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Abstract

Asteroid wasting events and mass mortality have occurred for over a century. We currently

lack a fundamental understanding of the microbial ecology of asteroid disease, with disease

investigations hindered by sparse information about the microorganisms associated with

grossly normal specimens. We surveilled viruses and protists associated with grossly nor-

mal specimens of three asteroid species (Patiriella regularis, Stichaster australis, Coscinas-

terias muricata) on the North Island / Te Ika-a-Māui, Aotearoa New Zealand, using

metagenomes prepared from virus and ribosome-sized material. We discovered several

densovirus-like genome fragments in our RNA and DNA metagenomic libraries. Subse-

quent survey of their prevalence within populations by quantitative PCR (qPCR) demon-

strated their occurrence in only a few (13%) specimens (n = 36). Survey of large and small

subunit rRNAs in metagenomes revealed the presence of a mesomycete (most closely

matching Ichthyosporea sp.). Survey of large subunit prevalence and load by qPCR

revealed that it is widely detectable (80%) and present predominately in body wall tissues

across all 3 species of asteroid. Our results raise interesting questions about the roles of

these microbiome constituents in host ecology and pathogenesis under changing ocean

conditions.

Introduction

Recent and renewed interest in echinoderm microbiome ecology has revealed the paucity in

understanding of the roles of the microbial community in host biology and ecology; particu-

larly with respect to negative impacts such as mass mortality. Asteroid mass mortality due to a

condition termed “sea star wasting disease” (also known as “asteroid idiopathic wasting syn-

drome”) has occurred in the northeast Pacific starting in 2013 [1], and in Port Phillip Bay, Aus-

tralia and Shandong Province, China in 2014 [2]. Indeed, wasting has been observed for over a

century [3]. Microbiological investigation of wasting asteroids initially indicated the presence

of the Asteroid ambidensovirus 1 [4] (known at the time as Sea Star associated Densovirus or
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SSaDV; [1]), and that wasted asteroids were inhabited by a suite of cultivable copiotrophic (i.e.

bacteria that rapidly consume abundant organic matter) bacteria [5–8]. Recent work suggested

that sea star wasting disease is not distinctly associated with any virus [9, 10], but instead

results from organic matter enrichment which fuels microbial respiration by copiotrophic pro-

karyotic taxa, leading to oxygen depletion in the diffusive boundary layer around asteroid tis-

sues [6]. Sea star wasting disease may also be associated with elevated temperature [11–15]

[but note inverse relationship in ref [16]]. Hence, firm microbial associations with sea star

wasting remain elusive, similar to other echinoderm diseases (reviewed in [17]), and the condi-

tion may not be due to an infectious agent [6]. Previous work has highlighted distinct micro-

biome associations with echinoderms [18], building on previous microscopic and cultivation-

based studies [19–21]. These surveys suggest that echinoderms may harbor an underexplored

diversity of microorganisms. Environmental perturbation under future climate scenarios may

shift the relationship between these microorganisms and their hosts [22]. Hence, there is value

in surveying the diversity and prevalence of microorganisms associated with grossly normal

specimens, which may then inform future marine disease event investigations, when and if

they occur.

The study of viral diversity associated with metazoan hosts has been approached by two

methods. First, RNA and ssDNA viral genomes have been recovered from deeply sequenced

host transcriptomes [23, 24]. This approach provides key information about expressed host

genes in addition to a wealth of viral diversity, including deeply-branching viral genotypes

across a wide range of invertebrate hosts [24]. A second approach enriches for viruses by phys-

ical size and capsid-induced protection from nucleases [25]. Here, viral metagenomes are typi-

cally prepared using a homogenization-size exclusion-nuclease approach, where tissues are

normally ‘cleaned’ (washed) of putative epibionts [26]. Viral metagenomes prepared using this

approach have potential to yield more information than viruses alone, since only a tiny frac-

tion (typically < 5%) of metavirome sequence space is annotated as viruses [27] and the

remaining sequence space is believed to mostly reflect host RNAs. Ribosomes, which are typi-

cally 25–30 nm in diameter, are also liberated from cells during homogenization, pass through

the filters typically used in metavirome preparation, and transcript RNAs may be protected

from nucleases used to digest co-extracted nucleic acids. Thus, ribosomal RNAs are well repre-

sented in viral metagenomes and may include protistan, bacterial and archaeal components of

the host-associated microbiome. Comparison of non-viral sequences in viral metagenomes

against rRNA databases can therefore yield useful information about microbiome

composition.

The goal of the present study was to identify viruses and protists in common Aotearoa New

Zealand asteroids by surveying virus- and ribosome-sized RNAs, and use this information to

guide survey of microbial prevalence within and between populations and between tissue

types. We discovered several densovirus genome fragments in two species of asteroid, but

these were only detected at low prevalence within the populations studied by quantitative

PCR. We also discovered fungal, mycetozoan and mesomycetozoan constituents of the aster-

oid microbiome. A mesomycetozoan similar to a fish pathogen was prevalent in all asteroids

tested, and bore highest loads in body wall samples, suggesting it may be a common constitu-

ent of the asteroid microbiome.

Materials and methods

Sample collection

Asteroid samples (n = 77 individuals across 3 species) were collected for metagenomic investi-

gation of viral diversity and viral prevalence at several locations on the North Island / Te Ika-a-
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Māui, Aotearoa New Zealand, in January and February 2018 (Table 1). All collections were

made in public waters and no permits were required. No endangered or protected species

were collected in this study. Piha is an exposed, high energy dissipative beach. Stichaster aus-
tralis specimens were collected from rock outcroppings at low tide approx. 100 m away from

the closest human settlement and 500 m from the outflow of Piha stream. Specimens of Cosci-
nasterias muricata from Ti Point were collected at 3 – 5m by SCUBA diver in a channel

between Whangeteau Habour and Little Omaha Bay on an ebbing tide. Whangeteau Harbor

does not host aquaculture facilities, and experienced a bivalve mass mortality event in 2009

[28]. Specimens of Patiriella regularis were collected at low tide from a rock ledge at Mathe-

son’s Bay (Te Kohuroa). Specimens of P. regularis from Scorching Bay, which is an embayment

on the Miramar Peninsula / Te Motu Kairangi within the outflow of Wellington Harbour / Te

Whanganui-a-Tara were collected by hand at low tide. All specimens collected were grossly

normal, and no sea star wasting disease-like lesions were noted in populations at any site. Spec-

imens were immediately placed into individual plastic bags, which were transported to the lab-

oratory for dissection in a cooler (Fig 1). The taxonomic identity and arm length of individuals

was recorded for each specimen. Coelomic fluid was withdrawn from individuals using a 5 mL

syringe fitted with a sterile 25G needle. Body wall tissues were removed by sterile (5 mm)

biopsy punch. Gonads and pyloric caeca were dissected from coelomic cavities by first creating

an incision into the coelomic cavity using clean disposable razor blades, then using sterilized

forceps to remove small (~ 2–4 mm) sections of these tissues. All tissue and coelomic fluid

samples were preserved in RNALater (Qiagen) at a ratio of 2:1 (vol:vol) and refrigerated for

4–7 d. The specimens were then transported to the laboratory at Cornell University, where

they were frozen at -80˚C prior to further processing, which occurred within 4 months of col-

lection. No samples were collected from public conservation lands or marine reserves, hence

no permits were needed in support of this study.

Metavirome preparation

Three body wall biopsy samples from each species were selected for viral metagenomics (one

each from Stichaster australis, Coscinasterias muricata and Patiriella regularis; Table 2). For

each sample, the biopsy punch was removed from RNALater and subject to the workflow

detailed in [26] with modifications by Ng et al [29] and Hewson et al. [30]. Briefly, the sample

was homogenized by bead beating (Zymo Bead Beater tubes) in 1 mL of 0.02 μm-filtered 1 X

PBS. The sample was filtered through a 0.2 μm PES syringe filter. The filtrate was treated with

DNAse I (5 U; Thermo Fisher Scientific), RNAse One (50 U; Promega) and Benzonase (250 U;

Sigma-Aldrich) for 3 h at 37˚C in an attempt to remove co-extracted host nucleic acids.

Enzyme activity was halted by treatment with 50 μM EDTA. RNA was extracted from the

resulting purified viral fraction using the Zymo Mini RNA isolation kit, and subsequently

Table 1. Sampling locations, species and morphological characteristics of asteroids collected as part of this study.

Location Latitude Longitude Date Species n RL (cm) RL SE

Piha, Auckland / Tāmaki 36.9597 S 174.4628 E 1/22/2018 Stichaster australis 19 13.58 0.56

Ti Point, Northland / Te Tai Tokerau 36.3178 S 174.6178 E 1/27/2018 Coscinasterias muricata 17 7.42 1.10

Matheson’s Bay, Northland / Te Tai Tokerau 36.3011 S 171.8011 E 1/27/2018 Patiriella regularis 20 2.81 0.17

Coscinasterias muricata 1 10.00

Scorching Bay, Wellington / Te Whanganui-a-Tara 41.3078 S 174.8325 E 2/15/2018 Patiriella regularis 20 1.89 0.11

Samples collected at Ti Point were collected subtidally by SCUBA Diver, while those collected elsewhere were collected intertidally. RL = Ray length, SE = Standard

Error.

https://doi.org/10.1371/journal.pone.0241026.t001
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amplified using the TransPlex WTA2 (Sigma Aldrich) kit. We did not standardize template

quantity (mass) of extracted RNA, but used 2 μl extracted RNA in each amplification reaction.

Amplicons were quantified using PicoGreen and submitted for sequencing on a Illumina

MiSeq (2 x 250 bp paired-end) platform after TruSeq PCR-free library preparation at the Cor-

nell Biotechnology Resource Center. Sequences have been deposited in the NCBI under

Fig 1. Sampled specimens of Stichaster australis (A-B), Coscinasterias muricata (C-D) and Patiriella regularis (E-F). Viral

metagenomes were prepared from body wall (b) samples collected by biopsy punch. Additional specimens of gonad (g) and pyloric

caeca (p) were collected for quantification of viral genotypes and the mesomycetozoan.

https://doi.org/10.1371/journal.pone.0241026.g001

Table 2. Library characteristics prepared from asteroids in Northland and Auckland region, January 2018.

Species Date Total Reads Assembled Reads Total Contigs Viral Contigs

Coscinasterias muricata 1/27/2018 3,867,602 981,140 27,032 2

Stichaster australis 1/22/2018 1,673,102 681,086 2,170 0

Patiriella regularis 1/27/2018 1,635,372 301,574 6,332 2

https://doi.org/10.1371/journal.pone.0241026.t002
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BioProject PRJNA636826, Short Read Archive accessions SRR11923915- SRR11923917, and

contig sequences archived under accessions MW080663-MW080666

Bioinformatic processing

Sequence libraries were initially trimmed for adapters and quality (ambiguous bases <2) using

the CLC Genomics Workbench 4.0. Each of the 3 metaviromes were assembled separately

using the CLC Genomic Workbench 4.0 native algorithm using a minimum overlap of 0.5 and

similarity of 0.8. The resulting contig spectra was aligned against several boutique databases of

RNA viruses as described elsewhere [30]. These boutique databases comprised viral genomes

and proteins assembled from NCBI (accessed October 2018), including: All RNA viral

genomes by tBLASTx (search term “RNA Virus”); Mononegavirus proteins (search term

“mononegaviruses”) by BLASTx; Picornavirus RNA-dependent RNA polymerase (RdRp) pro-

teins (search term “RdRp AND picornavirus”) by BLASTx; invertebrate RNA viral proteins

(search term “invertebrate AND RNA viruses”) by BLASTx; Flavivirus proteins (search term

“flavivirus”) by BLASTx; Coronavirus proteins (search term “coronavirus”) by BLASTx; And

nodavirus proteins (search term “nodavirus”) [9, 30]. Because RNA viral metagenomes also

capture ssDNA viruses [10], we also searched contig spectra by tBLASTx against a boutique

database of densoviral genomes (complete genomes from NCBI using keyword “densovirus”).

Sequence matches against any of these databases at an E-value <10−20 were further aligned

against the non-redundant (nr) library at NCBI by BLASTx, and contigs discarded if they

matched known bacterial or eukaryl proteins at a higher percentage and E-value than viruses.

Uncertain amplification biases and variation in template RNA quantity preclude quantitative

interpretation of metagenome constituents. Hence, analyses of metagenomes focused on

detection of constituents and subsequent quantitative PCR of selected contigs.

Quantitative PCR (qPCR) of densovirus genome fragments

To examine the prevalence and viral load of asteroid densoviruses, we selected two (Coscinas-
terias muriticata contig 17 and Patiriella regularis contig 15838) that represented the most

complete genome fragments for these two species. TaqMan Primer/Probe sets were designed

around two contiguous sequences matching the nonstructural (Patiriella regularis contig

15838) and structural (Coscinasterias muricata contig 17) proteins of these densovirus-like

genome fragmrnts and validated them against oligonucleotide standards (Table 3). DNA was

extracted from 36 biopsy punch body wall samples (10 Stichaster australis, 3 Coscinasterias
muricata, 13 Patiriella regularis from near Auckland and 10 Patiriella regularis from Scorching

Bay, Wellington) using the Zymo Tissue & Insect Kit. DNA was then subject to quantitative

PCR (qPCR) in an Applied Biosystems StepOne Real-Time PCR machine. Each qPCR reaction

comprised 1 X SSO Probes SuperMix (BioRad), and 200 pmol of each primer and probe

(Table 2). Reactions were subject to a 10 minute incubation step at 50˚C, followed by a 3 min-

ute denaturation step at 94˚C. Following hot start activation, reactions were subject to 50

cycles of heating to 94˚C and annealing at 58˚C, where fluorescence was measured at the con-

clusion of each thermal cycle. Reactions were run in duplicate against an 8-fold dilution (cov-

ering 10 to 108 copies reaction-1). A positive detection of the virus was considered when both

duplicates were within 1 Ct, and were considered “detected but not quantifiable” (DNQ) when

one replicate generated a positive Ct but the other replicate failed to yield an amplicon.

Investigation of eukaryote 18S and 28S rRNAs in metaviromes

Contiguous sequences generated from viral metagenomes (described above) were queried

against the Silva database (version r132) of 16S/18S and 23S/28S rRNAs [31] by BLASTn and
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contigs matching at E<10−10 to 18S or 28S rRNAs were considered for further analysis.

Matches meeting this criterion were then queried against the non-redundant database at

NCBI. Matches to asteroid 18S and 28S rRNAs were removed from further consideration, as

were matches to other metazoan rRNAs. The resulting contig spectra were aligned against

close matches from NCBI using the CLC Sequence Viewer 8.0 (Qiagen).

Investigation of mesomycetozoan tissue and species specificity

Quantitative PCR (qPCR) primers were designed around the 28S rRNA sequence matching

Ichthyosporea sp. (Stichaster contig 929) and used to amplify body wall DNA extracts from 20

Stichaster australis, 6 Coscinasterias muricata, and 10 Patiriella regularis. Additionally, for each

of the 20 Stichaster australis, samples of pyloric caeca and gonad were also examined for the

presence and abundance of this sequence.

Results and discussion

Viruses associated with asteroid tissues

Metaviromes prepared from asteroid body wall samples contained between 1.6–3.9 million

paired-end reads (Table 2). Assembly of these resulted in 2,170 to 27,032 contigs, where con-

tigs recruited 18–41% of total reads. No RNA viruses were detected by alignment. However,

alignment against densoviral genomes resulted in 2 contigs matching to the nonstructural

gene 1 (NS1) and 2 contigs matching structural (VP) genes at E < 10−15 (Fig 2). Three of these

contigs–two from Coscinasterias muricata and one from Patiriella regularis- overlapped with

ambidensovirus peptide sequences recovered from species of starfish collected worldwide. A

further contig from Patiriella regularis matched a decapod penstyldensoviruses. Phylogenetic

analyses based on NS1 revealed that Coscinasterias muricata contig 16413 was most similar to

densoviruses recovered from Asterias rubens in Scotland [32] (Fig 3). Phylogenetic analyses

based on structural genes of the remaining viral contigs (Coscinasterias muricata contig 15838

Table 3. Primers and probes used in this study to examine the prevalence and load of densovirus and mesomyce-

tozoan-like contiguous sequences.

Target Primer

Name

Sequence (5’ - 3’)

Patiriella regularis
contig 15838

NZ1DV_F AGTTGTTACTTGGGGCTTGT

NZ1DV_R CCGTGCTCAGTACTTTGTCG

NZ1DV_Pr [FAM]CAGCACCAGATGTTGCAGCTGTTGA[TAM]

NZ1DV_Std AGTTGTTACTTGGGGCTTGTATAATAATAC
TGCTACAGCACCAGATGTTGCAGCTGTTGA
TCAAGTTAATGCACGACAAAGTACTGAGCACGG

Coscinasterias
muricata contig 17

NZ3DV_F ATCTTCAATGCACTCGGAGC

NZ3DV_R AGTAACGCCATGGATCTCGA

NZ3DV_Pr [FAM]AGTGTCACAGAACGCGCTTGTGGA[TAM]

NZ3DV_Std ATCTTCAATGCACTCGGAGCCAGTGTCACAGAA
CGCGCTTGTGGAACTACAAGCACAATCAGAATTCGAGATCCATGGCGTTACT

Stichaster australis
contig 929

NZ2Iso_F GCTAGGGTTCTATGGCTGGT

NZ2Iso_R GCTCCCCAGGATTTTCAAGG

NZ2Iso_Pr [FAM]CGAGTCCGGTGCGTCCTCGA[TAM]

NZ2Iso_Std GCTAGGGTTCTATGGCTGGTAGAGCTCGG
CACTTCTGCCGAGTCCGGTGCGTCCTCGACGGCC
CTTGAAAATCCTGGGGAGC

https://doi.org/10.1371/journal.pone.0241026.t003
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Fig 2. Contig map of densovirus-like genome fragments recovered from Coscinasterias muricata and Patiriella regularis viral metagenomes. The colors of arrows

indicate densoviral gene, and the best match (by BLASTx against the non-redundant database at NCBI) along with e-value is indicated adjacent to each ORF. The black

lines running through ORFs indicate total contig length. The numbers in brackets below each contig are the number of reads recruiting to the contig from the origin

library.

Fig 3. Phylogenetic representation of Patiriella regularis and Coscinasterias muricata-associated densoviral genome fragments. The

trees are based upon 170 amino acid (Non-Structural), 211 amino acid (Structural; middle), and 104 amino acid (Structural; bottom)

alignments performed using the CLC Sequence Viewer version 8.0. The trees were constructed with neighbor joining and Jukes-Cantor

distance, where bootstrap values (1000 reps) are indicated above nodes. Red labels indicate sequences obtained in this study, while green

labels indicate sequences obtained from asteroids in other studies.

https://doi.org/10.1371/journal.pone.0241026.g003
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and Patiriella regularis contig 3718) suggested that these were most similar to ambidenso-

viruses from molluscs [33, 34], insects [35], a crustacean [36], and human spinal fluid [37].

Quantitative PCR (qPCR) of the densovirus-like Coscinasterias muricata contig 15838 yielded

only 3 DNQ results; two in Coscinasterias muricata (of 3 total surveyed) from Ti Point; and

one Stichaster australis from Piha. qRT-PCR of Patiriella contig 17 yielded two DNQ results,

both from Patiriella regularis collected at Matheson’s Bay. In no sample did we consistently

detect the presence of either contig between replicate amplifications. This may be interpreted

as indicating their very low copy number (<10) in DNA extracts.

The observation of densoviruses in these species was not surprising, since their recovery in

other asteroids [1, 5, 10, 38] and urchins [39] suggests they may be a common constituent of

echinoderm microbiomes. Parvoviruses form persistent infections in hosts [38, 40], and are

highly prevalent and persistent in asteroid populations [41]. They are also widely endogenized

in host genomes [42]. None of the densovirus-like contigs discovered in this survey repre-

sented complete genomes, so it is possible that these also represent endogenized densoviruses.

The pathology of densoviruses and significance in wasting diseases or other conditions is

unclear. The copy number of Asteroid ambidensovirus-1 (SSaDV) and related densoviruses is

elevated in wasting-affected Pycnopodia helianthoides [5]. However, histopathology [43] and

other investigations [6, 9, 10, 41] have failed to clinically connect densoviruses (or viruses in

general) to sea star wasting disease. Densoviruses, like all parvoviruses, replicate in somatic

cells. Infection in arthropods leads to respiratory impairment [44] and triggering of apoptosis

[45], and has been linked to elevated mortality in crustacea [36, 46]. The discovery of a penstyl-

densovirus genome fragment in Patiriella regularis raises interesting questions about its role in

host ecology. In penaeid shrimp, persistent infection by penstyldensoviruses delays mortality

from white spot syndrome virus [47], suggesting densoviruses in general may play both detri-

mental and beneficial roles in host ecology. None of the asteroids sampled in this survey were

grossly abnormal, and the low prevalence of the Patiriella regularis penstyldensovirus genome

fragment in asteroid populations at our collection sites may indicate that these infections rep-

resent sub-clinical, or perhaps persistent infections which are unrelated to wasting or mass

mortality.

Protists associated with asteroids

A total of 15 contigs matched 18S and 28S rRNAs based on alignment. Of these, nine were fun-

gal (five were Ascomycetes, four were Basidiomycetes), two were mycetozoan and one was

mesomycetozoan (Fig 4; S1–S4 Figs). The mesomycetozoan contiguous sequence (Stichaster
contig 929) was most similar to a fish pathogen Ichthyosporea sp. ex Tenebrio molitor (Fig 4).

The abundance of this contiguous sequence was significantly higher in the body wall of Sticha-
ster australis than in either Coscinasterias muricata (p = 0.019, Student’s t-test, df = 4) or Patir-
iella regularis (p = 0.018, Student’s t-test, df = 4) (Fig 5). The abundance in epidermal tissues

was also significantly higher in Stichaster australis than in either gonads or pyloric caeca

(p = 0.013 and p = 0.006, respectively, Student’s t-test, df = 8). The contiguous sequence was

detected in any quantity in 80–85% of all samples tested with no pattern with tissue specificity

or species.

The association of microbial eukaryotes, especially fungi and fungi-like protists, with echi-

noderms is not extensively documented in previous surveys. Hewson et al [30] reported the

detection of totiviruses, which are fungal viruses, in several Holothuroidea. Similarly, Nerva

et al [47] reported the mycovirome of fungi isolated from Holothuria polii. These reports sug-

gest that fungi may be common constitutents of the sea cucumber microbiome. Wei et al [48]

reported the cultivation of a symbiotic fungi most similar to Penicillium from an asteroid in
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China. Labyrinthulids have also been cultivated from the surface of wasting asteroids in the

northeast Pacific [49]. However, their role in wasting pathology is unknown. There has been a

body of work examining anti-fungal properties of asteroid extracts [50–53], suggesting that

fungi discovered in this survey may be adapted to the chemical environment of their host.

Mesomycetozoa are of interest since they represent the closest unicellular ancestor to multi-

cellular animals [54]. They represent parasites of vertebrates [55–57] of which several,

Fig 4. Phylogenetic representation of asteroid-associated 28S rRNA sequences in purified virus metagenomes. The tree was constructed by

neighbor joining and based on an 849 nucleotide alignment of eukaryotic 28S rRNA. Shown are close matches by BLAST against the non-redundant

database.

https://doi.org/10.1371/journal.pone.0241026.g004

Fig 5. Mesomycetozoan 28S rRNA copies as determined by qPCR in asteroid tissues. a,b denotes significant difference

(p < 0.025, Student’s t-test with Bonferroni correction for 2 comparisons).

https://doi.org/10.1371/journal.pone.0241026.g005
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including Ichthyosporea spp. are aquatic. Aquatic mesomycetozoans infect fish and amphibi-

ans [56–59] and cause dermal disease. Mesomycetozoa may also form symbioses with their

hosts (e.g. the mealworm Tenebrio molitor; [60] and other taxa [61, 62] (reviewed in [63]). Our

observation of an Icthyosporea-like rRNA in Stichaster is the first report of this group in Aster-

oidea. The observations of greater load in epidermal tissues than internal organs suggests they

may also form dermal infections, and their widespread occurrence in asteroid populations

from the North Island / Te Ika-a-Māui of Aotearoa New Zealand suggests that mesomycetozo-

ans are non-specific and broadly prevelant. Because we did not observe gross disease signs in

any specimen, it is unlikely that this microorganism is a pathogen, but rather, they may repre-

sent a normal constituent of the host microbiome. Since this taxon was found primarily in epi-

dermal tissues, it is also possible that it was incidentally acquired from the environment.

Conclusions

To the best of our knowledge, this is the first investigation of viruses and mesomycetozoa asso-

ciated with asteroids in Aotearoa New Zealand. Discovery of these taxa suggests an undiscov-

ered bank of potential parasites or symbionts inhabiting echinoderms, and demands further

investigation into their ecological roles. Our work demonstrates the value in unbiased surveys

of microbiome constituents (i.e. microbial surveillance) which may inform future disease

investigations by providing a picture of grossly normal microbiome constituents. Further-

more, this study broadens understanding of densovirus host range, and provides further evi-

dence for their association with asteroid taxa that do not currently experience sea star wasting

disease.
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