above
stock solution.

An amount of 1 mL of urine sample was spiked with 1 mL of the requisite standard
to obtain the required final concentration for calibration (Table 5). Each urine sample was
then treated with 500 mg Amberlite IR120 H and 500 mg of Amberlite IRA410 Cl.

Table 5. Dilutions used for preparation of spiked urine samples for calibration curves.

Initial Std conc (µg mL−1) 1000 500 250 125 62.5 313.3 15.6 7.8

Std (mL) 1 1 1 1 1 1 1 1
Urine (mL) 1 1 1 1 1 1 1 1

Final ‘spiked’ urine sample
conc (µg mL−1) 500.0 250.0 125.0 62.5.0 31.3 15.6 7.8 3.9

Std: standard; conc: concentration.

Prior to injection on the HPLC, the standards and spiked urine samples were vortex-
mixed for 15 s and filtered through a 0.2 µm cellulose acetate filter into 1.5 mL HPLC vials.

Chromatographic conditions: The samples were chromatographed on a Shimadzu HPLC
system equipped with a DGU-20AS Degasser Model (Kyoto, Japan), an LC-20AT Prominence
Pump Model, an SIL-20AC Autosampler Model, and a CTO-20A Column Oven using an
Aminex HPX87C 250 × 4.0-mm column and a Micro-Guard Cartridge pre-column. LM were
eluted isocratically with water as the mobile phase at a flow rate of 0.3 mL min−1, 858 psi, at
60 ◦C. The injection volume was 20 µL, and the run time was set to twenty-two min for the
elution of urine samples. The chromatograms obtained from urine samples spiked with the
standards were corrected with a ‘blank’ unspiked urine sample using LC solutions software in
the post-run mode. The AUC of each of the sugars in each urine sample was then determined
and compared to those of a series of standards run concurrently using LC solutions software.

Method validation: The LOD, linearity, precision, and accuracy of the assay were
determined.

Calibration curves with reference solutions: The detector response was assessed using differ-
ent concentrations of standard lactulose and mannitol solutions (500 µg mL−1, 250 µg mL−1,
125 µg mL−1, 62.5 µg mL−1, 31.3 µg mL−1, 15.6 µg mL−1, 7.8 µg mL−1, and 3.9 µg mL−1) run
in triplicate, and the LOD was determined.

Calibration curves with spiked urine samples: 1 mL of urine sample was spiked with 1
mL of different standards to obtain the final concentrations of 500 µg mL−1, 250 µg mL−1,
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125 µg mL−1, 62.5 µg mL−1, and 31.3 µg mL−1 (Table 5) and run in triplicate, and the LOD
was determined.

Linearity of the assay: The dilutional linearity, or the recovery of LM from the samples,
was used to validate the specificity and accuracy of the methodology. The urine samples
were spiked with standards containing lactulose and mannitol to obtain concentrations of
250 µg mL−1, 190 µg mL−1, and 125 µg mL−1 and diluted in 1:2, 1:4, and 1:8 proportions
with filtered MilliQ water. Each dilution was run in triplicate, and the results were expressed
as observed in the O/E ratios of recovery for each sugar.

Accuracy of the assay: The accuracy of the assay expressed the degree of closeness between
the reference values, i.e., the concentration in the standard, to that obtained from the found
value, i.e., in the spiked sample. This was determined by evaluating the recovery of three
different concentrations of urine samples spiked with standard solutions and results expressed
as O/E ratios. Three urine samples having final concentrations of 250 µg mL−1, 62.5 µg mL−1,
and 15.6 µg mL−1 of both lactulose and mannitol were injected in 10 separate aliquots
(repeated 10 times for each concentration within the same run) to allow the mean, standard
deviation (SD), CV, and standard error (SE) for each sugar to be calculated.

Precision of the assay: The precision of the assay expressed the closeness of a series of
individual measurements when the assay was applied repeatedly to multiple aliquots of a
single homogenous volume of the sample. This was determined by evaluating the intra-
assay variability by measuring three different concentrations, 500 µg mL−1, 125 µg mL−1,
and 31.3 µg mL−1, of lactulose and mannitol in spiked urine samples injected 10 times
within the same run, and the mean, SD, CV, and SE for each sugar were calculated.

Reproducibility of the assay: The reproducibility of the assay, or the repeatability of the
assay, was determined by evaluating inter-assay variability by measuring three different
concentrations of spiked urine samples injected in consecutive assay runs, and the mean,
SD, CV, and SE for each sugar were calculated. Urine samples having final concentrations
of 250 µg mL−1, 125 µg mL−1, and 31.3 µg mL−1 of lactulose and mannitol were injected
in 10 consecutive assay runs.

Utility of the method to detect lactulose and mannitol in urine samples collected during
routine dual sugar absorption test: Ethics approval was obtained from the Massey University
Human Ethics Committee Southern A: 09/79 [12], 11/37 [13], 12/13 [14], 13/31 [43]. All
participants provided written informed consent prior to the assessments. Briefly, following
a standard 8–10 h overnight fast, healthy female participants attended the Human Nutrition
Laboratory, Massey University, Palmerston North Campus. They refrained from consuming
prebiotic and probiotic supplements, such as lactulose, and nonsteroidal anti-inflammatory
drugs for one week prior to the test, from consuming alcohol for three days prior to the
test, and avoided exercise on the day before and the morning of the test. A baseline urine
sample was collected on arrival at the laboratory. The participants consumed a solution
containing 10 g lactulose (Duphalac, Solvay Pharmaceuticals, Sydney, NSW, Australia)
and 5 g D-mannitol (Sigma Aldrich, Saint Louis, MO, USA). Half-hourly urine samples
were collected following the ingestion of the LM solution over a 6 h period. No food was
consumed during the entire urine collection period, but 200 mL of water was given three
hours after the ingestion of the sugar solution to facilitate urine sample collection.

The volume of each of the half-hourly urine samples was recorded. They were then
centrifuged (Heraeus Sepatech Megafuge 1.0R) at 4500 rpm (3500× g) at 14 ◦C for 10 min
immediately following collection. An amount of 20 mL of supernatant was aliquoted and
stored at −80 ◦C until it was thawed at room temperature for HPLC analysis. All urine
samples were treated with a 1:1 proportion of amberlite resin (500 mg Amberlite IR120 H
and 500 mg of Amberlite IRA410 Cl), vortex-mixed for 15 s, and then filtered using 0.2 µm
cellulose acetate filters into HPLC vials. A 20 µL aliquot of filtrate from each sample was
then injected into an HPLC system. The chromatograms obtained were corrected with the
baseline ‘blank’ using LC solutions software in the post-run mode.
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