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Abstract. Using the symmetric group Sn+1 and related hyperbolic
Coxeter groups [3,3, . . . ,3,6], we construct cusped hyperbolic n-manifolds
of small volume having small rank fundamental group, for n≤ 5. In par-
ticular, we find a cusped orientable arithmetic hyperbolic 5-manifold M5

∗
of volume 13ζ(3)/2 with rank(π1(M5

∗ )) = 3, starting from the ideal hy-
perbolic birectified 5-simplex described in a recent paper by the second
author.
Keywords. Coxeter group, small index torsion-free subgroup, cusped
hyperbolic manifold, volume, ideal hyperbolic birectified 6-cell.

1. Introduction

The aim of this work is to construct and describe cusped hyperbolic mani-
folds of small volume with small rank fundamental groups. We are especially
interested in the case of n-manifolds of dimension n≤ 5 that are commensu-
rable with an ideal k-rectified regular simplex tesselating hyperbolic space
Hn (for some k ≥ 0). This means that both space forms admit a common
finite-sheeted cover, or in other words, that the associated discrete groups
of hyperbolic isometries are commensurable (in the wide sense).

It is a classical fact that the thrice-punctured sphere Σ3 is one of minimal
volume among all orientable hyperbolic surfaces. One way to construct the
surface Σ3 is to glue together two ideal triangles S∞reg, each of area π. Its
fundamental group π1(Σ3) has rank 2, is arithmetic, and is commensurable
with the hyperbolic Coxeter group [3,∞] and the modular group PSL(2,Z).

The Gieseking manifold G is a non-orientable hyperbolic 3-manifold with
one cusp, constructible from an ideal (0-rectified) regular tetrahedron S∞reg ⊂
H3 with dihedral angle π

3 , by glueing facets together in pairs. Its fundamen-
tal group π1(G) has rank 2, and admits the presentation 〈u,v | u2 v2 = vu〉.
Also π1(G) is arithmetic and commensurable with the hyperbolic Coxeter
group [3,3,6], as well as with the Eisenstein modular group PSL(2,Z[ω])
where ω = (−1 +

√
−3)/2 is a primitive cubic root of unity. In [1], Adams
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proved that G has minimal volume ν3 among all cusped hyperbolic 3-
manifolds, with ν3 = vol3(S∞reg) = 35/2

2π2 ζQ(
√
−3)(2), where ζK(s) denotes the

Dedekind zeta function of the number field K.
Due to constructions of Ratcliffe-Tschantz [21, 23] and Kolpakov-Martelli

[16], there are many non-isometric orientable and non-orientable cusped
hyperbolic 4-manifolds of small volume. These constructions are almost
all based on the ideal regular 24-cell C, whose symmetry group is given by
the arithmetic Coxeter group [3,4,3,4]. The latter is commensurable with
the pseudo-modular group PSL(2,Z[i, j]) whose coefficients are in the ring
of Hamilton integers Z[i, j]; see [10, ch. 15.2]. While the 1171 examples
of Ratcliffe and Tschantz described in [21] are of minimal volume ν4 = 4π2

3 ,
with 5 or 6 cusps, the manifold of volume 4ν4 constructed by Kolpakov and
Martelli has only one cusp. Recently, in [23], Ratcliffe and Tschantz showed
that there are exactly four hyperbolic 4-manifolds obtained from C, with a
single cusp and of volume ν4, up to isometry. These four manifolds are all
non-orientable.

In [22, Theorem 2], Ratcliffe and Tschantz classified all the orientable hy-
perbolic 5-manifolds whose fundamental groups are torsion-free subgroups
of (minimal possible) index 32 in the congruence two subgroup Γ(2) of posi-
tive units of the Lorentzian quadratic form x2

1 + · · ·+x2
5−x2

6. The group Γ(2)
is a hyperbolic Coxeter group associated with a non-compact right-angled
fundamental polyhedron of volume 7ζ(3)

8 having 16 facets. One of these
5-manifolds has a symmetry group of order 16 that acts freely on the man-
ifold. It turns out that the resulting quotient manifold N5 has 2 cusps and
volume 7ζ(3)

4 , which is the smallest known volume of a complete hyperbolic
5-manifold; see [22, Section 9].

In this work, we construct cusped hyperbolic n-manifolds for 3≤ n≤ 5, by
considering ideal (n−3)-rectified regular simplices rn−3Ŝreg that give rise to
a tesselation of Hn. The symmetry group of such an object rn−3Ŝreg ⊂Hn is
related to the symmetric group Sn+1 and to the hyperbolic Coxeter groups
Γ̂n = [3,3, . . . ,3,6] (or their duals [6,3, . . . ,3,3]) of rank n+1. Our strategy is
to find the smallest index of a torsion-free subgroup in each of these Coxeter
groups Γ̂n, for small n, and then show that the smallest index of a torsion-
free subgroup in the Coxeter group [6,3,3,3,3,6] is equal to 2880.

For n= 3, the group Γ̂3 = [3,3,6] is related to the ideal regular tetrahedron
S∞reg = r0Ŝreg ⊂H3, and we rediscover Gieseking’s single-cusped manifold G
as described above.

For n = 4, we find a torsion-free subgroup Γ4
∗ of minimum index 720 in

the arithmetic Coxeter pyramid group Γ4 = [∞,3,3,3,6] of covolume π2

540 ;
see [13]. The related quotient space M4

∗ = H4/Γ4
∗ yields a non-orientable

4-cusped hyperbolic manifold of Euler characteristic χ(M4
∗ ) = 1. The group

Γ4 is the finite-covolume counterpart of the group Γ̂4, and it is incommen-
surable to the Coxeter simplex group [3,4,3,4]; see [8]. Furthermore, Γ4
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contains as a subgroup of index 5! = 120 the group generated by the reflec-
tions in the facets of the ideal 1-rectified Coxeter 5-cell R = r1Ŝreg ⊂ H4.
The manifold M4

∗ is commensurable to the orientable manifold N4 with
χ(N4) = 1 constructed by Riolo and Slavich in a different way; see [24, 25].

For n = 5, we find there is an orientable 2-cusped hyperbolic manifold
M5
∗ of small volume and with small rank fundamental group, closely related

to the ideal birectified 6-cell B = r2Ŝreg with dihedral angles π
3 and π

2 . The
polyhedron B is highly symmetric, and can be barycentrically decomposed
into 6! = 720 Coxeter pyramids with symbol [6,3,3,3,3,6], with each one
having volume 13ζ(3)

5760 ; see [15].
The fundamental group of the manifold M5

∗ is isomorphic to a torsion-free
subgroup of minimal possible index (namely 2880) in the arithmetic group
Γ5 = [6,3,3,3,3,6]. (By the way, Γ5 also contains a subgroup of infinite
index isomorphic to Γ̂5 = [6,3,3,3,3].) The torsion-free subgroup of index
2880 in Γ5 was found with the help of the software system Magma [2] and
methods analogous to those used by the first author in [4]. In particular,
the volume of M5

∗ is 13ζ(3)
2 , and its symmetry group I(M5

∗ ) has order 24.
Furthermore, the group π1(M5

∗ ) has rank 3, with a presentation in terms of
three orientation-preserving isometries, where two are loxodromic elements
of equal translation length, and the third is parabolic.

In comparison with the volume 7ζ(3)
4 of the manifold N5 found by Ratcliffe

and Tschantz [22], the manifold M5
∗ is larger than N5. Observe that the

fundamental groups of M5
∗ and N5, as with the associated Coxeter groups,

are incommensurable; see [8]. Now if there were a subgroup H of I(M5
∗ )

of order |H| ≥ 4 acting without fixed points on M5
∗ , as in [22], then the

quotient manifold M5
∗ /H would have volume strictly less than that of N5,

but it turns out that there is no such subgroup in I(M5
∗ ).

The rest of this paper is organised as follows. In Section 2 we provide some
necessary background about hyperbolic Coxeter groups, Coxeter polyhedra
and their description by Coxeter symbols, and for 3≤ n≤ 5, we present the
relation between the Coxeter groups Γ̂n = [3, . . . ,3,6], their associated groups
Γn of known finite covolume, and ideal (n−3)-rectified regular simplices in
Hn. In Section 3, we first prove Theorem 1, concerning the smallest index
of a torsion-free subgroup in each of the Coxeter groups [3,3, . . . ,3,6] of
rank 3 to 6. In the case of [3,3,3,3,6], the smallest index of a torsion-free
subgroup is 1440, and in contrast to this, we then show that the smallest
index of a torsion-free subgroup of the Coxeter group [6,3,3,3,3,6] is 2880.
Properties of the corresponding hyperbolic 5-manifold M5

∗ of volume 13ζ(3)
2

are summarised in Theorem 2. In Section 4 we give additional information
about the manifold M5

∗ and present our findings about the symmetry group
I(M5

∗ ) in Theorem 3. We also include a comparison with the 5-manifold
Q5 constructed by Felikson and Tumarkin [7] by means of quiver mutations,
and in Section 5, we complete the picture, providing constructions of small
volume cusped hyperbolic n-manifolds for n= 3 and n= 4.
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2. The Coxeter groups [3,3, . . . ,3,6] and the hyperbolic
reflection groups Γn of finite covolume

Let Xn denote either the sphere Sn, or Euclidean space En, or hyper-
bolic space Hn, of dimension n. We may interpret Xn via its linear model
embedded in a quadratic space Y n+1, so that

Hn = {x ∈ Rn+1 | qn(x) = x2
1 +x2

2 + . . .+x2
n−x2

n+1 =−1 , xn+1 > 0}.
Furthermore, denote by Isom Xn the isometry group of Xn. Recall that
the group Isom Hn is isomorphic to the group O+(n,1) of positive Lorentz
matrices (see [19, Chapter 3]), that is,
(2.1) O+(n,1) = {A ∈Mat(n+ 1,R) | AtJ A= J , [A]n+1,n+1 > 0} ,
where J = diag(1,1, . . . ,1,−1) is the diagonal matrix associated with qn.

For a given subgroup Γ of Isom Hn, the quotient space Hn/Γ is a (com-
plete) hyperbolic n-orbifold if Γ is discrete. In addition, if the group Γ has
no torsion elements (that is, no non-trivial elements of finite order), then
Hn/Γ is a hyperbolic n-manifold, which we will denote by M .

In this paper, we consider only finite volume quotients V of Hn by discrete
groups Γ of hyperbolic isometries (see [3], [19]). Accordingly, the group Γ
is finitely-generated, and the volume of V can be identified with the volume
of a (closed) fundamental domain for the deck group π1(V ) of V , which
is isomorphic to Γ. By Selberg’s Lemma [19, Chapter 7], the group Γ has
a torsion-free (normal) subgroup of finite index, so the space V is finitely
covered by a hyperbolic manifold. Finally, recall from [20] that the isometry
group I(V ) of a finite volume orbifold V =Hn/Γ is a finite group isomorphic
to the quotient group N(Γ)/Γ, where N(Γ) is the normaliser of Γ in Isom Hn.

Two groups in Isom Hn are commensurable in the wide sense (or com-
mensurable, for short) if the intersection of one group with some conjugate
of the other group is of finite index in both groups. Commensurability is
an equivalence relation, which preserves properties such as cocompactness,
finite covolume, and arithmeticity.

A geometric Coxeter group is a discrete subgroup Γ of Isom Xn generated
by a finite set S of reflections si in hyperplanes Hi of Xn, for 1 ≤ i ≤ |S|.
The cardinality |S| of S is called the rank of Γ. The generators in S satisfy
the relations s2

i = 1 and (sisj)mij = 1 where mij =mji ∈ {2,3, . . . ,∞} for all
i, j. Here, mij =∞ means that sisj does not have specified finite order.
Associated with Γ is the Coxeter diagram Σ = Σ(Γ), which is a graph with
nodes νi (corresponding to si and Hi), with νi and νj joined by an edge with
label mij whenever mij ≥ 3. (This label is usually omitted when mij = 3.)
Observe that in the hyperbolic case, if Hi and Hj are parallel and intersect
on ∂Hn (or lie at hyperbolic distance l > 0 from each other), then the nodes
νi and νj are connected by an edge with label ∞ (or by a dotted edge with
label l).

Hence the Coxeter diagram Σ of Γ depicts the intersection behaviour of
the hyperplanes Hi = v⊥i (for 1 ≤ i ≤ |S|) and the facets of the associated
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Coxeter polyhedron P = ∩1≤i≤|S|H
−
i ⊂Xn, where the closed half spaces H−i

are oriented by means of the unit vectors vi orthogonal to Hi, pointing out-
wards with respect to P . The polyhedron P is the closure of a fundamental
domain of Γ, and the group Γ is said to be of finite covolume if P has finite
volume.

We use a Coxeter symbol to depict a Coxeter diagram of simple combi-
natorial type. As explained in [11, Appendix], for example, this symbol can
take the form [p1,p2, . . . ,pk] or [q1, q2, . . . , ql,∞] with integer labels pi, qj ≥ 3,
for a linear Coxeter diagram with k+1 or l+2 nodes and with edges marked
by the respective weights. In a similar way, the Coxeter symbol [∞, q1, q2,∞]
with integers q1, q2 ≥ 3 denotes a linear Coxeter diagram with 5 nodes.

The spherical and Euclidean Coxeter groups were classified by Coxeter
[5] in 1934. The list of irreducible spherical Coxeter groups is comparatively
short. In this paper, the group An = [3,3, . . . ,3] of order (n+1)! is of partic-
ular interest since it is isomorphic to the symmetric group Sn+1, under an
isomorphism that takes its generator si to the single transposition (i, i+1),
for 1 ≤ i ≤ n. Alternatively, it can be viewed as the symmetry group of a
regular simplex Sreg ⊂ Sn−1, with each si interpreted as a reflection in Rn.

For hyperbolic Coxeter groups of finite covolume, Vinberg [26] developed
a highly satisfactory theory allowing one to analyse their arithmetic nature
and the combinatorial-metrical structure of their Coxeter polyhedra P in
terms of the Gram matrix G = G(P ). For example, a finite-covolume hy-
perbolic Coxeter group with non-compact polyhedron P is arithmetic (and
defined over Q) if and only if all coefficient cycles (related to closed paths
on the Coxeter diagram) of 2 ·G are rational integers. Despite this insight,
Coxeter groups of finite covolume in Isom Hn are classified only for very
small rank |S| ≥ n+1. For an up-to-date list and non-existence bounds, see
[6].

Here we focus on finite-covolume hyperbolic Coxeter groups Γn given by
linear diagrams, with associated non-compact Coxeter polyhedron P ⊂Hn,
such that Γn has minimal rank and contains An = [3,3, . . . ,3] as a subgroup.

For example, when n= 2 there is the arithmetic Coxeter group Γ2 = [3,∞]
of rank 3 given in Fig. 1, with rotation subgroup Γ+

2 isomorphic to the
rational modular group PSL(2,Z). The group Γ2 generates the symmetry
group of an ideal triangle S∞reg ⊂H2 of area π.

s s s∞
a b c

Figure 1. The Coxeter group Γ2 = [3,∞]

In geometric terms, by decomposing the triangle S∞reg barycentrically into
3! isometric copies of the right-angled triangle R2 = ∆(0, π3 ,

π
2 ) with angle

π
3 and one vertex on the boundary at infinity of H2, the generators of the
group Γ2 are the reflections in the geodesic lines bounding R2.
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For n= 3, the group Γ3 of rank 4 has diagram given in Fig. 2 and coincides
with the group Γ̂3 = [3,3,6]. It is of arithmetic nature, and the commutator
subgroup of Γ3 is isomorphic to the Eisenstein modular group PSL(2,Z[ω])
where ω = (−1+

√
−3)/2; see [10, Section 14.3]. The group Γ3 is generated

by the reflections a,b,c,d in the facets of a non-compact Coxeter tetrahedron
R3, with precisely one vertex on the boundary at infinity, given by A =
Hb∩Hc∩Hd. The stabiliser of A in Γ3 is the Euclidean Coxeter subgroup
with symbol [3,6]. The covolume of Γ3 can be computed in two different
ways. Classically, the geometrical approach due to Lobachevsky yields

vol3(R3) = 1
8JI(π3 )≈ 0.04228 ,

where JI(ω) =−
∫ ω

0 log |2 sin t|dt denotes the Lobachevsky function; see [12],
for example. s s s s6

a b c d

Figure 2. The Coxeter group Γ3 = Γ̂3 = [3,3,6]

The tetrahedron R3 is the characteristic simplex of an ideal regular tetra-
hedron S∞reg with dihedral angle π

3 and with centre D = Ha ∩Hb ∩Hc. By
barycentric decomposition, the Coxeter simplex S∞reg can be cut into 4! = 24
isometric copies of R3, so that vol3(S∞reg) = 3JI(π3 ). Notice that the group
Γ3 is commensurable with the Coxeter pyramid group Γ′3 = [∞,3,6,∞] in
Isom H3, which implies that their quotient spaces H3/Γ3 and H3/Γ′3 are cov-
ered by a common manifold; see [8]. The Coxeter pyramid [∞,3,6,∞] can
be decomposed into the tetrahedra [3,6,3] and [6,3,6] so that its volume
equals 5

4 JI(π3 ); see [12]. In contrast with Γ′3, the Coxeter pyramid group
Θ = [∞,3,3,∞] is not commensurable with Γ3 and Γ′3. (It contains A3 as
well, but as such its rank is not minimal.)

For n = 4, there are no non-compact Coxeter simplices of finite volume
with linear diagram containing the diagram for A4 as a subgraph; see [27,
Part II, Chapter 5]. There is, however, an infinite volume Coxeter polyhe-
dron R̂4 ⊂ H4 with symbol [3,3,3,6], giving rise to the reflection group Γ̂4
of rank 5. By taking into account the exterior of hyperbolic space and by
passing to the projective ball model K4 for H4 in RP 4, the polyhedron R̂4
can be interpreted as the characteristic simplex of a regular simplex Ŝreg
with dihedral angle π

3 , all of whose edges lie outside of H4 but are tangent
at their midpoints to ∂H4. By taking the (hyperbolic) convex hull of all
these edge midpoints of Ŝreg, one obtains an ideal hyperbolic 4-polyhedron
R with dihedral angles π

3 and π
2 whose symmetry group is isomorphic to a

subgroup of S5. More precisely, this process is given by polar truncation of
each of the ultra-ideal vertices of Ŝreg, and is called (simple) rectification of
Ŝreg, indicated by r1Ŝreg =R; see [15, Section 3.2], [25]. This process also
gives rise to a (truncated) finite volume Coxeter polyhedron R4 ⊂ H4 with
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symbol [∞,3,3,3,6], with precisely one ideal vertex, and which barycentri-
cally decomposes R into 5! = 120 isometric copies. The Coxeter diagram of
R4 and the associated reflection group Γ4 is depicted in Fig. 3.

s s s s s s∞ 6
a b c d e f

Figure 3. The Coxeter group Γ4 = [∞,3,3,3,6]

Next, by [13, Appendix], since the volume of the polyhedron R4 is π2

540 ,
the volume of the ideal rectified regular simplex r1Ŝreg =R⊂H4 is given by

(2.2) vol4(R) = 5!vol4([∞,3,3,3,6]) = 2π2

9 .

Observe that the Coxeter group Γ4 is not commensurable with the Coxeter
group [3,4,3,4]. The Coxeter simplex [3,4,3,4] has volume π2

864 and takes
part (as characteristic simplex) in the barycentric decomposition of the ideal
right-angled 24-cell C ⊂H4 into 1152 isometric copies (see [8]). In particular,
the volume of C is 4π2

3 . Both groups Γ4 and [3,4,3,4] are arithmetic, and
are closely related to certain pseudo-modular groups of quaternionic Clifford
matrices as described in [10, Section 15.2].

For n = 5, as in the case n = 4, there are no finite-covolume hyperbolic
Coxeter groups of rank 6 with linear diagram containing the diagram for A5
as a subgraph, but there is an infinite volume Coxeter polyhedron R̂5 ⊂H5

with symbol [3,3,3,3,6], which belongs to the ideal birectified regular 5-
simplex r2Ŝreg =: B with dihedral angles π

3 and π
2 . More concretely, by

passing to the projective ball model K5 for H5, the polyhedron R̂5 can be
associated with the characteristic simplex of a regular simplex Ŝreg in the
ambient space of K5, with all of its 2-dimensional faces lying outside but
tangent at their centres to the boundary sphere at infinity ∂Kn. The trunca-
tion of the ultra-ideal vertices vi of Ŝreg by means of their polar hyperplanes
πi (for 1≤ i≤ 6) has the property that ](πi,πk) = π

3 whenever i 6= k. This
process yields a finite volume hyperbolic Coxeter polyhedron with dihedral
angles π

3 and π
2 , coinciding with the (hyperbolic) convex hull of all ideal

centres of the 2-faces of Ŝreg, the ideal birectified regular simplex B, whose
symmetry group is isomorphic to a subgroup of S6. For more details, see
[15, Section 3.2].

The truncation of Ŝreg induces a truncation of R̂5 and provides a finite
volume Coxeter polyhedron R5 ⊂H5, with precisely one vertex on ∂H5. The
associated reflection group Γ5 has the generators a,b,c,d,e,f,g according to
Fig. 4, where the mirror Ha associated with a coincides with a truncation
hyperplane of Ŝreg.
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s s s s s s s6 6
a b c d e f g

Figure 4. The group Γ5 = [6,3,3,3,3,6]

The combinatorial type of R5 is that of a pyramid over a product of two
triangles whose apex D is the ideal point given by the intersection of the
hyperplanes Ha,Hb,Hc and He,Hf ,Hg of R5. More precisely, the Euclidean
vertex figure of D is of type [6,3]× [3,6]. In [8], all such Coxeter pyramid
groups were classified up to commensurability, and further, it was shown that
the group Γ5 does not belong to the commensurability class of the Coxeter
simplex group [3,4,3,3,3]. Also it is known by [9] that the quotient space
of H5 by the (arithmetic) discrete reflection group [3,4,3,3,3] has minimal
volume among all cusped hyperbolic 5-orbifolds. This minimal value has
previously been computed in [14], and is given by

(2.3) covol5([3,4,3,3,3]) = 7ζ(3)
46080 .

The group Γ5 contains as a (normal) subgroup of index 4 the Coxeter
pyramid group Λ5 given by Fig. 5. This follows easily by reflecting the
Coxeter pyramid given by Fig. 4 in the mirror Ha and then in Hg. In other
words, the group Λ5 is generated by the elements aba,b,c,d,e,f,gfg of Γ5,
and it will play a role in Section 4.ss s s s ss��

HH ��
HH

Figure 5. The subgroup Λ5 of index 4 in Γ5

Furthermore, Γ5 is arithmetic and closely related to the so-called hybrid
quaternionic modular group PS∆L(2,Z[ω,j]) where ∆ is the Dieudonné de-
terminant of a quaternionic matrix and ω = (−1+

√
−3)/2 as usual; see [10,

Section 15.5]. The covolume of the group Γ5 is much harder to compute
than the covolume of [3,4,3,3,3] and its commensurable groups. In [15], us-
ing the proof of [15, Theorem 2] and relations in the crystallographic Napier
cycles defined by the group Γ5, the second author was able to compute the
covolume of Γ5 = [6,3,3,3,3,6] and that of PS∆L(2,Z[ω,j]). Indeed

(2.4) covol5([6,3,3,3,3,6]) = 13
5760 ζ(3) .

As a consequence, the volume of the ideal birectified regular 5-simplex B is
6! · covol5([6,3,3,3,3,6]) = 13ζ(3)

8 .

In Fig. 6 and Fig. 7, we list the different hyperbolic Coxeter groups as
described above.
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Coxeter group Related group in IsomHn covoln

[3] (spherical) Γ2 = [3,∞] π
6

[3,6] (Euclidean) Γ′3 = [∞,3,6,∞] 5
4 JI(π3 )

Figure 6. The hyperbolic Coxeter groups Γ2 and Γ′3

n Γ̂n Γn covoln

3 [3,3,6] [3,3,6] 1
8 JI(π3 )

4 [3,3,3,6] [∞,3,3,3,6] π2

540

5 [3,3,3,3,6] [6,3,3,3,3,6] 13
5760ζ(3)

Figure 7. The hyperbolic Coxeter groups Γ̂n and Γn

3. Torsion-free subgroups of small index in certain Coxeter
groups

In this section we find the smallest index of a torsion-free subgroup in
each of the Coxeter groups [6,3,3, . . . ,3] (and equivalently, in their duals
[3,3, . . . ,3,6]) of ranks 3 to 6, and explain why the smallest index of a torsion-
free subgroup in the [6,3,3,3,3,6] Coxeter group Γ5 is 2880.

To do this, we start by noting that Γ5 is canonically generated by seven
reflections a,b,c,d,e,f,g, which satisfy the defining relations that can be read
off the Coxeter diagram given in Fig. 4. We need to know the representatives
of conjugacy classes of torsion elements in this group, and we can find those
in a similar way to the approach taken in [4] for finding a small index torsion-
free subgroup in the [5,3,3,3] Coxeter group.

Specifically, we observe that the group Γ5 has a natural action as a re-
flection group in 5-dimensional hyperbolic space H5, and hence that every
torsion element is conjugate to a torsion element of one or more of the sub-
groups generated after removing an element from the canonical generating
set for Γ5. In the case of [5,3,3,3], every such subgroup was finite, but in
this case, that does not happen. Actually it never happens, because each of
the Coxeter groups [6,3,3,3,3], [6,3,3,3], [6,3,3] and [6,3] and their duals
(obtained by reversing the Coxeter diagram) is infinite. Nevertheless, we
can make the analogous observation about torsion elements in each of these
Coxeter groups, using their actions on 5-, 4- and 3-dimensional hyperbolic
space and 2-dimensional Euclidean space, respectively.
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For example, the elements a, b and c generate an infinite subgroup iso-
morphic to the [6,3] Coxeter group, otherwise known as the (2,3,6) triangle
group, and each of its torsion elements is conjugate to a torsion element of
one or more of the finite subgroups 〈a,b〉 ∼=D6 (of order 12), 〈a,c〉 ∼=C2×C2
(of order 4) and 〈b,c〉 ∼= D3 (of order 6), and hence to one or more of the
elements a, b, ab, (ab)2, (ab)3, c, ac and bc. (In fact we can drop b or c from
this list, as each of them is conjugate to the other in 〈b,c〉 ∼=D3.)

Next, a, b, c and d generate a subgroup isomorphic to the [6,3,3] Coxeter
group, and each of its torsion elements is conjugate to a torsion element of
one or more of either 〈a,b,c〉 ∼= [6,3] or 〈a,b,d〉 ∼= D6×C2 (of order 24) or
〈a,c,d〉 ∼= C2×D3 (of order 12) or 〈b,c,d〉 ∼= [3,3]∼= S4 (of order 24).

In this way, we can build a set of representatives of conjugacy classes of
torsion elements of each of the seven subgroups generated after removing
an element from the given generating set S = {a,b,c,d,e,f,g} for Γ5. This,
however, produces a very long list (which interested readers could take some
time to find for themselves).

A much better approach is to take the maximally finite subgroups of Γ5
generated by subsets of S, as given in Fig. 8.

〈a,b,d,e,f〉 ∼= 〈a,b〉×〈d,e,f〉 ∼= D6×S4 (of order 288),
〈a,b,d,e,g〉 ∼= 〈a,b〉×〈d,e〉×〈g〉 ∼= D6×D3×C2 (of order 144),
〈a,b,d,f,g〉 ∼= 〈a,b〉×〈d〉×〈f,g〉 ∼= D6×C2×D6 (of order 288),
〈a,c,d,e,f〉 ∼= 〈a〉×〈c,d,e,f〉 ∼= C2×S5 (of order 240),
〈a,c,d,e,g〉 ∼= 〈a〉×〈c,d,e〉×〈g〉 ∼= C2×S4×C2 (of order 96),
〈a,c,d,f,g〉 ∼= 〈a〉×〈c,d〉×〈f,g〉 ∼= C2×D3×D6 (of order 144),
〈b,c,d,e,f〉 ∼= S6 (of order 720),
〈b,c,d,e,g〉 ∼= 〈b,c,d,e〉×〈g〉 ∼= S5×C2 (of order 240),
〈b,c,d,f,g〉 ∼= 〈b,c,d〉×〈f,g〉 ∼= S4×D6 (of order 288),

Figure 8. Maximally finite subgroups of the [6,3,3,3,3,6]
Coxeter group Γ5 obtained after deleting generators

Now every torsion-free subgroup H of Γ5 intersects each of these nine
subgroups trivially, and so in the natural permutation representation of Γ5
on (right) cosets of H (by right multiplication), each of these nine subgroups
acts fixed-point-freely (that is, with no non-trivial element fixing a point),
and hence with orbits all having the same length as the order of the sub-
group. It follows that the index of H in Γ5 is divisible by the order of each
one, and so must be divisible by LCM(288,144,240,96,720) = 32 ·9 ·5 = 1440.

The same arguments as above show that the index of every torsion-free
subgroup of one of the Coxeter groups [6,3], [6,3,3], [6,3,3,3] and [6,3,3,3,3]
is divisible by 12, 24, 720 and 1440, respectively. Moreover, we can easily
use this information to prove the following.
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Theorem 1. The smallest index of a torsion-free subgroup in one of the
Coxeter groups [6,3], [6,3,3], [6,3,3,3] and [6,3,3,3,3] is 12, 24, 720 and
1440, respectively.

Proof. Let {a,b,c}, {a,b,c,d}, {a,b,c,d,e} or {a,b,c,d,e,f} be the canonical
generating set for the relevant Coxeter group, of rank 3, 4, 5 or 6, respec-
tively. Then computations using Magma reveal the following:
(1) The subgroup generated by {abacb,bababc} has index 12 in the [6,3]
Coxeter group, and intersects each of the subgroups 〈a,b〉, 〈a,c〉 and 〈b,c〉
trivially (because each of those maximally finite subgroups acts fixed-point-
freely on the corresponding coset space), and hence is torsion-free.
(2) The subgroup generated by {abc,babcd} has index 24 in the [6,3,3] Cox-
eter group, and intersects each of the subgroups 〈a,b,d〉, 〈a,c,d〉 and 〈b,c,d〉
trivially (because each of those maximally finite subgroups acts fixed-point-
freely on the coset space), and hence is torsion-free.
(3) The subgroup generated by {abc,babcd,bedcbababcbababcdeca} has index
720 in the [6,3,3,3] Coxeter group, and intersects each of the subgroups
〈a,b,d,e〉, 〈a,c,d,e〉 and 〈b,c,d,e〉 trivially (because each of those maximally
finite subgroups acts fixed-point-freely on the coset space), and hence is
torsion-free.
(4) The subgroup generated by {abcdcbfedcbababa,adcbaedcfedbcaba,abcbd
edcbfabcdecdaba} has index 1440 in the [6,3,3,3,3] Coxeter group, and inter-
sects each of the subgroups 〈a,b,d,e,f〉, 〈a,c,d,e,f〉 and 〈b,c,d,e,f〉 trivially
(because each of those maximally finite subgroups acts fixed-point-freely on
the coset space), and hence is torsion-free.

In each of these four cases, the index is equal to the lower bound on it
obtained earlier, and hence is the minimum index. �

In contrast, however, we were unable to find a torsion-free subgroup of the
anticipated minimum possible index 1440 in the [6,3,3,3,3,6] Coxeter group
Γ5. We did find one of index 2880, again with the help of Magma, namely
the subgroup generated by bacbdefdea, cbabedgfgeda and cbabfegfgefdea.
In the natural permutation representation of Γ5 on (right) cosets of this
subgroup, each of the nine maximally finite subgroups of Γ5 in Fig. 8 acts
fixed-point-freely on the coset space, so the given subgroup contains no
torsion element. The abelianisation of this subgroup is Z3

7 , obtainable using
the AbelianQuotientInvariants function in Magma.

(In fact, up to conjugacy this subgroup was the only torsion-free subgroup
of index 2880 in Γ5 that we could find, using a range of approaches (including
searching for subgroups of index 2880

k in subgroups of index k for mid-range
divisors k of 2880, and intersections of subgroups of small index, and pre-
images of subgroups of appropriate orders in small quotients). It is plausible
that the subgroup we found is the only torsion-free subgroup of index 2880
in Γ5 up to conjugacy, but we could not prove this.)
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The quotient M5
∗ of H5 by this subgroup is a manifold with two cusps.

Indeed, the Coxeter polyhedron associated with the group Γ5 has precisely
one ideal vertex v0, with stabiliser subgroup Γ5(v0) = 〈a,b,c〉×〈e,f,g〉. The
cusps of this manifold are in one-to-one correspondence with the orbits of
the group Γ5(v0) in the action of Γ5 on the 2880 cosets of the torsion-free
subgroup, and an easy Magma computation shows that there are two such
orbits, of lengths 576 and 2304.

This left us with the somewhat challenging task of showing that there is
no torsion-free subgroup of index 1440. We explain below how we did that.

Suppose there is one, say H, and again consider the natural permuta-
tion representation of Γ5 on the (right) coset space Ω = (Γ5 :H). In this
representation, every finite subgroup of Γ5 acts fixed-point-freely on Ω, and
in particular, the subgroup J = 〈b,c,d,e,f〉 induces two (regular) orbits of
length |S6| = 720. These two sub-orbits are linked together by the per-
mutation induced by a to give a transitive permutation representation of
〈a,b,c,d,e,f〉 satisfying the ‘fixed-point-free orbits’ test from item (4) in the
proof of Theorem 1, and are also linked together by the permutation in-
duced by g to give a transitive permutation representation of 〈b,c,d,e,f,g〉
satisfying its ‘dual’ (under the automorphism of Γ5 that reverses its Coxeter
diagram).

We used this information to proceed as follows:
Step 1: We found all transitive permutation representations of the [6,3,3,3,3]
Coxeter group of degree 1440 in which the maximal finite subgroups act
fixed-point freely, as in the proof of Theorem 1, by determining all ways
in which two regular representations of the [3,3,3,3] Coxeter group S6 can
be linked together in the appropriate way. This took several days of com-
puting time using Magma, even after breaking it up into 945 independent
sub-cases, depending on how the orbits of the [3,3,3,3] Coxeter subgroup
of order 120 generated by {c,d,e,f} are linked together by the permuta-
tion induced by the generator a (which commutes with each of c,d,e,f). It
produced 19704 transitive representations of degree 1440.
Step 2: We recognised that the representations in Step 1 give all transitive
permutation representations of the [3,3,3,3,6] Coxeter group with the anal-
ogous property, simply by applying the restriction to 〈a,b,c,d,e,f〉 of the
automorphism θ of Γ5 that reverses the order of its generating set, taking
(a,b,c,d,e,f) to (g,f,e,d,c,b).
Step 3: We considered all pairs of the representations found in steps 1
and 2, to first test if the permutations induced respectively by a and g
commute, in which case they give a transitive permutation representation
of the [6,3,3,3,3,6] Coxeter group Γ5, and then (if that test succeeded)
to check the resulting permutation representation gives a fixed-point-free
representation of each of the maximally finite subgroups of Γ5 in the list in
Fig. 8. This was straightforward, and required looking only at the orbits
of the groups induced by the 2nd, 3rd, 5th and 6th of the finite subgroups
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listed in Fig. 8 (namely the ones containing both a and g), but also took some
considerable time, because of the sheer number of representations coming
out of Steps 1 and 2.

Sadly, in Step 3 we found no way of combining pairs from Steps 1 and 2 to
give a representation of Γ5 of the anticipated kind. As it happened, 3120 of
the pairs produced permutation representations in which the permutations
induced by a and g commute, but all of them failed the fixed-point-free
orbits test.

In summary, the above arguments and computations prove the following.

Theorem 2. The smallest index of a torsion-free subgroup in the Coxeter
group [6,3,3,3,3,6] is 2880, achieved for example by the torsion-free sub-
group generated by bacbdefdea, cbabedgfgeda and cbabfegfgefdea. This
subgroup gives rise to a hyperbolic 5-manifold of volume 2880 · 13ζ(3)

5760 = 13ζ(3)
2 ,

with two cusps and with first homology group Z3
7 .

4. The manifold M5
∗ and its fundamental group

Here we take a closer look at the manifold described in Theorem 2. The
elements

u := bacbdefdea, v := cbabedgfgeda and w := cbabfegfgefdea

in the Coxeter group Γ5 = [6,3,3,3,3,6] generate a torsion-free subgroup Γ∗5
of index 2880 and are of even lengths 10,12 and 14, respectively. Hence the
quotient space M5

∗ = H5/Γ∗5 is an orientable cusped hyperbolic 5-manifold
of volume 13ζ(3)

2 .

Now let us analyse the fundamental group π1(M5
∗ ) ∼= Γ5

∗ in more detail.
Because the group Γ5 = [6,3,3,3,3,6] is an arithmetic reflection group (de-
fined over Q), the group π1(M5

∗ ) is an arithmetic lattice. One may check
using the Reidemeister-Schreier Rewrite function in Magma that the el-
ements of the generating-set S∗ := {u,v,w} satisfy the set R∗ of defining
relations given in Fig. 9, so that Γ5

∗ = 〈S∗ |R∗〉 .

In order to understand the geometry of the generators u,v,w of π1(M5
∗ ),

we represent the generators a,b, . . . ,g of [6,3,3,3,3,6] by means of positive
Lorentz matrices A,B, . . . ,G ∈ O+(5,1), as given in Fig. 10; see [8, p. 96].
Here, a matrixM ∈O+(5,1) is written as a 6-tuple [m1,m2, . . . ,m6] of vectors
m1,m2, . . . ,m6 with respect to the canonical basis {e1,e2, . . . ,e6} of R6.
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1 =v−1uw−1u−2vw−1u2wu−1v2wv−2

=w2u−1v2u−1vuw−1uv−1uv−2uw−1u−2

=uw−1uv−1uwv−2uw−1uv−2wuwv−2uw−1

=v3w−1u−1vwu−1v2u−1v2uw−1uv−2u2wu−1v

=u−1vwu−1v2uwu−1vuw−1uw−1u−1vw−1u2wu−1v2

=w−1uw−1u−1vu−1wu−1v−1uw−1u−1w−1u−1w−1vuw−1uv−1w−1uw−1

=w−1uw−1u−1w−1u−1vu−1wu−1v−1uw−1u−1w−1uw−2vuw−1uv−1

=vuw−1uv−1uwv−2uw−1v−1uv−2uw−1v−1uwv−1uwu−1

=uwu−1wuwv−2uw−1v−1w2u−1v2w−1u−1w−1uw−1u−1vw−1

=v2w−1uw−2vuw−1uv−1w−1v2u−1w−1vwu−1v2w−1u−1w−1

=wvwu−1v2w−1u−1w−1vuw−1uv−3uw−1u−1wv−1uwu−1

=w−1u−1w−1vuwu−1wuwv−2uw−1uvw−1u−1vu−1wu−1v−1u

=v−1uw−1u−1w−1vuw−1uv−1w−1uw−1u−1wu−1v2w−1u−1w−1uw−1u−1v−1

=wu−1wvu−1wu−1v−1wuwv−2uw−3vuw−1uv−1w−1v2u−1

=wu−1vu−1wu−1v−1uw−1u−2vwu−1wvu−1wu−1v−1w2v−1uwu−1

=w−1uw−1u−1vw−1uwu−1v−1uw−1u−2v2u−1w2u−1wuwv−2uw−1u

=uwu−1vuw−1uv−1wu−1v2w−1u−1w−1uw−2uv−2wvu−1wu−1v−1w

=u−1wu−1v2w−1u−1w−1uw−1u−1vw−1u−1w−1uw−1u−1vw−1u−1vwu−1v2w−1u−1w−1

=vwu−1v2w−1u−1w−1uw−1u−2vwu−1v2uwu−1vu2wu−1vuw−1uv−1u

=v−2u2wu−1v3uwu−1wuv−2uw−1u−2wvuwu−1wvu−1wu−1v−1wu

=u−1wu−1v2w−1u−1w−1uw−1u−1vw−1u−1wv−1uwu−1wu−1vu−1wu−1v2w−1u−1w−1u2wu−1v2

=v−1uw−1u−1wv−1uwu−1w2uwu−1v2wv−2uw−1u−1wv−1uwu−1wv−2uw−1u−1wv−2.

Figure 9. Defining relations for the subgroup generated by S∗

A=[−e1,e2,e3,e4,e5,e6]

B =[−
1
2
e1 +

√
3

2
e2,

√
3

2
e1 +

1
2
e2,e3,e4,e5,e6]

C =[e1,−e2 + 2e5 +2e6,e3,e4,2e2−e5−2e6,−2e2 + 2e5 + 3e6]

D =[e1,e2,
1
2
e3−

1
√

2
e4−

1
2
e5,−

1
√

2
e3−

1
√

2
e5,−

1
2
e3−

1
√

2
e4 +

1
2
e5,e6]

E =[e1,e2,
1
2
e3 +

√
3

2
e4 +

3−
√

6
2

e5 +
3−
√

6
2

e6,

√
3

2
e3−

1
2
e4 +

3(
√

2−
√

3)
2

e5 +
3(
√

2−
√

3)
2

e6,

3−
√

6
2

e3 +
√

3(−3+
√

6)
2

e4− (
13
2
−3
√

6)e5− (
15
2
−3
√

6)e6,

−
3−
√

6
2

e3−
√

3(−3 +
√

6)
2

e4 + (
15
2
−3
√

6)e5 + (
17
2
−3
√

6)e6]

F =[e1,e2,−e3 + 2e5 + 2e6,e4,2e3−e5−2e6,−2e3 + 2e5 + 3e6]

G=[e1,e2,−
1
2
e3−

√
3

2
e4 +

3+
√

6
2

e5 +
3+
√

6
2

e6,−
√

3
2
e3 +

1
2
e4 +

√
2 +
√

3
2

e5 +
√

2 +
√

3
2

e6,

3+
√

6
2

e3 +
√

2+
√

3
2

e4− (
3
2

+
√

6)e5− (
5
2

+
√

6)e6,

−
3+
√

6
2

e3−
√

2+
√

3
2

e4 + (
5
2

+
√

6)e5 + (
7
2

+
√

6)e6]

Figure 10. The generators of [6,3,3,3,3,6] as elements in O+(5,1)
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In this way, the three elements u,v,w can be represented conveniently by
matrices U,V,W in O+(5,1). It turns out that the characteristic polynomial
of each of these three matrices has precisely one pair of zeros τ,τ−1 ∈ R
with absolute values 6= 1, while all other zeros lie on the unit circle. The
value τ > 1 is the exponential of the translation length along the axis of
the loxodromic element in question (in the direction of the attractive fixed
point). Hence the elements u,v,w are all loxodromic. Furthermore, one may
check that the element z given by

z := vw−1 = (ecdgfgdce)(fegfgef)
is parabolic. Since c and d commute with both f and g (see Fig. 4), the
element z is a product of the form z = [r,f ] = rfrf where r := egfge is the
reflection with respect to the hyperbolic hyperplane e⊥3 ∩H5 given by the
Lorentz matrix diag(1,1,−1,1,1,1).

Next, as mentioned in the Introduction, the manifold M5
∗ is closely related

to the highly symmetric ideal birectified regular 5-simplex B = r2Ŝreg. The
presentation 〈S∗ |R∗〉 for π1(M5

∗ ) given above does not help to determine
the order of the symmetry group I(M5

∗ ) of M5
∗ , or to detect non-trivial

subgroups acting fixed-point freely, but nevertheless we can still prove the
following theorem, which resulted from following up a helpful suggestion by
the referee.

Theorem 3. The symmetry group I(M5
∗ ) of M5

∗ is isomorphic to the sym-
metric group S4, of order 24, and contains no non-trivial subgroup that acts
without fixed points on M5

∗ .

Proof. First, we note that by a theorem of Mühlherr [17, Theorem 3.3], the
automorphism group of the Coxeter group Γ5 = [6,3,3,3,3,6] is the semi-
direct product of Γ5 by the cyclic group C2 induced by the automorphism
taking (a,b,c,d,e,f,g) to (g,f,e,d,c,b,a), corresponding to the non-trivial
symmetry of its Coxeter diagram.

It follows that the normaliser of Γ5 in Isom H5 is isomorphic to this semi-
direct product, and that makes it easy for us to find I(M5

∗ ) ∼= N(Γ5
∗)/Γ5

∗.
In particular, our subgroup Γ5

∗ has index 5760 in N(Γ5), and a Magma
computation shows that the normaliser N(Γ5

∗) of Γ5
∗ in N(Γ5) has index 240

in N(Γ5), and that N(Γ5
∗)/Γ5

∗ is isomorphic to S4, of order 24 = 5760/240.
To complete the proof, we show that the only torsion-free subgroup of

N(Γ5
∗) containing Γ5

∗ is Γ5
∗ itself.

For suppose there is a larger one, say H. Then since Γ5
∗ has index 24

in N(Γ5
∗) and index 5760 in N(Γ5), we see that H has index at most 2880

in N(Γ5). But also K := H ∩Γ5 is a torsion-free subgroup of Γ5, so K has
index at least 2880 in Γ5 and hence index at least 5760 in N(Γ5). It follows
that K has index 2 in H and index 2880 in N(Γ5), and so K =H ∩Γ5 = Γ5

∗.
In particular, H contains Γ5

∗ as a subgroup of index 2, and so H/Γ5
∗ ies in

one of the three conjugacy classes of subgroups of order 2 in N(Γ5
∗)/Γ5

∗
∼= S4.

A further Magma computation shows that up to conjugacy, H is generated
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by Γ5
∗ and one of the three elements

z1 := abgfgfababefgcdbcb , z2 := abgfgfgfba and z3 := abgfgfababgft .

On the other hand, H is not a subgroup of Γ5, so it must contain an element
lying outside Γ5, and therefore H cannot be generated by Γ5

∗ and one of z1
or z2. But also the element z3 has order 2, since

(abgfgfababgft)2 = abgfgfababgfgfababgfgfgab= (ab)6(fg)6 = 1,
and this is impossible because H is torsion-free. Thus no such subgroup H
exists. �

The ideal birectified regular 5-simplex B can be dissected into 720 copies
of the Coxeter pyramid with Coxeter symbol [6,3,3,3,3,6]. Its associated
reflection group Γ5 contains the Coxeter pyramid group Λ5 as a subgroup
of index 4; see Section 2. The Coxeter diagram of Λ5 depicted in Fig. 11
is distinguished by having edges only of weight 3, and arising as a mutation
of the quiver indexed by the Weyl group A7. More concretely, in [7], Fe-
likson and Tumarkin used techniques of quiver mutations from the theory
of cluster algebras in order to construct manifolds whose symmetry groups
contain a given finite Weyl group. In this way, they are able to determine all
finite volume hyperbolic manifolds arising from quivers of finite type whose
nodes are connected by at most one arrow (or quivers of finite type given by
simply-laced graphs). In fact, the fundamental groups of their manifolds are
torsion-free subgroups of certain finite-covolume hyperbolic Coxeter groups
whose Coxeter diagrams have weights only 2 and 3. In particular, the corre-
sponding Coxeter polyhedra have mutually intersecting facets forming dihe-
dral angles equal to either π

2 or π
3 ; this family of polyhedra has been classified

by Prokhorov [18]. The single relevant example distinct from simplices in
H5 is the Coxeter polyhedron associated with Λ5.

ss s s s ss��
HH ��

HH

1

2 7

6

3 4 5

Figure 11. The generators of the group Λ5

The corresponding manifold Q5 found by Felikson and Tumarkin arises
as follows. Consider the natural set S = {s1, . . . ,s7} of reflections generating
the group Λ5 as indexed in Fig. 11. These satisfy a set of relations that can
be read off from the Coxeter diagram of Λ5. Following [7, Section 3, (R3)],
construct the two cycle relators

r1 := (s3s1s2s1)2 = (cbabab)2 and r2 := (s5s6s7s6)2 = (efgfgf)2 ,

and consider the normal closure NC of {r1, r2} in Λ5. By the Manifold
Property [7, Theorem 6.2], the group NC is a torsion-free subgroup of index
40320 in Λ5 with quotient manifold Q5 = H5/NC .
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Moreover, it can be shown that Q5 has 70 cusps and symmetry group
I(Q5) containing the Weyl group A7 of order 8!; see [7, Section 5.3, Table
5.1]. As for its volume, the observation (2.4) allows us to deduce that

vol5(Q5) = 4 ·8! ·vol5([6,3,3,3,3,6]) = 364ζ(3)≈ 437.54871 .

In fact the Felikson-Tumarkin manifold Q5 is a cover of our manifold M5
∗ ,

because the torsion-free subgroup NC of index 40320 in Λ5 is contained in
the torsion-free subgroup of index 2880 we found in proving Theorem 2.
This is easily verifiable using Magma.

5. Some further observations

We finish this paper by exploiting the conclusions of Theorem 1 about
small index torsion-free subgroups for the related cases of the hyperbolic
Coxeter groups [∞,3,3,3,6], [3,3,6] and [∞,3,6,∞].

Theorem 4. The smallest index of a torsion-free subgroup in the Coxeter
group [∞,3,3,3,6] is 720, achieved for example by the torsion-free subgroup
generated by def , acdcbfeab, abcdefedfefdefefdcb, bcdedfedfefdefefcdcb
and bcdefedcbabcdefedcab, where a,b,c,d,e and f are the canonical gener-
ators for the Coxeter group. This subgroup gives rise to a non-orientable
hyperbolic 4-manifold of smallest volume 4π2

3 , with four cusps and with first
homology group Z⊕Z4

2 .

Proof. First, the Euler characteristic of the Coxeter group Γ4 = [∞,3,3,3,6]
is 1/720, so the minimum index of a torsion-free subgroup is at least 720.
On the other hand, a Magma computation shows that the subgroup given
in the statement of the theorem has index 720, and contains no conjugate
of any of the representative torsion elements a, b, c, d, e, f , ac, ad, ae, af ,
bc, bd, be, bf , cd, ce, cf , de, df , ace, acf , adf , bdf , (ef)2, (ef)3, a(ef)3,
ac(ef)3, bcde, bc(ef)2, b(ef)3 and c(ef)3, and has abelianisation Z⊕Z4

2 .
The associated hyperbolic 4-manifold is non-orientable, and it has four

cusps. Indeed the Coxeter polyhedron related to Γ4 has precisely one ideal
vertex v0, with stabiliser subgroup Γ4(v0) isomorphic to 〈a,b〉×〈d,e,f〉. The
cusps of the manifold are in one-to-one correspondence with the orbits of the
group Γ4(v0) in the action of Γ4 on the cosets of the torsion-free subgroup,
and a Magma computation shows that there are exactly four such orbits,
of lengths 48, 96, 144 and 432. �

In the case of the Coxeter group [3,3,6], and by means of a simple Magma
computation, we rediscover the following well known fact mentioned in the
Introduction.

Theorem 5. The smallest index of a torsion-free subgroup in the Cox-
eter group [3,3,6] is 24, achieved by the torsion-free subgroup generated by
u = abcdc and v = bcd, which satisfy u2v2 = vu, where a,b,c and d are the
canonical generators for the Coxeter group. This subgroup is unique up to
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conjugation, and yields the fundamental group of Gieseking’s 1-cusped non-
orientable hyperbolic 3-manifold G of volume ν3, with infinite cyclic first
homology group Z.

Associated with the Euclidean Coxeter group [6,3] is the hyperbolic Cox-
eter pyramid group [∞,6,3,∞] ⊂ IsomH3 of covolume 5

4 JI(π3 ). Part of our
Theorem 1 can be extended as follows.

Theorem 6. The smallest index of a torsion-free subgroup in the Coxeter
group [∞,6,3,∞] is 24, achieved for example by the orientation-preserving
torsion-free subgroup generated by ab, acdcbc and acebcd, and also by the
torsion-free subgroup generated by ab, acbcd and acdcebc (which does not
preserve orientation), where a,b,c,d and e are the canonical generators for
the Coxeter group. These subgroups gives rise to one orientable and one non-
orientable hyperbolic 3-manifold, each with three cusps and volume 30JI(π3 )≈
10.14941, and each with first homology group Z3.

Proof. First, note that the subgroup generated by b,c and e is finite and
isomorphic to D6×C2, of order 24, and so the minimum index of a torsion-
free subgroup is at least 24. On the other hand, Magma computations
show that each of the two subgroups given in the statement of the theorem
has index 24, and contains no conjugate of any of the representative torsion
elements a, b, c, d, e, ac, ad, ae, bc, bd, be, cd, ce, acd and bce, and has
abelianisation Z3.

Each of the two associated hyperbolic 3-manifolds has three cusps. Indeed
the Coxeter polyhedron related to the group [∞,6,3,∞] has two ideal ver-
tices v1 and v2, with stabiliser subgroups isomorphic to H1 = 〈b,c,d〉 ∼= [6,3]
and H2 = 〈a,b〉×〈d,e〉, respectively. Finally, a Magma computation deter-
mines the number of orbits of the stabilisers in the action of [∞,6,3,∞] on
the cosets of each of two torsion-free subgroups of index 24 in [∞,6,3,∞].
In the case of H1, there is a single orbit of length 24, while in the case of
H2, there are two orbits of lengths 8 and 16. Hence there are three cusps in
total for each of the two torsion-free subgroups. �
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