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Abstract In the sport of cricket, variations in a player’s batting ability can usu-
ally be measured on one of two scales. Short-term changes in ability that are ob-
served during a single innings, and long-term changes that are witnessed between
matches, over entire playing careers. To measure long-term variations, we derive
a Bayesian parametric model that uses a Gaussian process to measure and predict
how the batting abilities of international cricketers fluctuate between innings. The
model is fitted using nested sampling given its high dimensionality and for ease of
model comparison. Generally speaking, the results support an anecdotal description
of a typical sporting career. Young players tend to begin their careers with some raw
ability, which improves over time as a result of coaching, experience and other ex-
ternal circumstances. Eventually, players reach the peak of their career, after which
ability tends to decline. The model provides more accurate quantifications of cur-
rent and future player batting abilities than traditional cricketing statistics, such as
the batting average. The results allow us to identify which players are improving or
deteriorating in terms of batting ability, which has practical implications in terms of
player comparison, talent identification and team selection policy.
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1 Introduction

As a sport, cricket is a statistician’s dream. The game is steeped in numerous statis-
tical and record-keeping traditions, with the first known recorded scorecards dating
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as far back as 1776. Given the statistical culture that has developed with the growth
of cricket, using numeric data to quantify individual players’ abilities is not a new
concept. However, despite the abundance of data available, cricket has only recently
attracted the attention of statistical analysts in the public realm. This is potentially
due to many previous academic studies being focused on the likes of achieving a fair
result [8, 11, 6] and match outcome prediction [4, 1, 17, 3], rather than statistical
applications that measure and predict individual player abilities and performances.

For as long as the modern game has existed, a player’s batting ability has pri-
marily been recognized using the batting average; in general, the higher the batting
average, the better the player is at batting. However, the batting average fails to
tell us about variations in a player’s batting ability, which can usually be attributed
to one of two scales: (1) short-term changes in ability that are observed during or
within a single innings, due to factors such as adapting to the local pitch and weather
conditions (commonly referred to as ‘getting your eye in’ within the cricketing com-
munity), and (2) long-term changes that are observed between innings, over entire
playing careers, due to the likes of age, experience and fitness levels.

Early studies provided empirical evidence to support the claim that a batsman’s
score could be modelled using a geometric progression, suggesting players bat with
a somewhat constant ability during an innings [10]. However, it has since been
shown that the geometric assumptions do not hold for many players, due to the in-
flated number of scores of 0 that are present in many players’ career records [12, 2].
Rather than model batting scores, [12] and [5] used nonparametric and parametric
hazard functions respectively, to measure how dismissal probabilities change with
a batsman’s score. Estimating a batsman’s hazard function, H(x), which represents
the probability of getting out on score x, allows us to observe how a player’s ability
varies over the course of an innings. Both studies found that batsmen appeared to be
more likely to get out while on low scores – early in their innings – than on higher
scores, supporting the idea of ‘getting your eye in’.

In order to quantify the effects of ‘getting your eye in’, [16] proposed an alterna-
tive means of measuring how player ability varies during an innings. The authors use
a Bayesian parametric model to estimate the hazard function, allowing for a smooth
transition in estimated dismissal probabilities between scores, rather than the sud-
den, unrealistic jumps seen in [12] and to a lesser extent [5]. For the vast majority
of past and present international Test players, [16] found overwhelming evidence to
suggest that players perform with decreased batting abilities early in an innings and
improve as they score runs, further supporting the notion of ‘getting your eye in’.

1.1 Modelling Between-Innings Changes in Batting Ability

While there is plenty of evidence to suggest that players do not bat with some con-
stant ability during an innings, it is also unlikely that a player bats with some con-
stant ability throughout their entire career. Instead, variations in a player’s underly-
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ing ability are likely to occur between innings, due to factors such as how well the
player has been performing recently (referred to as ‘form’ in cricket).

If batting form were to have a significant impact on player performance, we
should be able to identify extended periods of players’ careers with sequences of
high scores (indicating the player was ‘in’ form) and sequences of low scores (in-
dicating the player was ‘out of’ form). On the contrary, [9] found little empirical
evidence to support this idea. Instead, for the majority of players analyzed in the
study, the authors suggest that public perceptions of batting form tend to be overes-
timated, with many players’ scores able to be modelled using a random sequence.

Within a Bayesian framework, [13] employed the use of a hidden Markov model
to determine whether a batsman is in or out of form. The model estimates a number,
K, of ‘underlying batting states’ for each player, including the expected number of
runs to be scored when in each of the K states. Parameters that measure: availability
(the probability a batsman is in form for a given match), reliability (the probability
a batsman is in form for the next n matches) and mean time to failure (the expected
number of innings a batsman will play before he is out of form), were also estimated
for each batsman. However, a drawback of this approach is that the model requires
an explicit specification of what constitutes an out of form state. The authors specify
a batting state that has a posterior expected median number of runs scored of less
than 25, as being out of form, and all other states as being in form. While in the
context of one day or Twenty20 cricket this is not necessarily an unreasonable spec-
ification, there are numerous arguments that could be made to justify a low score,
scored at a high strike rate, as a successful innings.

In this paper, we extend the Bayesian parametric model detailed in [16], such that
we can not only measure and predict how player batting abilities fluctuate during an
innings, but also between innings, over the course of entire playing careers. This
allows us to treat batting form as continuous, rather than binary; instead of defining
players as ‘in’ or ‘out’ of form, we can describe players as improving or deterio-
rating in terms of batting ability. At this stage our focus is on longer form Test and
first-class cricket, as limited overs cricket introduces a number of match-specific
complications [7].

2 Model Specification

The derivation of the model likelihood follows the method detailed in [16]. If X ∈
{0,1,2,3, ...} is the number of runs a batsman is currently on, we define a hazard
function, H(x) ∈ [0,1], as the probability a batsman gets out on score x. Assuming
a functional form for H(x), conditional on some parameters θ , we can calculate the
probability distribution for X as follows:

P(X = x) = H(x)
x−1

∏
a=0

[1−H(a)] . (1)
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For any given value of x, this can be thought of as the probability of a batsman
surviving up until score x, then being dismissed. However, in cricket there are a
number of instances where a batsman’s innings may end without being dismissed
(referred to as a ‘not out’ score). Therefore, in the case of not out scores, we compute
P(X ≥ x) as the likelihood, rather than P(X = x). Comparable to right-censored
observations in the context of survival analysis, this assumes that for not out scores
the batsman would have gone on to score some unobserved score, conditional on
their current score and their assumed hazard function.

Therefore, if I is the total number of innings a player has batted in and N is
the number of not out scores, the probability distribution for a set of conditionally
independent ‘out’ scores {xi}I−N

i=1 and ‘not out’ scores {yi}N
i=1 can be expressed as

p({x},{y}) =
I−N

∏
i=1

(
H(xi)

xi−1

∏
a=0

[1−H(a)]
)
×

N

∏
i=1

( yi−1

∏
a=0

[1−H(a)]
)
. (2)

When data {x,y} are fixed and known, Equation 2 gives the likelihood for any
proposed form of the hazard function, H(x;θ). Therefore, conditional on the set of
parameters θ governing the form of H(x), the log-likelihood is

log
(

L(θ)
)
=

I−N

∑
i=1

log H(xi)+
I−N

∑
i=1

xi−1

∑
a=0

log[1−H(a)]+
N

∑
i=1

yi−1

∑
a=0

log[1−H(a)]. (3)

2.1 Parameterizing the Hazard Function

The model likelihood in Equation 3 depends on the parameterization of the hazard
function, H(x). As per [16], we parameterize the hazard function in terms of an
effective average function, µ(x), which represents a player’s ability on score x, in
terms of a batting average. Given the prevalence of the batting average in cricket,
it is far more intuitive for players and coaches to think of ability in terms of bat-
ting averages, rather than dismissal probabilities. The hazard function can then be
expressed in terms of the effective average function, µ(x), as follows

H(x) =
1

µ(x)+1
(4)

where the effective average contains three parameters, θ = {µ1,µ2,L}, and takes
the following functional form

µ(x) = µ2 +(µ1−µ2) exp
(
−x
L

)
. (5)
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Here, µ1 represents a player’s initial batting ability when beginning a new in-
nings, while µ2 is the player’s ‘eye in’ batting ability once used to the specific
match conditions. Both µ1 and µ2 are expressed in terms of a batting average. The
timescale parameter L, measures the speed of transition between µ1 and µ2 and is
formally the e-folding time. By definition the e-folding time, L, signifies the num-
ber of runs scored for approximately 63% (formally 1− 1

e ) of the transition between
µ1 and µ2 to take place and can be understood by analogy with a ‘half-life’. This
model specification allows us to answer questions about individual players, such as:
(1) how well players perform when they first arrive at the crease, (2) how much bet-
ter players perform once they have ‘got their eye in’ and (3) how long it takes them
to ‘get their eye in’.

2.2 Modelling Between-Innings Changes in Batting Ability

To extend the model further, such that we can measure variations in player batting
ability between innings, we use the same likelihood function in Equation 3. How-
ever, we re-parameterize the effective average function to include a time component,
t, such that

µ(x, t) = expected batting average on score x, in tth career innings. (6)

For clarity, we will refer to µ(x) as the ‘within-innings’ effective average (ex-
plaining how ability changes within an innings). By marginalizing over all scores,
x, we obtain the ‘between-innings’ effective average, ν(t), which explains how abil-
ity changes between innings, across a playing career.

ν(t) = expected batting average in tth career innings. (7)

When estimating ν(t), we need to account for variations in ability due to ex-
ternal factors such as: recent form, general improvements/deterioration in skill and
the element of randomness associated with cricket. This is achieved by fitting a µ2
parameter for each innings in a player’s career, where µ2t represents a player’s ‘eye
in’ batting ability, corresponding to their tth innings. We are then able to predict the
expected batting average in each innings, ν(t), analytically using Equation 5.

To afford a player’s underlying batting ability a reasonable amount of flexibility,
the set of {µ2t} terms are modelled using a Gaussian process. A Gaussian process is
fully specified by an underlying mean value, m, and covariance function, K(Xi,X j),
which will determine by how much a player’s batting ability can vary from innings
to innings [14]. Our choice of covariance function is the commonly used squared
exponential covariance, which contains scale and length parameters σ and `.

Therefore, the model contains the set of parameters θ = {µ1,{µ2t},L,m,σ , `}.
The model structure with respect to parameters µ1, L, C and D follows the model
specification detailed in [16], with the parameters assigned the following prior dis-
tributions.
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µ1←Cµ2

L← Dµ2

C ∼ Beta(1,2)
D∼ Beta(1,5)

log(µ2t )∼ Gaussian process(m,K(Xi,X j;σ , `))

m∼ Lognormal(log(25),0.752)

σ ∼ Exponential(10)
`∼ Uniform(0,100)

These priors are either non-informative or are relatively conservative, while
loosely reflecting our cricketing knowledge. It is worth noting, that as we are mea-
suring ability in terms of a batting average (which must be positive), we model
log(µ2t ), rather than just µ2t , to ensure positivity in our estimates.

As the model requires a set of {µ2t} parameters to be fitted (one for each in-
nings played), the model can contain a large number of parameters for players who
have enjoyed long international careers. Therefore, to fit the model we employ a
C++ implementation of the nested sampling algorithm [15], which uses Metropolis-
Hastings updates and is able to handle both high dimensional and multimodal prob-
lems that may arise. The model output provides us with the posterior distribution
for each of the model parameters, as well as the marginal likelihood, which makes
for trivial model comparison. For each player analyzed, we initialize the algorithm
with 1000 particles and use 1000 MCMC steps per nested sampling iteration.

3 Analysis of Individual Players

3.1 Data

The data we use to fit the model are simply the Test career scores of an individ-
ual batsman and are obtained from Statsguru, the cricket statistics database on the
Cricinfo website1. As the model assumes that a player’s ability is not influenced
by the specific match scenario, it is best suited to longer form cricket, such as Test
matches, where there is generally minimal external pressure on batsmen to score
runs at a prescribed rate.

3.2 Modelling Between-Innings Changes in Batting Ability

To illustrate the practical implications of the model, let us consider the Test match
batting career of current New Zealand captain, Kane Williamson. The evolution of
Williamson’s between-innings effective average, ν(t), is shown in Figure 1 and sug-
gests that early in his career, Williamson was not as good a batsman as he is today.
In fact, it was not until playing in roughly 50 innings that he began to consistently
bat at least as well as his current career average of 50.36. This is not surprising, as

1 www.espncricinfo.com
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it is a commonly held belief that many players need to play in a number of matches
to ‘find their feet’ at the international level, before reaching their peak ability.

Fig. 1 Posterior predictive effective average function for ν(t) (red), fitted to Kane Williamson’s
Test career data, including a subset of posterior samples (green), future predictions (purple) and a
68% credible interval (pink/dotted purple).

To gain a better understanding of how Williamson compares to other batsmen
globally, we can compare multiple players’ effective average functions. Figure 2
compares the predictive effective average functions for the current top four batsmen
in the world, as ranked by the official International Cricket Council (ICC) ratings2.

Fig. 2 Posterior predictive effective average functions, ν(t), for ‘the big four’, including predic-
tions for the next 20 innings (dotted).

2 As of 1st August, 2018: (1) Steve Smith, (2) Virat Kohli, (3) Joe Root and (4) Kane Williamson
– commonly referred to as ‘the big four’
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As we might expect, all players appear to have improved in terms of batting abil-
ity since the start of their careers. Again, this supports the concept of ‘finding your
feet’ at the international level, although different players appear to take different
lengths of time to adjust to the demands of international cricket.

Table 1 shows each player’s predicted effective average for their next innings, as
well as their ICC rating. The order of these four players remains unchanged when
ranking by predicted effective averages instead of ICC ratings, however, as we have
computed the posterior predictive distributions for ν(t), our model has the added
advantage of being able to quantify the differences in abilities between players.
Rather than concluding ‘Steve Smith is 26 rating points higher than Virat Kohli’,
we can make more useful statements such as: ‘we expect Steve Smith to outscore
Virat Kohli by 5.1 runs in their next respective innings’ and ‘Steve Smith has a
68.8% chance of outscoring Virat Kohli in their next respective innings’.

Table 1 Predicted effective averages, ν(t), for the next career innings for ‘the big four’. The offi-
cial ICC Test batting ratings (as of 1st August, 2018) are shown for comparison.

Player Career average Predicted ν(next innings) ICC Rating (#)
S. Smith (AUS) 61.4 62.5 929 (1)
V. Kohli (IND) 53.4 57.4 903 (2)
J. Root (ENG) 52.6 52.6 855 (3)
K. Williamson (NZ) 50.4 51.2 847 (4)

4 Concluding Remarks and Future Work

We have presented a novel and more accurate method of quantifying player batting
ability than traditional cricketing statistics, such as the batting average. The results
provide support for the common cricketing belief of ‘finding your feet’, particularly
for players beginning their international careers at a young age, with many batsmen
taking a number of innings to reach their peak ability in the Test match arena. With
respect to batting form, the model appears to reject the idea of recent performances
as having a significant impact on innings in the near future. In particular, it appears
that the effect of recent form varies greatly from player to player.

A major advantage of the model is that we are able to maintain an intuitive crick-
eting interpretation, allowing for the results and implications to be easily digested by
coaches and selectors, who may have minimal statistical training. Additionally, we
are able to make probabilistic statements and comparisons between players, allow-
ing us to easily quantify differences in abilities and predict the real life impacts of
selecting one player over another. As such, the findings have practical implications
in terms of player comparison, talent identification, and team selection policy.

It is worth noting that we have ignored important variables, such as the number of
balls faced in each innings, as well as the strength of the opposition. Currently, the
model treats all runs scored equally. Implementing a means of incorporating more
in-depth, ball-by-ball data and including the strength of opposition bowlers will
reward players who consistently score highly against world-class bowling attacks.
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